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All 0-1 Polytopes are
Traveling Salesman Polytopes

L.J. Billera * and A. Sarangarajan |

Abstract

We study the facial structure of two important permutation poly-
topes in R™, the Birkhoff or assignment polytope By, defined as the
convex hull of all n X n permutation matrices, and the asymmetric
traveling salesman polytope Ty, defined as the convex hull of those
n X n permutation matrices corresponding to n-cycles. Using an iso-
morphism between the face lattice of B, and the lattice of elementary
bipartite graphs, we show, for example, that every pair of vertices of
B,, is contained in a cubical face, showing faces of B,, to be fairly
special 0-1 polytopes. On the other hand, we show that T, has every
0-1 d-polytope as a face, for d = logn, by showing that every 0-1
d-polytope is the asymmetric traveling salesman polytope of some di-
rected graph with n nodes. The latter class of polytopes is shown to

ko2

have maximum diameter [-gj

1 Introduction

The (asymmetric) traveling salesman problem, to find the shortest (directed)
Hamiltonian tour in a complete (directed) graph, is one of the widely studied
problems in combinatorial optimization, both for its utility and for the fact
that it represents, in a well-defined sense, all hard combinatorial problems.
A standard approach to solving this problem is to consider it as a linear
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programming problem over the (asymmetric) traveling salesman polytope,
defined as the convex hull of all (directed) Hamiltonian tours, and to use
known classes of bounding inequalities (facets) to try to find an optimal
tour. (See [4] for a discussion of this and other approaches to this problem.)

The difficulty with this approach is that the facets of these polytopes
are not all known, and, it seems, not knowable. We give explicit evidence
for this assertion for the asymmetric traveling salesman polytope (ATSP)
by showing that, up to a certain dimension, all 0-1 polytopes are among its
faces. In particular, we show that if P is a 0-1 polytope, then P appears as a
face of an ATSP of sufficiently large dimension. The dimension of this ATSP
is in general exponential in the dimension of P, and we show that it is not
possible to get all 0-1 polytopes in R as faces of an ATSP of a dimension
that is polynomial in d. Another way of viewing the main result of this paper
is that every 0-1 polytope is the AT'SP of some directed graph.

In section 2 we introduce the Birkhoff polytope and associate the faces
of this polytope with elementary bipartite graphs. This establishes an iso-
morphism between the face lattice of the Birkhoff polytope and the lattice
of elementary bipartite graphs. We use this isomorphism to show that every
pair of vertices of the Birkhoff polytope is contained in a cubical face. Sec-
tion 3 is devoted to proving our main result on the AT'SP. In section 4 we
study the asymmetric TSP of an arbitrary directed graph and give a tight
bound on its diameter.

We define some terms that will be used for the rest of this paper. We
denote the set {1,2,...,n} by [n]. The symmetric group of degree n is the
set of all permutations of [n]. Permutations that are cycles of length k& will
be called k-cycles. If v = (vy,va,...,0,) € R™ then Supp(v) := {t:v;#0}is
the supportof v. A 0-1 polytope is a polytope whose vertices have coordinates
0 or 1. K, is the complete bipartite graph with bipartition ([n], [n]) and
edge set {(i,7):1 <4, j <n}. HC={C,.. .,Cy} is an ordered collection of
permutations C1, . ..,Cq and if S C [d] then C(S5) := [Lses C',; we write C[d]
instead of C([d]). Throughout this paper, C will denote an ordered collection
of disjoint cycles. The graph GI(P) of a polytope P is the graph whose nodes
are the vertices of P, and which has an edge joining two nodes if and only
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if the corresponding vertices in P are adjacent on P. The diameter of P is

defined as
diam(P) := diam(G(P)) = maz{d(u,v) : u, v are nodes of G(P)}

where d(u,v) is the length of the shortest path between u and v in G(P).

2 The Birkhoff Polytope

Let S, denote the symmetric group of degree n. Given o € S,, we define
the corresponding n X n permutation matrix X (c) € R by

X(o)s; = { 1 if o) = j

0 otherwise.

We denote by B, the Birkhoff polytope (or the assignment polytope) of order
n, given by

B, := conv{X(o):0 € Sp}.
It is well known that B, is an (n—1)? dimensional polytope with the following
inequality description:

k13
B, = {zeR":2;;>0;1<4,j<n, Y a;=1fori=1,...,n
J=1

and Za:,-j =1forj=1,...,n}.
i=1

A detailed study of this polytope is given in [2] (see also [3]). For conve-
nience, we shall often denote a vertex X (o) by o. With each vertex o € B,
we associate the bipartite graph G(o) which is the matching on K, , with
the edge set {(i,0(¢)):4=1,...,n}. If F is a face of By, then G(F) is the
subgraph of K, , which is the union of G(¢) over all the vertices o € F'. G(F)
has the property that every edge of G(F') is in some matching. Such graphs
are called elementary graphs (see [5]; the definition of elementary graphs
given there also requires them to be connected, but we will not require that
here). Also if G C K, , is an elementary graph, define

F(G) := conv{o: G(o) CG} =B, N{z € R™ : z;; = 0 if (,5) & G}.
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We see that F(G) is an intersection of facets of B, and therefore is a face of
B,. Clearly, if Fy, F, are faces of By, then Fi C [ if and only if G(Fy) C
G(F,). This yields the following (see [3] for details).

Theorem 2.1 The face lattice of B, is isomorphic to the lattice of all ele-
mentary subgraphs of K, ordered by inclusion. )

Suppose F is a face of B, and G(F') has components G1,...,Gg. Suppose G;
is bipartite with bipartition {I;, J;}, so that the sets Iy, ..., I (and Jy, ..., Jk)
form a partition of [n]. Let B; be the Birkhoff polytope defined on the
coordinates {xy : k € I;,l € J;}. Since G(F) is elementary, each Gj is
elementary b}pa,rtlte on {I;,J;}. Hence, F; := F(G;) is a face of B;. Then
F = F, x Fy x -+ X Fy, embedded as block diagonal matrices in R™ (up
to permutation of rows and columns). This follows from the fact that vis a
vertex of F' if and only if v = vy X - -+ X vj where, for each ¢, v; is a vertex of

F; for each 1.

If 0,7 € S, then G(o,7) := G() U G(r) is a union of two matchings
which is a set of disjoint cycles and edges. Hence, by the above remark,
F, .= F(G(o,7)) is a k dimensional cube where k is the number of cycles
in the graph. If o7'7 = k C; € S, where Cy,...,Cy are disjoint cycles
in S, and if C = {C},...,Cy} then the vertices of F, , are given by oC(S5)
over all subsets S C [k]. We note that k can be at most t%J We shall
associate F, , with the unit k-cube with 0C(S) corresponding to the vertex
with support S (so o corresponds to the origin and = to (1,1,..., 1)). For

convenience, we shall often denote F, . by F/(o,C). This proves the following.

Theorem 2.2 B, (or more generally, any face of By) has the property that
any two of its vertices are contained in a cubical face of dimension at most

15]- 0

We note here that the k-cube F, . is actually a zonotope (Minkowski sum
of line segments) generated by & mutually orthogonal segments z; € R™.
Each z; is supported on a cycle of the graph G(o,7) and has coordinates +1
or —1 alternately for edges of G(o) and G(r).
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3 The Asymmetric TSP

Let
T, := {0 €8, : 0 is a cycle of length n} C S,

The asymmetric TSP of order n is defined by
T, := conv{X(c): 0 € T,}

so that
T, c B, C R”

This means that if F' is a face of B,, then F N T, is a face of T, induced
by F. We exploit this relationship between the faces of B, and T, to derive
some results about the faces of T),.

We first describe the following procedure to generate some lower dimen-
sional faces of T},:

Let 0 € S, and C = {C,...,Cr} where Cy,...,Ck € S,, are disjoint
cycles. Then F(o,C) C B, is a k-cube and if V is the set of AT SP vertices
of this cube then conv(V) = F(o,C) N T, is a face of Ty,. Call such a face
F'(0,C). We shall identify F'(o,C) with a 0-1 polytope embedded in the
k-cube. We note that if 7 = o C[k] = 0Cy--- Cy , then

F(0,C) = B,N{z € R” 1 2;; =0if (i,7) ¢ G(o,7)}
and hence

F(0,C) =T, N {z € R” 12y = 0if (4,5) & G(o,m)}-

Example 1: (Rao [6])
Let n =9, ¢ = (1,2,3,4,5,6,7,8,9) and C = {Cy,C4,Cs} where C; =
(1,7,4), C; = (2,8,5) and C5 = (3,9,6). Then F(0,C) C By is a 3-cube and
the other vertices of this cube are given by

o1 =oC1 = (1,8,9)(2,3,4)(5,6,7) ~ (1,0,0)

oy = 0Cy = (1,2,9)(3,4,5)(6,7,8) ~ (0,1,0)
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o5 = oCy = (1,2,3)(4,5,6)(7,8,9) ~ (0,0,1)

013 = 0C1Cy = (1,8,6,7,5,3,4,2,9) ~ (1,1,0)
033 = 00205 = (1,2,9,7,8,6,4,5,3) ~ (0,1,1)
013 = 0C1Cs = (1,8,9,7,5,6,4,2,3) ~ (1,0,1)
0193 = 0010505 = (1,8,6,4,2,9,7,5,3) ~ (1,1,1)

We note that 5 of the vertices of this cube are ATSP vertices and thus

F'(0,C) is a bipyramid over a triangle as shown in Figure 1. !
(o]
C ) 23
02 123 : S 123
I N
o 1
3 > ]
: 51 WAE
| AN
I
I AN
! A
1 N
: (¢ 2 \\
LT TTTTTTT TS [e)
o O 12 12
&) (8] 1 o]

Figure 1: F(o,C) and F'(0,C) for Example 1

It is natural to ask whether any 0-1 polytope can appear as a face of the
ATSP in the above manner. Surprisingly, this turns out to be true; the
remainder of this section is devoted to proving this assertion.

Let Z; denote the unit d-cube. We will usually refer to vertices of Zgy
by their corresponding supports which are subsets of [d]. If V is a subset of
vertices of T4, then by Z4 — V we mean the convex hull of the vertices of Zg4
that are not in V.

Proposition 3.1 I is a face of Ty, for n = 3d.

Proof: Let o = (1,...,n) and C = {(1,2,3),(4,5,6), ... J(n—2,n—1,n)}.
Then for any S C [d], oC(S) = (a1, ..., an) € T, where

o '_{35-2,3@,3%1 ifies
3i-2,03i-1,031 = 1 3, _ 9 3; _1,3i otherwise
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This shows that F'(¢,C) = F(0,C) = L4. a

Next we show that Z; — S is also a face of the T34 for any vertex Sel,.
We begin with S = [d].

Proposition 3.2 Let d be a positive integer, n = 3d, o = (1,2,...,n) and
let
C={C,Cy...,Cq} = {(1,3,5),(4,6,8),...,(n —2,n,2)}

(ie C;=(3—2,3,3+2) fori <dand Cy=(n— 2,n,2)). Then

F’(G’,C) =14— [d]

Proof: Since
oCld] :(1,4,7,...,n-2)(3,6,9,...,n)(n-1,n——4,...,2) g7,

this implies that [d] € F'(o,C).
Now we need to show that all the other vertices of the cube F'(o,C) are also
vertices of T,,. For the rest of the proof, the numbers we indicate are modulo

n. Let C[Z,]] = C;Ciyq -~ -C]‘ ( if 2 > 7, then set C[Z,]] =C; - C4Cy -~ C])

Let «;; denote the sequence
3i—2,3i+1,3i+4,...,3j+1,3j+2,3j—1,3j—4,...,3i—1,3t, 3¢ +3,. .. ,37+3

that is a;; increases from 3: — 2 to 37 + 1 in steps of 3 then decreases from
37 4+ 2 to 37 — 1 in steps of 3 and finally increases from 37 to 37 + 3 in steps
of 3. Then '

oCli,j] = (aij, 3] + 4,35 +5,...,3i —=3) € Ty,

that is oC[i, j] is a cyclic permutation that differs from o by inserting ¢; in
the interval [37 — 2,35 + 3].
Let S C [d] be a proper subset of [d]. We write

C(S) = Cli1, j1)Clia, J2] - - Cltk, Jx)
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where i, < i3 < --- < iz and the above representation for C(S) is minimal
(i.e., Cliry Jr)Clir41, Jrs1] # Cliyjra] forr=1,...,k ).

Then, oC(S) is a cyclic permutation that differs from o by inserting the
sequences q;,j, in the interval [3i, — 2,37, +3] forr =1,..., k, hence aC(S) €
7., and we are done. O

Proposition 3.2 generalizes to the following result.

Proposition 3.3 IfSC[d], S# 0, n=3d and 0 = (1,...,n) then there
is an ordered collection of disjoint cycles C = {Cy,...,Ca} C Sy such that
F'(o,C)=T14- 5.

Proof: Let C = {C1,C;...,Cy4} be the ordered set as defined in the last
proposition. Let S = [d] — S. We show that there exists a 7 € S, such that

~ _JxCm i€ S
Ci= {71’“10[1% i€ S. (1)

Since S is non empty, S # [d] and hence & := oC(S) € T,. Let ¢ =
{Cy,. .., (4} where
é' _ {Cz 1 € §'
' ct oieS.
Then F'(6,C) = T4 — S. Since o and & are both cycles of length n they
are conjugate, that is, there is 7 € Sy, such that o = 77167 = 7= 1aC(S)r.
Conjugating the cycles C; by 7 to get C;, we see that for any subset R C [d]

oC(R) = n'on(x'C(R)r) = n7'6C(R)™

which has the same cycle structure as 6C(R). Thus we must have I/ (0,C) =
T4 — S. |

Example 2: Letv = (1,0,0,0), 0 = (1,...,12). We find C = {C4, Cy, C3,C4}
such that F'(0,C) = T4 —v.
By Proposition 3.2, if

C=1{C,Cy,Cs3Cs} = {(1,3,5),(4,6,8),(7,9,11),(10,12,2) }

8



then F'(0,C) = T4 — (1,1,1,1). Let S = {1} = Supp(v), S = {2,3,4},

6 =oC(S) = 0Cy,03Cy = (1,2,11,8,5,6,9,12,3,4,7,10) =: (a1, a2, - .. ,a12)
with a; = 1. Setting 7(7) = q; for 2 =1,...,12 we get

7 =(3,11,7,9)(4,8,12,10) and ¢ = n~'é7.

Then
Cl = W-1C1W:(1,9,5)
C, = n'C7'r =(4,6,10)
C’3 = 7(‘"103-17(:(3,7,11)
Cy = 77'C7'r =(2,8,12)
Hence

C ={(1,9,5),(4,6,10),(3,7,11),(2,8,12)}

Using the same method, one can show that if
C ={(2,4,12),(1,5,7),(6,8,10),(3,9,11)},
then F'(0,C) = T4 — (0,1,1,1). O

Example 2 shows how we can find C of Proposition 3.3. If & := oC(S) =

(a1,...,a,) then setting m(i) = a; for ¢ = 1,...,n we would get o = xlom.

This defines C; (by (1)) and hence C.

Now we tackle the general case of removing any set of vertices. Let
P C R? be a 0-1 polytope. Assume without loss of generality that 0 € P
and let V := {5;,..., Sk} be the set of vertices of 74 that are not in P (ie.
P = I,— V). By Proposition 3.3, we can find C; = {Ca,...,Ciq} such
that F'(0,C;) = Iy — Si for i = 1,...,k, wheren = 3d, 0 = (1,...,n) and
each C;; is a 3-cycle. The idea is to concatenate the cycles Cy;,...,C; for
j=1,...,d to eliminate Sy, ..., Sk. For this, the cycles must be defined on
distinct sets. So, assume that C; is defined on {(¢ — 1)n+1,...,in} and let
oi = ((i=)n+1,...,in) so that F'(0;,C;) =Ty — Sifori=1,...,k (i.e.
0:Ci(S) is an n-cycle for all S C [d] except when S = 5;).

Proposition 3.4 There is an integer N and an ordered set of disjoint cycles
YV ={Y/....,Y]} C Sy such that if o' = (1,...,N) then F'(c',)') = P.
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Proof: Define the permutations Y; = C1;Cq; -+ Ci; € Sgn for j =1,...,d
and let Y = {Vi,...,Yy}, and N = kn + (k + 1)d. The following array
illustrates how Y; is defined.

Cl Cll Clj Cld F,(017Cl):Id_“Sl
Cyh Cap - |Ci|-+ Cra F'(ox,Ck)=T4y— Sk
Y;

We first show that if S C [d] then
a'Y(S) € Ty & 0,C,(S) is an n-cycle for r=1,...,k (2)
To see this, note that

adY(S) =o' H Y, =o' ]:-[(C’LS o Chs) = 0'C1(S) -+ - Ci(S).

s€S s€S

Suppose 0,C,(S) = (Z(r—1)n+1s- -+, %rn) is an n-cycle for r = 1,...,k with
Z(r—1)n1 = (r — 1)n 4 1. Then it follows that

o' V(S) = (21,29, ..., Tpn, kn + 1,kn+2,...,N) € Ty

since ’Y(S)(1) = ¢'C.(S)(I) = o:C.(S)() if (r—=1)n <l <rn, [ # zm
and o'Y(S) (@) = 0'(rn) =rn+ 1 =appqq forr=1,... k.

Conversely, suppose that for some r, 0,C,(S) = C'r is not an n-cycle
where (" is a cycle not involving (r — 1)n + 1. Then, as above ¢'Y(S5) has C"
as a cycle, so is not in Ty proving (2).

It follows from (2) that o’Y(S) € Ty if and only if S € V, i.e., if and only
if S is a vertex of P. We now modify the permutations Yi,...,Y; to define
cycles Y/, ..., Y] such that o'Y(S) € Ty < o'Y'(S) € Ty for all § C [d].

Suppose the 3-cycle Ci; = (aij, bij, cij) and let 6;; denote the sequence
aij, bij,¢ij. For j=1,...,d define

Yj, = (rj+k+1,5kj,rj-[—k,é(k-l)]-,...,rj+2,61j,rj+1)
= (rj+k+1,akj,bkj,ckj,rj+k,...,rj+2,a1j,61j,clj,7’j+1).
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where r; = kn + (j — 1)(k +1).

Let § C [d]. Let 7 = o'Y(S) and #' = o’Y'(S) and write 7 and 7' as
products of disjoint cycles. Noting that Y; = (ak;,bej, ckj) - (@15, bjs €1),
we see that for i = 1,...,k and j € S, the sequence ¢;;, a;;+1 in 7 is replaced
by the sequence ¢, 7j+i+1,a;;+1in #’ and the sequence r;+1,...,7;+k+2
in 7 is replaced by r; 4+ 1,7; + k + 2 in #’. Thus if = is an N-cycle then =’ is
a rearranged N-cycle and conversely. Therefore,

o =0YS) eIy &r=0dY(5)€Tn (3)

It follows from (2) and (3) that F'(¢",)') = P and N = kn+ (k+ 1)d =

3kd + (k + 1)d = (4k + 1)d. O
The following is a direct consequence of Proposition 3.4.

Theorem 3.1 If P C R? is a 0-1 polytope with 24 — k vertices, k > 1, then
P appears as a face of T,, for n > (4k +1)d. ]

Example 3: Let P = T4 — {v1,v2} where vy = (1,0,0,0) , vy = (0,1,1,1).

In Example 2, we found C; and C; such that if o = (1,...,12) then
F'(0,Cy) = I4—v; and F'(0,C2) = T4~ v,. Now we add 12 to every number
in Cy to get the permutations in different sets. Let

o1 = (1,...,12), ¢ ={(1,9,5),(4,6,10),(3,7,11),(2,8,12)}
op = (13,...,24) , C; = {(14,16,24),(13,17,19), (18, 20,22), (15,21, 23)}

so that
F’(al,Cl) = I4 - U1 and F,(U‘Z,CQ) = I4 — V9.

Now define

Yi = (1,9,5)(14,16,24) , ¥/ = (27,14,16,24,26,1,9,5,25)

Y, = (4,6,10)(13,17,19) , Y7 = (30,13,17,19,29,4,6,10,28)

Y3 _( 3,7,11)(18,20,22) , Y7 = (33,18,20,22,32,3,7,11,31)
= (2,8,12)(15,21,23) , Y{ = (36,15,21,23,35,2,8,12,34)

il
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where we have underlined the new elements in each Y. Let o' =(1,...,36)
and V' = {Y],Y;, Y], Y/}. Then for example
oYy = (1,2,3,8,9,10,11,4,5,6,7,12,13,...,18,21,22,19,20,
93,24, ....31,32,33,34,35,36) € Ta

while

gy, = (1,2,3,8,9,10,11,32,4,5,6,7, 12, 13,...,18,21,22,33,19, 20,
23,24,...,31,34,35,36) € Tsg
and
oY, YaYy = (14,15,22,19) - - & T3e
while
d'YJY]Y, = (14,15,22,33, 19,30) - & T35

where we have underlined the places where the permutations differ. Similarly
multiplying o/ with all subsets of cycles of }' we get F'(o’,}") = P. O

Remarks:

(1) The above result is not valid for B, since B, has the property that every
pair of its vertices is contained in a cubical face. For instance, the bipyramid
over a triangle (of Example 1), cannot be a face of B..

(2) A natural question to ask is whether the bound for n can be improved.
We ask this question in two different forms. Given d, is there n = d* such
that

(i) All 0-1 polytopes in R? appear as faces of T,,7
The answer is no for the following reason:
The number of 0-1 polytopes in R? is 22* since T4 has 2¢ vertices and the

convex hull of any subset of these vertices is a 0-1 polytope. If f; is the
number of i-dimensional faces of T,,, then

Y . .
fi < ((n N 1) \) < (n—-Drt< ntH" < ™ since i < n? — 1
i
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Hence, if f is the total number of faces of T, then
f<ntn® = d*dH" it n = dF

Then log(f) < 2klog(d) + kd®* log(d) which is a polynomial in d, whereas
log(22") = 2%1og(2) is an exponential in d. Hence, n cannot be a polynomial

in d.

(ii) All (combinatorially) distinct 0-1 polytopes in R? appear as faces of
T,?

This question remains open as we do not have a good estimate of the
number of distinct 0-1 polytopes in R

(3) Theorem 3.1 does not hold for all “hard” 0-1 problems:

For example, the polytope associated with the quadratic assignment prob-
lem cannot have every 0-1 polytope among its faces since it is neighborly, i.e.,
every pair of its vertices are adjacent. This is so since, choosing a hyperplane
containing any pair of vertices of By, and no others, its normal can be used
(by forming a tensor product with itself) to define a supporting hyperplane to
the desired edge of the quadratic assignment polytope. See [1; 2.2.3] for some
background. (This fact and its proof was pointed out to us by A.L Barvinok.)

4 The Asymmetric TSP of a Directed Graph

For the rest of this section D will be a directed graph on the node set

[n]. A Hamiltonian tour < iy,...,i, > in D (i.e. a tour comprising the
edges (i1,13), (i2,43),- -, (in, 11)) corresponds to the cyclic permutation o =
(21, -.,%s) € T, and hence to the permutation matrix X (o).

The asymmetric TSP of the graph D is given by
Tp := conv{X(c)|o corresponds to a tour in D}

If D is the complete directed graph, then Tp = T, as defined in the last
section. Hence, for a general directed graph D

Tp =T, N {z € R™ |z;; = 0 whenever (i,7) & D} (4)
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Since the nonnegativity constraints define facets of T, this shows that Tp is
a face of T),.

Let 0,7 € S, be permutations with no fixed points (i.e. for each ¢ €
[n], o(i) # i and 7 (i) # i). Let D(o,7) be the directed graph with the edge
set {(,7): 0(i) =7 or n(z) = j}.

Lemma 4.1 Suppose C = {Cy,...,Cx} where o7'r = Cy---Ck. Then
F'(O’,C) = TD(a,ﬂ')'

Proof: We have seen earlier that if G(o, 7) is the bipartite graph which is
the union of the matchings corresponding to ¢ and 7 then the face

F(0,C) = B,N{z € R" :z;; = 0if (i,j) ¢ G(o,7)}

is a k-cube and

F'(0,C) = F(o,C)NT,.

Since the edge (i,7) & G(o,7) if and only if the directed edge (i,7) ¢
D(o, ), it follows from (4) that F'(o,C) = Tp(s,n)- O

We showed that any 0-1 polytope appeared as a face of the AT'SP. In
proving this result we saw that the face was of the form F’ (0,C) where o
was our generic cycle (1,...,n). The following theorem is therefore a direct
consequence of Lemma 4.1:

Theorem 4.1 Every 0-1 polytope in R? is the asymmetric TSP of some
directed graph. In fact, if the polytope has a pair of diametrically opposite
vertices, (vertices with disjoint supports such that the union of their supports
is [d]) then the graph is the union of two tours. Otherwise the graph is the
union of a tour and disjoint cycles that cover the graph. O

Finally, we obtain some bounds on the diameter of Tp. We need the
following preliminary results:

Lemma 4.2 Let o, 7 € T, correspond to tours in D. If o7'n = Cy-+-Ck
and C = {Cy,...,Ct}, then F'(0,C) is a face of Tp.
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Proof: Since F'(0,C) = Tpo,r) € Ip € T, and F'(0,C) is a face of T, it
follows that F(o,C) is a face of Tp, proving the lemma. O

The following is probably a well known result:

Proposition 4.1 Let P C R be a 0-1 polytope and let vy, vy be vertices of
P such that
(i) Supp(vi) C Supp(vz) and
(ii) If v is a vertez of P such that Supp(vi) € Supp(v) C Supp(vz), then
v =101 OT V= Vy.
Then vy and v, are adjacent on P.

Proof: Consider the face F' of T, spanned by the vertices v; and v,. The
vertices of F are all the vertices v € Z4 such that Supp(vi) C Supp(v) C
Supp(vz). By our assumption, the only vertices of P that lieon F' are vy and
vy. Hence F'N P = conv{vy, v3}, i.e. vy is adjacent to vz on P. O

Theorem 4.2 The mazimum diameter of Tp over all directed graphs D on

n nodes is l%}

Proof: Define
O(n) := maz{diam(Tp) : D is a directed graph on [n]}.

Let d = |%] and let D be any directed graph on [n]. We first show that
diam(Tp) < d. Let o, = € T, be vertices of Tp. Let o lxr =CiCq---Cy and
C={Cy,...,Ci}. Let 0;, =0Cy---C; and 0o = 0.

Choose 0 = ig < 21 < -+ < I,y = k so that

{ir,..yim}={j € k] :0; € To}.

We assume that the cycles Cy,...,Cy are arranged in such a way that
if $ C [k] such that [i;] € S C [ij41] and oC(S) € T, then § = [z;] or
S = [i;41]. Then by Proposition 4.1, the vertices o;, and o;,,, are adjacent
on F'(c,C) (and hence on Tp since F'(0,C) is a face of Tp by Lemma 4.2)
for j=0,1,...,m—1.
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Since a;laiﬁl = Ci41 -+ Uiy, 18 an even permutation, it follows that for
j=0,....,m—1
g+l =23

where [; is the length of the cycle C;. Adding these m inequalities, we get
Im<lh+l+--+hk<n

i.e. m < d. We have exhibited a path from ¢ to 7 of length at most d which
shows that diam(Tp) < d. This implies that O(n) < d.

To show that ©(n) = d, we have to find a find a directed graph D
such that diam(Tp) = d. Let o = (1,...,n), C = {C,.. .,Cq} where
C;=(3—2,3—1,3i)fori=1,...,d. Let 7 = oCy---Cq. Then, Tpex) =
F'(0,C) is a d-cube by Proposition 3.1, and hence has diameter d. ]
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