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Abstract
A number of researchers have introduced topological structures on the set of laws
of stochastic processes. A unifying goal of these authors is to strengthen the usual
weak topology in order to adequately capture the temporal structure of stochastic pro-
cesses. Aldous defines an extended weak topology based on the weak convergence
of prediction processes. In the economic literature, Hellwig introduced the informa-
tion topology to study the stability of equilibrium problems. Bion–Nadal and Talay
introduce a version of the Wasserstein distance between the laws of diffusion pro-
cesses. Pflug and Pichler consider the nested distance (and the weak nested topology)
to obtain continuity of stochastic multistage programming problems. These distances
can be seen as a symmetrization of Lassalle’s causal transport problem, but there are
also further natural ways to derive a topology from causal transport. Our main result is
that all of these seemingly independent approaches define the same topology in finite
discrete time. Moreover we show that this ‘weak adapted topology’ is characterized
as the coarsest topology that guarantees continuity of optimal stopping problems for
continuous bounded reward functions.
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1126 J. Backhoff-Veraguas et al.

1 Introduction

1.1 Outline

If some type of natural phenomenon is modelled through a stochastic process, one
might expect that the model does not describe reality in an entirely accurate way. To
be able to study the impact of such inaccuracies on the problems one is trying to solve,
it makes sense to equip the set of laws of stochastic processes with a suitable notion
of distance or topology.

Denoting by � := X N the path space (where X is some Polish space and N ∈ N),
the set of laws of stochastic processes is P(�), i.e. the set of probability measures on
�.

Clearly, P(�) carries the usual weak topology. However, this topology does
not respect the time evolution of stochastic processes which has a number of
potentially inconvenient consequences: e.g., problems of optimal stopping/utility
maximization/stochastic programming are not continuous, arbitrary processes can be
approximated by processes which are deterministic after the first period, etc. In the
followingwe describe a number of approacheswhich have been developed by different
authors to deal with these (and related) problems. Ourmain result (Theorem 1.2) is that
all of these approaches actually define the same topology in the present discrete time
setup. Moreover, this topology is the weakest topology which allows for continuity of
optimal stopping problems.

1.2 AdaptedWasserstein distances, nested distance

A number of authors have independently introduced variants of the Wasserstein dis-
tance which take the temporal structure of processes into account: the definition of
‘iterated Kantorovich distance’ byVershik [60,61] might be seen as a first construction
in this direction. The topic is also considered by Rüschendorf [58]. Independently,
Pflug and Pflug–Pichler [30,52–56] introduce the nested distance and describe the
concept’s rich potential for the approximation of stochastic multi-period optimiza-
tion problems. Lassalle [46] considers the ‘causal transport problem’ that leads to a
corresponding notion of distance. Once again independently of these developments,
Bion–Nadal and Talay [16] define an adapted version of the Wasserstein distance
between laws of solutions to SDEs. Gigli [28, Chapter 4] introduces a similar distance
for measures whose first marginal agrees, see also [4, Section 12.4].

To set the stage for describing these ‘adapted’ variants let us fix p ≥ 1 and recall
the definition of the usual p-Wassterstein distance.

(X , ρX ) is now a Polish metric space. On � = X N we use the Polish metric
ρ�((xt )t , (yt )t ) := (

∑
t ρX (xt , yt )

p)1/p. Typically, when clear from the context we
will omit the subscript for the metric. We use (Xt )t to denote the canonical process on
�, i.e. Xt is the projection onto the t th factor of � = X N . On � × � call X = (Xt )t

the projection on the first factor and call Y = (Yt )t the projection on the second factor.
For μ, ν ∈ P(�) we denote by Cpl (μ, ν) the set of probability measures π on �×�

for which X ∼ μ and Y ∼ ν under π , i.e. for which the distribution of X under π
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All adapted topologies are equal 1127

is μ and that of Y under π is ν. In applications, a particular role is played by Monge
couplings. AMonge coupling from μ to ν is a coupling π for which Y = T (X) π -a.s.
for some Borel mapping T : � → � that transports μ to ν, i.e. satisfies T#(μ) = ν.

For μ, ν ∈ Pp(�), i.e. for probability measures on � with finite pth moment their
p-Wasserstein distance is

Wp(μ, ν) := inf
{
E

π
(
ρ(X , Y )p)1/p : π ∈ Cpl(μ, ν)

}
. (1)

Following, [57] the infimum in (1) remains unchanged if one minimizes only over
Monge couplings in many situations.

To motivate the formal definition of the adapted cousins in (5) and (6) below, we
start with an informal discussion in terms of Monge mappings: In probabilistic terms,
the preservation of mass assumption T#(μ) = ν asserts

(
T1(X1, . . . , X N ), . . . , TN (X1, . . . , X N )

) ∼ ν, (2)

which ignores the evolution of μ and ν (resp.) in time. Rather it would appear more
natural to restrict to mappings (Tk)

N
k=1 which are adapted in the sense that Tk depends

only on X1, . . . , Xk . AdaptedWasserstein distances can be defined following precisely
this intuition, relying on a suitable version of adaptedness on the level of couplings:

The set Cplc(μ, ν) of causal couplings1 consists of all π ∈ Cpl(μ, ν) such that

π
(
(Y1, . . . , Yt ) ∈ A|X) = π

(
(Y1, . . . , Yt ) ∈ A|X1, . . . Xt

)
. (3)

for all t ≤ N and A ⊆ X t measurable, cf. [46]. The set of all bi-causal couplings
Cplbc(μ, ν) consists of all π ∈ Cplc(μ, ν) such that the distribution of (Y , X) under
π is also in Cplc(ν, μ), i.e. that (3) also holds with the roles of X and Y reversed.

The term causal was introduced by Lassalle [46], who considers a causal transport
problem in which the usual set of couplings is replaced by the set of causal couplings.
The resulting concept is not actually a metric as it lacks symmetry, but as suggested by
Soumik Pal, this is easilymended andwe formally define the causal - and symmetrized-
causal p-Wasserstein distance, resp. as follows:

For μ, ν ∈ Pp(�) set

CWp(μ, ν) := inf
{
E

π
(
ρ(X , Y )p)1/p : π ∈ Cplc(μ, ν)

}
(4)

SCW p(μ, ν) := max
(
CWp(μ, ν), CWp(ν, μ)

)
. (5)

We use the term adapted Wasserstein distance for

AWp(μ, ν) := inf
{
E

π
(
ρ(X , Y )p)1/p : π ∈ Cplbc(μ, ν)

}
. (6)

1 Intuitively, at time t , given the past (X1, . . . , Xt ) of X , the distribution of Yt does not depend on the
future (Xt+1, . . . , X N ) of X . For measures μ such that the first marginal of μ has no atoms, the weak
closure of the set of adapted Monge couplings, i.e. of those π ∈ Cpl (μ, ν) for which Y = T (X) π -a.s. for
T adapted, is precisely the set of all causal couplings, see [44].
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1128 J. Backhoff-Veraguas et al.

Rüschendorf [58] refers to AWp as ‘modified Wasserstein distance’. Pflug–Pichler
[52, Definition 1] use the names multi-stage distance of order p and nested distance. It
can also be considered as a discrete time version of the ‘Wasserstein-type distance’ of
Bion–Nadal and Talay [16]. In [5] we use a slightly modified definition ofAWp which
scales better with the number of time-periods N but leads to an equivalent metric (for
fixed p and N ). We shall discuss further properties of AWp (and in particular the
connection with Vershik’s iterated Kantorovich distance) in Sect. 1.8 below.

1.3 Hellwig’s information topology

The information topology introduced by Hellwig in [31] (as well as Aldous’ extended
weak topology which we discuss next) is based on the idea that an essential part of
the structure of a process is the information that we may deduce about the future
behaviour of the process given its behaviour up to current time t . For a process whose
law is μ, this information is captured by the conditional lawLμ(Xt+1, . . . , X N |X1 =
x1, . . . , Xt = xt ) of Xt+1, . . . , X N given X1 = x1, . . . , Xt = xt under μ.

Lμ(Xt+1, . . . , X N |X1 = x1, . . . , Xt = xt ) is also the disintegration μx1,...,xt of
μ ∈ P(�) w.r.t. the first t coordinates.

Hellwig’s information topology is the initial topology w.r.t. a family of maps
(It )

N−1
t=1 which are defined based on these disintegrations:

It : P(�) → P
(
X t × P

(
X N−t

))

It (μ) := kt
#(μ)

kt (x1, . . . , xN ) := (x1, . . . , xt , μx1,...,xt )

Equivalently, It (μ) is the joint law of

X1, . . . , Xt ,Lμ(Xt+1, . . . , X N |X1, . . . , Xt )

under μ, and Hellwig’s information topology is therefore the coarsest topology which
makes continuous for all t the maps which send a probability μ to the joint law
describing the evolution of the coordinate process up to time t and the prediction
about the future behaviour of the coordinate process after t .

Remark 1.1 All the topologies we consider in this paper are second countable. As such
they can be characterized by saying which sequences converge. Restated in the lan-
guage of sequences, the above definition says that a sequence (μn)n inP(�) converges
in Hellwig’s information topology toμ ∈ P(�) if and only if, for every t , the sequence
(It (μn))n converges to It (μ) in the usual weak topology on P(X t × P(X N−t

))
.

The work of Hellwig [31] was motivated by questions of stability in dynamic
economic models/games; see the related articles [11,32,40,59].
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All adapted topologies are equal 1129

1.4 Aldous’ extended weak topology

Aldous [3] introduces a type of convergence for pairs of filtrations and continuous time
stochastic processes on them that he calls extended weak convergence [3, Definition
15.2]. Restricted to our current setting, his definition can be paraphrased in a similar
manner as that of the information topology. Aldous’ idea is to represent a stochastic
process with law μ through the associated prediction process,2 that is, the process
given by

Zμ
0 := L(X) = μ, Zμ

1 := Lμ(X |X1), . . . , Zμ
N := Lμ(X |X1, . . . , X N ).

That is, (Zμ
t )N

t=0 is a measure-valued martingale that makes increasingly accurate
predictions about the full trajectory of the process X .

Rather then comparing the laws of processes directly, the extended weak topology
is derived from the weak topology on the corresponding prediction processes (plus the
original processes). I.e. formally, the extended weak topology on P(�) is the initial
topology w.r.t. the map

E : P(�) → P
(
� × P(�)N+1

)

which sends μ to the joint distribution of

(X , Zμ) = (
X1, . . . , X N , μ,Lμ(X |X1),Lμ(X |X1, X2), . . . ,Lμ(X |X1, . . . , X N )

)

under μ.
Note that, to stay faithful to Aldous’ original definition, we defined E to map μ not

just to the law of the prediction process but to the joint law of the original process and
its prediction process. One easily checks that the original process may be omitted in
our setting without changing the resulting topology.

1.5 The optimal stopping topology

The usual weak topology on P(�) is the coarsest topology which makes continuous
all the functions

μ �→ ∫
f dμ

for f : � → R continuous and bounded.
One may follow a similar pattern and look at the coarsest topology which makes

continuous the outcomes of all sequential decision procedures. Perhaps the easiest way
to formalize this is to look at optimal stopping problems. In detail, write AC(�) for the
set of all processes (Lt )

N
t=1 which are adapted, bounded and satisfy that x �→ Lt (x) is

2 The definition of the prediction process goes back at least to Knight [41].
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1130 J. Backhoff-Veraguas et al.

continuous for each t ≤ N . Write vL(μ) for the corresponding value function, given
that the process X follows the law μ, i.e.

vL(μ) := inf{Eμ (Lτ ) : τ ≤ N is a stopping time}.
The optimal stopping topology on P(�) is the coarsest topology which makes the

functions

μ �→ vL(μ)

continuous for all (Lt )
N
t=1 ∈ AC(�).

1.6 Main result

We can now state our main result:

Theorem 1.2 Let (X , ρX ) be a Polish metric space, where ρX is a bounded metric
and set � := X N . Then the following topologies on P(�) are equal

(1) the topology induced by AWp

(2) the topology induced by SCWp

(3) Hellwig’s information topology
(4) Aldous’ extended weak topology
(5) the optimal stopping topology.

The assumption that ρX is bounded serves only to simplify the statement of the
theorem, because in this case the topology induced by Wp coincides with the weak
topology. For every Polish space there is a bounded complete metric which induces
the topology (given any complete metric ρX , replace it by e.g. min(1, ρX )).

1.6.1 p-Wasserstein and unboundedmetrics

There is an analogous statement, Theorem 1.3 below, which drops the assumption
that ρX is bounded. To be able to state it, we introduce slight variations of Hellwig’s
information topology, of Aldous’ extended weak topology and of the optimal stopping
topology:

Hellwig [31] equips the target spaces of It with the weak topology – or more
precisely he equips P(X N−t

)
with the weak topology, X t ×P(X N−t

)
with the prod-

uct topology and finally P(X t × P(X N−t
))

with the weak topology based on this
topology. One may easily define a p-Wasserstein version of Hellwigs information
topology by using the recipe ‘replace the weak topology by the p-Wasserstein metric
everywhere’. Concretely, if we restrict It to Pp(�), we may view it as a map into
Pp
(
X t × Pp

(
X N−t

))
, where the last space carries the metric

ρPp(X t ×Pp(X N−t))(μ, ν) := inf
γ∈Cpl(μ,ν)

(∫
ρ((xi )i≤t , (yi )i≤t )

p

+ Wp(μ̂, ν̂)p dγ ((xi )i≤t , μ̂, (yi )i≤t , ν̂)
)1/p

.
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All adapted topologies are equal 1131

We will call the resulting variant of Hellwigs information topology on Pp(�) the
Wp-information topology.

Similarly, one may systematically replace every occurrence of the weak topology
in the definition of the extended weak topology by the p-Wasserstein metric. We call
the resulting topology on Pp(�) the extended Wp-topology.

Just like the weak topology is the coarsest topology which makes integration
of continuous bounded functions continuous, the p-Wasserstein topology is the
coarsest topology which makes integration of continuous functions bounded by
c · (1 + ρ(x0, x)p) continuous. Following this analogy, we define AC p(�) as the
set of all processes (Lt )

N
t=1 which are adapted, bounded by x �→ c · (1 + ρ(x0, x)p)

for some c ∈ R+ and satisfy that x �→ Lt (x) is continuous for each t ≤ N .
TheWp-optimal stopping topology onPp(�) is the coarsest topology which makes

the functions

μ �→ vL(μ)

continuous for all (Lt )
N
t=1 ∈ AC p(�).

With these we may state the following generalization of Theorem 1.2:

Theorem 1.3 Let (X , ρX ) be a Polish metric space and set � := X N . Then the
following topologies on Pp(�) are equal

(1) the topology induced by AWp

(2) the topology induced by SCWp

(3) the Wp-information topology
(4) the extended Wp-topology
(5) the Wp-optimal stopping topology.

Clearly, one recovers Theorem 1.2 fromTheorem 1.3 by choosing a boundedmetric
on X , because the Wp-information topology for bounded ρX is just the information
topology, the extendedWp-topology for bounded ρX is just the extended weak topol-
ogy and theWp-optimal stopping topology for boundedρX is just the optimal stopping
topology.

The relationship between the topologies listed in Theorem 1.2 and those listed
in Theorem 1.3 is similar to the non-adapted case where we know that usual p-
Wasserstein convergence is equivalent to usual weak convergence plus convergence
of the pth moments.

Lemma 1.4 Convergence in any of the topologies of Theorem 1.3 is equivalent to
convergence in any of the topologies of Theorem 1.2 (where for building SCWp and
AWp, ρX is replaced by a bounded compatible complete metric e.g. min(1, ρX )) plus
convergence of pth moments on � w.r.t. (the original) ρ�.

We prove Lemma 1.4 in Sect. 6, making use of (parts of) Theorems 1.2 and 1.3.
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1132 J. Backhoff-Veraguas et al.

1.7 Further remarks on related work

1.7.1 Some further articles of successors of Aldous

One of the original applications of Aldous’ weak extended topology concerned the
stability of optimal stopping [3]. This corresponds to one half of (4) = (5) in Theo-
rem 1.2, but in a much more general setting. This line of work has been continued by
Lamberton and Pagès [45], Coquet and Toldo [20], among others.

Aldous’ extended weak topology was also inspiring and instrumental for the devel-
opment of the theory of convergence of filtrations, and the associated questions of
stability of the martingale representation property and Doob–Meyer decompositions.
In this regard, see the works by Hoover et al. [35,37] and by Mémin et al. [19,48].
The related question of stability of stochastic differential equations (as well as their
backwards version) with respect to the driving noise has particularly seen a burst of
activity in the last two decades. For brevity’s sake we only refer to the recent article by
Papapantoleon, Posamaï, and Saplaouras [50] for an overview of the many available
works in this direction.

1.7.2 Previous applications of adaptedWasserstein distances

Pflug, Pichler and co-authors [30,52–56] have extensively developed and applied the
notion of nested distaces for the purpose of scenario generation, stability, sensitivity
bounds, and distributionally robust stochastic optimization, in the context of operations
research.

Acciaio, Zalashko, andoneof the present authors consider in [2] the adaptedWasser-
stein distance in continuous time in connectionwith utilitymaximization, enlargement
of filtrations and optimal stopping.

Causal couplings have appeared in the work by Yamada and Watanabe [62], Jacod
and Mémin [38] as well as Kurtz [42,43], concerning weak solutions of stochastic
differential equations, and by Rüschendof [58] concerning approximation theorems
in probability theory. The term ‘causal’ is first used by Lassalle [46], who uses it in an
additional constraint for the transport problem and gives an alternative derivation of
the Talagrand inequality for the Wiener measure. Causal couplings are also present in
the numerical scheme suggested in [1] for (extended mean-field) stochastic control.

The article [7] connects adapted Wasserstein distance (in continuous time) to mar-
tingale optimal transport (cf. [12–14,17,18,23,27,33,34] among many others). Several
familiar objects appear as solutions to variational problems in this context. E.g. geo-
metric Brownian motion is the martingale which is closest inAW2 to usual Brownian
motion subject having a log normal distribution at the terminal time-point, the local
vol model is closest to Brownian motion subject to matching 1-d marginals.

Bion–Nadal and Talay [16] introduce an adapted Wasserstein-type distance on the
set of diffusion SDEs and show that this distance corresponds to the computation of
a tractable stochastic control problem. They also apply their results to the problem of
fitting diffusion models to given marginals.
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In [5] the present authors consider adapted Wasserstein distances in relation to sta-
bility in finance: Lipschitz continuity of utility maximization/hedging are established
w.r.t. to the underlying models in discrete and continuous time.

1.8 Another formulation of the adaptedWasserstein distance and of Hellwigs
information topology

Here we give an alternative formulation of the adapted Wasserstein distance/nested
distance due to Pflug and Pichler.

Again, X is a Polish space and ρ = ρX is a compatible metric on X . Starting with
V p

N := 0 we define

V p
t (x1, . . . , xt , y1, . . . , yt ) (7)

:= inf
γ t+1∈Cpl(μx1,...,xt ,νy1,...,yt )

∫∫ (
V p

t+1(x1, . . . , xt+1, y1, . . . , yt+1)

+ρ(xt+1, yt+1)
p

)

dγ t+1(xt+1, yt+1).

The nested distance is finally obtained in a backwards recursive way by

NDp(μ, ν)p = inf
γ 1∈Cpl(proj1#(μ),proj1#(ν))

∫∫
(
V p
1 (x1, y1) + ρ(x1, y1)

p) dγ 1(x1, y1).

(8)

Then AWp = NDp. We refer to [8] for the (straightforward) justification.
For N > 1 the adapted Wasserstein distance is not complete. As was established

in [6], a natural complete space into which (Pp(�) ,AWp) embeds is given by the
space of nested distributions:

Consider the sequence of metric spaces

XN :N := (X , ρN :N ), ρN :N := ρ = (ρ p)1/p,

XN−1:N := (
X × Pp(XN :N ) , ρN−1:N

)
, ρN−1:N := (

ρ p + W p
ρN :N ,p

)1/p
,

...
...

X1:N := (
X × Pp(X2:N ) , ρ1:N

)
, ρ1:N := (

ρ p + W p
ρ2:N ,p

)1/p
,

where at each stage t , the space Pp(Xt :N ) is endowed with the p-Wasserstein distance
with respect to the metric ρt :N on Xt :N , which we denote by Wρt :N ,p. The space of
nested distributions (of depth N ) is defined as Pp(X1:N ). We endow Pp(X1:N ) with
the complete metricWρ1:N ,p.

The space of nested distributions was defined by Pflug [51]. Notably the idea to
iterate the formation of Wasserstein spaces and metrics goes back to Vershik [60,61]
who uses the name ‘iterated Kantorovich distance’. The main interest of Vershik (and
his successors) lies in the classification of filtrations (in the language of ergodic theory).
We refer to thework ofEmery andSchachermayer [25] for a survey fromaprobabilistic
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1134 J. Backhoff-Veraguas et al.

perspective and to Janvresse, Laurent and de la Rue [39] for a contemporary article
(again from a probabilistic viewpoint).

Pp(�) is naturally embedded in the set of nested distributions of depth N through
the map N given by

N (μ) := L
(

X1,L
(

X2, · · ·L
(

X N−1,L
(

X N

∣
∣
∣X̄ N−1

1

)∣
∣
∣X̄ N−2

1

)
· · ·
∣
∣
∣X1

))
(9)

where (X1, . . . , X N ) is a vector with law μ, L again denotes (conditional) law and
we use X̄ t

1 as a shorthand for the vector X1, . . . , Xt .
Following [6], we have:

Theorem 1.5 The map N defined in (9) embeds the metric space (Pp(�) ,AWp)

isometrically into the complete separable metric space (Pp(X1:N ) ,Wρ1:N ,p).

Remark 1.6 When X has no isolated points, Pp(X1:N ) is actually the completion of
Pp(�), i.e. Pp(�) considered as a subset of Pp(X1:N ) is dense.

1.8.1 Hellwig’s information topology in terms of adaptedWasserstein distances

We note that Hellwig’s definition of the information topology can also be rephrased
using the concept of adapted Wasserstein distance: Assume that ρX is a bounded
metric and for t ≤ N , set

� = X N = X t
︸︷︷︸
=:X (t)

1

×X N−t
︸ ︷︷ ︸
=:X (t)

2

= X (t)
1 × X (t)

2 .

I.e. for each t , we consider � as the product of two Polish spaces (which one might
consider as ‘history’ and ‘future’). Extending the defintion ofAWp in the obvious way

to products of not necessarily equal Polish spaces, we can then equipPp

(
X (t)
1 × X (t)

2

)

with a one period adapted Wasserstein distance AW(t)
p , p ≥ 1. Setting for μ, ν ∈

P(�)

IWp(μ, ν) :=
N∑

t=1

AW(t)
p (μ, ν), p ≥ 1, (10)

we obtain a compatible metric for the information topology. This is relatively straight-
forward (whereas the full version of Theorem 1.2 is not straightforward as far as we
are concerned).

1.9 Preservation of compactness

We close this section with a result about the preservation of relative compactness
which we shall use in Sects. 4 and 6, but which also might be of independent interest.
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Specifically, in [9,10] the two-step version of Lemma 1.7 is used as a crucial tool in
the investigation of the weak transport problem.

A more detailed investigation of compactness in P(�) with the weak adapted
topology is the topic of the companion paper to this one, [24].

Assume for simplicity that ρX is a bounded metric. Then we have

Lemma 1.7 (Compactness lemma) A ⊆ P(�) is relatively compact w.r.t. the usual
weak topology iff N [A] ⊆ P(X1:N ) is relatively compact.

We note that Lemma 1.7 is essentially a consequence of the characterization of
compact subsets inP(P(X)); in a somewhat different framework it was first proved in
[36]. The version stated here follows by repeated application of [24, Lemma 3.3]/[9,
Lemma 2.6].

The implication thatN [A] relatively compact implies A relatively compact is rather
easy to see, but the other direction that A relatively compact implies N [A] relatively
compact is nontrivial since themappingN : P(�) → P(X1:N ) is not continuouswhen
P(�) is endowed with the usual weak topology (except for trivial cases). Lemma 1.7
would not be true if we were to replace relative compactness by compactness.

The assumption that ρX is bounded is inessential. A version of Lemma 1.7 holds
if we replace P(�) by Pp(�) and the weak topology by the one induced by the
p-Wasserstein metric.

A similar result based on Hellwig’s information toplogy, relating relative compact-
ness in P(�) to relative compactness in

∏N−1
t=1 P(X t × P(X N−t

))
, is also true.

2 Preparations

The rest of the paper will essentially be devoted to proving Theorem 1.2, or really its
generalization Theorem 1.3.

In Sect. 3we prove thatHellwig’s information topology equals the topology induced
by AWp, i.e. (3) = (1) in Theorem 1.3. In a sense, of all the topologies listed in
Theorem 1.3, Hellwig’s information toplogy ‘looks’ the coarsest – or at least like one
of the coarser ones, while the topology induced by AWp ‘looks’ the finest.

In Sect. 4 we sandwich the topology induced by SCWp between Hellwig’s infor-
mation topology and the toplogy induced by AWp, i.e. we show (3) ≤ (2) ≤ (1) in
Theorem 1.3.

In Sect. 5 we show that Aldous’ extended weak topology is equal to Hellwig’s
information topology, i.e. (4) = (3) in Theorem 1.3.

In Sect. 6 we prove Lemma 1.4.
In Sect. 7 we prove that the optimal stopping topology is coarser than the topology

induced by AWp and finer than Hellwig’s (Wp-)information topology, i.e. (3) ≤
(5) ≤ (1) in Theorem 1.3.
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2.1 Notation

The nested structure of spaces like for example Pp(X1:N ) introduced in Sect. 1.8 is (at
least for the authors) not so easy to gain an intuition for. It seems rather challenging to
picture probability measures on probability measures on probability measures… etc.

Therefore, much of the proofs in the following two sections will be about book-
keeping and not getting lost in these nested structures. In most other contexts we
would regard such bookkeeping as abstract nonsense better swept under the rug, but
in the context of the present paper we believe that it really constitutes an important
and nontrivial ingredient in successfully carrying out the proofs.

To aid in this endeavour we make some notational preparations and introduce a few
conventions.

2.1.1 Operations on spaces

In the introduction we described the topologies listed in Theorems 1.2 and 1.3 as initial
topologies w.r.t. maps into more complex spaces. These spaces are built up from just
a few basic operations, and in most cases the maps can also be constructed using a
few relatively simple ingredients.

For spaces, the operations in question are

• product formation, i.e. for spacesX andY wemay form their product spaceX×Y ,
• and passing from a space X to the space P(X ) of probability measures on X .

Here we run into some tension between the various existing definitions in the
literature. While Hellwig and Aldous originally defined their topologies based on
equipping the space P(X ) of probability measures on some space X with the weak
topology, without any mention of metrics,AWp is a metric built on the p-Wasserstein
metric, and Theorem 1.5 exhibits this metric as the ‘initial metric’ w.r.t. an embedding
of Pp(�) (not P(�)) into (Pp(X1:N ) ,Wρ1:N ,p).

Luckily, when the base metric ρX on X is bounded and we decide that we only
care about topologies and not the metrics that induce them, all of these distinctions
vanish, and one may hope for these fine distinctions to not be so important in the end.

To give as uniform and as streamlined a treatment as possible of all the various ways
in which these metric and topological spaces can be related to each other we employ
the following strategy: A lot of our arguments are agnostic to the distinction between
P and Pp, and to whether we are talking about metric or topological spaces etc. They
only rely on properties of the operations of product formation and formation of spaces
of probability measures and on properties of maps between various spaces built using
these operations which hold in either case. For the rest of the paper we will therefore
drop the p in Pp and other explicit mentions of these distinctions. The reader may
decide to read the paper using either of the following two sets of conventions, which
are to be applied recursively:

Convention 1 (Weak topologies)

• X , Y , Z , A, B, C, etc. are Polish spaces.
• X × Y is a topological space with the product topology (again Polish).
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• P(X ) is a topological space with the weak topology (also Polish).
• ‘space’ will mean Polish space.

Convention 2 (Wp)

• p ≥ 1 is fixed throughout the paper
• X , Y , Z , A, B, C, etc. are Polish (i.e. complete separable) metric spaces with
metrics ρX , ρY , ρZ , ρA, ρB, ρC , etc. respectively.

• X × Y is a Polish metric space with the metric

ρX×Y ((x1, y1), (x2, y2)) := (
ρX (x1, x2)

p + ρY (y1, y2)
p)1/p

.

• P(X ) is a Polish metric space with the p-Wasserstein metric

ρP(X )(μ, ν) := inf
γ∈Cpl(μ,ν)

(∫
ρ(x1, x2)

p dγ (x1, x2)
)1/p

.

• The subscript on the metric ρ may be dropped when clear from the context.
• ‘space’ will mean Polish metric space.

Unless specified otherwise everything said from here on will be true for either way
of reading. Convention 1will lead to a direct proof of Theorem 1.2, while Convention 2
will give a proof of the more general version, Theorem 1.3. Occasionally an argument
will require us to talk directly about metrics to establish continuity of somemap.When
one only cares about Theorem 1.2 and not Theorem 1.3 these sections can be read
while assuming that p = 1 and that all metrics mentioned are bounded.

Another space we will need is

Definition 2.1 F (A � B) ⊆ P(A×B) is the space of probability measures onA×B
which are concentrated on the graph of a measuruable function, i.e.:

F (A � B) :=
{
μ ∈ P(A × B)

∣
∣
∣ ∃ f : A → B measurable s.t. μ(graph( f )) = 1

}
.

The space F (A � B) carries the subspace topology/the restriction of the metric on
P(A × B).

2.1.2 Maps between spaces

Assuming Convention 1, when f : X → Y is a continuous map, the pushforward
under f , i.e. the map which sends μ ∈ P(X ) to the measure ν ∈ P(Y) with ν(A) =
μ( f −1[A]) is also continuous.

Similarly, assuming Convention 2, when f : X → Y is a Lipschitz-continuous
map between metric spaces the pushforward under f is also Lipschitz-continous from
P(X ) to P(Y).

We will use P( f ) : P(X ) → P(Y) to denote the pushforward under f , to empha-
size the fact that P is a functor, i.e. that it sends a diagram with a ‘nice’ (read
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continuous/Lipschitz) map

X f−→ Y

to a similar diagram

P(X )
P( f )−→ P(Y)

where the map is also ‘nice’, and that P( f ◦ g) = P( f ) ◦ P(g) and P(1X ) = 1P(X )

(where 1X is the identity function on X ).
For a product of spaces X ×Y , the projection onto X will alternatively be denoted

by either projX or by the same letter that is used for the space, but in a non-calligrapic
font, i.e. X : X × Y → X .

If μ is defined on some product
∏

i Xi of spaces, we also introduce a shorthand
notation for marginals of μ, i.e. for the pushforward of μ under projection onto the
product of some subset of the original factors:

μ�(Xi j ) j = P((Xi j ) j
)
(μ).

If f : A → B and g : A → C are functions we write ( f ,g) for the function

( f ,g) : A → B × C
( f ,g)(a) := ( f (a), g(a)).

If we want to specify a map from, say A × B × C to X but we only really care
about one of the variables we will use an underscore ‘_’ instead of naming the unused
variables, as in (a, _, _) �→ f (a). Similarly, when integrating we may also use _ to
denote unused variables, i.e. for μ ∈ P(X × Y) we might write

∫
f (y) dμ(_, y).

Two important maps will be the disintegration map disBA and its left inverse intBA.
The disintegration map

disBA : P(A × B) → F (A � P(B))

sends a probability μ on A × B to the measure

P((a, _) �→ (a, μa)
)
(μ)

where a �→ μa is a classical disintegration of μ, i.e. if μ̄ = disBA(μ) then

∫

f (a, b) dν(b) dμ̄(a, ν) =
∫

f (a, b) dμa(b) dμ(a, _) =
∫

f (a, b) dμ(a, b).

The disintegration map is measurable (see for example [15, Proposition 7.27]) and
injective. It is not continuous w.r.t. the weak topologies or the Wasserstein metrics.
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When writing disBA we will not insist thatA has to be the first factor in the domain
of disBA – A and B may even be products themselves, whose factors are intermingled
in the product that makes up the domain of disBA. Also, we may sometimes omit B,
only specifying the variable(s) w.r.t. which we are disintegrating, not the ones which
are left over, as in disA.

The map

intBA : P(A × P(B)) → P(A × B)

intBA(μ) := f �→
∫

f (a, b) dν(b) dμ(a, ν)

is (Lipschitz-)continuous.
The pair disBA, intBA enjoy the following properties:

(1) intBA is the left inverse of the disintegration map, i.e.

intBA ◦ disBA = 1P(A×B).

This is a direct consequence of the definition of the disintegration.
(2) intBA�F (A�P(B)) is injective. Therefore,
(3) disBA ◦ intBA�F (A�P(B)) = 1F (A�P(B)), i.e. disBA and intBA are inverse bijections

between P(A × B) and F (A � P(B)).

The last two properties are just a reformulation of the known fact that the disintegration
of a measure is almost-surely uniquely defined.

2.1.3 Processes which take values in different spaces at different times

Already in the introduction, in Sect. 1.8.1, we found it convenient to extend the def-
inition of AWp to products of not necessarily equal Polish spaces ‘in the obvious
way’. To accommodate for reapplication of concepts in a similar style as seen there
we make the minor generalization of letting all the processes we talk about take values
in different spaces at different times—typically at time t they will take values in a
space Xt .

Denote by X k
j := ∏k

i= j Xi and define X := X N
1 , X k := X k

1 , X j := X N
j .

3 Hellwig’sWp-information topology is equal to the topology
induced byAWp the adaptedWasserstein distance

In this section we show (3) = (1) in Theorem 1.3. We will do so by identifying both
topologies as initial topologies w.r.t. a single map each, i.e. finding a space which is
homeomorphic to P(X ) with Hellwig’s (Wp-)information topology and one which
is homeomorphic to P(X ) with the topology induced by AWp and then showing
that these spaces are homeomorphic in the right way. As an auxilliary tool we will
introduce another topology on P(X ) which wasn’t mentioned in the introduction, but
which is very similar to Hellwig’s. The proof strategy can be summarized by saying
that we want to show that the following diagram is commutative.
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P(X )

F1I
[P(X )]I ′ [P(X )]

NII ′

H

KM
(11)

Here N is the map which induces the same topology as AWp, I induces Hellwig’s
topology and I ′ induces what we will call the reduced information topology. We
shortly restate their definitions below.

Since these mappings are injective and by the definition of the initial topology all
of these mappings are homeomorphisms. To be precise,N is a homeomorphism from
P(X ) with the topology induced by AWp onto N [P(X )] (cf. Theorem 1.5), I is a
homeomorphism fromP(X )with the information topology onto I[P(X )], and I ′ is a
homeomorphism from P(X ) with the reduced information topology onto I ′[P(X )].

The maps K, M, H are still to be found.
As introduced in Sect. 1.3 Hellwig’s (Wp-)information topology is induced by a

family of maps It , given by:

It : P(X ) → F (
X t � P(Xt+1

))

It := disXt+1

X t .

Equivalently, the information topology is the initial topology w.r.t. the map

I : P(X ) →
N−1∏

t=1

F (
X t � P(Xt+1

))

I(μ) := (It (μ))t .

We saw in Sect. 1.8 that AWp is induced by an embedding N : P(X ) → P(X1:N ).
Rephrasing the definition there,N is obtained by defining recursively from t = N −1
to t = 1:

N N := 1P
(
X
)

N t := disXt+1:N
X t ◦N t+1

and setting

N := N 1.
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In fact, because dis maps into the space of measures concentrated on the graph of a
function, N also maps into a smaller space, which we call F1, and which is again
defined by recursion down from N − 1 to 1:

FN := P(XN )

Ft := F (Xt � Ft+1) .

I.e. F1 is P(X1:N ) with all occurences of P(· × ·) replaced by F (· � ·). Remember
that we had

XN :N := XN

Xt :N := Xt × P(Xt+1:N ) .

For convenience, let us also define

Pt := P(Xt :N ) .

The fact that

N t : P(X ) → F (
X t � Ft+1

)

and that therefore N maps into F1 is a consequence of Lemma 3.1 below.
Finally, I ′ is defined as follows

I ′ : P(X ) →
N−1∏

t=1

F (
X t � P(Xt+1)

)

I ′(μ) := (I ′
t (μ))t

I ′
t : P(X ) → F (

X t � P(Xt+1)
)

I ′
t := disXt+1

X t ◦P(projX t+1

)
.

I.e. the reduced information topology, like the information topology,makes continuous
predictions about the behaviour of the process after time t given information about its
behaviour up to time t , only now we are just predicting what the process will do in the
next step, not for the rest of time.

I, I ′ andN are injective and therefore bijections onto their codomains. This means
that the values of the maps K, M, H in diagram (11) as functions between sets are
really already prescribed. The task consists in finding a representation for them which
makes it clear that they are continuous.

Lemma 3.1 disB×Y
A restricted to F (A × B � Y) maps onto F(A � F (B � Y)

)
.

Proof We first show that it maps into F (A � F (B � Y)
)
. Let ν ∈ F (A × B �

Y
)
and let g : A × B → Y be a function witnessing this fact, i.e. ν( f ) =∫

f (a, b, g(a, b)) dν(a, b, _).
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Let α := disB×Y
A (ν). Then

∫ ∫

1g(a,b) �=y dβ(b, y) dα(a, β) =
∫

1g(a,b) �=y dν(a, b, y) = 0.

This means that for α-a.a. (a, β) we have
∫
1g(a,b) �=y dβ(b, y) = 0, i.e. β is concen-

trated on the graph of the function b �→ g(a, b).
To see that anyα ∈ F (A � F (B � Y)

)
can be obtained as the image of some ν ∈

F (A × B � Y) under disB×Y
A , note that for such α, by the existence of measurably

dependent (classical) disintegrations (see for example [15, Proposition 7.27]), ν :=
intB×Y

A (α) ∈ F (A × B � Y), and disB×Y
A (ν) = α. �

3.1 Homeomorphisms

We give a plain language description of what follows in this section:
The continuity ofMwill be quite trivial, becauseweare just discarding information.
The components Kk : F1 → F (

X k � P(Xk+1
))

of the map K are obtained by
‘folding’ both the ‘head’ and the ‘tail’ of F1 using iterated application of the map int.

head
︷ ︸︸ ︷

F
(

X1 � F
(

· · · � F
(
Xk �

tail
︷ ︸︸ ︷
F (Xk+1 � F (· · · � P(XN ) . . . )

) )
. . .

))

By continuity of int, it’s easy to see that Kk is continuous. To show that the map K
with the components Kk is the map we are looking for, we basically show that

I−1 ◦ Kk = N−1. (12)

N−1 is again another way of ‘folding’ all of F1 using int to arrive at P(X ). As
I−1 is also int, showing (12) amounts to showing that these two different ways of
‘folding’ – first the head and tail and then in a last step the junction between k and
k + 1 on the one hand, and from front to back on the other hand – do the same thing.
This may be intuitively clear to the reader. The proof works by repeated application
of Lemma 3.5, which represents one step of ‘folding order doesn’t matter’. Using
Lemma 3.5 the proof is completely analogous to the proof that for an operation 


satisfying (a
b)
c = a
(b
c), i.e. for an associative operation, one has

(
(. . . ((x1
x2) 
x3) 
 . . .) 
xk

)


(
(. . . ((xk+1
xk+2) 
xk+3) 
 . . .) 
xN

)

= (
(. . . ((x1
x2) 
x3) 
 . . .) 
xN

)
.

As we know, for such an operation any way of parenthesizing the multiplication of N
elements gives the same result. An analogous statement holds for int, though we do
not formally state or prove this.

Finally, in Lemma 3.9, using Lemma 3.8 as the main ingredient we prove the
‘hard direction’, i.e. thatH is continuous. If the continuity ofM and K as informally
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described here seem obvious to the reader they may wish to skip ahead to Lemmas 3.8
and 3.9.

Remark 3.2 The reader interested in working out the details and analogies between
‘folding’ using int and associative binary operations might be interested in reading
about monads in the context of Category Theory first. (See for example Chapter VI in
[47].) In fact, (P, η,μ) forms a monad, where

ηX : X → P(X )

sends an element x of X to the dirac measure at x and

μX : P(P(X )) → P(X )

μX (ν) := f �→
∫∫

f (x) dν′(x) dν(ν′).

This monad is studied in a little more detail in [29]. int can be obtained from μ and a
tensorial strength tA,B : A×P(B) → P(A × B) in the sense described for example
in [49].

To show that M is continuous we will need the following lemma.

Lemma 3.3 disBA is natural inB, i.e. for f : B → B′ the following diagram commutes.

P(A × B)P(A × B′)

F (A � P(B))F (
A � P(B′))

disBAdisB′
A

P(1A × f )

P(1A × P( f ))

Proof This is just straigtforward calculation using the definitions. �
Applying Lemma 3.3 with A = X k , B = Xk+1, B′ = Xk+1 and f = projXk+1

:
Xk+1 → Xk+1 we get that

I ′
k = disXk+1

X k ◦P
(
1X k × projXk+1

)
= P

(
1X k × P

(
projXk+1

))
◦ disXk+1

X k

Setting Mk := P
(
1X k × P

(
projXk+1

))
we get I ′

k = Mk ◦ Ik and then setting

M((μk)k) := (Mk(μk))k gives I ′ = M ◦ I.
There is an analogue of Lemma 3.3 which we list here for completeness.
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Lemma 3.4 intBA : P(A × P(B)) → P(A × B) is natural in B, i.e. for f : B → B′
the following diagram commutes:

P(A × P(B))P(A × P(B′))

P(A × B)P(A × B′)

P(1A × P( f ))

P(1A × f )

intBAintB′
A

In particular, if B ⊆ B′ then

intB′
A �P(A×P(B)) = intBA

if we regard P(A × P(B)) as a subset of P(A × P(B′)) by recursively using the
recipe: ‘if B is a subset of B′, then we can view P(B) as the subset of those μ ∈ P(B′)

which are concentrated on B’.

Proof Again this is just calculation. �
We already implicity used the ‘in particular’-part of Lemma 3.4 when we said that

N can be regarded both as a map into P(X1:N ) and into F1 but the use there seemed
too trivial to warrant much mention. There will be more such tacit uses.

Now we show that K is continuous. We claim that it can be written as

K(μ) = (Kk(μ))k

where

Kk = P
(
1X k × (

intXN :N
X N−1

k+1
◦ · · · ◦ intXk+3:N

X k+2
k+1

◦ intXk+2:N
Xk+1

))

◦ intXk:N
X k−1 ◦ · · · ◦ intX3:N

X 2 ◦ intX2:N
X 1 ,

or without the dots, letting ◦∏ denote concatenation of functions, e.g. ◦∏1
i=3 fi =

f3 ◦ f2 ◦ f1:

Kk = P
(
1X k × ( ◦∏k+1

i=N−1 int
Xi+1:N
X i

k+1

)) ◦ ◦∏1
i=k−1 int

Xi+1:N
X i .

To prove this we will repeatedly apply the following lemma.

Lemma 3.5 (int is ‘associative’) int satisfies the following relation:

intCA×B ◦ intB×P(C)

A = intB×C
A ◦P

(
1A × intCB

)
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These maps can be seen in the following commutative diagram.

P(A × P(B × P(C)))P(A × B × P(C))

P(A × P(B × C))P(A × B × C)

intB×P(C)

A

intCA×B P(1A × intCB
)

intB×C
A

Proof This is just expanding the definition. Both maps send a measure α ∈
P(A × P(B × P(C))) to the measure μ with

∫
f dμ = ∫

f (a, b, c) dγ (c) dβ(b, γ ) dα(a, β).

�

Lemma 3.6 The following relation holds.

intXk+1

X k ◦Kk = ◦∏1
i=N−1 int

Xi+1:N
X i (13)

Proof Again, this is just repeated application of Lemma 3.5. Below we define Tl for
N ≥ l ≥ k and show that

intXk+1

X k ◦ ◦∏k+1
i=N−1P

(

1X k × intXi+1:N
X i

k+1

)

= Tl (14)

for all N ≥ l ≥ k by showing Tl = Tl−1 for all N ≥ l > k. The left hand side of

(14) is the left hand side of (13) with the common tail ◦∏1
i=k−1 int

Xi+1:N
X i of the left and

right side in (13) dropped. Tk will be the right hand side of (13) with the common part
dropped.

Tl := ◦∏l
i=N−1 int

Xi+1:N
X i ◦ int

X l
k+1×Pl+1

X k ◦ ◦∏k+1
i=l−1P

(

1X k × intXi+1:N
X i

k+1

)

Here we regard ◦∏s
r . . . with r < s (an empty product in our context) as the identity

function. For l = N the first factor is an empty product and therefore clearly (14)
is true for l = N . To get from Tl to Tl−1 we leave the first factor alone and apply
Lemma 3.5 with A = X k , B = X l−1

k+1 and C = Xl:N . This transforms

int
X l

k+1×Pl+1

X k ◦P
(

1X k × intXl:N
X l−1

k+1

)
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into

intXl:N
X l−1 ◦ intX

l−1
k+1×Pl

X k

and therefore Tl into Tl−1. �
Lemma 3.7 The right hand triangle in (11) commutes, i.e.

Kk ◦ N = Ik .

Proof Prepending N to (13) gives

intXk+1

X k �F
(
X k�P

(
Xk+1

)) ◦ Kk ◦ N = 1P
(
X
)

and appending Ik gives

Kk ◦ N = Ik .

�
Now we will show thatH is continuous. We will postpone the proof of Lemma 3.8

below, which is the crucial non-bookkeeping ingredient in the proof of Lemma 3.9
below, until the end of this section. The methods used in the proof of Lemma 3.8 differ
significantly from the rest in this section andmake use of the concept of themodulus of
continuity for measures, and results relating to it, introduced in the companion paper
[24] to this one.

Lemma 3.8 Let

dom
(
J Y
A,B

)
⊆ F (A � P(B)

)× F (A × B � Y
)

be the set of all (μ′, μ) s.t.

intBA(μ′) = μ�A×B. (15)

The function

J Y
A,B : dom

(
J Y
A,B

)
→ F (A � F (B � Y)

)

J Y
A,B(μ′, μ) := disB×Y

A (μ)

is continuous.

Clearly, as a function between sets, J Y
A,B(μ′, μ) only depends on μ. But, as we

know, disB×Y
A is not continuous. Only when we refine the topology on the source

space, which we encode by regarding J Y
A,B as a map from the above subset of a

product space, does it become continuous.
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Lemma 3.9 H is continuous.

Proof We will inductively define

Hk : I ′ [P(X )] → P
(
X k × Pk+1

)

(again down from N − 1 to 1) so that they will be continuous by construction (and by
virtue of Lemma 3.8). Also by construction, we will have Hk ◦ I ′ = N k . H will be
H1 so that H ◦ I ′ = N .

Set HN−1 := projN−1, the projection from
∏N−1

k=1 F (
X k � P(Xk+1)

)
onto the

last factor.HN−1 ◦I ′ = I ′
N−1 = disXN

X N−1 = N N−1 by definition. GivenHk+1 define

Hk(μ) := J Fk+2

X k ,Xk+1

(
projk(μ),Hk+1(μ)

)
,

where projk is the projection from
∏N−1

k=1 F (
X k � P(Xk+1)

)
onto the kth factor.

For this to be well-defined we need to check that for μ ∈ I ′ [P(X )] we have

intXk+1

X k (projk(μ)) = P(projX k+1

) (
Hk+1(μ)

)
.

I.e. for ν ∈ P(X ) we want

intXk+1

X k (projk(I ′(ν))) = P(projX k+1

) (
Hk+1(I ′(ν))

)

The composite of the maps on the left-hand side is equal to

intXk+1

X k ◦I ′
k = intXk+1

X k ◦ disXk+1

X k ◦P(projX k+1

) = P(projX k+1

)
.

On the right-hand side we get by induction hypothesis

P(projX k+1

) ◦ N k+1. (16)

Using that P(projA
) ◦ disBA = P(projA

)
we see for l ≥ k + 1

P(projX k+1

) ◦ P(projX l

) ◦ N l

= P(projX k+1

) ◦ P(projX l

) ◦ disXl+1:N
X l ◦N l+1

= P(projX k+1

) ◦ P(projX l

) ◦ N l+1

= P(projX k+1

) ◦ P(projX l+1

) ◦ N l+1 ,

i.e. by induction (16) is also equal to P(projX k+1

)
.
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As a composite of continuous maps Hk is clearly continuous. (This is where we
use Lemma 3.8.) As a map between setsHk is just

disXk+1:N
X k ◦Hk+1 = disXk+1:N

X k ◦N k+1 = N k

by induction hypothesis and definition of N k . �

3.2 Proof of Lemma 3.8

In this part we prove Lemma 3.8. Here we use several of the ideas developed in the
companion paper [24]. In particular wewill need [24, Lemma 4.2] whichwe reproduce
below.

Lemma 3.10 [24, Lemma 4.2] Let μ ∈ F (X � Y). For any ε > 0 there is a δ > 0
s.t. if

ν ∈ P(X × Y) with Wp (μ, ν) < δ and

γ ∈ Cpl (μ, ν) with
∫
ρ(x1, x2)

p dγ (x1, y1, x2, y2) < δ p

then

∫
ρ(y1, y2)

p dγ (x1, y1, x2, y2) < ε p.

For easy reference we also restate Lemma 3.8.

Lemma 3.8 Let

dom
(
J Y
A,B

)
⊆ F (A � P(B)

)× F (A × B � Y
)

be the set of all (μ′, μ) s.t.

intBA(μ′) = μ�A×B. (15)

The function

J Y
A,B : dom

(
J Y
A,B

)
→ F (A � F (B � Y)

)

J Y
A,B(μ′, μ) := disB×Y

A (μ)

is continuous.

Proof of Lemma 3.8 Let (μ′, μ) ∈ dom(J Y
A,B). Let ε > 0.

Choose δ > 0 according to Lemma 3.10 with X = A × B, i.e. s.t. for any ν ∈
P(A × B × Y) with Wp (μ, ν) < δ and any γ ∈ Cpl (μ, ν) with

∫
ρ(a1, a2)p +

ρ(b1, b2)p dγ (a1, b1, _, a2, b2, _) < δ p we have
∫
ρ(y1, y2)p dγ (_, y1, _, y2) < ε p.
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Let (ν′, ν) ∈ dom(J Y
A,B) with max(ρ(μ, ν), ρ(μ′, ν′)) < min(δ, ε).

This means we can find γ ′ ∈ Cpl
(
μ′, ν′) with

∫
ρ(a1, a2)

p + Wp(b̂1, b̂2)
p dγ ′(a1, b̂1, a2, b̂2) < min(δ p, ε p). (17)

Let (a, b) �→ fa(b) and (a, b) �→ ga(b) : A × B → Y be measurable functions
on whose graph μ and ν, respectively, are concentrated. Let μ̄ := J Y

A,B(μ′, μ),

ν̄ := J Y
A,B(ν′, ν).

As noted in the proof of Lemma 3.1 we know that for μ̄-a.a. (a, μ̇) the measure
μ̇ is concentrated on the graph of the function fa (and similarly for ν̄). This together
with P(1A × P(projB

))
(μ̄) = μ′ (which is a consequence of (15)) implies that

∫
h dμ̄ = ∫

h
(

a,P(1B, fa) (b̂)
)
dμ′(a, b̂)

(again similarly for ν̄).
From this we see that the measure γ̄ ∈ P(A × F (B � Y) × A × F (B � Y))

defined as

∫
h dγ̄ := ∫

h
(

a1,P
(
1B, fa1

)
(b̂1), a2,P

(
1B,ga2

)
(b̂2)

)
dγ ′(a1, b̂1, a2, b̂2)

is in Cpl (μ̄, ν̄).
We may measurably select almost-witnesses γ̂b̂1,b̂2

∈ Cpl(b̂1, b̂2) for the distances

Wp(b̂1, b̂2) s.t. building on (17) we get

∫
ρ(a1, a2)

p + ∫
ρ(b1, b2)

p dγ̂b̂1,b̂2
(b1, b2) dγ

′(a1, b̂1, a2, b̂2) < min(δ p, ε p). (18)

Now

ρ(μ̄, ν̄)p ≤ ∫
ρ

p
P(A×P(B×Y))

dγ̄

= ∫
ρ(a1, a2)

p + Wp

(
P(1B, fa1

)
(b̂1),P

(
1B,ga2

)
(b̂2)

)p
dγ ′(a1, b̂1, a1, b̂2)

≤ ∫
ρ(a1, a2)

p + ∫
ρ(b1, b2)

p

+ ρ
(

fa1(b1), ga2 (b2)
)p dγ̂b̂1,b̂2

(b1, b2) dγ
′(a1, b̂1, a2, b̂2)

= ∫
ρ(a1, a2)

p + ρ(b1, b2)
p + ρ(y1, y2)

p dγ (a1, b1, y1, a2, b2, y2) (19)

where γ ∈ Cpl (μ, ν) is defined as

∫
h dγ = ∫∫

h
(
a1, b1, fa1(b1), a2, b2, ga2(b2)

)
dγ̂b̂1,b̂2

(b1, b2) dγ
′(a1, b̂1, a2, b̂2).

The integral over the first two summands in (19) is less than min(δ p, ε p) by (18). By
our choice of δ in the beginning this implies that the integral over the last summand is
also less than ε p, so that overall

ρ(μ̄, ν̄)p < 2ε p.
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Es ε was arbitrary this concludes the proof. �

4 The symmetrized causal Wasserstein distanceSCWp

In this section we prove that the topology induced by SCWp is sandwiched between
Hellwig’sWp-information topology and the topology induced byAWp, and therefore
by what we have already seen in the previous section equal to both of them. Our
arguments in this sectionmake explicit use ofmetrics. The readerwho is only interested
in the simpler version of our main theorem, Theorem 1.2 may assume that p = 1 and
that all metrics are bounded.

Remember that for μ, ν ∈ P(X ) we have

CWp(μ, ν)p = inf
γ∈Cpl(μ,ν)

γ causal

∫ N∑

t=1

ρ(xt , yt )
p dγ ((xt )t , (yt )t ) (20)

SCWp(μ, ν) = max
(
CWp(μ, ν), CWp(ν, μ)

)
(21)

AWp(μ, ν)p = inf
γ∈Cpl(μ,ν)
γ bicausal

∫ N∑

t=1

ρ(xt , yt )
p dγ ((xt )t , (yt )t ). (22)

In proving this we will take a slightly roundabout route. First we will focus on the
case where X = X1 × X2 is the product of just two spaces, i.e. where we have only
two time points. Moreover, for expositional purposes, let us for the moment assume
thatX1 and X2 are both compact. Generalizing from this setting will not be very hard.

In the compact, two-time-point case we will show equality of the two topologies
in question by extending both to a larger (compact) space and showing equality of the
topologies on that larger space.

In more detail:
When there are only two timepoints Hellwig’s Wp-information topology and

the topology induced by AWp trivially coincide. Both are induced by emedding

P(X1 × X2) intoP(X1 × P(X2)) via dis
X2
X1

. The latter space carries its standardmetric
ρP(X1×P(X2)), which – as was already established in Theorem 1.5 in Sect. 1.8 of the
introduction – is an extension of AWp. To highlight this connection, in this section
we will also refer to that metric as AWp. As a reminder,

AWp (μ, ν)p = inf
γ∈Cpl(μ,ν)

∫

ρ(x1, y1)
p + Wp (ξ2, η2)

p dγ (x1, ξ2, y1, η2)

where Wp is the normal Wasserstein distance (on P(X2) in this case). We will find
an extension CWp of CWp to P(X1 × P(X2)), which still satisfies all properties of
a metric except for symmetry and which is dominated by AWp. Symmetrizing this
extension gives a metric (which we will call SCWp). The identity function from
P(X1 × P(X2)) topologized with AWp to P(X1 × P(X2)) topologized with SCWp
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will then be a continuous bijection from a compact space (this is where we use com-
pactness of X1, X2) to a Hausdorff space, i.e. a homeomorphism.

The next subsection will be devoted to finding an expression for the extension
of CWp to P(X1 × P(X2)) and proving that it satisfies all the properties mentioned
above.

Remark 4.1 WhenX1 contains no isolated points, becauseP(X1 × P(X2)) is the met-
ric completion of P(X1 × X2) w.r.t. AWp and because the above properties imply
that CWp is (uniformly) continuous w.r.t. AWp, we have already uniquely identified
CWp. Still, we want to find an expression that allows us to work with CWp and in
particular that allows us to prove that SCWp is a metric and not just a pseudometric,
i.e. that the induced topology is in fact Hausdorff. This is exactly what we gain from
assuming compact base spaces and passing to the completion: instead of having to
find a lower bound for SCWp (μ, ν) in terms ofAWp (μ, ν) (and possiblyμ) we now
just have to prove that if μ �= ν then SCWp (μ, ν) > 0.

For definiteness we note that we do not assume, compactness of any space in the
following.

4.1 Extending the causal ’distance’

So now we are working with two Polish metric spaces X1, X2. Remember that we
denote the ‘canonical process’ on X := X1 × X2 by (Xi )i=1,2, i.e. Xi : X → Xi is
the projection onto the i th coordinate.

To differentiate between the different roles that X may play - i.e. is it the space for
the left measure μ or the right measure ν when measuring the ‘distance’ CWp (μ, ν)

- we will also refer to X , Xi by the aliases Y , Yi respectively. (And later Z , Zi as
well.) Analogously, we have Yi : Y → Yi . (And Zi : Z → Zi .)

In this section we will repeatedly make use of the following construction:

Definition 4.2 Let A, B, C be Polish metric spaces. Let μ ∈ P(A × B) and ν ∈
P(B × C) with μ�B = ν�B. We define

μ ⊗B ν ∈ P(A × B × C)

as the measure given by

∫
h d(μ ⊗B ν) := ∫

h(a, b, c) dνb(c) dμ(a, b)

= ∫
h(a, b, c) dμb(a) dν(b, c)

(23)

where b �→ νb is a disintegration of ν w.r.t. B and similarly for μ.
We further define

μ o
9B ν :=

(
μ ⊗B ν

)

�A×C ∈ P(A × C) .
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Remark 4.3 If μ is a probability on A × B and ν is a probability on B × C, another
way of saying what μ ⊗B ν is, is to state that it is a probability on A × B × C s.t. the
law of (A, B) is equal to μ, the law of (B, C) is equal to ν (where per our convention
A is the projection ontoA, etc.), and A is conditionally independent from C given B.
(For the notion of conditional independence see for example [22, Definition II.43].)

Another helpful intuition comes from looking at the case where μ ∈ F (A � B)

is concentrated on the graph of some measurable function f : A → B and ν ∈
F (B � C) is concentrated on the graph of a measurable function g : B → C. μ o

9B ν

is then concentrated on the graph of g ◦ f : A → C. In some contexts g ◦ f is also
written as f o

9 g, which is where we borrowed the symbol from.

Remark 4.4 We will often encounter the situation that one of the factors A, B or
C in Definition 4.2 is itself a product of spaces and the individual factors may not
always be so nicely sorted. We will rely on naming in the subscript the space(s) along
which to join the measures μ and ν. For example if μ ∈ P(A1 × B1 × A1 × B2) and
ν ∈ P(B2 × C1 × B1 × C2) we might write

μ ⊗B1,B2
ν ∈ P(A1 × B1 × A2 × B2 × C1 × C2)

to refer to the measure that we get when in (23) we use (b1, b2) ∈ B1 × B2 as the
middle variable b. We will not be systematic about the order of the factors in the
resulting product space on which e.g. μ ⊗B1,B2

ν is a measure, again relying on naming
our spaces for disambiguation.

For future reference we paraphrase the definition of a causal transport plan given
in (3) in the introduction.

Lemma 4.5 Let μ be a measure onX = X1×X2 and ν be a measure onY = Y1×Y2.
γ ∈ Cpl (μ, ν) is a causal transference plan from μ to ν iff under γ

X2 and Y1 are conditionally independent given X1.

Proof One way of formulating conditional independence is as in (3), see for example
[22, Definition II.43, Theorem II.45]. �

In other words, γ ∈ Cpl (μ, ν) is a causal transference plan iff γ�X1,X2,Y1 =
μ ⊗X1

γ�X1,Y1 .
We start by reexpressing CWp in different ways until we find one which also makes

sense in P(X1 × P(X2)).
Let μ ∈ P(X ) and ν ∈ P(Y). Then

CWp (μ, ν)p = inf
γ∈Cpl(μ,ν)

γ causal

∫

ρ(x1, y1)
p + ρ(x2, y2)

p dγ (x1, x2, y1, y2)

= inf
γ∈C1

∫

ρ(x1, y1)
p + ρ(x2, y2)

p dγ (x1, x2, y1, y2)
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where

C1 =
{
γ ∈ Cpl (μ, ν)

∣
∣
∣ γ =

(
μ ⊗X1

γ�X1,Y1

)
⊗X2,Y1

γ�X2,Y1,Y2

}
.

This is true because, on the one hand clearly a γ ∈ C1 is causal by Lemma 4.5
and the alternative characterization of ⊗X1

. On the other hand, given any causal γ ∈
Cpl (μ, ν), again by Lemma 4.5, γ�X1,X2,Y1 = μ ⊗X1

γ�X1,Y1 , and we may define

γ ′ :=
(
μ ⊗X1

γ�X1,Y1

)
⊗X2,Y1

γ�X2,Y1,Y2 ∈ Cpl (μ, ν). Now γ�X1,X2,Y1 = γ ′
�X1,X2,Y1

and γ�X2,Y1,Y2 = γ ′
�X2,Y1,Y2

, so in particular

∫

ρ(x1, y1)
p + ρ(x2, y2)

p dγ (x1, x2, y1, y2)

=
∫

ρ(x1, y1)
p + ρ(x2, y2)

p dγ ′(x1, x2, y1, y2).

We may name the different building blocks of γ ∈ C1 to get

CWp (μ, ν)p = inf
(γ,β)∈C2

∫

ρ(x1, y1)
p dγ (x1, y1) +

∫

ρ(x2, y2)
p dβ(y1, x2, y2)

with

C2 =
{
(γ, β) ∈ Cpl

(
μ�X1 , ν�Y1

)× P(Y1 × X2 × Y2)

∣
∣
∣
∣

β�X2,Y1 = μ o
9X1

γ and β�Y1,Y2 = ν
}
,

i.e. there is a bijection between C1 and C2 given by sending γ ′ ∈ C1 to (γ, β) ∈ C2
where γ := γ ′

�X1,Y1
, β := γ ′

�X2,Y1,Y2
, and, in the other direction, by sending (γ, β) ∈

C2 to γ ′ :=
(
μ ⊗X1

γ
)

⊗X2,Y1
β.

We can apply the bijection disY1 : P(Y1 × X2 × Y2) → F (Y1 � P(X2 × Y2))

to β. Translating the conditions on (γ, β) ∈ C2 to conditions on (γ, disY1(β)) we
arrive at

CWp (μ, ν)p = inf
(γ,β)∈C3

∫

ρ(x1, y1)
p dγ +

∫ ∫

ρ(x2, y2)
p dβ ′(x2, y2) dβ(y1, β

′)

where

C3 =
{
(γ, β) ∈ Cpl

(
μ�X1, ν�Y1

)× F (Y1 � P(X2 × Y2))

∣
∣
∣
∣

P(1Y1 × P(Y2)
)
(β) = disY1(ν) and

P(1Y1 × P(X2)
)
(β) = disY1

(
γ o

9X1
μ
) }

.

123



1154 J. Backhoff-Veraguas et al.

Let (γ, β) ∈ C3 and let (y1, β ′) �→ β̃ ′
y1,β ′ be a measurable mapping with β̃ ′

y1,β ′ ∈
Cpl

(
β ′

�X2
, β ′

�Y2

)
for β-a.a. (y1, β ′). Then we have that also (γ, β̃) ∈ C3, where

β̃ ∈ F (Y1 � P(X2 × Y2)) is defined by

β̃ := f �→
∫

f (y1, β̃
′
y1,β ′) dβ(y1, β

′).

By employing a β-a.e. measurable selector this implies that

CWp (μ, ν)p = inf
(γ,β)∈C3

∫
ρ(x1, y1)

p dγ + ∫
inf
β̃ ′∈

Cpl
(
β ′

�X2
,β ′

�Y2

)

∫
ρ(x2, y2)

p dβ̃ ′(x2, y2) dβ(y1, β
′)

= inf
(γ,β)∈C3

∫
ρ(x1, y1)

p dγ + ∫ Wp

(
β ′

�X2
, β ′

�Y2

)p
dβ(y1, β

′).

We need

Lemma 4.6 If κ ∈ P(A × B) and λ ∈ F (B � C) then the only measure η ∈
P(A × B × C) with η�A×B = κ and η�B×C = λ is κ ⊗B λ.

Proof If η satisfies the properties above and b �→ κb, b �→ λb are (classical) disinte-
grations of κ , λ w.r.t. B, then a (classical) disintegration b �→ ηb of η w.r.t. B has to
satisfy ηb�A = κb and ηb�C = λb a.s. As λb is a Dirac measure a.s. this forces ηb to
be κb ⊗ λb almost surely. �

This implies that for (γ, β) ∈ C3 the distribution of

(y1, β
′) �→ (y1, β

′
�X2

, β ′
�Y2

) (24)

under β is already determined by γ , i.e. because the distribution of (y1, β ′) �→
(y1, β ′

�X2
) is disY1

(
γ o

9X1
μ
)
and the distribution of (y1, β ′) �→ (y1, β ′

�Y2
) is disY1(ν),

the distribution of (24) under β must be equal to

disY1

(
γ o

9X1
μ
) ⊗Y1

disY1(ν).

This means that we may get rid of β:

CWp (μ, ν)p = inf
γ∈Cpl(μ�X1 ,ν�Y1

)

∫
ρ(x1, y1)

p dγ

+∫Wp
(
μ′, ν′)p d

(
disY1

(
γ o

9X1
μ
) ⊗Y1

disY1(ν)
)

(y1, μ
′, ν′)

For the final step we need another lemma:

Lemma 4.7 Let λ ∈ P(A × B) and β ∈ P(B × C). Let Ĉ denote the projection onto
P(C). Then

disA
(
λ o

9B β
)
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is equal to the distribution of

(A,Eη (Ĉ |A)) under η := λ ⊗B disB(β).

Proof Let a �→ λa be a version of the (classical) disintegration of λ w.r.t. A and let
b �→ βb be a disintegration of β w.r.t. B.

As one easily checks, a version of the (classical) disintegration of λ o
9B β w.r.t.A is

given by a �→ ∫
βb dλa(b), so that disA

(
λ o

9B β
)
is equal to

P
(

a �→ (a,
∫
βb dλa(b))

)
(λ�A).

By the same argument a version of the disintegration of λ o
9B disB(β) w.r.t. A is

given by h := a �→ ∫
disB(β)b dλa(b), where b �→ disB(β)b is a disintegration of

disB(β)w.r.t. B. But such a disintegration is given by b �→ δβb , (where δβb is the dirac
measure at βb). So h = a �→ ∫

δβb dλa(b). This means (a version of) Eη (Ĉ |A) is
given by

E
η (Ĉ |A) (a, _, _) = ∫

ĉ d(
∫
δβb dλa(b))(ĉ) = ∫∫

ĉ dδβb (ĉ) dλa(b) = ∫
βb dλa(b) ,

so that the distribution of (A,Eη (Ĉ |A)) under η is also given by

P
(

a �→ (a,
∫
βb dλa(b))

)
(λ�A).

�
Using this lemma with A = Y1, B = X1, C = X2, λ = γ , β = μ and writing X̂2,

Ŷ2 for the projections onto P(X2), P(Y2) respectively, we find:

CWp (μ, ν)p = inf
γ∈Cpl(μ�X1 ,ν�Y1

)E
γ
(
ρ(X1, Y1)

p)+ E
η(γ )

(
Wp

(
E

η(γ ) (X̂2|Y1) , Ŷ2

)p)

where η(γ ) := disX1(μ) ⊗X1
γ ⊗Y1

disY1(ν).

By Lemma 4.6 the function η : Cpl (μ�X1 , ν�Y1

) → Cpl
(
disX1(μ), disY1(ν)

)
is a

bijection, so we may as well write

CWp (μ, ν)p = inf
γ∈Cpl(disX1 (μ),disY1 (ν)

)E
γ
(
ρ(X1, Y1)

p)+ E
γ
(
Wp

(
E

γ (X̂2|Y1) , Ŷ2
)p)

.

Finally, under any γ ∈ Cpl
(
disX1(μ), disY1(ν)

)
we know that Ŷ2 is almost surely

equal to a function of Y1, so that the completions of the sigma-algebras generated by Y1
and �Y := (Y1, Ŷ2) respectively are equal. This means that Eγ (X̂2|Y1) = E

γ (X̂2| �Y )

a.s. and we arrive at our final expression for CWp (μ, ν):

CWp (μ, ν) = inf
γ∈Cpl(disX1 (μ),disY1 (ν)

)

(
E

γ
(
ρ(X1, Y1)

p + Wp
(
E

γ (X̂2| �Y ) , Ŷ2
)p )

)1/p
.
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Now this expression is trivial to generalize to μ ∈ P(X1 × P(X2)) and ν ∈
P(Y1 × P(Y2)), i.e. for such μ, ν we set

CWp (μ, ν) := inf
γ∈Cpl(μ,ν)

(

E
γ
(
ρ(X1, Y1)

p + Wp
(
E

γ (X̂2| �Y ) , Ŷ2
)p
))1/p

. (25)

To summarize our discussion up to this point:

Lemma 4.8 The function

CWp : P(X1 × P(X2))
2 → R+

as defined in (25) is really an extension of

CWp : P(X1 × X2)
2 → R+

as defined in (20) (when P(X1 × X2) is embedded into P(X1 × P(X2)) via disX1 ).

Next we promised to show

Lemma 4.9 CWp is bounded by AWp, i.e.

CWp (μ, ν) ≤ inf
γ∈Cpl(μ,ν)

(
E

γ
(
ρ(X1, Y1)

p + Wp(X̂2, Ŷ2)
p)
)1/p = AWp (μ, ν) .

Proof By the conditional version of Jensen’s inequality applied to the convex function
(x̂, ŷ) �→ Wp

(
x̂, ŷ

)p we have

Wp
(
E

γ (X̂2| �Y ) , Ŷ2
)p = Wp

(
E

γ ((X̂2, Ŷ2)| �Y )
)p ≤ E

γ
(
Wp (X̂2, Ŷ2)

p
∣
∣ �Y ) .

�
Remark 4.10 For the reader whomay be sceptical of whether Jensen’s inequality holds
in this rather unusual setting, where we have a convex function

Wp : P(X2) × P(Y2) → R+

and conditional expectations on spaces of measures we remark that for theWasserstein
distance in particular this is very easy to check. The proof is just integrating transport
plans between X̂2 and Ŷ2 w.r.t. the distribution of these conditioned on �Y (in this case)
to get transport plans between E

γ (X̂2| �Y ) and E
γ (Ŷ2| �Y ).

Lemma 4.11 Let μ, ν, λ ∈ P(X1 × P(X2)). Then

CWp (μ, λ) ≤ CWp (μ, ν) + CWp (ν, λ) .

123



All adapted topologies are equal 1157

Proof Using our naming convention we have

μ ∈ P(X1 × P(X2)) , ν ∈ P(Y1 × P(Y2)) , λ ∈ P(Z1 × P(Z2)) .

We denote the projections onto P(X2), P(Y2), P(Z2) by X̂2, Ŷ2, Ẑ2 respectively.
�Y = (Y1, Ŷ2), �Z := (Z1, Ẑ2).
Let γ ∈ Cpl (μ, ν) and η ∈ Cpl (ν, λ). In the following let E refer to (conditional)

expectation w.r.t. κ := γ ⊗Y1,P(Y2)
η, and let ‖·‖L p

refer to the L p-norm w.r.t. κ .

Combining the triangle inequalities for ρ, Wp and the ‖·‖L p we get

‖ρ(X1, Z1)‖L p
≤ ‖ρ(X1, Y1)‖L p

+ ‖ρ(Y1, Z1)‖L p
(26)

∥
∥Wp (E (X̂2| �Z) , Ẑ2)

∥
∥

L p
≤ ∥
∥Wp (E ((X̂2, Ŷ2)| �Z))

∥
∥

L p
+ ∥
∥Wp (E (Ŷ2| �Z) , Ẑ2)

∥
∥

L p

(27)

By the conditional Jensen inequality

Wp (E ((X̂2, Ŷ2)| �Z))p = Wp

(

E

(
E
(
(X̂2, Ŷ2)

∣
∣ �Y , �Z)

∣
∣
∣ �Z
))p

≤ E

(

Wp

(
E
(
(X̂2, Ŷ2)

∣
∣ �Y , �Z)

)p
∣
∣
∣
∣
�Z
)

and therefore

∥
∥Wp (E ((X̂2, Ŷ2)| �Z))

∥
∥p

L p
≤ ∥
∥Wp (E ((X̂2, Ŷ2)| �Y , �Z))p

∥
∥

L p
.

By construction, (X̂2, Ŷ2) is conditionally independent from �Z given �Y , so that
E ((X̂2, Ŷ2)| �Y , �Z) = E ((X̂2, Ŷ2)| �Y ) (this basic fact about conditional independence
can be found for example as Theorem 45 in [22]). Combining this with (27) gives

∥
∥Wp (E (X̂2| �Z) , Ẑ2)

∥
∥

L p
≤ ∥
∥Wp (E (X̂2| �Y ) , Ŷ2)

∥
∥

L p
+ ∥
∥Wp (E (Ŷ2| �Z) , Ẑ2)

∥
∥

L p
.

(28)

Putting together (26) and (28) with the triangle inequality for �p we get

CWp (μ, λ) =
(
‖ρ(X1, Z1)‖p

L p
+ ∥
∥Wp (E (X̂2| �Z) , Ẑ2)

∥
∥p

L p

)1/p

≤
(
‖ρ(X1, Y1)‖p

L p
+ ∥
∥Wp (E (X̂2| �Y ) , Ŷ2)

∥
∥p

L p

)1/p

+
(
‖ρ(Y1, Z1)‖p

L p
+ ∥
∥Wp (E (Ŷ2| �Z) , Ẑ2)

∥
∥p

L p

)1/p

= CWp (μ, ν) + CWp (ν, λ) .

�
Lemma 4.12 CWp is uniformly continuous w.r.t. AWp on P(X1 × P(X2))

2.
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1158 J. Backhoff-Veraguas et al.

Proof Let μ, ν, μ′, ν′ ∈ P(X1 × P(X2)). We repeatedly use Lemma 4.11:

CWp (μ, ν) ≤ CWp
(
μ, ν′)+ CWp

(
ν′, ν

)

≤ CWp
(
μ,μ′)+ CWp

(
μ′, ν′)+ CWp

(
ν′, ν

)

therefore

CWp (μ, ν) − CWp
(
μ′, ν′) ≤ CWp

(
μ,μ′)+ CWp

(
ν′, ν

)
.

Switching the roles of (μ, ν) and (μ′, ν′) implies

|CWp (μ, ν) − CWp
(
μ′, ν′)|

≤ max
(
CWp

(
μ,μ′) , CWp

(
μ′, μ

))+ max
(
CWp

(
ν, ν′) , CWp

(
ν′, ν

))

≤ AWp
(
μ,μ′)+ AWp

(
ν, ν′) .

�
Lemma 4.13 The infimum in (25) is attained.

Proof This is an application of [9, Theorem 1.2].
For self-containedness and because it’s a nice application of the nested distance, we

also sketch the argument here.We know that Cpl (μ, ν) is compact. The problem is that
γ �→ E

γ
(
Wp (Eγ (X̂2| �Y ) , �Y )p) is not (lower semi-) continuous. But we may switch

to a topologywhich is better adapted to the problemat hand.Namely the two-timepoint
AWp-topology. In this case the space for the first timepoint is Y1 × P(Y2) and that
for the second is X1 × P(X2). In effect that means that instead of γ ∈ Cpl (μ, ν) we
are now looking at γ ′ ∈ F (Y1 × P(Y2) � P(X1 × P(X2))). The function that we
are optimizing over can be written as

Ĉ := γ ′ �→ E
γ ′

(C(Y1, Ŷ2, �̂X))

where

C(y1, ŷ2, ξ) =
∫

ρ(x1, y1) dξ(x1, _) + Wp
(
bary(ξ�P(X2)), ŷ2

)

bary(λ) =
∫

x dλ(x)

C is a continuous function and so is Ĉ . Now disY1×P(Y2) (Cpl (μ, ν)) is not compact,
but

{
γ ′ ∈ P(Y1 × P(Y2) × P(X1 × P(X2)))

∣
∣
∣
∣

γ ′
�Y1×P(Y2)

= ν , intY1×P(Y2)(γ
′)�P(X1×P(X2)) = μ

}
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is. So we can find a minimizer γ ′ of Ĉ in this set. To return to Cpl (μ, ν), or
more precisely disY1×P(Y2) (Cpl (μ, ν)), we can send γ ′ to the distribution γ ′′ of
(Y1, Ŷ2,E

γ ′
( �̂X | �Y )). Because C is continuous and convex in its last argument and by

(the conditional version of) Jensens inequality (which could again be proved ‘by hand’
here) Ĉ(γ ′′) ≤ Ĉ(γ ′). intY1×P(Y2)(γ

′′) is the sought after minimizer of (25). �
Lemma 4.14 Let μ, ν ∈ P(X1 × P(X2)). Then CWp (μ, ν) = CWp (ν, μ) = 0
implies μ = ν.

Proof Call

�X := X1 × P(X2) �Y := Y1 × P(Y2) �Z := Z1 × P(Z2) .

To have labels for our spaces, see μ, ν as

μ ∈ P
( �X

)
, ν ∈ P

( �Y
)

, μ ∈ P
( �Z
)

.

Letγ ∈ Cpl (μ, ν)⊆P
( �X × �Y

)
s.t.Eγ (ρ(X1, Y1)

p)+Eγ
(
Wp (Eγ (X̂2| �Y ) , Ŷ2)

p)

= 0.
Let η ∈ Cpl (ν, μ)⊆P

( �Y × �Z
)
s.t.Eη (ρ(Y1, Z1)

p)+E
η
(
Wp (Eη (Ŷ2| �Z) , Ẑ2)

p)

= 0.
All the following considerations happen under γ ⊗�Y η. Clearly, Z1 = Y1 = X1 a.s.

Moreover, because E (X̂2| �Y , �Z) = E (X̂2| �Y ), the random variables Ẑ2, Ŷ2, X̂2
form a martingale w.r.t. the filtration generated by �Z , �Y , �X . The distribution of Ẑ2 is
equal to the distribution of X̂2. Both of these statements are also true if we integrate
some bounded measurable function w.r.t. our random variables, i.e. for any bounded
measurable f : X2 → R we have that

∫
f d Ẑ2,

∫
f dŶ2,

∫
f d X̂2 is a martingale

and that the distribution of
∫

f d Ẑ2 is equal to the distribution of
∫

f d X̂2. But this
means that we must have

∫
f d Ẑ2 = ∫

f dŶ2 = ∫
f d X̂2 a.s. (Lemma 4.15 below).

As this is true for all f from a countable generator of the sigma-algebra on X2, we
have Ẑ2 = Ŷ2 = X̂2 a.s. �
Lemma 4.15 Let X1, X2, X3 be a bounded martingale over R. If the distribution of
X1 is equal to the distribution of X3 then X1 = X2 = X3 a.s.

Proof This is a consequence of the strict version of Jensen’s inequality applied to any
everywhere strictly convex function. (Take for example x �→ x2.) �
Remark 4.16 The reasonwe took the detour of turning our probability-measure-valued
martingale into a family of martingales on R and arguing on these is because this way
we avoid having to exhibit a continuous, everywhere strictly convex function onP(X2).

As a reminder:

Definition 4.17 For μ, ν ∈ P(X1 × P(X2)),

SCWp (μ, ν) := max(CWp (μ, ν) , CWp (ν, μ)).
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1160 J. Backhoff-Veraguas et al.

Theorem 4.18 SCWp is a metric on P(X1 × P(X2)) satisfying

SCWp (μ, ν) ≤ AWp (μ, ν) .

Proof This follows from Lemmas 4.11, 4.14 and 4.9. �
Remark 4.19 As outlined at the beginning of this section, and thanks to Theorem 4.18,
we now know enough to conclude that the topology induced by SCWp is equal to the
topology induced by AWp, in case both X1 and X2 were compact. The non-compact
case is not much harder. We now proceed to settle this case: For this we need the
following lemma.

Lemma 4.20 The map

intX1 : P(X1 × P(X2)) → P(X1 × X2)

is a contraction when we equip the source space with SCWp and the target space with
Wp. More specifically for μ, ν ∈ P(X1 × P(X2))

Wp
(
intX1(μ), intX1(ν)

) ≤ CWp (μ, ν) . (29)

Proof We prove the second statement. Let μ ∈ P
( �X

)
, ν ∈ P

( �Y
)
. Given γ ∈

Cpl (μ, ν) and ε > 0 the task is to find γ ′ ∈ Cpl
(
intX1 μ, intY1 ν

)
s.t.

E
γ ′ (

ρ(X1, Y1)
p + ρ(X2, Y2)

p) ≤ E
γ
(
ρ(X1, Y1)

p)+ E
γ
(Wp

(
E

γ (X̂2| �Y ) , Ŷ2
)p)+ ε. (30)

We take inspiration from the discussion at the beginning of this section. Let � :
�X × �Y → P(X2 × Y2) be a measurable selector satisfying

� ∈ Cpl
(
E

γ (X̂2| �Y ) , Ŷ2
)

γ -a.s. and

E
�
(
ρ(X2, Y2)

p) ≤ Wp
(
E

γ (X̂2| �Y ) , Ŷ2
)p + ε γ -a.s.

The obvious choice for γ ′, namely f �→ E
γ
(
E

� ( f (X1, X2, Y1, Y2))
)
will not work

because in general it gets the relationship between X1 and X2 wrong, i.e. its first
marginal may not be intX1(μ). Instead we again define γL ∈ P(X1 × X2 × Y1) and
γR ∈ P(X2 × Y1 × Y2) and set γ ′ := γL ⊗X2,Y1

γR .

γL := f �→ E
γ
(
E

X̂2 ( f (X1, X2, Y1))
)

γR := f �→ E
γ
(
E

� ( f (X2, Y1, Y2))
)

Clearly, if we can actually define γ ′ as announced, then (30) will hold, because then

E
γ ′

(ρ(X1, Y1)) = E
γ
(
E

X̂2 (ρ(X1, Y1))
) = E

γ (ρ(X1, Y1))

E
γ ′

(ρ(X2, Y2)) = E
γ
(
E

� (ρ(X2, Y2))
) ≤ E

γ
(
Wp

(
E

γ (X̂2| �Y ) , Ŷ2
)p)+ ε.
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It remains to check that γL and γR can actually be composed, i.e. that (X2, Y1) has
the same distribution under γL and γR .

E
γR (h(X2, Y1)) = E

γ
(
E

� (h(X2, Y1))
) = E

γ
(
E
E

γ (X̂2| �Y ) (h(X2, Y1))
)

= E
γ
(
E

γ
(
E

X̂2 (h(X2, Y1))

∣
∣
∣ �Y
))

= E
γ (EX̂2 (h(X2, Y1)))

= E
γL (h(X2, Y1))

The step in the middle has its own Lemma 4.21 below. �
Lemma 4.21 Let P be a probability on P(X ) × Y , for Polish spaces X ,Y . Let h :
X × Y → R be a measurable function. Then

E
E(X̂ |Y ) (h(X , Y )) = E

(
E

X̂ (h(X , Y ))

∣
∣
∣Y
)

P-a.s.,

where E without superscript is the (conditional) expectiation w.r.t. P and X̂ is the
projection onto P(X ).

Note that X is on both sides introduced by the expectation operator which carries a
superscript, while Y may on both sides be interpreted as coming from the outermost
context. On the right hand side Y may also be seen as having been introduced by the
outermost conditional expectation operator. (As this operator conditions on Y this is
the same thing.)

Proof Both sides are clearly Y -measurable. We prove that for h(x, y) = f (x)g1(y),
multiplying by g2(Y ) and taking expectation gives the same result. By definition of
the conditional expectation

E (E (X̂ |Y ) g(Y )) = E

(
X̂ g(Y )

)
.

Applying the continuous linear function γ �→ E
γ ( f (X)) this gives

E

(
E
E(X̂ |Y ) ( f (X)) g(Y )

)
= E (EX̂ ( f (X)) g(Y )) .

Again by the definition of the conditional expectation:

E

(
E

(
E

X̂ ( f (X)g1(Y ))

∣
∣
∣Y
)

g2(Y )
)

= E

(
E

X̂ ( f (X)g1(Y )) g2(Y )
)

= E

(
E

X̂ ( f (X)) g1(Y )g2(Y )
)

= E

(
E
E(X̂ |Y ) ( f (X)) g1(Y )g2(Y )

)

= E

(
E
E(X̂ |Y ) ( f (X)g1(Y )) g2(Y )

)

where for the third equality we plugged in the previous equation. �
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Alternative proof of Lemma 4.20 when X1 has no isolated points When the space
X1 has no isolated points one can show that the space F (X1 � P(X2)) is dense in
P(X1 × P(X2)). This allows for a shorter proof of Lemma 4.20:

By the original definition (20) of CWp on the space P(X1 × X2) the inequal-
ity (29) holds on F (X1 � P(X2)) × F (X1 � P(X2)). Both CWp and (μ, ν) �→
Wp

(
intX1(μ), intX1(ν)

)
are uniformly continuous on P

( �X
)

× P
( �X

)
w.r.t. some

product metric of AWp with itself. F (X1 � P(X2)) is dense in P
( �X

)
, and there-

fore F (X1 � P(X2)) × F (X1 � P(X2)) is dense in P
( �X

)
× P

( �X
)
. This implies

that (29) holds on all of P
( �X

)
× P

( �X
)
. �

Theorem 4.22 The topology induced by SCWp on P(X1 × P(X2)) is equal to the
toplogy induced by AWp on that space.

Proof As both topologies are metric and therefore first-countable we may argue
on sequences. Let (μn)n be a sequence in P(X1 × P(X2)). As SCWp (μn, μ) ≤
AWp (μn, μ), if (μn)n converges toμw.r.t.AWp it also converges toμw.r.t. SCWp.

Now assume that a sequence (μn)n inP(X1 × P(X2)) converges toμw.r.t. SCWp.
We will show that every subsequence of (μn)n has a subsequence which converges
to μ w.r.t. AWp. Note that convergence of (μn)n w.r.t. SCWp implies that the set
K := {μn | n ∈ N} is relatively compact w.r.t. the topology induced by SCWp. As
intX1 is continuous as a map from P(X1 × P(X2)) with the topology induced by
SCWp to P(X1 × X2) with the toplogy induced by Wp (Lemma 4.20), we have
that intX1[K ] = {

intX1(μn)
∣
∣ n ∈ N

}
is also relatively compact. By Lemma 1.7/[24,

Lemma 3.3] this implies that K is relatively compact in P(X1 × P(X2)) with the
topology induced by AWp. Now let (μnk )k be some subsequence of (μn)n . As K
is relatively compact we can find a subsequence (μnk j

) j of (μnk )k , which converges

w.r.t.AWp to some μ′ ∈ P(X1 × P(X2)). As SCWp

(
μnk j

, μ′
)

≤ AWp

(
μnk j

, μ′
)

this sequence also converges to μ′ w.r.t. SCWp. But (μnk j
) j also converges to μw.r.t.

SCWp. Because the topology induced by SCWp is Hausdorff (Lemma 4.14), wemust
have μ′ = μ, i.e. (μnk j

) j converges to μ w.r.t. AWp. �

Now we return to the general case of N time-points.

Theorem 4.23 The topology induced by SCWp on P(X ) is equal to Hellwig’s Wp-
information topology and to the topology induced by AWp.

Proof As every bicausal transport plan between μ and ν can be interpreted as a causal
transport plan from μ to ν and also as a causal transport plan from ν to μ we have
that SCWp (μ, ν) ≤ AWp(μ, ν). This means that the identity from P(X ) with the
topology inducedbyAWp toP

(
X
)
with the topology inducedbySCWp is continuous.

For the other direction we show that the identity fromP(X )with the topology induced
by SCWp toP

(
X
)
with theWp-information topology is continuous, i.e. we show that
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each of the maps

disXt+1

X t = It : P(X ) → F (
X t � P(Xt+1

))

is continuous when P(X ) gets the topology induced by SCWp.
If μ, ν ∈ P(X ) and γ ∈ Cpl (μ, ν) is causal, then, in particular, γ is ‘causal at

the timestep from t to t + 1’, i.e. γ is causal when regarded as a coupling between
μ, ν ∈ P(X t × Xt+1

)
. This means that if we define SCW ′

p like SCWp, but only

require causality based on the decomposition ofX asX t ×Xt+1, then SCW ′
p(μ, ν) ≤

SCWp (μ, ν), i.e. the identity from P(X ) with the topology induced by SCWp to
P(X ) with the topology induced by SCW ′

p is continuous. By Theorem 4.22 the map

disXt+1

X t : P(X t × Xt+1
) → F (

X t � P(Xt+1
))

is continuous when we equip P(X t × Xt+1
)
with the topology induced by SCW ′

p.
Now It is continuous as a composite of continuous maps. �

5 Aldous’ extended weak convergence

In this sectionwe show that Aldous extendedWp-/weak topology is equal to Hellwig’s
(Wp-)information topology.

We recall and paraphrase here the definition, already given in the introduction, of
Aldous’ topology.

Definition 5.1 Given μ ∈ P(X ) let μ
(xi )

j
i=1

be the value of a (classical) disintegration

of μ w.r.t. the first j coordinates at (xi )
j
i=1. (By convention μ(xi )

0
i=1

= μ). Define

E : P(X ) → P
⎛

⎝X ×
N∏

j=0

P(X )
⎞

⎠

E(μ) := P
(

(xi )
N
i=1 �→

(

(xi )
N
i=1,

(
δ
(xi )

j
i=1

⊗ μ
(xi )

j
i=1

)N

j=0

))

(μ).

The extended Wp−/weak topology on P(X ) is the initial topology w.r.t. E .

Remark 5.2 Reasonable people may disagree about whether the most faithful/useful
transcription of Aldous’ definition should include the factors j = 0 and j = N in
the above product of spaces. When including j = N , as we did, one has to interpret
δ(xi )

N
i=1

⊗ μ(xi )
N
i=1

simply as δ(xi )
N
i=1

. We leave it as an exercise to the reader to check
that either or both may be dropped in the definition of E without affecting the resulting
topology on P(X).
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Theorem 5.3 The (Wp-)extended weak topology is equal to the (Wp-)information
topology.

Proof We construct continuous maps

A′
k : P

⎛

⎝X ×
N∏

j=0

P(X )
⎞

⎠ → P
(
X k × P(Xk+1

))

A :
N−1∏

k=1

F
(
X k � P(Xk+1

)) → P
⎛

⎝X ×
N∏

j=0

P(X )
⎞

⎠

such that

A′
k ◦ E = Ik

A ◦ I = E .

The first equality above implies that the identity on P(X ) is continuous from the
extended weak topology to the information topology, the second implies that it is
continuous in the other direction.

A′
k is very simple. We just need to select the right factors and then discard the

unnecessary δ(xi )
k
i=1

part of the measure component. Formally

A′
k := P

((
(xi )

N
i=1, (ν j )

N
j=0

) �→ (
(xi )

k
i=1, νk�Xk+1

))
,

which is cleary continuous.
We construct A recursively, by constructing as a composite of continuous maps

Am :
N−1∏

k=1

F
(
X k � P(Xk+1

)) → P
⎛

⎝Xm ×
m∏

j=0

P(X )
⎞

⎠

satisfying

Am(I(μ)) = P
(
(xi )

N
i=1 �→ (

(xi )
m
i=1, (δ(xi )

k
i=1

⊗ μ(xi )
k
i=1

)m
k=0

))
(μ). (31)

A0
(
(νk)

N−1
k=1

)
:= δintX1 (ν1). We need the helper functions

hm : F (
Xm � P(Xm+1

)) → F (
Xm � P(X ))

hm := P
(
((xi )

m
i=1, ρ) �→ ((xi )

m
i=1, δ(xi )

m
i=1

⊗ ρ)
)

.
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Given Am satisfying the induction hypothesis we set

Am+1
(
(νk)

N−1
k=1

)
:= P(sm+1)

(
Am

(
(νk)

N−1
k=1

)
⊗
Xm

hm+1(νm+1)
)

where sm+1 is the obvious permutation of the coordinates to get the factors into the
right order. Am+1 is continuous because by [24, Lemma 4.1] ⊗

Xm
is continuous when

one of the arguments is an element of someF (B � C). That (31) still holds for m +1
is a straightforward calculation. This way we get to AN−1. Finally, set

A
(
(νk)

N−1
k=1

)
:= P(sN )

(
AN−1

(
(νk)

N−1
k=1

)
⊗

X N−1
disX1(ν1)

)

where

sN

((
(xi )

N−1
i=1 , (ρ j )

N−1
j=1 , xN

))
:=
(
(xi )

N
i=1, (ρ j )

N−1
j=1 , δ((xi )

N
i=1)

)
.

�

6 Bounded vs unboundedmetrics

Because we will need it in the next section we interject here a proof of Lemma 1.4,
which we restate below.

Lemma 1.4 Convergence in any of the topologies of Theorem 1.3 is equivalent to
convergence in any of the topologies of Theorem 1.2 (where for building SCWp and
AWp, ρX is replaced by a bounded compatible complete metric e.g. min(1, ρX )) plus
convergence of pth moments on � w.r.t. (the original) ρ�.

Proof of Lemma 1.4 We provide the proof only for Hellwig’s topology, i.e. (3) of The-
orems 1.3 and 1.2, respectively. As we have already seen in the previous sections,
the topologies (2)–(4) are equivalent topologies, and the result therefore carries over
to them. The (Wp-)optimal stopping topology, (5), is treated below. It is clear that
convergence w.r.t.Wp-information topology implies convergence in Hellwig’g infor-
mation topology plus convergence of pth moments. For the reverse implication, let
1 ≤ t ≤ N −1, and denote byA := X t

the first t and byB := X t+1 the last N −t coor-
dinates. Now assume that (μn)n converges toμ in Hellwig’s information topology and
that the pth moments converge. The classical (not adapted) version of the very lemma
we prove here implies thatμn → μ inWp; in particular K := {μn : n} ⊂ Pp(A × B)

is relatively compact. Lemma1.7 (or really [24, Lemma3.3]/[9, Lemma2.6]) therefore
guarantees that disBA[K ] ⊂ Pp

(
A × Pp(B)

)
is relatively compact.

Every subsequence of (disBA(μn))n therefore has a subsequence (disBA(μnk ))k

which converges w.r.t. the topology on Pp
(
A × Pp(B)

)
(i.e. the one coming from

nested Wasserstein metrics) to some μ′ ∈ Pp
(
A × Pp(B)

)
. Because convergence in

Pp
(
A × Pp(B)

)
is stronger than convergence inP(A × P(B)) (i.e. in the nested weak
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sense) we must also have disBA(μnk )
k→ μ′ inP(A × P(B)). But also, by assumption,

disBA(μnk )
k→ disBA(μ) in P(A × P(B)) and therefore μ′ = disBA(μ). �

7 Optimal stopping

In this sectionwe investigate the relation between the (Wp-)optimal stopping topology
and the adapted Wasserstein topology. Lemma 7.1 states that the topology induced by
AWp ((1) of Theorem 1.3) is finer than theWp-optimal stopping topology. Lemma 7.5
states that theWp-optimal stopping topology is finer than theWp-information topol-
ogy ((3) of Theorem 1.3). This will finish the proof of Theorem 1.3.

Recall that

vL(μ) := inf
{
E

μ (Lτ (X))) : 0 ≤ τ ≤ N is a stopping time
}

for L = (Lt )
N
t=0 ∈ AC p(�).

Lemma 7.1 Let L ∈ AC p(�). Then μ �→ vL(μ) is continuous w.r.t. AWp. In fact,
one has

|vL(μ) − vL(ν)| ≤ inf

{

E
π

(

max
0≤t≤N

|Lt (X) − Lt (Y )|
)

: π ∈ Cplbc(μ, ν)

}

. (32)

for every μ, ν ∈ Pp(�).

Proof Let μ, ν ∈ Pp(�) and assume that vL(μ) ≤ vL(ν). Moreover, let π ∈
Cplbc(μ, ν) and ε > 0 be arbitrary, and fix a stopping time τ satisfying Eν (Lτ (Y )) ≤
vL(ν) + ε. For u ∈ [0, 1] define

σ(X , u) := inf{t ∈ {0, · · · , T } : π(τ(Y ) ≤ t |X) ≥ u}
= inf{t ∈ {0, · · · , T } : π(τ(Y ) ≤ t |X1, . . . , Xt ) ≥ u},

where the equality holds by the properties of stopping times and since π is causal. We
then have that

∫

[0,1]
E

π
(
Lσ(X ,u)(X)

)
du =

T∑

t=0

∫

[0,1]
E

π
(
Lt (X)1π(τ(Y )≤t |X)≥u>π(τ(Y )≤t−1|X)

)
du

=
T∑

t=0

E
π
(
Lt (X)1τ(Y )=t

) = E
π
(
Lτ(Y )(X)

)
.
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As further σ(·, u) is a stopping time for every fixed u ∈ [0, 1] one has vL(μ) ≤∫
[0,1] E

π
(
Lσ(X ,u)(X)

)
du and therefore

vL(μ) − vL(ν) ≤ E
π
(
Lτ(Y )(X) − Lτ(Y )(Y )

)+ ε

≤ E
π

(

max
0≤t≤N

|Lt (X) − Lt (Y )|
)

+ ε.

Changing the role of μ and ν and using that ε > 0 and π ∈ Cplbc(μ, ν) was arbitrary
yields (32).

Now assume that AWp(μn, μ) → 0 and that πn ∈ Cpl (μn, μ) is less than 1/n
away from attaining the infimum AWp(μn, μ). Then Wp(πn, π) → 0, where π ∈
Cpl (μ,μ) is the identity coupling P(1�,1�) (μ) of μ. (A coupling between πn and
π is given by P((x, y) �→ (x, y, y, y)) (πn).) Because (x, y) �→ max0≤t≤N |Lt (x) −
Lt (y)| is a continuous function of growth of at most order p, we get that

E
πn

(

max
0≤t≤N

|Lt (X) − Lt (Y )|
)

→ E
π

(

max
0≤t≤N

|Lt (X) − Lt (Y )|
)

= 0.

Together with (32) this implies that vL is continuous w.r.t. AWp. �

Remark 7.2 The above proof reveals that if Lt is Lipschitz with constant c > 0 for
every t , then |vL(μ) − vL(ν)| ≤ c SCW1(μ, ν).

In order to show that the optimal stopping topology is finer than theWp-information
topology, we need to make a few preparations.

Lemma 7.3 Let A be a Polish space. Then the family

{

P(A) � μ �→ G

(∫

A
h1 dμ, . . . ,

∫

A
hL dμ

)

: L ∈ N, G ∈ Cb(R
L)

(hi )i≤L ⊂ Cb(A)

}

(33)

is convergence determining for the weak topology on P(P(A)), that is, a sequence of
probability measures (μn)n in P(P(A)) converges weakly to a probability measure
μ ∈ P(P(A)) if and only if

∫
F dμn → ∫

F dμ for all F in (33).

This follows from the Stone-Weierstrass theorem in case of compactA and readily
extends to general Polish spaces e.g. via Stone-Čech compactification.

Lemma 7.4 Let A be a Polish space. The family of functions

{

μ �→ G

(∫

A
h dμ

)

: h ∈ Cb(A), G ∈ Cb(R)

}

(34)

is convergence determining for the weak topology on P(P(A)).

123



1168 J. Backhoff-Veraguas et al.

Proof Let L , G, and (hi )i≤L as in (33). Moreover, let m ∈ R such that |hi | ≤ m for
all 1 ≤ i ≤ L and define I := [−m, m]L . Then I ⊂ R

L is compact and satisfies

(∫

h1dμ, . . . ,

∫

hL dμ

)

∈ I for all μ ∈ P(A) .

Let σ : R → R be some fixed bounded continuous sigmoid function such as σ(r) =
(1 + e−r )−1 or σ(r) = max(0,min(r , 1)).

By the universal approximation result of Cybenko [21, Theorem 2], the set

{

x �→
m∑

i=1

uiσ(vi · x + wi ) : m ∈ N, (ui )i≤m ⊂ R,

(vi )i≤m ⊂ R
L , (wi )i≤m ⊂ R

}

is dense in C(I ,R) w.r.t. the supremum norm. As a result, it is enough to replace G
in (33) by functions of the form x �→ ∑m

i=1 uiσ(vi · x + wi ). Evaluating the latter
function on the vector x = (

∫
h1 dμ, . . . ,

∫
hL dμ) yields

m∑

i=1

uiσ

(
L∑

k=1

vk
i

∫

hk dμ + wi

)

=
m∑

i=1

uiσ

(∫ (
L+1∑

k=1

vk
i hk

)

dμ

)

=
m∑

i=1

uiσ

(∫

h̄i dμ

)

,

upon defining vL+1
i := bi , wL+1 := 1, and finally h̄i := ∑L+1

k=1 vk
i hk for every i . The

result follows from Lemma 7.3. �
Lemma 7.5 The Wp-optimal stopping topology is finer than the Wp-information
topology.

Proof The choice LT := −ρ(x, x0)p − 1 and Lt := 0 for t �= T shows that conver-
gence in theWp-optimal stopping topology implies convergence of the pth moments.
Thus, we are left to show that convergence in the optimal stopping topology implies
convergence in Hellwig’s information topology. Then, by the part of Lemma 1.4which
has already been established, we obtain convergence in theWp-information topology.

Fix 1 ≤ t ≤ N − 1 and denote by A := X t
the first t and by B := X t+1 the

last N − t coordinates. As Cb(A) is convergence determining for P(A), and {ν �→
G(
∫
B h dν) : h ∈ Cb(B), G ∈ Cb(R)} is, by Lemma 7.4, convergence determining

for P(P(B)), it follows e.g. from [26, Proposition 4.6 (p.115)] that

{

(a, ν) �→ f (a)g

(∫

B
h(b) dν(b)

)

: f ∈ Cb(A), g ∈ Cb(R), h ∈ Cb(B)

}

, (35)

is convergence determining for the weak topology onP(A × P(B)). Since h in (35) is
bounded, one can actually take g in (35) to be compactly supported. But a continuous
compactly supported function can be approximated uniformly by piecewise linear
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functions. The latter are linear combinations of functions of the form z �→ min(c, dz)
where c, d ∈ R. It therefore follows that

{

(a, ν) �→ min

(

f (a) ,

∫

B
f (a)h(b) dν(b)

)

: f ∈ Cb(A), h ∈ Cb(B)

}

, (36)

is also convergence determining for the weak topology on P(A × P(B)). Let F be a
function in (36), defined via f ∈ Cb(A) and h ∈ Cb(B), and let m ∈ R be a bound
for | f | and |h|. Define L ∈ AC p(�) via

Lt := f ◦ X
t

LT := ( f ◦ X
t
) · (h ◦ Xt+1) and Ls := m + 1 for s �= t, T .

(Where X
t
is the projection onto the first t coordinates and Xt+1 is the projection onto

the remaining N − t coordinates.)
By dynamic programming (the Snell-envelope theorem) one has

vL(μ) = E
μ
(
min

(
f (X

t
),Eμ

(
f (X

t
)h(Xt+1)|Xt

)))

=
∫

A×P(B)

F d(disBA(μ))

for every μ ∈ P(A × B). This implies that the optimal stopping topology is finer than
the initial topology of μ �→ ∫

F d(disBA(μ)) over F in (36). As (36) is convergence
determining for the weak topology on P(A × P(B)), the optimal stopping topology
is indeed finer than the information topology, and as observed at the beginning of this
proof therefore the Wp-optimal stopping topology is finer than the Wp-information
topology. �
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