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Abstract

The objective of this paper is large scale object instance
retrieval, given a query image. A starting point of such sys-
tems is feature detection and description, for example us-
ing SIFT. The focus of this paper, however, is towards very
large scale retrieval where, due to storage requirements,
very compact image descriptors are required and no infor-
mation about the original SIFT descriptors can be accessed
directly at run time.

We start from VLAD, the state-of-the art compact de-
scriptor introduced by Jégou et al. [8] for this purpose,
and make three novel contributions: first, we show that
a simple change to the normalization method significantly
improves retrieval performance; second, we show that vo-
cabulary adaptation can substantially alleviate problems
caused when images are added to the dataset after initial
vocabulary learning. These two methods set a new state-
of-the-art over all benchmarks investigated here for both
mid-dimensional (20k-D to 30k-D) and small (128-D) de-
scriptors.

Our third contribution is a multiple spatial VLAD repre-
sentation, MultiVLAD, that allows the retrieval and local-
ization of objects that only extend over a small part of an
image (again without requiring use of the original image
SIFT descriptors).

1. Introduction

The area of large scale particular object retrieval has
seen a steady train of improvements in performance over
the last decade. Since the original introduction of the bag
of visual words (BoW) formulation [16], there have been
many notable contributions that have enhanced the descrip-
tors [1, 15, 19], reduced quantization loss [6, 14, 18], and
improved recall [1, 3, 4].

However, one of the most significant contributions in
this area has been the introduction of the Vector of Locally
Aggregated Descriptors (VLAD) by Jégou et al. [8]. This
image descriptor was designed to be very low dimensional
(e.g. 16 bytes per image) so that all the descriptors for very

large image datasets (e.g. 1 billion images) could still fit into
main memory (and thereby avoid expensive hard disk ac-
cess). Its introduction has opened up a new research theme
on the trade-off between memory footprint of an image de-
scriptor and retrieval performance, e.g. measured by aver-
age precision.

We review VLAD in section 2.1, but here mention that
VLAD, like visual word encoding, starts by vector quan-
tizing a locally invariant descriptor such as SIFT. It differs
from the BoW image descriptor by recording the difference
from the cluster center, rather than the number of SIFTs
assigned to the cluster. It inherits some of the invariances
of the original SIFT descriptor, such as in-plane rotational
invariance, and is somewhat tolerant to other transforma-
tions such as image scaling and clipping. Another differ-
ence from the standard BoW approach is that VLAD re-
trieval systems generally preclude the use of the original
local descriptors. These are used in BoW systems for spa-
tial verification and reranking [6, 13], but require too much
storage to be held in memory on a single machine for very
large image datasets. VLAD is similar in spirit to the earlier
Fisher vectors [11], as both record aspects of the distribution
of SIFTs assigned to a cluster center.

As might be expected, papers are now investigating how
to improve on the original VLAD formulation [2, 5]. This
paper is also aimed at improving the performance of VLAD.
We make three contributions:

1. Intra-normalization: We propose a new normalization
scheme for VLAD that addresses the problem of bursti-
ness [7], where a few large components of the VLAD vec-
tor can adversely dominate the similarity computed between
VLADs. The new normalization is simple, and always im-
proves retrieval performance.

2. Multi-VLAD: We study the benefits of recording mul-
tiple VLADs for an image and show that retrieval perfor-
mance is improved for small objects (those that cover only
a small part of the image, or where there is a significant
scale change from the query image). Furthermore, we pro-
pose a method of sub-VLAD localization where the window
corresponding to the object instance is estimated at a finer
resolution than the the VLAD tiling.
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3. Vocabulary adaptation: We investigate the problem of
vocabulary sensitivity, where a vocabulary trained on one
dataset, A, is used to represent another dataset B, and the
performance is inferior to using a vocabulary trained on
B. We propose an efficient, simple, method for improving
VLAD descriptors via vocabulary adaptation, without the
need to store or recompute any local descriptors in the im-
age database.

The first two contributions are targeted at improving
VLAD performance. The first improves retrieval in gen-
eral, and the second partially overcomes an important de-
ficiency – that VLAD has inferior invariance to changes in
scale (compared to a BoW approach). The third contribu-
tion addresses a problem that arises in real-world applica-
tions where, for example, image databases grow with time
and the original vocabulary is incapable of representing the
additional images well.

In sections 3–5 we describe each of these methods in
detail and demonstrate their performance gain over earlier
VLAD formulations, using the Oxford Buildings 5k and
Holidays image dataset benchmarks as running examples.
The methods are combined and compared to the state of the
art for larger scale retrieval (Oxford 105k and Flickr1M) in
section 6.

2. VLAD review, datasets and baselines

We first describe the original VLAD computation
and subsequent variations, and then briefly overview the
datasets that will be used for performance evaluation and
those that will be used for vocabulary building (obtaining
the cluster centers required for VLAD computation).

2.1. VLAD
VLAD is constructed as follows: regions are extracted

from an image using an affine invariant detector, and de-
scribed using the 128-D SIFT descriptor. Each descriptor
is then assigned to the closest cluster of a vocabulary of
size k (where k is typically 64 or 256, so that clusters are
quite coarse). For each of the k clusters, the residuals (vec-
tor differences between descriptors and cluster centers) are
accumulated, and the k 128-D sums of residuals are con-
catenated into a single k × 128 dimensional descriptor; we
refer to it as the unnormalized VLAD. Note, VLAD is sim-
ilar to other descriptors that record residuals such as Fisher
vectors [11] and super-vector coding [20]. The relationship
between Fisher vectors and VLAD is discussed in [12].

In the original scheme [8] the VLAD vectors are L2 nor-
malized. Subsequently, a signed square rooting (SSR) nor-
malization was introduced [5, 9], following its use by Per-
ronnin et al. [12] for Fisher vectors. To obtain the SSR nor-
malized VLAD, each element of an unnormalized VLAD
is sign square rooted (i.e. an element xi is transformed into
sign(xi)

√
|xi|) and the transformed vector is L2 normal-

ized. We will compare with both of these normalizations in
the sequel, and use them as baselines for our approach.

Chen et al. [2] propose a different normalization scheme
for the residuals and also investigate omitting SIFT descrip-
tors that lie close to cluster boundaries. Jégou and Chum [5]
extend VLAD in two ways: first, by using PCA and whiten-
ing to decorrelate a low dimensional representation; and
second, by using multiple (four) clusterings to overcome
quantization losses. Both give a substantial retrieval per-
formance improvement for negligible additional computa-
tional cost, and we employ them here.

2.2. Benchmark datasets and evaluation procedure

The performance is measured on two standard and pub-
licly available image retrieval benchmarks, Oxford build-
ings and Holidays. For both, a set of predefined queries
with hand-annotated ground truth is used, and the retrieval
performance is measured in terms of mean average preci-
sion (mAP).

Oxford buildings [13] contains 5062 images downloaded
from Flickr, and is often referred to as Oxford 5k. There are
55 queries specified by an image and a rectangular region
of interest. To test large scale retrieval, it is extended with a
100k Flickr images, forming the Oxford 105k dataset.

Holidays [6] contains 1491 high resolution images contain-
ing personal holiday photos with 500 queries. For large
scale retrieval, it is appended with 1 million Flickr images
(Flickr1M [6]), forming Holidays+Flickr1M.

We follow the standard experimental scenario of [5] for
all benchmarks: for Oxford 5k and 105k the detector and
SIFT descriptor are computed as in [10]; while for Holi-
days(+Flickr1M) the publicly available SIFT descriptors are
used.

Vocabulary sources. Three different datasets are used for
vocabulary building (i.e. clustering on SIFTs): (i) Paris
6k [14], which is analogous to the Oxford buildings dataset,
and is often used as an independent dataset from the Oxford
buildings [1, 3, 5, 14]; (ii) Flickr60k [6], which contains
60k images downloaded from Flickr, and is used as an in-
dependent dataset from the Holidays dataset [6, 7, 8]; and,
(iii) ‘no-vocabulary’, which simply uses the first k (where
k is the vocabulary size) SIFT descriptors from the Holi-
days dataset. As k is typically not larger than 256 whereas
the smallest dataset (Holidays) contains 1.7 million SIFT
descriptors, this vocabulary can be considered independent
from all datasets.

3. Vocabulary adaptation

In this section we introduce cluster adaptation to improve
retrieval performance for the case where the cluster centers
used for VLAD are not consistent with the dataset – for ex-
ample they were obtained on a different dataset or because
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Figure 1: VLAD similarity measure under different clusterings. The Voronoi cells illustrate the coarse clustering used
to construct VLAD descriptors. Red crosses and blue circles correspond to local descriptors extracted from two different
images, while the red and blue arrows correspond to the sum of their residuals (differences between descriptors and the
cluster center). Assume the clustering in (a) is a good one (i.e. it is representative and consistent with the dataset descriptors),
while the one in (b) is not. By changing the clustering from (a) to (b), the sign of the similarity between the two images (from
the cosine of the angle between the residuals) changes dramatically, from negative to positive. However, by performing
cluster center adaptation the residuals are better estimated (c), thus inducing a better estimate of the image similarity which
is now consistent with the one induced by the clustering in (a).

new data has been added to the dataset. As described earlier
(section 2.1), VLAD is constructed by aggregating differ-
ences between local descriptors and coarse cluster centers,
followed by L2 normalization. For the dataset used to learn
the clusters (by k-means) the centers are consistent in that
the mean of all vectors assigned to a cluster over the entire
dataset is the cluster center. For an individual VLAD (from
a single image) this is not the case, or course, and it is also
not the case, in general, for VLADs computed over a dif-
ferent dataset. As will be seen below the inconsistency can
severely impact performance. An ideal solution would be
to recluster on the current dataset, but this is costly and re-
quires access to the original SIFT descriptors. Instead, the
method we propose alleviates the problem without requir-
ing reclustering.

The similarity between VLAD descriptors is measured
as the scalar product between them, and this decomposes as
the sum of scalar products of aggregated residuals for each
coarse cluster independently. Consider a contribution to the
similarity for one particular coarse cluster k. We denote
with x

(1)
k and x

(2)
k the set of all descriptors in image 1 and

2, respectively, which get assigned to the same coarse clus-
ter k. The contribution to the overall similarity of the two
VLAD vectors is then equal to:

1

C(1)

∑

i

(x
(1)
k,i − μk)

T 1

C(2)

∑

j

(x
(2)
k,j − μk) (1)

where μk is the centroid of the cluster, and C(1) and C(2)

are normalizing constants which ensure all VLAD descrip-
tors have unit norm. Thus, the similarity measure induced
by the VLAD descriptors is increased if the scalar product
between the residuals is positive, and decreased otherwise.
For example, the sets of descriptors illustrated in figure 1a
are deemed to be very different (they are on opposite sides
of the cluster center) thus giving a negative contribution to
the similarity of the two images.

It is clear that the VLAD similarity measure is strongly
affected by the cluster center. For example, if a different
center is used (figure 1b), the two sets of descriptors are now

deemed to be similar thus yielding a positive contribution to
the similarity of the two images. Thus, a different clustering
can yield a completely different similarity value.

We now introduce cluster center adaptation to improve
residual estimates for an inconsistent vocabulary, namely,
using new adapted cluster centers μ̂k that are consistent
when computing residuals (equation (1)), instead of the
original cluster centers μk. The algorithm consists of two
steps: (i) compute the adapted cluster centers μ̂k as the
mean of all local descriptors in the dataset which are as-
signed to the same cluster k; (ii) recompute all VLAD de-
scriptors by aggregating differences between local descrip-
tors and the adapted centers μ̂k. Note that step (ii) can be
performed without actually storing or recomputing all lo-
cal descriptors as their assignment to clusters remains un-
changed and thus it is sufficient only to store the descriptor
sums for every image and each cluster.

Figure 1c illustrates the improvement achieved with cen-
ter adaptation, as now residuals, and thus similarity scores,
are similar to the ones obtained using the original clustering
in figure 1a. Note that for an adapted clustering the cluster
center is indeed equal to the mean of all the descriptors as-
signed to it from the dataset. Thus, our cluster adaptation
scheme has no effect on VLADs obtained using consistent
clusters, as desired.

To illustrate the power of the adaptation, a simple test is
performed where the Flickr60k vocabulary is used for the
Oxford 5k dataset, and the difference between the original
vocabulary and the adapted one measured. The mean mag-
nitude of the displacements between the k = 256 adapted
and original cluster centers is 0.209, which is very large
keeping in mind that RootSIFT descriptors [1] themselves
all have a unit magnitude. For comparison, when the Paris
vocabulary is used, the mean magnitude of the difference is
only 0.022.

Results. Figure 2 shows the improvement in retrieval per-
formance obtained when using cluster center adaptation
(adapt) compared to the standard VLAD under various
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(a) Oxford 5k benchmark [13]
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(b) Holidays benchmark [6]

Figure 2: Retrieval performance. Six methods are compared,
namely: (i) baseline: the standard VLAD, (ii) intra-normalization,
innorm (section 4), (iii) center adaptation, adapt (section 3), (iv)
adapt followed by innorm, (v) baseline: signed square rooting
SSR, (vi) aided baseline: adapt followed by SSR. Each result cor-
responds to the mean result obtained from four different test runs
(corresponding to four different clusterings), while error bars cor-
respond to one standard deviation. The results were generated us-
ing RootSIFT [1] descriptors and vocabularies of size k = 256.

dataset sources for the vocabulary. Center adaptation im-
proves results in all cases, especially when the vocabulary
was computed on a vastly different image database or not
computed at all. For example, on Holidays with Paris vo-
cabulary the mAP increases by 9.7%, from 0.432 to 0.474;
while for the no-vocabulary case, the mAP improves by
34%, from 0.380 to 0.509. The improvement is smaller
when the Flickr60k vocabulary is used since the distribution
of descriptors is more similar to the ones from the Holidays
dataset, but it still exists: 3.2% from 0.597 to 0.616. The im-
provement trends are similar for the Oxford 5k benchmark
as well.

Application in large scale retrieval. Consider the case of
real-world large-scale retrieval where images are added to
the database with time. This is the case, for example, with
users uploading images to Flickr or Facebook, or Google
indexing images on new websites. In this scenario, one is
forced to use a fixed precomputed vocabulary since it is im-
practical (due to storage and processing requirements) to
recompute too frequently as the database grows, and reas-
sign all descriptors to the newly obtained clusters. In this
case, it is quite likely that the obtained clusters are incon-
sistent, thus inducing a bad VLAD similarity measure. Us-
ing cluster center adaptation fits this scenario perfectly as
it provides a way of computing better similarity estimates
without the need to recompute or store all local descriptors,
as descriptor assignment to clusters does not change.

4. Intra-normalization

In this section, it is shown that current methods for nor-
malizing VLAD descriptors, namely simple L2 normaliza-
tion [8] and signed square rooting [12], are prone to putting
too much weight on bursty visual features, resulting in a
suboptimal measure of image similarity. To alleviate this
problem, we propose a new method for VLAD normaliza-
tion.

The problem of bursty visual elements was first noted in
the bag-of-visual-words (BoW) setting [7]: a few artificially
large components in the image descriptor vector (for exam-
ple resulting from a repeated structure in the image such as
a tiled floor) can strongly affect the measure of similarity
between two images, since the contribution of other impor-
tant dimensions is hugely decreased. This problem was al-
leviated by discounting large values by element-wise square
rooting the BoW vectors and re-normalizing them. In a sim-
ilar manner VLADs are signed square root (SSR) normal-
ized [5, 9]. Figure 3 shows the effects these normalizations
have on the average energy carried by each dimension in a
VLAD vector.

We propose here a new normalization, termed intra-
normalization, where the sum of residuals is L2 normal-
ized within each VLAD block (i.e. sum of residuals within
a coarse cluster) independently. As in the original VLAD
and SSR, this is followed by L2 normalization of the entire
vector. This way, regardless of the amount of bursty im-
age features their effect on VLAD similarity is localized to
their coarse cluster, and is of similar magnitude to all other
contributions from other clusters. While SSR reduces the
burstiness effect, it is limited by the fact that it only dis-
counts it. In contrast, intra-normalization fully suppresses
bursts, as witnessed in figure 3c which shows absolutely no
peaks in the energy spectrum.

Discussion. The geometric interpretation of intra-
normalization is that the similarity of two VLAD vectors
depends on the angles between the residuals in correspond-
ing clusters. This follows from the scalar product of equa-
tion (1): since the residuals are now L2 normalized the
scalar product depends only on the cosine of the differences
in angles of the residuals, not on their magnitudes. Chen
et al. [2] have also proposed an alternative normalization
where the per-cluster mean of residuals is computed instead
of the sum. The resulting representation still depends on
the magnitude of the residuals, which is strongly affected
by the size of the cluster, whereas in intra-normalization
it does not. Note that all the arguments made in favor of
cluster center adaptation (section 3) are unaffected by intra-
normalization. Specifically, only the values of C(1) and
C(2) change in equation (1), and not the dependence of the
VLAD similarity measure on the quality of coarse cluster-
ing which is addressed by cluster center adaptation.
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(a) Original VLAD normalization (L2)
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Figure 3: The effect of various normalizing schemes for
VLAD. The plots show the standard deviation (i.e. energy) of the
values for each dimension of VLAD across all images in the Hol-
idays dataset; the green lines delimit blocks of VLAD associated
with each cluster center. It can be observed that the energy is
strongly concentrated around only a few components in the VLAD
vector under the original L2 normalization scheme (3a). These
peaks strongly influence VLAD similarity scores, and SSR does
indeed manage to discount their effect (3b). However, even with
SSR, it is clear that the same few components are responsible for
a significant amount of energy and are still likely to bias similar-
ity scores. (c) Intra-normalization completely alleviates this effect
(see section 4). The relative improvement in the retrieval perfor-
mance (mAP) is 7.2% and 13.5% using innorm compared to SSR
and VLAD, respectively. All three experiments were performed on
Holidays with a vocabulary of size k = 64 (small so that the com-
ponents are visible) learnt on Paris with cluster center adaptation.

Results. As shown in figure 2, intra-normalization (in-
norm) combined with center adaptation (adapt) always im-
proves retrieval performance, and consistently outperforms
other VLAD normalization schemes, namely the original
VLAD with L2 normalization and SSR. Center adaptation
with intra-normalization (adapt+innorm) significantly out-
performs the next best method (which is adapt+SSR); the
average relative improvement on Oxford 5k and Holidays
is 4.7% and 6.6%, respectively. Compared to SSR without
center adaptation our improvements are even more evident:
35.5% and 27.2% on Oxford 5k and Holidays, respectively.

5. Multiple VLAD descriptors

In this section we investigate the benefits of tiling an im-
age with VLADs, instead of solely representing the image
by a single VLAD. As before, our constraints are the mem-
ory footprint and that any performance gain should not in-
volve returning to the original SIFT descriptors for the im-
age. We target objects that only cover a small part of the
image (VLAD is known to have inferior performance for

these compared to BoW), and describe first how to improve
their retrieval, and second how to predict their localization
and scale (despite the fact that VLAD does not store any
spatial information).

The multiple VLAD descriptors (MultiVLAD) are ex-
tracted on a regular 3 × 3 grid at three scales. 14 VLAD
descriptors are extracted: nine (3 × 3) at the finest scale,
four (2 × 2) at the medium scale (each tile is formed by
2×2 tiles from the finest scale), and one covering the entire
image. At run time, given a query image and region of in-
terest (ROI) covering the queried object, a single VLAD is
computed over the ROI and matched across database VLAD
descriptors. An image in the database is assigned a score
equal to the maximum similarity between any of its VLAD
descriptors and the query.

As will be shown below, computing VLAD descriptors
at fine scales enables retrieval of small objects, but at the
cost of increased storage (memory) requirements. However,
with 20 bytes per image [8], 14 VLADs per image amounts
to 28 GB for a 100 million images, which is still a manage-
able amount of data that can easily be stored in the main
memory of a commodity server.

To assess the retrieval performance, additional ROI an-
notation is provided for the Oxford 5k dataset, as the orig-
inal only specifies ROIs for the query images. Objects are
deemed to be small if they occupy less than 300× 300 pix-
els squared. Typical images in Oxford 5k are 1024 × 768,
thus the threshold corresponds to the object occupying up to
about 11% of an image. We measure the mean average pre-
cision for retrieving images containing these small objects
using the standard Oxford 5k queries.

We compare to two baselines a single 128-D VLAD
per image, and also a 14 × 128 = 1792-D VLAD. The
latter is included for a fair comparison since MultiVLAD
requires 14 times more storage. MultiVLAD achieves a
mAP of 0.102, this outperforms the single 128-D VLAD
descriptors, which only yield a mAP of 0.025, and also the
1792-D VLAD which obtains a mAP of 0.073, i.e. a 39.7%
improvement. MultiVLAD consistently outperforms the
1792-D VLAD for thresholds smaller than 4002, and then
is outperformed for objects occupying a significant portion
of the image (more than 20% of it).

Implementation details. The 3 × 3 grid is generated by
splitting the horizontal and vertical axes into three equal
parts. To account for potential featureless regions near im-
age borders (e.g. the sky at the top of many images often
contains no interest point detections), we adjust the outer
boundary of the grid to the smallest bounding box which
contains all interest points. All the multiple VLADs for an
image can be computed efficiently through the use of an in-
tegral image of unnormalized VLADs.
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Figure 4: Variation of VLAD similarity with region overlaps. (b) The value plotted at each point (x, y) corresponds to the VLAD
similarity (scalar product between two VLADs) between the VLAD of the region of interest (ROI) in (a) and the VLAD extracted from
the 200 × 200 pixel patch centered at (x, y). (c) The proportion of each patch from (b) that is covered by the ROI from (a). (d) Residuals
obtained by a linear regression of (c) to (b). (e) A 1-D horizontal slice through the middle of (b) and (c). Note that residuals in (d) and (e)
are very small, thus VLAD similarities are very good linear estimators of region overlap.

Figure 5: Fine versus greedy localization. Localized object:
ground truth annotation (green); greedy method (red dashed rect-
angles); best location using the fine method of section 5.1 (yellow
solid rectangles).

5.1. Fine object localization

Given similarity scores between a query ROI and all the
VLADs contained in the MultiVLAD of a result image, we
show here how to obtain an estimate of the corresponding
location within the result image. To motivate the method,
consider figure 4 where, for each 200× 200 subwindow of
an image, VLAD similarities (to the VLAD of the target
ROI) are compared to overlap (with the target ROI). The
correlation is evident and we model this below using linear
regression. The procedure is similar in spirit to the interpo-
lation method of [17] for visual localization.

Implementation details. A similarity score vector s is
computed between the query ROI VLAD and the VLADs
corresponding to the image tiles of the result image’s Mul-
tiVLAD. We then seek an ROI in the result image whose
overlap with the image tiles matches these similarity scores
under a linear scaling. Here, overlap v(r) between an ROI
r and an image tile is computed as the proportion of the im-
age tile which is covered by the ROI. The best ROI, rbest, is
determined by minimizing residuals as

rbest = argmin
r

min
λ
||λv(r)− s|| (2)

where any negative similarities are clipped to zero. Re-
gressed overlap scores mimic the similarity scores very
well, as shown by small residuals in figure 4d and 4e.

Note that given overlap scores v(r), which are easily
computed for any ROI r, the inner minimization in (2) can
be solved optimally using a closed form solution, as it is a
simple least squares problem: the value of λ which mini-

mizes the expression for a given r is λ = s
T
v(r)

v(r)Tv(r) .

To solve the full minimization problem we perform a
brute force search in a discretized space of all possible rect-
angular ROIs. The discretized space is constructed out of
all rectangles whose corners coincide with a very fine (30
by 30) regular grid overlaid on the image, i.e. there are 31
distinct values considered for each of x and y coordinates.
The number of all possible rectangles with non-zero area is(
31
2

)2
which amounts to 216k.

The search procedure is very efficient as least squares
fitting is performed with simple 14-D scalar product com-
putations, and the entire process takes 14 ms per image on
a single core 3 GHz processor.

Localization accuracy. To evaluate the localization quality
the ground truth and estimated object positions and scales
are compared in terms of the overlap score (i.e. the ratio be-
tween the intersection and union areas of the two ROIs), on
the Oxford 5k dataset. In an analogous manner to comput-
ing mean average precision (mAP) scores for retrieval per-
formance evaluation, for the purpose of localization evalu-
ation the average overlap score is computed for each query,
and averaged across queries to obtain the mean average
overlap score.

For the region descriptors we use MultiVLAD descrip-
tors with center adaptation and intra-normalization, with
multiple vocabularies trained on Paris and projected down
to 128-D. This setup yields a mAP of 0.518 on Oxford 5k.

The fine localization method is compared to two base-
lines: greedy and whole image. The whole image baseline
returns the ROI placed over the entire image, thus always
falling back to the “safe choice” and producing a non-zero
overlap score. For the greedy baseline, the MultiVLAD re-
trieval system returns the most similar tile to the query in
terms of similarity of their VLAD descriptors.

The mean average overlap scores for the three systems
are 0.342, 0.369 and 0.429 for the whole image, greedy and
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Method Holidays Oxford 5k
BoW 200k-D [9, 16] 0.540 0.364
BoW 20k-D [9, 16] 0.452 0.354
Improved Fisher [12] 0.626 0.418
VLAD [8] 0.526 -
VLAD+SSR [9] 0.598 0.378
Improved det/desc: VLAD+SSR [9] - 0.532
This paper: adapt+innorm (mean) 0.646 0.555
This paper: adapt+innorm (single best) 0.653 0.558

Table 1: Full size image descriptors (i.e. before dimensionality
reduction): comparison with state-of-the-art. Image descrip-
tors of medium-dimensionality (20k-D to 32k-D) are compared
in terms of retrieval performance (mAP) on the Oxford 5k and
Holidays benchmarks. Reference results are obtained from the pa-
per of Jégou et al. [9]. For fair comparison, we also include our
implementation of VLAD+SSR using the detector [10] and de-
scriptor [1] which give significant improvements on the Oxford 5k
benchmark. The mean results are averaged over four different runs
(corresponding to different random initializations of k-means for
vocabulary building), and the single best result is from the vocab-
ulary with the highest mAP.

fine respectively; the fine method improves the two base-
lines by 25% and 16%. Furthermore, we also measure the
mean average number of times that the center of the es-
timated ROI is inside the ground truth ROI, and the fine
method again significantly outperforms others by achieving
a score of 0.897, which is a 28% and 8% improvement over
whole image and greedy, respectively. Figure 5 shows a
qualitative comparison of fine and greedy localization.

6. Results and discussion

In the following sections we compare our two improve-
ments of the VLAD descriptor, namely cluster center adap-
tation and intra-normalization, with the state-of-the-art.
First, the retrieval performance of the full size VLAD de-
scriptors is evaluated, followed by tests on more compact
descriptors obtained using dimensionality reduction, and
then the variation in performance using vocabularies trained
on different datasets is evaluated. Finally, we report on
large scale experiments with the small descriptors. For
all these tests we used RootSIFT descriptors clustered into
k = 256 coarse clusters, and the vocabularies were trained
on Paris and Flickr60k for Oxford 5k(+100k) and Holi-
days(+Flickr1M), respectively.

Full size VLAD descriptors. Table 1 shows the perfor-
mance of our method against the current state-of-the-art for
descriptors of medium dimensionality (20k-D to 30k-D).
Cluster center adaptation followed by intra-normalization
outperforms all previous methods. For the Holidays dataset
we outperform the best method (improved Fisher vec-
tors [12]) by 3.2% on average and 4.3% in the best case,
and for Oxford 5k we achieve an improvement of 4.3% and
4.9% in the average and best cases, respectively.

Method Holidays Oxford 5k
GIST [9] 0.365 -
BoW [9, 16] 0.452 0.194
Improved Fisher [12] 0.565 0.301
VLAD [8] 0.510 -
VLAD+SSR [9] 0.557 0.287
Multivoc-BoW [5] 0.567 0.413
Multivoc-VLAD [5] 0.614 -
Reimplemented Multivoc-VLAD [5] 0.600 0.425
This paper: adapt+innorm 0.625 0.448

Table 2: Low dimensional image descriptors: comparison
with state-of-the-art. 128-D dimensional image descriptors are
compared in terms of retrieval performance (mAP) on the Oxford
5k and Holidays benchmarks. Most results are obtained from the
paper of Jégou et al. [9], apart from the recent multiple vocabulary
(Multivoc) method [5]. The authors of Multivoc do not report the
performance of their method using VLAD on Oxford 5k, so we
report results of our reimplementation of their method.

Small image descriptors (128-D).We employ the state-of-
the-art method of [5] (Multivoc) which uses multiple vocab-
ularies to obtain multiple VLAD (with SSR) descriptions of
one image, and then perform dimensionality reduction, us-
ing PCA, and whitening to produce very small image de-
scriptors (128-D). We mimic the experimental setup of [5],
and learn the vocabulary and PCA on Paris 6k for the Ox-
ford 5k tests. For the Holidays tests they do not specify
which set of 10k Flickr images are used for learning the
PCA. We use the last 10k from the Flickr1M [6] dataset.

As can be seen from table 2, our methods outperform
all current state-of-the-art methods. For Oxford 5k the im-
provement is 5.4%, while for Holidays it is 1.8%.

Effect of using vocabularies trained on different
datasets. In order to assess how the retrieval performance
varies when using different vocabularies, we measure the
proportion of the ideal mAP (i.e. when the vocabulary is
built on the benchmark dataset itself) achieved for each of
the methods.

First, we report results on Oxford 5k using full size
VLADs in table 3. The baselines (VLAD and VLAD+SSR)
perform very badly when an inappropriate (Flickr60k)
vocabulary is used achieving only 68% of the ideal
performance for the best baseline (VLAD+SSR). Using
adapt+innorm, apart from improving mAP in general for all
vocabularies, brings this score up to 86%. A similar trend is
observed for the Holidays benchmark as well (see figure 2).

We next report results for 128-D descriptors where,
again, in all cases Multivoc [5] is used with PCA to per-
form dimensionality reduction and whitening. In addition
to the residual problems caused by an inconsistent vocabu-
lary, there is also the extra problem that the PCA is learnt
on a different dataset. Using the Flickr60k vocabulary with
adapt+innorm for Oxford 5k achieves 59% of the ideal per-
formance, which is much worse than the 86% obtained
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Method \vocabulary Ox5k Paris Flickr60k
VLAD 0.519 0.508 (98%) 0.315 (61%)
VLAD+SSR 0.546 0.532 (97%) 0.374 (68%)
VLAD+adapt 0.519 0.516 (99%) 0.313 (60%)
VLAD+adapt+SSR 0.546 0.541 (99%) 0.439 (80%)
VLAD+adapt+innorm 0.555 0.555 (100%) 0.478 (86%)

Table 3: Effect of using different vocabularies for the Oxford
5k retrieval performance. Column one is the ideal case where
retrieval is assessed on the same dataset as used to build the vocab-
ulary. Full size VLAD descriptors are used. Results are averaged
over four different vocabularies for each of the tests. The propor-
tion of the ideal mAP (i.e. when the vocabulary is built on Oxford
5k itself) is given in brackets.

with full size vectors above. Despite the diminished per-
formance, adapt+innorm still outperforms the best baseline
(VLAD+SSR) by 4%. A direction of future research is to
investigate how to alleviate the influence of the inappropri-
ate PCA training set, and improve the relative performance
for small dimensional VLAD descriptors as well.

Large scale retrieval. With datasets of up to 1 million im-
ages and compact image descriptors (128-D) it is still pos-
sible to perform exhaustive nearest neighbor search. For
example, in [5] exhaustive search is performed on 1 mil-
lion 128-D dimensional vectors reporting 6 ms per query
on a 12 core 3 GHz machine. Scaling to more than 1 mil-
lion images is certainly possible using efficient approximate
nearest neighbor methods.

The same 128-D descriptors (adapt+innorm VLADs re-
duced to 128-D using Multivoc) are used as described
above. On Oxford 105k we achieve a mAP of 0.374, which
is a 5.6% improvement over the best baseline, being (our
reimplementation of) Multivoc VLAD+SSR. There are no
previously reported results on compact image descriptors
for this dataset to compare to. On Holidays+Flickr1M,
adapt+innorm yields 0.378 compared to the 0.370 of Mul-
tivoc VLAD+SSR; while the best previously reported mAP
for this dataset is 0.370 (using VLAD+SSR with full size
VLAD and approximate nearest neighbor search [9]). Thus,
we set the new state-of-the-art on both datasets here.

7. Conclusions and recommendations

We have presented three methods which improve stan-
dard VLAD descriptors over various aspects, namely clus-
ter center adaptation, intra-normalization and MultiVLAD.

Cluster center adaptation is a useful method for large
scale retrieval tasks where image databases grow with time
as content gets added. It somewhat alleviates the influence
of using a bad visual vocabulary, without the need of re-
computing or storing all local descriptors.

Intra-normalization was introduced in order to fully sup-
press bursty visual elements and provide a better measure
of similarity between VLAD descriptors. It was shown to

be the best VLAD normalization scheme. However, we
recommend intra-normalization always be used in conjunc-
tion with a good visual vocabulary or with center adaptation
(as intra-normalization is sometimes outperformed by SSR
when inconsistent clusters are used and no center adaptation
is performed). Although it is outside the scope of this paper,
intra-normalized VLAD also improves image classification
performance over the original VLAD formulation.
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