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1. Introduction and summary. Let y be a single observation on a p X 1
random vector which is distributed according to the multivariate normal dis-
tribution with mean vector 8 and covariance matrix I. Consider the problem of
estimating 6 when the loss function is the sum of the squared errors in estimating
the individual components of 0. Let G be a p X p real matrix. Then we will
prove that the estimate Gy is admissible if and only if G is symmetric, and the
characteristic roots of @, g; say, ¢ = 1,2, - - - , p, satisfy 0 = ¢: = 1, with equality
at one for at most two of the roots.

The proof concerning the characteristic roots uses the results of Karlin [4]
and James and Stein [3]. We give two proofs of the fact that Gy is inadmissible
when @ is asymmetrical. In the first proof we give an estimate @*y that is better
than Gy, where G* is a symmetric matrix. This not only adds to the practicality
of the result, but also enables us to resolve the question of which estimates are
admissible in the restricted class of estimates of the form Gy. The method of the
second proof, which utilizes a theorem of Sacks [6], leads to the following finding:
If Gy is admissible, then Gy must be a generalized Bayes procedure, where the
unique generalized prior distribution must be either a multivariate normal
distribution with mean vector zero and a specified covariance matrix determined
by @, or the product of a distribution which is multivariate normal over a
subspace of the parameter space and a distribution which is uniformly dis-
tributed over a subspace of the parameter space. This latter finding generalizes
the well known one dimensional case.

In Section 2 then the main results are proved. In Section 3 some remarks con-
cerned with generalizing the main results are given. We remark here that the
decision theory terminology used is more or less that of Blackwell and Girshick

[1].

2. Main results. In this section we prove the following:

TueorEM 2.1. The estimate Gy is admissible if and only if G is symmetric, and
the characteristic roots of G, say g. , satisfy, 0 < g: < 1, with equality at one for
at most two of the roots.

Proor. The proof will be given in two parts. In the first part we restrict our-
selves to symmetric matrices. In the second part we show Gy is inadmissible when
G is asymmetrical.

To prove the result for symmetric matrices we need the following:

LEmMA 2.1. Let G be any matriz and let P be any orthogonal matrix. Then ‘the
estimate (P'GP)y is admissible if and only if Gy is admassible.
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Proor. Let L(¥(0), 6(y)) be the loss for estimating ¢(8) by 8(y). Then we
write the risk as

p(¥, 8;0) = E,L(¥(0), 5(y)).

Now if P is orthogonal, if 1 , 61, are given, and if Yz , 3 are defined by ya(6) =
V1(P0), 8:(y) = 8.(Py) then

(2.1) p(Ya, 823 0) = EL(Y1(P6), 5:(Py))
= EnL(Y1(P0), 8:(y)) = p(¥r, 61; P(0)),

where the next to the last equality in (2.1) follows from the fact that Py under 6
has the same distribution as y under P6. Thus we have p(Y2, 6 ; 8)=
p(¥1, 81 ; P6), and from this follows that 8, is admissible for y» if and only if &,
is admissible for ¥, . If we set ¥1(0) = 0 and 8;(y) = Gy then we get GPy is
admissible for P if and only if Gy is admissible for 6. Also, since for our particular
loss function, we get L(Py, P3) = L(y, 8) it follows that P'GPy is admissible for
estimating 6 if and only if GPy is admissible for estimating Pd. Thus P'GPy is
admissible for estimating 6 if and only if Gy is admissible for estimating 6.
This completes the proof of the lemma.

We now return to the proof of the theorem for symmetric matrices. Since every
symmetric matrix can be written as P'DP, for P an orthogonal matrix and D a
diagonal matrix, it follows from Lemma 2.1, where we now let G be a diagonal
matrix, that we need only prove the desired results for diagonal matrices. Hence
consider a diagonal matrix D with diagonal elements d; . Then the estimate Dy
is admissiblefor0 < d; < 1,7 = 1,2, - - -, p, since Dy is the unique Bayes solu-
tion with respect to the prior distribution

d(0) = (2r) T2 N ™ P T 2 dos

where \; = (1 — d;)/d;. (Of course if any d; is zero, then the marginal prior
distribution for 6; puts all its probability at 8; = 0.) Now if any d; is negative
it is easy to verify that replacing d; by —d; leads to a better estimate. If any
d; > 1, it is easy to verify that replacing d: by 1 leads to a better estimate. Also
if three or more d; = 1, while all other d; satisfy, 0 < d; < 1, it follows i 1mme-
diately from Stein [3], that by replacing those d; = 1, by (1 — ( b — 2)/ 22,y
where k is the number of the d; that equal 1, we are led to a better estlmate
Hence for diagonal matrices, it only remains to prove that Dy is admissible if
one or two d; = 1, while for all others ,0 = d; < 1. Let d; = d» = 1, and
0=d;<1,fors = 3,4, ---, p, since the other cases can be treated similarly.
Now this fact also follows from Stein [3]. To see this suppose such a Dy is in-
admissible. Then there exists an estimate H'(y) = (h(y), he(y), -+, ho(y)),
such that H(y) is better than Dy. That is,

(2.2) (6, H(y)) = p(6, Dy),

for every 6 with strict inequality for at least some 6. If we evaluate the risk for
Dy, we find that (2.2) can be written as
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(2.3) 2P fa, (i(y) — 0:)°d®(y; 0, I) < 2 4+ 2 24 (d + 607(ds — 1)7),

where E, is the p dimensional sample space and ®(x; », ) is the probability
distribution function of a p X 1 random vector z, distributed as multivariate
normal with mean vector » and covariance matrix . Now if we multiply both
sides of (2.3) by []%s ()\;/21)*6_"9‘8/2 = ¢(0), and integrate with respect to

6;,7= 3,4, ---,p, over the entire range of these 6; , we get
e 20 [ 5, [((y) — 0)° + (ha(y) — 6:)°] 88 (y; 6, Dp(0) T4 df
(2.4) + 2 [ o [Z0 [n, (R — 05)" d2(y; 0, I)e(6)

s M2 dos < 2 + >2sds.

But D2 d; is the minimum value attainable for the second term on the left-
hand side of (2.4) and so after some integration we are led from (2.4) to

(2.5) Jo, [(a(y) — 00" + (ha(y) — 6:)"] dB(y; 8, 3) < 2,
where u’ = (61,0:,0, ---,0) and ¥ is a diagonal matrix with elements oy =1,
g = 1,006 = N\ + 1)/Ni, 2 =3, -+, p. Itis clear from (2.5) and sufficiency

then, that the estimates k1(y) and hs(y) need only be functions of y; and y, .
Hence it now follows from Stein [3], that h(y) = w1, h(y) = y2, and
hi(y) = diys, fori = 3,4, - -+, p. This proves that Dy is admissible and finishes
the proof of the first part of the theorem.

We now prove the second part of the theorem. That is, for any estimate Gy,
where G is asymmetrical, there exists a better estimate. In fact, given G' asym-
metrical, G*y is better where G* = I — [(G — I )'(@ — I)]. For note that the
risk for any estimate Gy may be written as

p(8, Gy) = E(Gy — 0)'(Gy — 6) = tr (G'G) + (G — I)"(@ — I)s.
Therefore we need only show that
(2.6) tr ('Q) > tr (G*G™).

But since (G* —I)(G* —1I) = (G— I)'(G@ — I), it follows that (2.6) is equiva-
lent to tr (G — I) > tr (G* — I) = —tr {[(G — I)"(G — D)}, or to

(2.7) tr{[(I — @' — O > tr (I —G).

Now for any real matrix, 4 say, tr [(A’4)} = tr A (see, for example [5], Sec-
tion 4.2). Furthermore, it can be verified that if A is asymmetric then

tr [(A"A)¥ > tr A. Hence (2.7) is true and the proof of the second part of the

theorem is complete.
A second proof of the fact that Gy is inadmissible for G asymmetrical is as

follows:
Suppose @ is not symmetric and Gy is admissible. Then it follows from the

generalization of a theorem due to Sacks [6], Remark 4, p. 767, that the 7th com-
ponent of Gy can be written as
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(28) TZigaye = [a, 6L 1151 8(0;)¢"*) d(8)/ [a, [T 1= B(65)e***'] di(0),

where gy is the (ik)th element of G, 8(6;) = ¢ % Q,is the p dimensional param-
eter space and £(8) = £(61, 0z, - - - , 0,), is some generalized prior distribution.
We now demonstrate that the (rs)th element of G must be equal to the (sr)th
element of G. For, if we differentiate the rth element of Gy with respect to y, , we
get from (2.8),

Gre = [, (1121 B(6;)€ ] d£(6) [a, 0,011 B(6:)e**] d&(0)/-
(2.9) (o, [(T12-1 B(8;)¢"*] d£(0))*
— Ja, 0.[T1 21 B(6;)¢"*] d£(0) fo, O[T T -1 B(0;)¢"*] d(6)/
(Jo, (T2 8(6) €41 d£(0))".

Similarly, if we differentiate the sth elemhent of Gy with respect to y, , we get gor
equal to the right-hand side of (2.9). Hence g., = g.r and the matrix G is sym-
metric. This is a contradiction, from which we may conclude that Gy, with G
asymmetric, is inadmissible.

The latter proof of the inadmissibility of Gy, for G asymmetrical suggests the
following:

TureoreM 2.2. If Qy is admissible, then Gy must be a generalized Bayes procedure.
The generalized prior distribution must be unique and be either a multivariate normal
distribution with mean vector 0 and covariance matrix X, where ¥ 1s determined by
the relation @ = 3(3 + I)™" or the prior distribution must be a product of a dis-
tribution which is multivariate normal over a subspace of the parameter space and a
distribution which is uniformly distributed over a subspace of the parameter space.

Proor. It follows immediately from Sacks [6] that if Gy is admissible it must be
a generalized Bayes procedure. Therefore the sth component of Gy can be written
asin (2.8), which in turn can be written as:

(2.10) S gave = (3/0ys) log, fa, [ T2 B(6,)¢%] di(0).

If we now take the indefinite integral of both sides of (2.10), and then consider
each side as the exponent of the constant e, we get for eachz = 1,2, --- , p,

(2.11) exp {gay/2 + DBk gy + Ci(Yr, Y2, 0 Y1, Y1, 0, Yp))
= fa, [T1% 8(6;)e**] d&(0),

where Ci(Y1, Y2, *** » Yiz1, Yit1, *** , Yp) is constant as a function of y;, but
may be a function of y1, ¥z, *** , Yiz1, Y1, -+, Yp - Since (2.11) is true for
eachi = 1,2, --- , p, we may determine the functions C: from the p equations.
That is, the set (2.11) yields

guyi/2 + S B ke Gty + Co(yr, Yoy = o0 5y Yica, Yirr, *0 0 Yp)
(212) = gii/2 + D Berii gn¥sk + Ci(Yr, Yo, o0 5 Yim1y Yiwts *** 5 Yo,
for ¢#4,4,j=1,2--,p
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- If we use the fact established earlier that G must be symmetric, we find that the
Equations (2.12) imply that

C‘(:‘/l;y‘-’, s Y, Yk, c 00, y?)
= Y Bt gl /2 + D Peirisstiiriomt GrsYrlYs + €
for some constant c. This, along with (2.11) imply that we have

(2.13) exp {3/'Gy} = [o, [I17-18(6,)¢"""] di(6).

We now recognize that the right-hand side of (2.13) may be regarded as a moment
generating function. Since the left-hand side may be regarded as the moment
generating function of a multivariate normal distribution (even if G is a singular
matrix), it follows that £(8) is uniquely determined. Also if all the characteristic
roots of G satisfy, 0 < ¢g; < 1, then £(6) is multivariate normal with mean vector
0 and covariance matrix ¥, where G = ¥(3 + I L (See [2], Lemma 2.2.) If
one or two of the g;: = 1 (say g,—1 = 1, g, =.1, since the other cases can be treated
similarly), then the prior distribution for 6 is determined from G as follows: Let
2z = Py and up = P9, where P is an orthogonal matrix such that G = P'DP, and
D is diagonal with elements g; . We define the prior distribution of u which in
turn determines the prior distribution for 6. Let then the prior distribution for

u be
dE(u) = (2r)~ 0" TL252 A% [T 2y de,

where \; = (1 — ¢:)/g: . Then the generalized Bayes solution with réspect to this
generalized prior distribution is E(8/y) = E(P'n/y) = P'E(u/y) = P'E(u/z) =
P'Dz = Qy. Thus we have shown the relationship between G and the prior dis-
tribution for which @ is a generalized Bayes procedure. This completes the proof
of Theorem 2.2.

3. Concluding remarks and generalizations. In this section we give some re-
marks which indicate generalizations of the main results. .

1. There is no loss in generality in assuming y to be a-single observation. If
Y1,%Y2,  * , Ya Were a random sample, then the development, applying to 7, the
sample mean, would follow.

2. The development also follows if ¥ is multivariate normal with mean vector
6 and covariance matrix ¢°I, where ¢° may be unknown. Some additional con-
ditions, as given in Stein [3], p. 366, are required for some of the boundary cases.

3. If we restrict the class of estimates to be linear, that is, of the form Gy, then
Theorem 2.1 is true with the revision that all the characteristic roots of G may be
equal to one. )

4. Also if we restrict the class of estimates to be linear, and relax the normality
assumption, the revision of Theorem 2.1, in Remark 3, is correct. This follows
since the risk function for such a problem depends only on second moments. It
is also correct if y has covariance matrix o’I, with ¢* unknown.

5. For non-homogeneous linear estimates, that is estimates of the form Gy + &k,
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for k a vector of constants, if all 0 < g; < 1, and G is symmetric then all such
estimates are admissible. If some of the g: equal to one, say g,_: and g, , then in
order for Gy + k to be admissible, the vector &£ would have to be such that the
last two components of Pk would be zero, where P is the orthogonal matrix such
that @ = P'DP, with D diagonal.

I would like to thank Professor Charles Stein and Dr. Colin Mallows for helpful
remarks.
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