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ABSTRACT: The fluorogenic substrate Enzyme-Labeled Fluorescence 97 (ELF-P) is hydrolyzed by
the P-cleaving enzyme phosphatase, producing ELF 97 alcohol (ELFA), a fluorescent-insoluble prod-
uct. This reaction is used for monitoring phosphatase activity at the single-cell level. Most frequently,
ELF-P has been used to determine the P-limitation status of microphytoplankton, but rarely of hetero-
trophic bacteria. We incubated ELF-P on filters to monitor marine bacterial cultures and oligotrophic
Mediterranean Sea samples. Results were compared to classical measurements of bulk alkaline
phosphatase activity using the fluorogenic substrate 4-methylumbelliferyl phosphate (MUF-P). A
high percentage of the cultured cells were labeled with ELFA (the ratio of ELFA spots to total DAPI
counts in P-limited cultures ranged from 26 to 100 %, depending on the strain). In contrast, this ratio
never exceeded 0.01 % in Mediterranean samples, even when P was demonstrated to be a significant
limiting factor. This protocol is useful for application on cruises and with cultures, but was not
sufficiently sensitive to detect P-stressed bacterial cells in oligotrophic marine environments.
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INTRODUCTION

Developing new techniques for detecting phosphorus
(P)-stress in bacteria at the cell level from natural envi-
ronments is a challenge in microbial ecology. Such de-
velopments are important in understanding how P-lim-
itation can affect both the structure and the functional
role of bacterial communities. The molecule 2-(5'-chloro-
2'-phosphoryloxyphenyl)-6-chloro-4-(3H)-quinazolinone
(Enzyme-Labeled-Fluorescence 97 phosphatase sub-
strate [ELF-P], Molecular Probes) is a soluble substrate,
which, when cleaved by the cell's enzyme (phos-
phatase), produces ELF 97 alcohol (ELFA), a bright fluo-
rescent yellow-green precipitate labeling the site of en-
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zymatic activity (Gonzalez-Gil et al. 1998). In aquatic
systems, this technique has mainly been used as a tool
for identifying P-limited phytoplankton cells. To date,
only 4 published studies have focused on natural bacte-
rial communities. This includes studies on activated
sludge (Van Ommen Kloeke & Geesey 1999), an acidi-
fied lake (Nedoma & Vrba 2006), and bacterial colonies
and biofilms (Huang et al. 1998, Espeland & Wetzel
2001). In most of these studies, however, the abundance
and activity of bacteria were fairly high.

The aims of the present study were (1) to test an easy
protocol (suitable for research expeditions) on marine
isolates, and (2) to test this technique in the Mediter-
ranean Sea under P-limited conditions.
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MATERIALS AND METHODS

Two marine species were used: Alteromonas infer-
nus and Pseudomonas denitrificans. Cells were grown
in minimum requirement medium (Lyman & Fleming
1940) with a single source of carbon (C) and energy
and a single source of P, plus trace amounts of iron and
vitamins. The concentration of organic C (as glucose or
pyruvate) was low (Table 1) in order to obtain less
dense cultures. Different concentrations of inorganic P
were added to produce diverse initial C/P ratios of the
provided substrates (Table 1, Expts a and c). A. infer-
nus was also grown in natural seawater amended with
pyruvate (Table 1, Expt b). Seawater was aged in the
dark for 1 mo at 4°C to remove most nutrients. This
seawater was 0.2 pm filtered, and the filtrate was sup-
plemented with excess nitrogen (0.1 mM NH,CI), car-
bon (0.33 mM C-pyruvate), and trace amounts of iron
and vitamins. Phosphate (16.5 ptM) was added only in
the +P treatment.

The station DYFAMED (Marty et al. 2002) was stud-
ied for ELF application at the end of March 2003. Solu-
ble reactive P (SRP) and dissolved organic P (DOP),
determined as the difference between filtered samples
before and after wet-oxidation, were measured
according to standard colorimetric techniques (Raim-
bault et al. 1999).

Alkaline phosphatase (AP) activity was measured
fluorometrically using 4-methylumbelliferyl phosphate
(MUF-P). The linear increase in fluorescence in sea-
water with added MUF-P was followed over time (exci-
tation at 365 nm and emission at 460 nm) with a Kon-
tron SFM 23B spectrofluorometer. For in situ and
culture samples, we used MUF-P concentrations of

1 and 50 pM, respectively, which were found to be
saturating in preliminary experiments. MUF-P tracks
both dissolved AP activity and particle-associated
(mostly microorganisms) AP activity. Dissolved-associ-
ated AP activity was negligible in cultures (<3 %) and
could reach up to 36 % of measured phosphatase activ-
ity at the DYFAMED station (results not shown).
Contrary to MUF-P, ELF-P substrate provides infor-
mation on particle-associated AP. The Endogenous
Phosphatase Detection Kit (Molecular Probes E 6601)
was used. Component A (A;) was diluted 1/20 in com-
ponent B (By;) of the kit in accordance with the manu-
facturer's instruction to generate the solution applied to
the slides. Immediately after filtration of a water sample
(live sample) onto a 0.2 pm pore size black polycarbon-
ate filter, the filter was transferred onto a glass slide,
and 40 pl of the diluted solution Ay;/By; were applied to
the surface of the filter and gently spread with a plastic
tip. The slide was then put into a horizontal, capped
50 ml plastic tube to which wet paper was added to pre-
vent evaporation. Following a 1 h incubation at room
temperature in the dark, the filter was removed, put
briefly on a piece of absorbing paper, and then trans-
ferred into a 47 mm Petri dish containing a 47 mm ab-
sorbent pad (AP100 Millipore) soaked with a solution of
phosphate buffered saline (PBS, 10 mM, pH 7.5) and
1% formaldehyde to stop the activity. The filter was
transferred successively onto 3 PBS-formalin soaked
pads, and left 5 min on each one. The filter was then air-
dried on a piece of absorbent paper before being trans-
ferred onto a glass slide. Forty pul of a DAPI solution
(25 ng ml™!) were added, and the filter was incubated
for 10 min in the dark. The filter was dried again on ab-
sorbent paper and mounted on a glass slide. The yellow

Table 1. Pseudomonas denitrificans, Alteromonas infernus. Summary of alkaline phosphatase (AP) activity in bacterial cultures,
including initial conditions and the main results (bacterial numbers, ELFA spots, MUF-P based activities, and specific activities).
BN: bacterial numbers (DAPI counts)

Pseudomonas denitrificans Alteromonas infernus Alteromonas infernus
Code of experiment: a b [¢
Medium: Artificial seawater Natural seawater Artificial seawater
Carbon enrichment: Glucose Pyruvate Pyruvate
Concentration of C (mM C) 3.3 0.33 0.55
NH,Cl addition (mM N) 6.7 0.1 6.7
KH,PO, addition (pM P) 165 8.25 16.5 0 (in situ 0.61) 5.8
Conditions Excess P Low P Excess P Low P Equilibrium
Duration of the culture (d) 13 13 13 8
Period of max. BN (d) 8-13 7-11 5-8 7-9 3-7
Max. BN (ml™!) 1.2-1.5x10% 3.1-4.6 x 10° 2.0-2.6 x 107 1.2-1.7 x 107 3.2-4.5x 107
Period of max. AP activities (MUF-based) (d) 11-13 6-8 8-13 6-9 8
Max. MUF-based AP activities (nM h™!) 22-38 43-154 1400-2000 6000-9600 37000
Period of max. specific activities (d) 0-13 6-8 2-13 2-13 8
Specific activities (amol cell"* h™!) 0.1-6.5 16-33 10-160 440-1000 1300
Period of max. ELFA spots (d) 8-12 7-11 2-13 2-13 1.2-5
Max. ELFA spots (ml ™) 3-5x10* 3.4-7.0x10° 51+1.8x10° 4.8+3.0x10° 2-7 x 107
Ratio ELFA spots / BN (%) 0.02-0.05 9-17 30+ 11 46 + 28 172 £ 114
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fluorescence of ELFA spots and the blue fluorescence of
the DAPI stain were examined (Fig. 1) using an Olym-
pus BH2 microscope equipped with a long pass
dichroic mirror, type U (DM 400, barrier filter L420).

Variations of this protocol were tested. Following the
filtration step, the filter was cut into pieces and incubated
over different time periods or with different concen-
trations of ELF-P. In addition, a comparison was made
between the abundance of ELFA spots and the rate
of ELF-P hydrolysis measured in a spectrofluorometer
calibrated with standard dilutions of ELFA (ref E 6578).
This comparison was possible only in cultures, due to the
very low sensitivity of ELFA measured spectrofluoro-
metrically. In this attempt, 1.8 ml of Alteromonas infer-
nus culture were incubated with 200 pl of a 100 mM Tris-
HCI (pH 7.5) solution and 4 to 40 pl of ELF-P (ref E 6588)
stock (5 mM) or diluted solutions in Milli-Q water
(0.5 mM), giving final ELF-P concentrations of 2 to
100 pM. The increase in fluorescence (excitation 350 nm,
emission 530 nm) was followed over time. At the end of
the incubation, 500 pl were sub-sampled, fixed with 1 %
final concentration of formaldehyde, and filtered
through 0.2 pm polycarbonate filters for epifluorescence
microscopy and counting of ELFA spots.

Fig. 1. Alteromonas infernus. ELFA labeled culture (yellow-

green) counterstained with DAPI (blue) as observed with a

dichroic mirror type U. Note that the ELFA signal is much
more intense than DAPI

RESULTS AND DISCUSSION
Protocol

There are several important features in our protocol
(see Table 2 for a comparison to previously published
protocols). First, in order to work on live and unmodified
samples, the ethanol pre-treatment step was omitted,
since ethanol may damage cell membranes and/or in-
duce the bleaching of pigments (Nedoma et al. 2003,
Dignum et al. 2004). Second, to concentrate the cells, we
used filtration because centrifugation requires high
speeds and a lengthy processing time, making it less
convenient when working on vessels. Third, we used the
Endogenous Phosphatase Detection Kit, which is com-
monly used (Table 2), although only partial information
regarding its composition is available (see Dignum et al.
2004, Nedoma et al. 2007). The ELF-P has been used
omitting component B of the kit during incubation in the
liquid phase (Nedoma et al. 2003), and ELFA precipita-
tion was still possible (Fig. 2¢,d). However, this is only
feasible in cell-rich water samples with high phos-
phatase activity (Nedoma et al. 2003, Table 2).

Finally, we used DAPI as a counterstain because
both dyes are visible (DAPI-stained bacteria in blue,
ELFA spots in yellow-green) and cyanobacteria
(orange) and chloroplasts (red) in natural seawater
samples are easily discriminated. This also makes the
technique compatible with future efforts to combine
the method with fluorescent in situ hybridization
(FISH) techniques. However, the fluorescence of the
ELFA spots is much higher and fades more slowly than
DAPI fluorescence (Fig. 1). Consequently, with only
visual observation on the microscope, it is impossible
to confirm that DAPI-stained cells are associated with
an ELFA spot, since their similar size prevents seeing
the DAPI stain in the same location as an ELFA spot.
However, this discrimination is possible using narrow
band filters and image analysis (Nedoma & Vrba 2006)
or flow cytometry (Duhamel et al. 2008).

One of the first assumptions we tested was the pres-
ence of a false positive response. We showed that num-
ber of cells labeled with ELFA was higher in situations
where P-limitation occurred (Table 1 [Expt a], Fig. 3c).
Indeed, there was no significant labeling in C-limited
cultures of marine bacteria, even at the stationary phase,
suggesting that even if the substrate enters senescent
cells, intracellular phosphatase cannot significantly react
with ELF-P. However, P-sufficient Alteromonas infernus
also expressed phosphatase activity (Table 1 [Expt b]),
suggesting that for this strain, a fraction of phosphatase
activity seemed to be constitutive. These bacteria are
thus able to exert significant hydrolysis of phospho-
mono-ester bonds of organic molecules even in the pres-
ence of notable sources of inorganic phosphate. In that
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Fig. 2. Typical curves showing the effect of time of incubation (a) and concentration of ELF-P (b,c,d) on the abundance of ELFA

spots and ELF-P hydrolysis rates. Data in (a) and (b) used Mediterranean Sea water samples (incubations made on filters). Data in

(c) and (d) used pure cultures. ELF-P hydrolysis rate (detected by spectrofluorometry) was measurable only in P-deficient

Alteromonas infernus cultures. Error bars are +SE within different fields of observation or transects. Ay, Byy: component A
(ELF-P concentrate) or B (detection buffer) of the Endogenous Phosphatase Detection Kit, respectively
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Fig. 3. Vertical profiles of bacterial production (BP), soluble reactive phosphorus (SRP) concentration and dissolved organic

phosphorus (DOP) concentration (a); abundances of bacteria (bact), Synechococcus-like cells (cyano), and phototrophic nano-

flagellates (pnan) (b); and maximum hydrolysis rate of MUF-P (V,,.x hydrolysis rate) and abundances of ELFA spots (c). All
samples were collected at the DYFAMED station, NW Mediterranean Sea, sampled on 30 March 2003

case, this capacity could give access to the C or N com-
pounds of the molecule hydrolyzed in environments de-
ficient in labile sources of organic matter, like the deep
sea (Hoppe & Ullrich 1999).

The Time 0 sample (acting as an abiotic control, be-
cause it was fixed with formalin) only exhibited a low fluo-
rescence signal, thus confirming the absence of signifi-

cant abiotic labeling with ELF-P. Development of ELFA
spot abundances over time in the incubations confirmed
the presence of a lag phase that was apparent in cultures
as well as in natural samples (Fig. 2a). This lag time was
alsoreported for freshwater phytoplankton (Nedoma et
al. 2003, Dignum et al. 2004) and can vary with activity,
temperature, and cell size (J. Nedoma unpubl. results). A
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maximum concentration of label was obtained generally
within 1 h in natural samples. Both the number of ELFA
spots and ELF-P hydrolysis rates (measured by fluorom-
etry) increased with the concentration of ELF-P added.
The shape of these curves was not reproducible from one
sample to another (Fig. 2c,d), suggesting that the range
of concentrations that we tested was not always suffi-
cient to reach maximum hydrolysis rates, or that multi-
phasic kinetics were present (presence of different en-
zymes: Hoppe 2003, Nedoma & Vrba 2006). These tests
confirmed that the typical 1/20 dilution of the solutions in
the kit we used (i.e. 250 pM) in the 1 h incubation is gen-
erally sufficient to optimize cell labeling.

Bacterial cultures

All tests carried out using cultures are summarized
in Table 1. Maximum bacterial abundances were
higher under excess-P than under low-P conditions.
However, bulk activity and cell-specific activities var-
ied depending on the strain. For Alteromonas infernus,
differences between low-P and excess-P conditions
were less pronounced than for Pseudomonas denitrifi-
cans. Occasionally, the average ratio of ELFA spots to
DAPI counts was >1. Because ELFA spots and DAPI
counts were made on 2 separate slides, it is difficult to
conclude that percentages higher than 100% were
really due to the formation of ELFA spots outside bac-
terial cells or to heterogeneity in the distribution of
bacteria on the slide when abundances reached 107
cells ml™!,

Seawater samples

Sampling was carried out during the spring phyto-
plankton bloom (Bourguet et al. in press) when hetero-
trophic bacteria (1.5 x 10° ml™!) and Synechococcus-
like cells (1 x 10° ml™!) were abundant (Fig. 3b). SRP
was below 20 nM or undetectable in surface layers
down to 20 m depth (Fig. 3a). MUF-based AP activity
was constant in the first 20 m of the profile and
decreased significantly at 30 m depth (Fig. 3c). The
Michaelis-Menten constant (K,,) was stable along the
profile, with values ranging from 83 to 116 nM (results
not presented). At most, we counted 2 x 10® ELFA spots
ml™! at any particular location along the profile. Being
aware of the difficulty of counting rare events on fil-
ters, the vast majority of these spots were identified as
unassociated spots (34 to 75% over the depth range),
in contrast to spots associated with detritus (yellow
DAPI particles without chlorophyll fluorescence, 21 to
55 %), and only a few spots were associated with iden-
tified orange fluorescent cell (cyanobacteria, 0 to 8 %)

or red fluorescent cells (phototrophic nanoflagellates,
0 to 8%). The highest ratio of total ELFA spots to
bacterial abundance reached was 0.01 %.

A log-log plot of the distribution of ELFA spot abun-
dance versus MUF-P based AP activity using the entire
data set is shown in Fig. 4. Below a threshold of 5 to
10 nmol MUF-P hydrolyzed 1! h™!, a range that is fre-
quently found in situ, there was no significant relation-
ship due to the high variability. MUF-P activity was
linearly related to ELFA spots over a range of 5 to
200 nmol 1" h™1, At MUF-P hydrolysis rates higher than
200 nmol 1I"* h™!, ELFA spot abundance leveled off.

CONCLUSIONS

Culture populations and field communities of hetero-
trophic bacteria exhibited different phosphatase activ-
ities as seen from the specific activities found with
MUF-P substrate and the varying percentages of ELF
labeling. A minimum threshold of extracellular phos-
phatase activity (measured by spectrofluorometry) of
10 fmol cell'! h™! for phytoplankton (Nedoma et al.
2003) and 0.17 fmol cell™* h™! for bacteria in acidified
mountain lakes (Nedoma & Vrba 2006) is necessary to
observe significant ELFA spot formation and to allow
quantitative per cell estimates. Such levels were
reached only in our cultures. In contrast, we were
unable to detect ELFA labeling of bacteria from marine
samples with the protocol developed in this study,
even though SRP concentrations were undetectable in
surface waters and MUF-P hydrolysis rates were rela-
tively high. Heterotrophic bacteria were P-stressed, as
shown by the stimulation of bacterial production after

— 108
107
108
105

104

Abundance of ELFA spots (ml-1

001 0.1 1 10 102 10°  10*  10°
MUF hydrolysis rate (nM h-1)

Fig. 4. Log-log plot of abundance of ELFA spots versus MUF-P

alkaline phosphatase activities using the whole data set; cul-

ture data presented in Table 1, profile of March 2003 (Fig. 3),

and other measurements made using the same protocol

within surface waters at the DYFAMED station in October

2004 (results not presented in text). Solid symbols represent
in situ data, open symbols are pure cultures
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P amendments (results not presented). It is likely that
either the concentration of ELF-P we added was differ-
ent from the affinity of bacteria for this molecule, or
that assay conditions were not optimal, e.g. only the
most active bacteria were labeled. This problem has
also been encountered with natural Synechococcus
cells in the North Atlantic Gyre (Lomas et al. 2004).
Detection of extracellular activity among small coc-
coids in an acidified lake was scarce, and when
detectable, activity was lower than that of filaments
and curved rods that systematically revealed higher
activities (Nedoma & Vrba 2006). Future research
should concentrate on more sensitive detection tech-
niques such as flow cytometry, which could allow the
detection of a greater number of events and the simul-
taneous quantification of ELF intensity per cell with a
faster procedure than quantification by image analysis.
This work is currently in progress.
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