RESEARCH NOTE

Alkaloids from *Xylopia parvifolia* and *Xylopia nigricans* (Annonaceae)

Shanmugam Puvanendran¹, Tharmaraja Manoranjan¹, Anura Wickramasinghe¹, D. Nedra Karunaratne¹, Vijaya Kumar¹, Siril Wijesundara², Gavin Carr³, Raymond Andersen³ and Veranja Karunaratne^{1*}

¹ Department of Chemistry, Faculty of Science, University of Peradeniya, Peradeniya.

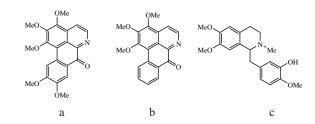
² Royal Botanic Gardens, Peradeniya.

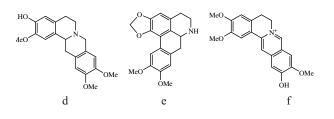
³ Departments of Chemistry & Earth and Ocean Sciences, Faculty of Science, University of British Columbia, Vancouver, B.C., Canada.

Revised: 13 July 2009; Accepted: 21 August 2009

The family Annonaceae is important phytochemically because of the frequent presence of isoquinoline alkaloids and, more recently on the basis of the restrictive occurrence of a very active class of natural products, the acetogenins¹. It comprises 130 genera and some 2300 species². Plants of the genus Xylopia have yielded products of different classes such as alkaloids, acetogenins, amides, flavonoids, lignoids, and terpenoids². Members of the family Annonaceae are known to have a variety of alkaloids some of which are reported to have interesting biological properties3. Many plants that are known for their toxicity possess useful cytotoxic compounds⁴. Most of the Sri Lankan endemic species of the family Annonaceae have not previously been analysed for their chemical constituents and biological properties.

X. parvifolia (found in Sri Lanka and Southern Deccan peninsula) was collected from Menikthena forest, Central Sri Lanka, in January 2006 and *X. nigricans* (endemic) from Royal Botanic Gardens, Peradeniya in April 2005⁵. Voucher specimens have been deposited in the Department of Chemistry, University of Peradeniya, Peradeniya.


Air-dried stem bark of *X. parvifolia* (2 kg) was ground into a powder and sequentially extracted into dichloromethane (CH_2Cl_2) and methanol (MeOH) (5 L each) at room temperature. The CH_2Cl_2 extract (40 g) was dissolved in CHCl₃ and was partitioned with 2N HCl. The aqueous layer was basified with 20% NH₄OH and partitioned again with CHCl₃. The crude alkaloid mixture


*Corresponding author (veranjak@pdn.ac.lk)

(3 g) obtained on chromatography yielded oxopurpureine (Figure 1a, 24 mg) as dark orange needles $(CH_2Cl_2)^{1,6}$, *O*-methylmoschatoline (Figure 1b, 15 mg) as orange needles $(CH_2Cl_2)^{7, 8}$ and (+)-laudanidine (Figure 1c, 10 mg) as brown colour powder⁹; the crude alkaloid mixture (4 g) obtained from an acid wash of the MeOH extract (50 g) yielded, (-)-discretine (Figure 1d, 60 mg) as sticky solid¹⁰, nordicentrine (Figure 1e, 45 mg) as sticky solid¹¹ and dehydrocorytenchine (Figure 1f, 90 mg) as green crystals¹².

Air-dried root bark of *X. nigricans* (5 kg) was ground into a powder and sequentially extracted into CH_2Cl_2 and MeOH (10 L each) at room temperature to yield 205 g of CH_2Cl_2 extract and 430 g of MeOH extract. The crude alkaloid mixture taken from CH_2Cl_2 extract (1 g) yielded10-methoxyliriodene (Figure 1g, 30 mg) as yellowish brown amorphous solid⁸. The alkaloid portion of the methanol extract (3.8 g) yielded, (+)-S-reticulin (Figure 1h, 98 mg) as yellow needles¹³ and oxoxylopine (Figure 1i, 23 mg) as pale brown powder¹⁴.

Six alkaloids were isolated from CH_2Cl_2 and MeOH extracts of the stem bark of *X. parvifolia*. Three alkaloids were isolated from the CH_2Cl_2 and MeOH extracts of the root bark of *X. nigricans*. The alkaloids a-f (Figure 1) have previously been isolated from *X. championii* and their antifungal and antioxidant activities reported¹⁵. (+)-*S*-reticulin exhibited 67.8 % antioxidant activity compared to the standard DL- \Box -Tocopherol(55.8%) in the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay¹⁶.

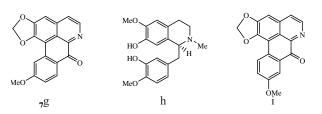


Figure 1: Alkaloids isolated from stem bark of *X. parvifolia* (a-f) and root bark of *X. nigricans* (g-i)

Spectral data [¹H, ¹³C nuclear magnetic resonance (NMR) and mass] and physical data (m.p., Co-TLC, optical rotation) of reported or isolated compounds were used in the identification of the alkaloids a-i ^{1,6-13}

Acknowledgment

Authors thank the National Science Foundation and the National Research Council, Sri Lanka for financial assistance.

References

- Chang F.R., Wei J.L., Teng C.M. & Wu Y.C. (1998). Antiplatelet aggregation constituents from *Annona* purpurea. Journal of Natural Products 61(12): 1457-1461.
- Moreira I.C., Lago J.H.G. & Roque N.F. (2005). Sesquiterpenes, diterpenes, steroids and alkaloids from branches of *Xylopia brasiliensis* Spreng (Annonaceae). *Biochemical Systemetics and Ecology* 33(9): 948-951.

- Wijeratne E.M.K., Hatanaka Y., Kikuchi T., Tezuka Y. & Gunatilaka A.A.L. (1996). A dioxoaporphine and other alkaloids of two Annonaceous plants of Sri Lanka. *Phytochemistry* 42(6): 1703-1706.
- Kingston D. (1992). Taxol and other anticancer agents from plants. In: *New Drugs from Natural Source*. pp. 101-119. Information Press, Oxford.
- Huber H. (1985). Annonaceae. In: A Revised Handbook to the Flora of Ceylon. vol V. (Eds. M.D. Dassanayake & F.R. Fosberg). pp. 56-61. Amerind Publishing Pvt. Ltd., New Delhi.
- Sonnet P.E. & Jacobson M. (1971). Tumour inhibitors II: cytotoxic alkaloids from *Annona purpurea*. Journal of *Pharmceutical Sciences* 60(8): 1254-1256.
- Marsaioli A.J., Aderbat F.M., Edmundo A.R. & Francisco D.A.M.R. (1980). ¹³C NMR analysis of some oxoaporphine alkaloids. *Phytochemistry* 19(5): 995-997.
- Harrigan G.G., Gunatilaka A.A.L., Kingston D.G.I., Chan G.W. & Johnson R.K. (1994). Isolation of bioactive and other oxoaporphine alkaloids from two Annonaceous plants *Xylopia aethiopica* and *Miliusa* cf. *Banacea. Journal of Natural Products* 57(1): 68-73.
- Blanchfield J.T., Sands D.P.A., Kennard C.H.L., Byriel K.A. & Kitching W. (2003). Characterisation of alkaloids from some Australian *Stephania* (Menispermaceae) species. *Phytochemistry* 63(6): 711-720.
- Hocquemillar R., Debitus C., Roblot F., Cavé A. & Jacquemin H. (1984). Alkalo□des des Annonacées, XLVIII. alkalo□des des écorces de *Guatteria discolour*. *Journal of Natural Products* 47(2): 353-362.
- Likhitwitayawuid K., Angerhofer C.K., Chai H., Pezzuto J.M., Cordell G.A. & Ruangrungsi N. (1993). Cytotoxic and antimalarial alkaloids from the tubers of *Stephania pierrei*. *Journal of Natural Products* 56(9): 1468-1478.
- Jossang A., Leboeuf M., Cavé A. & Pusset J. (1991). Alkalo□des des Annonacées. 96. déhydroxylopine et déhydrocorytenchine, nouveaux alkalo□des isoquinoléiques isolés de *Xylopia viellardi. Journal of Natural Products* 54(2): 466-472.
- Hsieh T.J., Chang F.R. & Wu Y.C. (1999). The constituents of *Cananga odorata*. *Journal of the Chinese Chemical Society* 46(4): 607-611.
- 14. Chen C.Y., Chang F.R. & Wu Y.C. (1997). The constituents from the stems of *Annona cherimola*. *Journal of the Chinese Chemical Society* **44**(3): 313-319.
- Puvanendran S., Wickramasinghe A., Karunaratne D.N., Carr G., Wijesundara D.S.A., Andersen R. & Karunaratne V. (2008). Antioxidant constituents from *Xylopia championii. Pharmaceutical Biology* 46(5): 352-355.
- Yen G.C. & Duh P.D. (1994). Scavenging effect of methanolic extracts of peanut hulls on free radical and active oxygen species. *Journal of Agricultural and Food Chemistry* 42(3): 629-632.