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Abstract

Alkaline phosphatases (APs) remove the phosphate (dephosphorylation) needed in multiple metabolic processes (from 

many molecules such as proteins, nucleotides, or pyrophosphate). Therefore, APs are important for bone mineralization but 

paradoxically they can also be deleterious for other processes, such as vascular calcification and the increasingly known 

cross-talk between bone and vessels. A proper balance between beneficial and harmful activities is further complicated in 

the context of chronic kidney disease (CKD). In this narrative review, we will briefly update the complexity of the enzyme, 

including its different isoforms such as the bone-specific alkaline phosphatase or the most recently discovered B1x. We will 

also analyze the correlations and potential discrepancies with parathyroid hormone and bone turnover and, most importantly, 

the valuable recent associations of AP’s with cardiovascular disease and/or vascular calcification, and survival. Finally, a basic 

knowledge of the synthetic and degradation pathways of APs promises to open new therapeutic strategies for the treatment 

of the CKD-Mineral and Bone Disorder (CKD-MBD) in the near future, as well as for other processes such as sepsis, acute 

kidney injury, inflammation, endothelial dysfunction, metabolic syndrome or, in diabetes, cardiovascular complications. 

However, no studies have been done using APs as a primary therapeutic target for clinical outcomes, and therefore, AP’s 

levels cannot yet be used alone as an isolated primary target in the treatment of CKD-MBD. Nonetheless, its diagnostic and 

prognostic potential should be underlined.
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Introduction

Alkaline phosphatases (APs) are membrane-bound gly-

coprotein hydrolases responsible for removing phosphate 

(P) groups (dephosphorylation or P-ester hydrolysis) from 

many molecules (nucleotides, proteins…), most effectively 

operating in an alkaline environment [1] (Fig. 1). Thus, P 

becomes available for many processes not only such as bone 

mineralization but also, as we appreciated in recent years, 

vascular calcification. Circulating APs, particularly the tis-

sue non-specific alkaline phosphatase (TNAP), may increase 

hydrolysis of pyrophosphate [2, 3], a natural inhibitor of 

hydroxyapatite formation in the extracellular fluid. Indeed 

pyrophosphate, which physiologically comes from the 

hydrolysis of extracellular nucleotides (essentially ATP) by 

the enzyme ENPP1 (ectonucleotide pyrophosphatase phos-

phodiesterase type 1, to pyrophosphate and AMP) (Fig. 2), is 

a well-known potent inhibitor of vascular calcification since 
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it prevents the incorporation of inorganic P into hydroxyapa-

tite crystals [1, 2, 4]. Consequently, the modulatory effect 

of APs on the balance between inorganic P and inorganic 

pyrophosphate seems to be involved in the increasingly 

recognized cross-talk between bone and vessels and the 

imbalance between bone mineralization and cardiovascular 

calcification [5–2]. This narrative review will briefly update 

the biochemical complexity of the enzyme, the correlations 

with parathyroid hormone (PTH) and bone turnover, and the 

most recent associations with survival, vascular calcifica-

tion, and cardiovascular disease. Knowledge of the synthetic 

and degradation pathways of this enzyme promises to open 

new therapeutic perspectives, even beyond chronic kidney 

disease-mineral and bone disorders (CKD-MBD).

Fig. 1  Alkaline phosphatase mediated reaction

Fig. 2  Alkaline phosphatases in the relationship between vascular 

smooth muscle cells, extracellular matrix and skeleton. Left side: 

vascular smooth muscle cells (VSMC), from top to bottom: Apyrase1/

ectonucleoside triphosphatase diphosphohydrolase 1 (eNTPD1) is 

an important ectoenzyme for the synthesis of inorganic phosphate 

 (Pi) from adenosine triphosphate (ATP). On this same substrate acts 

the ectoenzyme nucleotide pyrophosphatase/phosphodiesterase-1 

(eNPP1), but promoting the synthesis of pyrophosphate  (PPi), so that 

ATP is a substrate of both ectoenzymes. ATP comes from the intra-

cellular space by the action of several transporters such as the trans-

membrane protein (Ank) which is the product expression of the anky-

losis gene. High extracellular ATP levels are related with pathological 

calcification [165]. Tissue-nonspecific alkaline phosphatase (TNAP) 

hydrolyzes extracellular  PPi to  Pi, which can then enter the VSMC 

by transporters Pit-1 and Pit-2. Once inside the cell,  Pi can be taken 

up by the mitochondria and form new ATP molecules through oxida-

tive phosphorylation. However, higher concentrations of  Pi within the 

VSMC also promote cellular transformation to a bone-forming cell 

phenotype, overexpressing osteochondrogenic transcription mark-

ers. On the other hand, the  Pi that does not enter the cell increases 

the tissue deposits of calcium and  Pi promoting tissue calcification. 

Right side: Bone cells. Mineralization of hydroxyapatite (HA) seems 

to be initiated both by the accumulation of iP generated inside the 

cell by the action of Phospho-1 [phosphoethanolamine/phosphocho-

line (PC) phosphatase] and the  Pi transported from the extracellular 

space by Pit-1. Extracellular  Pi concentrations depend on the action 

of: (a) NPP1, which normally stimulates extracellular  PPi synthesis 

but, under conditions of low expression of TNAP, promotes the syn-

thesis of  Pi from both extracellular ATP and from  PPi (like TNAP). 

(b) TNAP, which hydrolyzes both  PPi and ATP to form  Pi. This  Pi can 

either enter bone cells for appropriate use or it can be in blood where 

it will maintain the  PPi-Pi ratio (one of the main determinants of vas-

cular calcification and bone mineralization). As mentioned in the text, 

TNAP derives from several tissues and when refers to bone it is the 

bone-specific alkaline phosphatase (BSAP). Center: Central Nervous 

system (CNS). TNAP acts on Pyridoxal 5’-Phosphate (PLP). This is 

the major form of circulating vitamin B6 (metabolically active) and 

serves as a cofactor for at least 110 enzymes and as a coenzyme for 

the metabolism of several amino-acids (including those necessary 

for neurotransmitters (dopamine, serotonin, histamine, taurine and 

γ-aminobutyric acid). TNAP removes  Pi from the PLP molecule so 

that it becomes Pyridoxal (PL), one of the 7 forms of vitamin B6 and 

the only one that can enter in CNS cells, where PL is phosphorylated 

and converted back into PLP, becoming again the needed cofactor for 

a proper CNS functioning. Adapted from reference [161]
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Total Alkaline Phosphatases and Bone-Specific 
Alkaline Phosphatase Isoenzymes

Total AP includes two types of isoenzymes: tissue- and 

TNAPs. Tissue-specific APs are encoded by 3 genes and 

they derive from intestine, placenta, and stem-cells [1, 10], 

representing only about 5% of the total circulating APs. The 

TNAPs are encoded by a single gene and are present in sev-

eral tissues, including liver, kidney, and bone, the last one 

referred to as bone-specific AP, BSAP, or BALP. Liver AP 

represents approximately 45% and BSAP 50% of total cir-

culating APs but the exact mechanisms of AP release into 

the general circulation remain unclear.

BSAP is the generic term given to one of the enzymatic 

non-collagenous bone proteins [1] with a molecular weight 

of 80 kDa and a relatively long half-life of 1.5–2.3 days, 

although it is lower than liver’s (5–9 days). BSAP is a gly-

coprotein anchored to the membrane of osteoblasts and, as a 

by-product of osteoblast activity, it became a renowned and 

very specific bone formation marker [(such as osteocalcin 

and opposed to the bone resorption marker tartrate-resistant 

acid phosphatase (TRAP)] which we will review later. BSAP 

can bind to bone matrix proteins and induce bone minerali-

zation through stimulation of pyrophosphate hydrolysis [1] 

(Fig. 2). BSAP isoforms may be distinguished by diverse 

posttranslational glycosylation type and extension, contrib-

uting to distinct catalytic properties [11].

Relation Between Total APs, BSAP, PTH, and Bone 
Turnover

Total AP has classically been associated with bone forma-

tion and generally regarded as a reliable marker of bone 

turnover in CKD [12, 13], provided that intact liver and bil-

iary systems are present [1, 9]. Less known is that hyper-

volemia or diastolic dysfunction in CKD (mainly dialysis 

patients) may increase total AP, probably by subclinical 

liver congestion and therefore not representing bone for-

mation activity [14]. Moreover, one cannot always assume 

that if other hepatic enzymes (such as gamma-glutamyl-

transferase) are normal, increased total AP is from bone; 

thus, it has also been described that intestinal AP may be 

increased in hemodialysis patients [15–18]. Intestinal AP is 

an emerging field on clinical research as this AP isoenzyme 

has important functions in gut mucosal defense [19]. Total 

AP levels, as opposed to intact PTH (iPTH), are not affected 

by renal function [20].

On the other hand, BSAP is superior to total AP since 

BSAP is more sensitive and specific for bone disease, espe-

cially given the previously mentioned possible interfer-

ence with liver isoenzymes, therefore becoming the most 

important marker for osteoblast differentiation [20, 21]. Fur-

thermore, BSAP distinguishes better than both iPTH and 

total APs clinical situations of normal/low-turnover- from 

high-turnover-bone disease in dialysis patients [21]. Thus, 

it has been reported that BSAP ≥ 20 ng/ml, alone or com-

bined with iPTH of ≥ 200 pg/ml, had the highest sensitiv-

ity, specificity, and predictability values for the diagnosis 

of high-turnover bone disease and excluded patients with 

normal- or low-turnover-bone disease [20]. On the other 

side, several observations suggest that the diagnosis of low-

turnover-bone disease in hemodialysis patients should be 

suspected when plasma iPTH levels are less than 150 pg/

ml and that BSAP levels are lower than 7 ng/ml (Ostase® 

method) [21, 22]. Coen et al. reported that, in 41 hemo-

dialysis patients who underwent a bone biopsy, a plasma 

BSAP concentration lower than 12.9 ng/ml had a sensitiv-

ity of 100%, a specificity of 94%, and a positive predictive 

value of 72% in the prediction of low-turnover-bone disease 

[13]. Finally, in a recent prospective study of hemodialy-

sis patients treated with calcimimetics with iPTH ≥ 300 pg/

ml (Advia Centaur) and BSAP > 20.9 ng/ml (Ostase®), no 

bone-biopsy-based evidence of high-turnover bone disease 

was found in 17% of patients (22 normal, 3 mixed lesions), 

and no adynamic bone disease was present under these con-

ditions [23]. A posterior cross-sectional retrospective diag-

nostic study found that BSAP was able to discriminate both 

low- from non-low and high- from non-high-bone-turnover 

disease analyzing 492 dialysis patients from Brazil, Portugal, 

Turkey, and Venezuela with a prior bone biopsy but without 

consideration of therapy [24]. In this study, the best cutoff 

for BSAP to discriminate low- from non-low-bone-turnover 

disease was < 33.1 U/L and for high- from non-high-bone-

turnover disease was > 42.1 U/L [24]. Importantly, serum 

BSAP was the only serum marker significantly higher 

among 137 dialysis patients with distal radius bone mineral 

density (BMD) reduction, including the sub-analysis of 42 

diabetic patients with serum iPTH < 180 pg/ml (hypotheti-

cally low-bone-turnover state) [25]. Therefore, BSAP also 

seems to be a clinically useful bone formation marker to 

predict BMD reduction at least in diabetic dialysis patients 

with low circulating iPTH levels. A brief summary of the 

predictive value of intact PTH and BSAP in CKD patients 

is presented in Table 1.

Discrepancies Between Parathyroid and Bone 
Activities

Discrepancies between serum iPTH and BSAP levels, 

reflecting an uncoupling between bone resorption and for-

mation, are uncommon but may be found in some patients 

[20, 26, 27] (Table 2). Part of these discrepancies may be 

related to variability in the measurements of BSAP and 

iPTH. For instance, Delanaye et al. showed that there are 

large discrepancies in the variations of iPTH and BSAP con-

centrations over time in CKD-5D patients [28]. They also 
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did not see any correlation between ΔiPTH and ΔBSAP over 

a 6-week interval [28].

Increased serum iPTH levels with low BSAP may reflect 

different degrees of the well-known multifactorial skeletal 

resistance or decreased calcemic response to PTH (also 

called hypo-responsiveness to PTH), clearly described in 

CKD [29, 30]. Evanson reported it for the first time in 1996, 

when he noted that the calcemic response to an infusion 

of parathyroid extract was significantly lower in hypocal-

cemic patients with CKD compared with normal subjects 

or patients with primary hyperparathyroidism [31]. Sub-

sequently, other authors extended these observations in 

patients with early CKD [32–34], confirming that a greater 

concentration of circulating PTH is required to maintain 

normal serum Ca levels in affected patients. In experimen-

tal conditions, when a fixed amount of PTH is infused into 

an experimental animal (i.e., subcutaneously through an 

Alzet pump), the calcemic response to PTH is also mark-

edly decreased in animals with kidney disease as compared 

with sham controls [26, 27, 30, 35] (Fig. 3).

Hyperphosphatemia, low calcitriol, increasing age, and 

uremia itself, among others, have been described as con-

tributing factors to skeletal resistance to PTH in CKD [26, 

30, 35–38]. Moreover, down-regulation of osteoblastic PTH 

Table 1  Brief summary of the predictive value of intact PTH and BSAP in CKD patients

Blood marker High-turnover sensitivity / speci-

ficity

Positive predictability Study

BSAP > 20 ng/mL 100% / 100% 84% Ureña-Torres P et al. [21]

BSAP > 15 ng/mL 97% / 83% 86%

BSAP > 10 ng/mL 84% / 70% 90%

iPTH > 200 pg/mL 72% / 80% 92%

iPTH > 150 pg/mL 78% / 70% 89%

BASP + iPTH > 20 ng > 200 pg/mL 100% / 80% 94%

iPTH > 300 pg/mL 58% / 77.7% NFK-KDOQI guideline [24]

iPTH > 9 X ULN 37% / 85.8% KDIGO guideline [24]

Blood marker Low turnover sensitivity / specific-

ity

Positive predictability Study

BSAP < 20 ng/mL 100% / 100% 100% Ureña-Torres P et al. [21]

BSAP < 15 ng/mL 83% / 97% 83%

BSAP > 10 ng/mL 70% / 84% 58%

iPTH < 200 pg/mL 80% / 72% 47%

iPTH < 150 pg/mL 70% / 78% 50%

BASP + iPTH < 20 ng < 200 pg/mL 80% / 100% 100%

BSAP < 27 U/lL 78.1% / 86.4% 75% Couttenye M. et al. [22]

iPTH < 150 pg/mL 80.6% / 76.2% 65%

BSAP < 12.9 ng/mL 100% / 94% 72% Coen, G. et al. [13]

iPTH < 79.7 pg/mL 88.9% / 90.6%

iPTH < 150 pg/mL 68.6% / 61.2% NFK-KDOQI guideline [24]

iPTH < 2 X ULN 65% / 67.3% KDIGO guideline [24]

Table 2  Discrepancies between intact PTH (iPTH) and bone-specific alkaline phosphatase (BSAP)

Adapted from references [26, 27, 35, 62]

Relatively ↑ iPTH / N-↓ BSAP Relatively ↑BSAP / N-↓ iPTH

Different degrees of multifactorial skeletal resistance to PTH:

  Down-regulation of the PTH receptor

  Uremia

  Phosphate

  ↓ calcitriol

  Different PTH fragments (i.e. 7–84 PTH)

  Bone morphogenetic proteins (BMPs)

  Others

Extra-skeletal synthesis

PTH-independent osteoblast activity: (interleukins 1/6/10; TNF)

Cross-reactivity (16% with total AP)

Phosphate-Calcium-Urea in the media

Aluminum overload (?)

Osteomalacia (?)

Paget’s Disease

Lytic bone diseases (metastasis,…)
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receptors in CKD has also been associated with resistance to 

PTH in CKD [30, 39], similar to the decreased expression of 

several other related receptors in uremia (i.e., nuclear vita-

min D receptor, transmembrane calcium-sensing receptor, 

FGFR/Klotho) [26, 29, 40–48]. Furthermore, resistance to 

the biological action of several hormones, such as resistance 

to insulin or growth hormone, is also a well-known feature 

of CKD [49, 50]. As a matter of fact, uremia may thus be 

considered a disease which extensively affects different 

types of receptors (uremia as a “receptor disease”) and dis-

crepancies between iPTH and BSAP are possible (Table 1). 

Additionally, iPTH is only indirectly associated with bone 

formation and represents much better the parathyroid activ-

ity than bone dynamics. This PTH hypo-responsiveness or 

resistance to PTH in CKD is also one of the reasons why 

a complete normalization of iPTH values in CKD patients 

should not be a treatment goal, due to this hypo-respon-

siveness and beyond the imprecision associated with the 

inappropriate detection of serum PTH fragments in CKD. 

Nevertheless, we do not know yet which is the adequate 

PTH goal associated with a normal bone formation rate or 

improved survival at every stage of CKD [51, 52]. In fact, 

we do not even know whether the target to optimize bone 

disease and survival end-points is equivalent. In any case, 

there is a generalized agreement on that low PTH levels 

(i.e., < 2x the upper limit of normality) are associated with 

adynamic bone disease (and its potential complications) in 

dialysis patients [51–53]. In this setting, the evaluation of 

APs and/or BSAP may especially provide clinical useful 

information about the actual bone status.

Several circulating human BSAP isoforms have also 

recently been described [54]. They are distinguished by 

the variable amounts of sialic acid residues or glycosyla-

tion differences in the molecule [55, 56], contributing to 

distinct catalytic properties [56]. Three circulating human 

BSAP isoforms [B1, B2, and Bone/intestine (B/I)] can be 

distinguished in healthy individuals. B/I and B2 isoforms are 

specially increased in CKD [57]. Moreover, a fourth isoform 

that only circulates in the serum of CKD patients stages 4 

and 5 and not in normal subjects has been recently reported 

[54, 58, 59]. This BSAP isoform is named B1x and it was 

found in 21 patients (53%) who had lower median levels of 

BSAP, bone/intestine, B1, B2, and iPTH (49 versus 287 pg/

mL), compared with patients without B1x (P < 0.001). Thir-

teen patients (65%) with low bone turnover and 8 patients 

(40%) with non-low bone turnover (P < 0.2) had detect-

able  B1x. Interestingly, B1x was the only biochemical 

parameter that inversely correlated with histomorphometric 

parameters of osteoblastic number and activity, indicating 

bone turnover [54]. Receiver operating characteristic curves 

showed that B1x could be used for the diagnosis of low bone 

turnover (area under the curve [AUC], 0.83), whereas BASP 

(AUC, 0.89) and iPTH (AUC, 0.85) were useful for the diag-

nosis of non-low-turnover-bone disease [54]. The conclusion 

of this study is that B1x, BSAP as well as iPTH have simi-

lar diagnostic accuracy in distinguishing low from non-low 

Fig. 3  The effect of renal 

failure and dietary phosphorus 

on the calcemic response to 

PTH in rats. Serum calcium 

concentration after a constant 

PTH infusion (Alzet pump) is 

shown for each of the threee 

dietary groups (high, modetate 

and low phosphorus diet), and 

for the different levels of renal 

function (normal, moderate 

and advanced renal failure). 

During the PTH infusion all rats 

received a calcium-free, very 

low phosphorus diet (0.16%). 

Adapted from reference [26, 27]
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bone turnover; additionally, the presence of B1x was diag-

nostic of low bone turnover, whereas elevated BSAP and 

iPTH levels were useful for the diagnosis of non-low turno-

ver bone disease. It is necessary to emphasize that this study 

was performed in a small number of participants and the 

original results need to be confirmed since the B1x isoform 

utility has not been clearly clarified in clinical grounds. It is 

noteworthy that B1x needs high-performance liquid chro-

matography methods for its measurement [54]. Calcifying 

human aortic vascular smooth muscle cells express the four 

known BSAP isoforms and B/I, B1X, and B2 seem to play 

different biological functions during calcification [60].

Finally, increased BSAP and low iPTH levels are also 

a potential clinical situation (Table 2). Extra-skeletal syn-

thesis of BSAP, the presence of P-Ca-Urea in the media, 

PTH-independent osteoblast activity (i.e., IL1-, IL6-, IL10-, 

TNF-mediated), cross-reactivity among different APs (16% 

for total AP) may explain these observations. In fact, Jean 

et al. have shown that, in CKD-5D patients with chronic liver 

disease, serum BSAP levels are not a more useful biomarker 

of bone turnover than total AP owing to its cross-reactivity 

with total AP, even when the BASP/total AP ratio is used 

[61]. Lastly, the potential presence of aluminum overload, 

osteomalacia, Paget’s disease, or lytic bone lesions could 

explain in some circumstances the discrepancies between 

BSAP and iPTH [62].

Association of APs and Survival

Total AP has been associated with inflammation (high 

serum C-reactive protein), hospitalization rates, and all-

cause/or cardiovascular mortality, even adjusted to hepatic 

function [63–67]. This association has been described 

in pre-dialysis CKD, hemodialysis (across all ages but 

especially in young patients), peritoneal dialysis, and 

transplant patients (pre-transplant values) [19, 68–76]. It 

has also been reported in diverse races such as African-

American or Japanese populations, and among survivors 

of myocardial infarction and in the general population [19, 

70, 71, 77–79]. Total AP has also been associated with 

increased coronary artery calcification, incident peripheral 

arterial disease, vascular stiffening, and sudden cardiac 

death (APs, regardless of source, ultimately promote vas-

cular calcification) [80, 81]. Total AP has been associated 

with worsening bone mineral density, higher hip fracture 

events and worse responsiveness to erythropoiesis stimu-

lating factors [79, 82–84]. Higher pre-dialysis serum AP 

levels were independently associated with higher dialysis 

mortality risk [76]. Compared with patients in the low-

est AP quartile (< 66 U/L), those in the highest quartile 

(≥ 111.1 U/L) had multivariable-adjusted hazard/subhaz-

ard ratios (95% confidence interval) of 1.42 (1.34–1.51), 

1.43 (1.09–1.88) and 1.39 (1.09–1.78) for all-cause, 

cardiovascular and infection-related mortality, respec-

tively [76]. On the other hand, hemodialysis patients with 

pre-transplant serum AP > 120 U/L had also unfavorable 

post-transplant mortality not observed by iPTH or serum 

Ca levels [70].

Importantly, an incremental and linear relationship 

between higher total AP (> 120 U/L) and all-cause death 

hazard ratio was described first in hemodialysis patients [66, 

85], as opposed to the U-shaped curve describing the rela-

tionship between iPTH and mortality (both high and low 

iPTH are associated with higher death risk) [66, 72, 85–88] 

(Fig. 4). These findings are described in “fully” adjusted 

models, using baseline, non-time dependent, time-averaged 

or time-varying analyses in different dialysis populations, 

including peritoneal dialysis and non-dialysis dependent 

CKD patients [66, 72, 86–88]. Consequently, it has been 

postulated that total AP may be better than iPTH as a marker 

of cardiovascular and bone disease [19, 89].

These incremental and linear association between higher 

serum total AP levels and higher mortality may addition-

ally provide important clinical information for the manage-

ment and achievement of beneficial clinical goals in these 

patients. Since total AP but not BSAP has been as frequently 

associated with inflammation and mortality in representa-

tive samples (i.e., the 1999–2004 National Health and Nutri-

tion Examination Survey (n = 10,707) [65], it would seem 

that bone disease would unlikely account for these asso-

ciations and the discrepancy between total AP and BSAP. 

Low number of deaths, low statistical power, and CKD with 

only minor decreases of glomerular filtration rate could have 

played a role, but intermittent or chronic neutrophil activa-

tion or the presence of subclinical hepatic disease have been 

suggested as potential causal mechanisms. In fact, BSAP 

was indeed a predictor of mortality in both CKD and dialysis 

patients in other studies [74, 90]. Not surprisingly, no uni-

form or weaker associations with mortality, vascular calci-

fication, bone mineral density or long-term hip fracture risk 

have also been reported for both APs [84, 91, 92].

Of note, the direct association of AP levels with mor-

tality persists in different iPTH strata, even including 

iPTH < 150 pg/ml (< 2X ULN) [66, 85]. Thus, low APs 

have been associated with greater survival, questioning the 

widely accepted concept that low-turnover-bone disease 

(i.e., adynamic bone disease) increases mortality. Neverthe-

less, some time-averaged measurements did not show lower 

risk of death in the lowest AP categories (maybe because 

fractures, vascular calcification, or associated hypercalcemia 

mitigate the potential benefits). For instance, a study includ-

ing 407 unselected European CKD-5D subjects showed a 

statistically significant association between total AP with 

crude mortality and also a stronger death risk association 

of total AP and individual lowest skeletal BSAP with crude 

mortality [93]. Finally, associations of change of total AP 
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and all-cause 6-month mortality have also recently been 

described in a huge cohort of 102,754 incident hemodialy-

sis patients [94].

APs and Vascular Calcification

It is well known that the process of vascular calcification 

involves chondro-osteoblastic conversion of vascular smooth 

muscle cells (VSMCs), evidenced by the loss of VSMC 

markers (such as α-actin) and the novo expression of osteo-

blast markers (TNAP, osteocalcin, osteopontin) or osteo-

cyte markers such as sclerostin and podoplanin [95–99]. All 

BSAP isoforms, including B1x, are also expressed in vascu-

lar smooth muscle cells (Fig. 2), the calcification of which 

is associated with a strong increase in BSAP activity level 

[60, 100]. Experimental studies also illustrate the key role 

played by TNAP in the process of arterial mineralization. A 

mouse model overexpressing human TNAP in VSMCs and 

in endothelial cells shows extensive vascular calcification, 

hypertension, and shortened lifespan [101, 102]. Treatment 

of these animals with a TNAP inhibitor (SBI-425) signifi-

cantly reduced vascular calcifications and improved survival 

[101]. Interestingly, in patients with hyperphosphatasia, a 

group of disorders that feature elevated serum TNAP activity 

(i.e., Paget’s disease of bone), there is no clear evidence for 

an association with vascular calcification [103]. This may 

indicate that only membrane-bound TNAP plays a role in 

vascular calcification, or that other vascular-specific cofac-

tors are necessary to induce vascular calcification in the con-

text of elevated TNAP [103]. One such component was pos-

tulated to be collagen I expression by osteoblasts [103–105].

Frequent associations between AP or BSAP levels and 

vascular calcification have been reported not only in CKD 

but also in osteoporotic patients [106,107]. Consequently, 

as it will be emphasized later, it has been suggested that not 

only pyrophosphate or phytate (another endogenous crys-

tallization inhibitor) but also inhibitors of alkaline phos-

phatase could potentially prevent, attenuate or reverse the 

progression of VSMC calcification [2, 108–117]. However, 

it is important to note that these strategies may interfere 

with normal bone formation. Therefore, APs may have 

both friends and foes action on bone and mineral homeo-

stasis since, at one point, APs provide phosphate in order 

to improve bone mineralization but APs may induce vascu-

lar calcification and consequently increase cardiovascular 

morbidity and mortality, especially in CKD and hyperphos-

phatemic patients. Independent actions on vessels and bone 

have been described [101, 110].

Another possible link between total AP or BSAP and 

mortality comes from the recognition that TNAP stimulates 

hydrolysis of pyrophosphate, and thus high levels of circulat-

ing TNAP or TNAP locally produced by calcifying VSMCs 

could lower pyrophosphate concentrations, thus favoring 

vascular calcification [2] (Fig. 2). APs are also speculated 

to inactivate the calcification inhibitor osteopontin through 

dephosphorylation [19, 118]. On the other hand, matrix Gla 

protein (MGP)—a well-known inhibitor of vascular miner-

alization—may indirectly reduce AP activity by inhibiting 

bone morphometric protein-2 induction of AP [119, 120]. It 

has also recently been described that FGF23 is a suppressor 

of TNAP gene expression via a klotho-independent, FGF 

receptor- (FGFR3)-mediated signaling axis in osteoblasts, 

Fig. 4  Different relationship 

(U-shape vs linear) between 

serum total alkaline phos-

phatase and intact PTH quartiles 

and all-cause death hazard ratio
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leading to inhibition of mineralization through accumulation 

of the TNAP substrate pyrophosphate and decreased local 

inorganic free P [121, 122]. Due to the increased activity 

of TNAP and elevated levels of inorganic P in the failing 

heart compared with the normal heart, upstream regulators 

of TNAP such as secreted Frizzle-related protein 2 (sFRP2) 

have been associated with cardiac fibro-calcification [123]. 

Furthermore, TNAP seems to favor intracellular deposi-

tion of lipids in pre-adipocytes (124), a mechanism that 

in VSMCs could be additive for calcifications [125], and 

BASP or intestinal AP levels also correlate with parameters 

of glucose metabolism and of metabolic syndrome, further 

increasing links with vascular calcification and survival 

[126–128]. Finally, higher APs levels are also associated 

with lower calcidiol levels [129, 130], which are in turn 

associated with increased mortality per se [131]. A recent 

review on the mechanisms associating AP activity, vascular 

calcification, inflammation, endothelial dysfunction, cardio-

vascular disease, and survival has been recently published 

[19].

Pharmacology and Genetics

In addition to classical treatments which affect bone for-

mation rate and thus indirectly decrease AP’s levels (i.e., 

vitamin D derivatives and calcimimetics) [132–135], sev-

eral manoeuvers are currently underway attempting either 

to directly or indirectly influence pyrophosphate deficiency 

or regulate the activity of TNAP’s. Whereas plasma pyroph-

osphate is reduced in hemodialysis patients and it is cleared 

by dialysis [136], AP is neither dialyzable nor filterable by 

the normal kidney, although it is possible that with con-

vective and very high-flux hemodialysis or hemofiltration 

plasma AP levels could slightly decrease [137]. Thus, TNAP 

evolved as a druggable target for the treatment and/or pre-

vention of VSMC calcification [2, 112]. As such, phytate in 

the form of the hexasodium salt SNF472 is currently being 

developed for the treatment of calciphylaxis and cardiovas-

cular calcification in hemodialysis patients [138–140]. The 

activity of several related transporters and enzymes discov-

ered from genetic diseases associated with severe vascular 

calcification are also currently under scrutiny. Thus, ABCC6 

is an efflux transporter primarily expressed in liver which 

facilitates the release of adenosine triphosphate (ATP) from 

hepatocytes. Within the liver vasculature, ATP is converted 

into pyrophosphate and thus liver ABCC6-mediated ATP 

secretion seems to be the main source of pyrophosphate 

in the systemic circulation [141]. The chemical chaperone 

4-phenylbutyrate (4-PBA) seems a promising strategy for 

allele-specific therapy of ABCC6-associated calcification 

disorders [142]. ENPP1 -Fc fusion proteins seem to prevent 

mortality and vascular calcifications in a rodent model of 

generalized arterial calcification of infancy (GACI) [143]. 

ANK is also a nonenzymatic plasma-membrane pyrophos-

phate channel that supports pyrophosphate levels (Fig. 1) 

[144–146]. Of note, pyrophosphate treatment also amelio-

rates a mouse model of Hutchinson-Gilford progeria syn-

drome, in which excessive vascular calcification is caused 

by reduced extracellular accumulation of pyrophosphate that 

results from increased TNAP activity and diminished ATP 

availability caused my mitochondrial dysfunction in VSMC 

[147]. Interestingly, in the field of nephrology, peritoneal 

delivery of sodium pyrophosphate blocks the progression of 

pre-existing vascular calcification in an experimental model 

in mice [148]. On the other hand, benzofuran derivatives and 

other compounds such as SBI-425 mentioned earlier seem 

to selectively inhibit TNAP [101, 112–115, 149]. This latter 

compound seems to inhibit vascular calcification without 

a negative effect on bone mineralization [101]. Apabetal-

one (RVX-208), a BET (bromodomain and extraterminal)-

motif inhibitor, modulates the epigenetic regulation of sev-

eral genes [150], repressing new pathways that contribute 

to cardiovascular disease [151]. Interestingly, apabetalone 

reduces circulating levels of APs, which was associated with 

a marked reduction of major cardiovascular events [152, 

153]. A large phase III study of this compound for the pre-

vention of cardiovascular complications in type II diabetes 

is ongoing [154].

AP Targeting in Other Clinical Conditions

Systemic administration of APs (bovine intestinal AP, 

human placental AP, recombinant or soluble non-targeted 

chimeric APs) can exert nephroprotective and anti-inflam-

matory effects in sepsis and after cardiac surgery [19, 155, 

156]. Dephosphorylation and thereby detoxification of det-

rimental molecules involved in the pathogenesis of sepsis-

associated AKI [i.e., endotoxins like di-phosphoryl lipopoly-

saccharide from the cell wall of Gram-negative bacteria or 

nucleotides like ATP, a pro-inflammatory mediator released 

during cellular stress, which can be converted by AP (ATP-

ase activity) into the tissue-protective and anti-inflammatory 

molecule adenosine] seem to be responsible for this protec-

tive effect [157, 158]. Further clinical studies are needed to 

elucidate whether intestinal APs could prevent and combat 

systemic and intestinal inflammation or dysbiosis, and/or 

metabolic syndrome [19]. Traditional herbal remedies like 

curcumin, which increases the expression of intestinal APs, 

have been shown to correct gut permeability in CKD [159] 

and inhibit manifestations of metabolic syndrome [160].

On the other hand, hypophosphatasia (HPP) is a rare 

hereditary metabolic disorder caused by inactivating muta-

tions in ALPL [161]. Although these patients often have 

hyperphosphatemia and hypercalcemia, this disease is not 

associated with accelerated vascular calcification [19, 161]. 

Enzyme replacement therapy with asfotase-α, a recombinant 
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mineral-targeted human TNAP, has resulted in dramatic 

improvements in bone mineralization and survival [19]. 

However, long-term administration or managing HPP in 

adults, especially in the presence of hyperphosphatemia, 

could theoretically promote vascular calcification and car-

diovascular complications [19, 161].

Conclusion

Considering that the biological variation of BSAP is less 

than half that reported for iPTH, the APs assays have been 

judged to be more reliable for diagnostic (bone disease) and 

prognostic (clinical outcomes) purposes [162]. Thus, the 

use of APs as an alternative marker or target goal for bone 

mineral metabolism and cardiovascular disease in the setting 

of CKD-MBD has been underlined [9, 19, 163]. However, 

costs, availability, former clinical experience, and the lack 

of studies or clear-cut targets using APs as a primary thera-

peutic goal for significant outcomes still represent significant 

strengths for the iPTH assay [164], and consequently guide-

lines still recommend frequent measurement of iPTH in 

order to determine PTH trends to implement the appropriate 

therapy. The additional information provided by APs, with a 

much lower intraindividual coefficient of variation, should 

also be taken into account [162, 165]. Despite we lack pro-

spective data demonstrating that lowering APs would alter 

fracture or mortality outcomes, the diagnostic potential of 

APs in the management of renal osteodystrophy should 

not be forgotten, notwithstanding the major gap for these 

recommendations in current guidelines [8]. Moreover, the 

additional information provided by APs on survival should 

be definitely underlined in clinical grounds, whereas their 

narrow relationship with vascular calcification, cardiovas-

cular disease, and mortality results in further investigation 

for the development of novel therapeutic approaches, not 

only for CKD but also for sepsis, AKI, metabolic syndrome, 

diabetes, or aging.
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