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ABSTRACT The expansions of algebraic functions can be computed “fast” using the Newton Polygon
Process and any “‘normal” iteration Let M() be the number of operations sufficient to multiply two jth-
degree polynomuals It 1s shown that the first N terms of an expansion of any algebraic function defined by an
nth-degree polynomial can be computed in O(nM(N)) operations, while the classical method needs O(N™)
operations Among the numerous applications of algebraic functions are symbolic mathematics and combina-
torial analysis Reversion, reciprocation, and nth root of a polynomal are all special cases of algebraic
functions
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1 [Introduction

Let
P(W, z) = A (2)W" + -+ + Ay(2), 1.1

where the A,(z) are polynomials over a field A. In general we shall take A to be the
field of complex numbers; Section 7 1s an exception. (Many of the results hold for an
algebraically closed field of characteristic 0.) Without loss of generality we assume
Ay(z) = 0and A,(z) # 0. Usually, but not always, capital letters will denote polynomials
or series; lower-case letters will denote scalars.

The zero of (1.1), a function 8(z) such that P(5(z), z) = 0, 1s called the algebraic
function corresponding to P(W, z). Let z, be an arbitrary complex number, finite or
infinite It 1s known from the general theory of algebraic functions that S(z) has n
fractional power series expansions around z,. By the computation of an algebraic
function we shall mean the computation of the first N coefficients (including zero
coefficients) of one of its expansions. (This will be made precise in Section 3.) The
problem we study 1n this paper 1s the computation of one expansion of the algebraic
function Our results can be modified for computing more than one expansion or all
expansions of the algebraic function.

As described 1n most texts, the classical method computes algebraic functions by
comparison of coefficients It 1s not difficult to show that the method can take O(N™)
operations, where n is the degree of P(W, z) with respect to W. Hence the classical
method 1s very slow when n 1s large
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The main result of this paper is that every algebraic function can be computed fast.
Let M(N) denote the number of operations sufficient to multiply two Nth-degree
polynomials over the field A. Let C(N) be the number of operations needed to compute
any algebraic function We prove that C(N) = O(nM(N)). Since M(N) = O(N?) (or
M(N) = O(N log N) 1if the FFT 1s used), our algorithms are considerably faster than the
classical method even for moderate n. It is an open problem whether or not a general
algebraic function can be computed in less than O(M(N)) operations

The ““fast computation” of the title 1s because the coefficients of a “regular” problem
can always be computed fast by iteration (Section 5) and the general problem can be
reduced to a regular problem (Section 6) with cost independent of N

Brent and Kung [5] showed that the cost for reversion of a polynomial, which 1s a
very special case of an algebraic function (see discussion later in this section), 1s
O((N log N)*2M(N)). We stated above that the cost of expanding an algebraic function
is O(nM(N)). These results are reconciled by the observation that we are considering
the case that the degree n of P(W, z) with respect to Wis fixed and independent of N,
while Brent and Kung considered the case where n = N.

There are known examples of computation using Newton-like iteration 1n settings
such as algebraic number theory [8, 2], power series computation [10, 5], and the
Zassenhaus construction in p-adic analysis [21]. Computation of algebraic functions
raises certain issues not present in these other settings; see especially Section 6. As we
will see in Section 5, there 1s nothing special about Newton-like iteration; any ‘“‘normal
iteration” can be used.

Although the complexity results are stated asymptotically, Theorems 5.1 and 6.1
give nonasymptotic analyses of the algorithms. Hence various nonasymptotic analyses
can also be carried out.

We are interested in the computation of algebraic functions for a number of reasons.

These include
1. A number of problems where fast algorithms are known are special cases of

algebraic functions. (More details are given below.)

2. There are numerous applications. For example, many generating functions of
combinatorial analysts and functions arising in mathematical physics are algebraic
functions. The integrands of elliptic and more generally Abelian integrals are algebraic
functions. See Section 9 for an example.

3. Algorithms for expanding algebraic functions are needed in systems for symbolic
mathematics such as MACSYMA [14].

4. Algebraic functions are of theoretical interest in many areas of mathematics.
These include integration 1n finite terms [17], theory of plane curves [20], elliptic
function theory [6], complex analysis [1, 18], and algebraic geometry [12]. Algebraic
function theory is a major subject in its own right. (See, for example, [3, 7].)

We exhibit special cases of algebraic functions where fast algorithms are known.

A. Reciprocal of a polynomial. P(W, z) = A,(z)W — 1. (See Kung [10].) (Actually
Kung uses P(W, z) = W' — A,(z) which 1s not of the form (1.1), and allows A,(z) to be
a power series.)

B. n-th root of a polynomial. P(W, z) = W* — A(z). (See [4, Sec 13], where the
Az) 15 allowed to be a power series.)

C. Reversion of a polynomial Let F be a given polynomial with zero constant
term. We seek a function G such that F(G(z)) = z. To see that this 1s a special case of
an algebraic function, let F(x) = a,x™ + a,_x"* + --- + a,x. Then we seek G(x) such
that 4,G"(z) + --- + a,;G(z) — z = 0. This is an instance of our general problem with
Az)=a,i=1,...,n, Ayz) = —z. See [5].

We summarize the results of this paper. In Section 2 we show that without loss of
generality we can take z, = 0 and assume A4,(0) # 0. Notation is established and a few
basic facts from algebraic function theory are summarized in Section 3 The concept of
normal iteration 1s introduced in Section 4 and convergence of normal iterations for
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regular problems is established in Section 5 In Section 6 we state and analyze the
Newton Polygon Process, which reduces the general problem to a regular problem A
symbolic mode of computation with exact anthmetic is introduced in Section 7. Section
8 shows that C(N) = O(nM(N)). In Section 9 we give a number of examples, several of
which are more general than the theory of the preceding sections. Section 10 discusses
extensions of the work presented here.

In this paper we analyze algorithms under the assumption that the coefficient of
power series are ‘“‘nongrowing,” e.g all coefficient computations are done in a finite
field or in finite-precision floating point arithmetic An analysis dealing with varnable-
precision coefficients is yet to be performed.

2. Preliminary Transformations

Recall that we wish to compute one of the expansions around z, of the algebraic
function $(z) corresponding to

P(W, Z) = An(Z)Wn AR AO(Z)’

1.e. P(8(z), z) = 0. In this section we show that after two simple transformations we
need only deal with the case that z, = 0 and A4,(0) # 0. If we transform P(W, z) to
P(W, z), then §(z) 1s defined by P(S8(z), z) = 0.

Consider first the case z, = © Let

P(W, z) = z™P(W, 1/2), (2.1)

where m = max,.,<,(deg A,). By definition, an expansion of S(z) around z, = « is an
expansion of §(z) around z, = 0

Consider next the case that z, 1s any finite complex number. Define P(W, z) = P(W,
z + z5). An expansion of §(z) around the origin is an expansion of §(z) around z = z,.

For the remainder of this paper we shall therefore take zo, = 0.

Let A,(0) = 0. Then the algebraic function S(z) corresponding to P(W, z) has one or
more expansions with negative powers. Using the following transformation, we need
only deal with expansions with nonnegative powers. It is convenient to use ord notation.

Definition 2.1. Let A(z) be an ntegral or fractional power series. If A(z) # 0, then
ord(A) denotes the degree of the lowest degree term mn A(z). If A(z) = 0, then
ord(A) = ». O

Choose nonnegative integers u and X to satisfy the following conditions:

u + ord(A,) = nA, pwt+ordlA) =i, 1=1,...,n -1

Let P(W, z) = z*P(W/z*, z). Then the coefficients of P(W, z), A(z), are polynomials
with A,(0) # 0, and §(z) has only expansions with nonnegative powers. Since the
expansions of S(z) are those of S(z) divided by z*, 1t suffices to compute expansions of
5(z). For the remainder of this paper, we therefore assume that A,(0) # 0. (One should
note, however, that the results of Section 5 hold without the assumption.)

3. Facts from Algebraic Function Theory

We introduce some notation and state a basic result of algebraic function theory which
characterizes the expansions of the algebraic function corresponding to

P(W, z) = A (2)W" + - + A(2).

There exist r positive integers d,, ... , d, such thatd, + .-« + d, = n and the expansions
of the algebraic function are given by

Siu(2) = 2 5,8 21 (3.1)

forr=1,...,randj =0, ...,d, — 1, where ¢, is a primitive d,th root of unity and the
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s, are complex numbers. For each ¢, the expansions §,,, j = 0, ... , d, — 1, are said to
constitute a cycle.

The problem considered in this paper is to compute one expansion of an algebraic
function. For notational convenience, let the expansion be denoted by

S(z) = 2 5,2V,
1=0

Hence our problem can be formulated as that of computing the value of d and the
coefficients sq, 54, ... . (In this paper S(z) represents either an algebraic function or one
of its expansions, depending upon the context ) Note that since P(S(z), z) = 0, we have
P(sy, 0) = 0. Thus, s, is a zero of the numerical polynomal P(W, 0). We say our
problem is regular with respect to s, 1f 59 1s a simple zero of P(W, 0). (In this definition
we allow A,(0) to be 0.) For a regular problem, we have d = 1, that 1s, the expansion
S(z) 1s an integral power series. In Section 5 we shall show that a regular problem can
always be solved by iteration. In Section 6 we shall show how the general problem can
be transformed to a regular problem.

4. Normal Iterations

We mtroduce the concept of a normal numerical iteration We give a novel defimtion
of the order of a normal iteration which is convenient for the application to power
series tteration. In Section 5 we shall show that a normal teration with order greater
than unity will always converge if used for a regular problem

Let p(w) be the numerical polynomial P(W, 0), let s be a zero of p(w), and let e =
w® — s denote the error of the ith iterate. To motivate the definition of normal
iteration we first consider two examples.

Example 41 Newton iteration.

wttD = w® — p(w)/p '(W®).
From the Taylor series expansions
pw®) = p's)e™ + (p"(s)/2)(e)? + -
and
p'w®) = p's) + p'(s)e® + -+,

we have

e = (p"(s)/2p (V) + 2 ¢, (e, (4.1)
7=3

where the ¢, are rational expressions of the derivatives of p at s, with powers of p'(s) as
the denominators [
Example 4.2. Secant iteration.

w(1+1) -_— w(t) _— ((w(l) —_ w(t-l))/(p(w(l)) — p(w(l—l)))).p(w(l)).
Using the Taylor sernes expansions of p(w®) and p(w®~"), we obtain
€T = (p'(s)/2"())e%e 0 + X eyt (PP Y, “4.2)
1+Hiz3
2121

where the ¢, are rational expressions of the derivatives of p ats, with powers of p’(s) as
the denominators O
Consider now a general iteration

watd = l];(w('), we=n_ , wi—my (43)

which is defined 1n terms of rational expressions of p and its derivatives.
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Assume that by using Taylor series expansions, we can derive

0D = 2 Crp oy (€)1 -0 (U=, (4.4)
7,20

where the c,, ,,, are rational expressions of the derivatives of p at s.

Definition 4.1. i 1s said to be a normal iteration if the denominator of each ¢, ;.
is a power of p'(s). O

From (4.1) and (4.2) we have that both Newton iteration and secant iteration are
normal. In fact most commonly used iterations are normal. We prove that the classical
one-point inverse interpolatory iterations ¥, (see [19, Sec. 5.1]; in particular , is the
Newton iteration) are normal. Let g denote the inverse function to p and v® = p(w®).
Then

s = q{0) = q(v(z)) _ q'(v(”)v“) + 1/ q”(v‘”)(v"’)z T,
By definition of g,

s = P w) + 2 (= 1)/1Dg@w ) (p(w®)y

=p

and

e+ = 2 (= 1)1/ g @) (p (W)Y,

J=p

Note that
p(w(z)) = p’(s)e(l) + 1/2 pl'(s)(e(l))Z 4 e

and that g”(+»*) 1s a rational expression of p®(w®) for k = 1, .., j and has the
denominator (p’(w")y. Expanding the p®(w®) around s shows that , 1s a normal
1teration.

Definition 4.2. For a normal iteration § defined by (4 3) and satisfying (4.4), we
define the order p of ¢ by

p = supf{rir™t < jor™ + jrml + oo + o for all (o, ..., jm)
such that ¢, ,  #0 for some polynomual p}. O

By (4.1), it is easy to check that the Newton 1teration has order 2. In general it can
be shown that the one-point inverse interpolatory iteration i, has order p Consider
now the secant iteration. By (4.2), the order of the 1teration 1s given by

p=supfrirt=yr +lforally, | =1},

which 1s equivalent to p = sup{r|r® =r + 1}. Hence p is the positive root of r* = r + 1,

rLe.p=¢ =1 +vV5)/2.

5 Regular Problems: Normal Iterations on Power Series

We show how normal numerical iterations with order greater than unity can always
compute an expansion of an algebraic function for a regular problem. The main result
1s Theorem 51 As a corollary of this theorem we show that a Newton-like iteration
always ‘‘converges quadratically.” We also show the convergence of a secant-hike
iteration We end the section with an example of a convergent first-order 1teration.

We begin with some definitions. Recall that a meromorphic series is a power series
with a finite number of negative powers

Definition 5.1. Given a meromorphic series A(z) and a real number o, then by the
notation B(z) = A(z) (mod z°), we mean B(z) 1s a finite series consisting of all terms of
A(z) of degree less than o. O

Let ¢ be a normal numerical iteration Let the numbers w?, ., w®™ in (4 3), the
defining relation for , be replaced by meromorphic series W®(z), ... , We=™(z). Then
the iterate W¢*1(z) defined by
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W(l+l)(z) = l’l(w(”(z), e, W(l—m)(z))

is in general a meromorphic series, provided that it is well defined. Let E¥(z) =
W(z) — S(z) denote the error of the ith iterate.

Definition 5.2. We say an iteration on a meromorphic series converges if lim,_,
ord(E?) = . O

Our main result for regular problems 1s given by the following theorem.

THEOREM 5.1. If

(l) P(SO, 0) = 0, P'(SO, 0) #* O,

(i) ¢ is a normal iteration with order p > 1,

iii) WO(z) = 5, WO(2), ... , W(2) are polynonuals in z such that ord(E®) = p* for
1 =0, ..., m, where S(2) is the expansion starting with the term s,

@v) W(WOQ2), W), ..., We™(2)), i =m,m + 1, ... , is a well-defined mero-
morphic series,

then the iterates

WD) = YWOE), WD), ..., W™()  (mod ™)
satisfy the property that
ord(E(1+l)) > pr+l, (51)

and hence the iteration converges.

Proor. Let i = m. By (iv), ¢W™(z), W= (z), ... , WO(2)) is a well-defined
meromorphic series. Since (4.4) is derived by Taylor series expansions and since the
Taylor series expansion is valid over meromorphic series, we have that

Em+D(z) = 2 Ciop an(E™(2)o -+ (EO(z)ym (5.2)

holds for meromorphic series. The constant term of P'(S(z), z) is P'(se, 0), which 1s
nonzero by condition (i). Thus by conditions (1i) and (iii), (5.2) imphes that

ord(EMm+1) = min(]op"' + jlpm—l e 4 ]'m),

where the minimum is taken over all the (j,, ... , jm) such that ¢, ; is nonzero for
some P(W, z). By the definition of p in Section 4, we have

ord(Em+V) = pm+1,

By induction, (5.1) can be established for i = m + 1, m + 2, ..., using similar
arguments. The convergence of the iteration follows tmmediately from Definition 5.2. O

Remark 51. Thus well-defined normal iterations on regular problems always
converge This behavior is strikingly different from the behavior of these iterations on
numerical polynomials, where only local convergence is assured unless strong conditions
are imposed. Note that the expansion S(z) may converge in only a small disk around
the origin; we shall not pursue the domain of convergence here.

Remark 5.2 (5.1) shows that W® is a power series with nonnegative powers only
rather than a meromorphic series. Until this fact was established it was necessary to
work over the field of meromorphic series.

Remark 5.3. Observe that we do not define order for power series valued iteration
but only for normal numerical iterations.

Remark 5.4 Note that in Theorem 5.1 we need not assume that A,(0) # 0. This
fact will be used in the proof of Theorem 6.1.

We apply Theorem 5.1 to two spectfic iterations. We begin with a Newton-like
iteration, which 1s defined by (5.3) below Thus iteration 1s obtained from the numerical
Newton iteration In the power series setting we hesitate to call it Newton iteration,
since Newton {15] actually used a different method for computing the expansion His
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method computes one coefficient per iteration and n general is not as efficient as the
Newton-like iteration defined below. We will discuss the Newton-like iteration in some
detail since we anticipate 1t will be the most commonly used teration in practice. Here
and elsewhere we use the notation

P'(W, z) = (9P/dW)W, 2).

Recall that the numerical Newton iteration 1s a normal iteration of order 2. From
Theorem 5 1 we have
CoroLrarYy 5.1.1 If

(1) P(sy, 0) = O and P'(sy, 0) # 0,
@) WO =g, ie. ord(E®) =1,

then the iterates W generated by the Newton-like uteration

WetD(z) = W(2) — P(WO(2), 2)/P'(W®(2), 2) (mod ™) (5.3)
are well defined and satisfy
ord(E®) = 2 (5.4)

for1=0,1,2,...,and hence the iteration converges.

Proor. We need only show that the iterations W®(z) are all well defined. This
holds since for all 1 the constant term in P'W®, z)is P'(sy, 0), which is nonzero. 0O

Remark 5.5. If we define the valuation of a power series A(z) to be b=°"%4, where
b is any positive constant, then Corollary 5.1 follows from a known theorem in
valuation theory (see [2, Ch. II, Theorem 4.2]).

It is easy to show that if S(z) 1s a polynomial of degree ¢, then iteration (5.3) will
compute it in [log; q] + 1 iterations. By a slight modification of the hypotheses of
Corollary 5.1 we can replace the inequality (5.4) by equality.

CoroLLARY 5 2. If

() Plso, 0) = 0, P'(so, 0) # 0, P"(s9, 0) # 0,
(i) WO = s, ord(E®) = 1,

then the iterates generated by the Newton-like iteration satisfy ord(EV) = 2'. [
Corollaries 5.1 and 5 2 can easily be generalized to any one-point inverse interpola-
tory iteration s,
As our second example we consider a secant-like iteration. One has to be somewhat
careful in defining this iteration. A straightforward approach would generate 1terates by

We+h = W® — ((W(r) — W(:—l))/(P(W(z)) — P(W(l—l)))).P(W(l)) (mod Zd"ﬂ), (5_5)

where ¢ = (1 + \/5)/2. Then WD becomes undefined when W® = W¢P, This
happens when there is a “large” gap between the degrees of two consecutive terms, in
the expansion which we want to compute. A solution to the problem is given in the
following corollary. The idea is to use a perturbed W® in (5 5) so that the denominator
is guaranteed to be nonzero.

CoroLLARY 5.3. If

(l) P(SO; O) = Oa P’(SO’ O) ;& Os
(1) WO =g, WU =g, + 5,2,

then the iterates W' generated by
Weth = o — ((W(z) - W(l—l))/(P(W(z)) — P(W“‘”)))-P(W(”) (mod zF+:  (5.6)

are well defined and sansfy

' A result similar to Corollary 5 1 has been proved independently by Professor Lipson [13]
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ord(E") = F,,,,
uihere the F, 1s the 1-th Fibonacci number (i.e. F, =0, F,=1,and F,., = F, + F_,) and
WO = WO + ez .
Proor. Consider the case i = 1. Clearly, WO = WO 4 22 # WO and ord( WP —

W®) = F,. Since by the Taylor series expansion,

P(W®) — P(W©®) = P'(W®). (WD — WO) 4 ... |
and since P'(W) has a nonzero constant term P'(s,, 0), we have

ord(P(W®) — P(W®)) = ord(W?® — W®) < F,,
Hence (P(W®) % P(W®). This ensures that W is well defined by (5.6). Note that for
i = 1, (4.2) holds with E® replaced by E® = W® — §. Thus,

ord(P(W(”) — P(W®)) = ord(W“) - Wo) < F,.
= min(ord(E?V), F;) + ord(E®) = F, + F, = F,.

By induction, one can similarly prove that for: = 2, 3, ..., W® 1s well defined and
ord E®) = F,, O

Results similar to Corollary 5 3 hold for other sutably modified iterations with
memory (1.e. iterations with m > 0 1n (4.3))

So far we have only dealt with iterations of order greater than one We now consider
an iteration with order one Define

wirh = w® — pw?)/p'(w'®)
for: =0,1, 2, . Then
_p's)e® + ap"(s)e™" + -
p'(s) + p's)e® + -
= @'6)/p (6))e®e® = P"(5)/2p"NNEW) + st c,e VY,

e(1+1) - e(l)

5.7

1=0,l=1

where the c;,; are rational expressions whose denominators are powers of p’(s). This

implies that the iteration is normal and has order p = 1. We may use the 1teration on

power series and obtain the following theorem, which is an easy consequence of (5 7)
THeOREM 5.2 If

(l) P(S(), 0) = 09 P/(SO: 0) # 07
i) WO = 5,,

then the iterates W generated by
We(z) = WO(z) — P(WO(z))/P(WO(z)) (mod z*+?) (5.8
are well defined and sansfy
ord(E®) =1 + 1,

and hence the ueration converges. 0O
The 1teration (5 8) can be used, for example, to find the nitial iterates of an 1teration
with memory

6. The General Problem- Newton Polygon Process

Recall that our general problem is to compute the value of d and the coefficients s, s,,
... of an expansion

U8

S(z) =

SI.ZI/d

0
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of the algebraic function corresponding to a given
P(W, z) = A, (2)W" + -« + Ay2).

In this section we show that the general problem can be reduced to a regular problem
by transforming P(W, z) to some P(W, z). The regular problem can then be solved by
normal iterations, as described 1in Section 5

Since P(sq, 0) = 0, s, can be obtained by finding a zero of the numerical polynomial
P(W, 0). In this section we assume that finding a zero of a numerical polynomial is a
primitive operation * (This assumption will be removed n Section 7 by carrymng the
zeros symbolically ) If P'(s,, 0) # 0, we have a regular problem solvable by a normal
iteration Hence we assume that P'(sy, 0) = 0. Then s, 1s a multiple zero of the
numerical polynomial P(W, 0) and there 1s more than one expansion of the algebraic
function starting with s,, We would not expect an iteration starting with W® = s, to
converge since the iteration would not “know” to which expansion 1t should converge.
Intuitively the convergence of an 1teration requires that it start with an initial segment
of a unique expansion. This suggests that we find an initial segment of a umque
expansion starting with s5,. The existence of the segment is guaranteed only if no two
expansions coincide, i.e. the discrimmant D(z) of P(W, z) with respect to W is not
identically equal to zero. Therefore, in this section we shall assume that D(z) # 0. The
assumption holds when P(W, z) is irreducible or simply when P(W, z) is square-free
[20, Theorem 3.5]. Hence we can make this condition hold by using factorization or
square-free decomposition algorithms, but we do not pursue this here.

A classical method for finding an imtial segment of a unique expansion uses a
geometric aid known as the Newton Polygon, which provides a convenient tool for
analyzing a set of inequalities. (Some authors refer to Puiseux’s Theorem because of
the work of Puiseux [16], but clearly the idea originated with Newton [15, p. 50].) The
method has not been subject to algorithmic analysis

We state the Newton Polygon Process adapting, with some modifications, the
description n [20] In Theorem 6 1 we show that the Newton Polygon Process
transforms the general problem to a regular problem. Theorem 6.1 also gives the
connection between the number of identical terms 1n at least two expansions and the
number of Newton Polygon stages Theorem 6 2 gives an a prion bound on the number
of stages which differs by at most a factor of two from the optimal bound Example 6 1
shows that 1n general P(W, z) must be transformed to a new polynomial P(W, z); 1t is
not enough to compute an nitial segment of a unique expansion and use it as the inmtial
iterate for a normal iteration on the original polynormal P(W, z).

In the following algorithm let A, ,(z) be the coefficient of W in P(W, z). If A, 1(z) #
0, let g, ;z*+ be the lowest degree term 1n A, ,(z).

NEWTON POLYGON PROCESS

N1 k<1, P(W, z) « P(W, z).

N2 Plot the pomts f,, = (1, a,,) on the xy plane for ¢ such that A, ,(z) # 0 Join fo, to f,, with a convex
polygon arc each of whose vertices 1s an f,, and such that no f,; hes below any line extending an arc
segment

N3 K k = 1, choose any segment y + y,x = B, of the arc If k > 1, choose a segment with y;, > 0. (Such a
segment always exists ) Let g, denote the set of indices 1 for which f, , ltes on the chosen segment Solve
the polynomial equation

2 aux =0 (6.1)

Let ¢, be any of the nonzero roots (Such a nonzero solution always exists )
N4 If ¢; 1s a simple zero, go to N6, else go to NS
N5 P (W, z) « z78-P (2 (W + ¢;), z), k <k + 1 Goto N2
N6 ¢« k (Hence ¢ represents the number of stages taken by the Newton Polygon Process )

P(W,2) « 275 P(z" W, z), P(W,z) < P(W,:z9,

*le zeros ot a polynomial can be computed to any prespecified precision
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where d 1s the smallest common denominator of yy, ... , y,. (y; may be zero. If y, = 0 we assume that y,
has one as 1ts denommator ) Terminate the process

LEMMA 6.1. After the Newton Polygon Process terminates, the following properties
hold:

(i) The coefficients of P(W, z) are polynomials in zZ.
(i) ¢, is a simple zero of the numerical polynomial P(W, 0).

Proor. [t is easy to verify (1). To prove (ii) we show that

PW,0) = 2 o
1€9,
For notational convenience, let o, = o, a,;,=a,, B, =8, v/ =7v, g =g, and let g
denote the set complementary to g with respect to {0, 1, ... , n}. Let

P(W, z) = (@pz* + Qu(2))W" + -+ + (ap** + Qof2)),
where ord(Q,) > «,. Then

n
PW,z)= 2 a W + 2 agz W + > 27 Q ()W,
=g =0

€9

Since B=oa,+1y<ao +jy, i€Eg, VjEgG,
P(W,0) = P(W,0) = > a,W. O

€9
THEOREM 6.1. After the Newton Polygon Process terminates, the following proper-
ties hold:

({) The general problem of computing an expansion S(z) of the algebraic function
corresponding to P(W, z) has been reduced to the following regular problem: Compute
the expansion S(z) starting from c, for the algebraic function corresponding to P(W, z).
Then let

—1
S(z) = 2 C, 2 N 4 gt '+7¢.S‘(led)'
=1

@) S(z) is the unique expansion with starting segment » {_, ¢zt ™,

(iii) There 1s more than one expansion which starts with Y i_,¢,2"" ™ for every
] <t That is, there are at least two expansions which coincide in their first t — 1terms.

Proor. By Lemma 6.1, we conclude that the problem of computing S@z) is
regular. (Note that the leading coefficient of P(W, z) may vanish at z = 0. See Remark
5.4.) (i) follows from P(W, z) = P(W, z%) and

-1
PW, Z) = =B+ +B')P<EC,ZY'+ TH o gnt U, z).
=1

(ii) and (ii1) hold since the Newton Polygon Process does not termmate until ¢, is a
simple zero. O

Since there is only one expansion which starts with Y ¢{_, ¢,z* ", we might expect
that if this segment 1s taken as the initial iterate for a normal iteration then the iteration
on the original polynomial P(W, z) rather than on the transformed polynomial P(W, z)
will converge. The following example shows this not to be the case; in general we must
use the transformed problem

Example 6.1. This problem appears in [9, p. 29], although it 1s not used to
illustrate the pont we wish to make here. Let

PW,z2)=W2— 2+ z+2 )W+ 1+ 2z + Yaz? + z.

The two expansions are
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S$i(2)=1+Yoz+ 2224 oo | Sy(z) =1+ Y2z — 232 4 v |

Suppose that we want to compute S,(z) by the Newton-like 1teration. If we take W@ =
1+ Y2z + 242 m

W(l+l) = W(l) — P(W(l)’ Z)/P'(W(l)’ Z),

we find W® = 1 + Y2z — Y4252 + ... | W differs from S; even in the coefficient of
232! Although there is only one expansion starting with W®, namely, S;, the Newton-
like iteration starting from W@ does not converge to §,. O

We 1llustrate the Newton Polygon transformation, the transformations of Section 2,
and the 1terative process with another problem 1n [9, p. 31].

Example 6.2. Find all the expansions of the algebraic function corresponding to
P(W, z) = —W? + W + z? around z, = . The first transformation of Section 2
converts P(W, zjto —z2W? + zW + 1, which is then converted by another transformation
to ~W?* + zW + z. The Newton Polygon Process yields t = 1, 8, = 1, v, = Y3,¢; =
1,d = 3, and P(W, z) = —W3 + W + 1. Take W@ = 1. Then the Newton-like
iteration (5.3) applied to P(W, z) gives

WO =1+ 2z/3, W® =1+ 2/3 - 23/81.
Thus
S(z) = 21/351(21/3) = zU8 4 22873 — 4B /8] + «ov |

Let T(z) = S(z)/z = z72% 4 z~13/3 — z'3/81 + -.-. Then an expansion of the given
problem is

T(1/z) = 223 + Ys2'® — VYmz7!B + v,
The other two expansions are
0223 + (62/3)z'2 — (0/81)z713 + -+, 622%3 + (0/3)z13 — (6*/81)z713 + ---,

where 6 1s the primitive third root of umity. O

The following theorem gives an a priori bound on the number ¢ of stages in the
Newton Polygon Process which differs by at most a factor of two from the optimal
bound.

THEOREM 6.2.

t <ord(D) + 1. (6.2)
Furthermore for all t there exist problems for which t = /2 ord(D).
Proor. The theorem is trivial if 1 = 1. We assume that t = 2. Then by (in) of

Theorem 6.1, there are at least two series expansions S; and S, which agree in the first
t — 1 nonzero terms. Write

o o
Sl N 2l Sta Za‘/dly SZ = 2 s2,b.'zb‘/d2’
1= =1

where the {a}, {b,} are strictly increasing nonnegative integer sequences such that none
of the s, , 525, vanish and s,, = sy, a,/d, = b,/d, for1 =1, ... , ¢t — 1. Without loss
of generality, assume d, < d,. Note that the cycle which contains S, has the series

©

RN .
Sl,;_ & S1,a; gjla“za'/dli ] = O, ’dl - 1’
=1

and the cycle which contains S, has the series

w©

Sgd = ZSg,b‘szbi'zb‘/dz, j = 0, cee g dg - 1,
1=1

where
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é’l - ezrr\/—l/dl and 62 = eZﬂV—lldz_

Note that we do not rule out the possibility that S, and S, are in the same cycle and that
therefore the cycles {S, ;} and {S,} are identical. Since

é‘.lla, = e(21'r\/—lld1)m,, g:zb; = e(2‘n’\/—l/dz)lbr

anda,/d, = b,/d, fori =1, ... ,t — 1, §;, and S,, agree in the firstr — 1 terms forj =
0, ...,d, — 1. Hence,
ord(S,, — 8s,) = (b + 1)/d, = a,,/d; + 1/d,.

Let

d;—1
M=Q@M—wm

Then
ord(D) = ord(V) = d,(a,_,/d, + 1/ds) = a,, + 1.

Since the {a,} 1s a strictly increasing nonnegative integer sequence, a,, = ¢ — 2. Thus,
ord(D) =t — 1, which establishes (6.2). Let

8,2 =2 2, Sz) = 8i(2) — 21,
=0

and
P(W, z) = (W — §,(2))(W — $,(2)).

By Theorem 6.1, the Newton Polygon Process has ¢ stages. ord(D) = ord((S; — S,)%) =
2, which completes the proof O

Theorem 6.2 gives a computable a priori bound but requires the computation of
ord(D). A very cheap bound is given by

CoroLLARY 6 1. t=m(2n — 1) + 1, where m = maxgc,<,(deg A).

Proor. D(z) is a determinant of order 212 — 1 whose elements are polynomials of
maximal degree m. Hence D(z) 1s a polynomal of degree at most m(2n — 1). Since D(z)
cannot vanish identically, ord(D) = m(2n — 1). O

7. A Symbolic Mode of Computation

The Newton Polygon Process involves computing roots of polynomial equations (6.1).
Instead of actually solving the equations, 1n this section we carry the roots symbolically
through therr minimum polynomials. We assume that the underlying field A is one
where exact arithmetic can be performed, such as a finite field or the field Q of rational
numbers Then the expansions can be computed symbolically with exact arithmetic.
The following example, where A is taken to be @, will illustrate the 1dea.

Example 7.1.

P(W,z) = W? + (z + 22)W? — 222W — 22°.

We shall compute an expansion of the algebraic function corresponding to P(W, z),
using exact rational arithmetic. The first stage of the Newton Polygon Process yields y,
=1, 8 =3, and 3 +c¢2—2c,—2=0. Since ¢} +c?2—2,—2=(%-2)(c; +
1), ¢; = V2, —J2, or —1. Suppose that we are interested in the equation starting with
V2 or —/2. Instead of using an approximation to 2 or —/2, we carry ¢, symbolically
through its minimal polynomial M,(x) = x2 — 2. That is,

t-2=0. (7.1

Since the equation has only simple zeros, the Newton Polygon Process terminates with
t =1, and
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P(W,z) = z3P(zW,2) = W3 + (1 + z) W2 — 2W — 2.

We use the Newton-like iteration (5 3) to compute S(z) such that P(S(z), z) = 0. Let
W®(z) = ¢,. Then

WP(z) =¢;, — (¢} — (1 + z)c} — 2¢, — 2)/(B¢? + 2(1 + z)e; — 2) (mod 22).
Using (7.1), we obtain
W®(z) = ¢, ~ Y3z,

Similarly all coefficients of x* in W(z) can be represented as linear polynomals in c,
with rational coefficients. By (i1) of Theorem 6.1, a solution to the given problem is

S$(z) = z8(z) = ¢z — V3z% + o+,

which represents both the numerical expansions starting with 2z and ~/2z. O

In general, when the Newton Polygon Process is performed, ¢;, k = 1, ... , ¢, can be
carried symbolically through its minimum polynomial M,(x) over Q(cy, ... , Cx-,). Then
all the coefficients of the expansion S(z) are in the extension field Qf(c,, ... , ¢,). To
simplify the computation, one can compute from M,(x) the minimum polynomial M(x)
for ¢, where ¢ 1s a primitive element of the extension field Q(cy, ... , ¢, i.e. Q) =
Q(c,, ..., ¢). Then the coefficients of the expansion S(z) can all be represented by
polynomials of the form !5} qc!, where h = deg M and ¢, € Q. S(z) can be
computed entirely with exact arithmetic. Furthermore, S$(z) gives a simultaneous
representation of h numerical expansions; S(z) can be used to produce h numerical
expansions by substituting zeros of M(x) for ¢ in the coefficients of §(z). (This implies
that & = n.)

8. Asymptotic Cost Analysis

In this section we analyze the cost of computing the first N terms (including zero terms)
of an expansion for large N. Since the Newton Polygon Process is independent of N, by
Theorem 6.1 we can without loss of generality assume the problem is regular. Further-
more, since the asymptotic results will be the same for any normal iteration with order
greater than one, we shall assume that the iteration (5.3) is used. Our cost measure is
the number of operations used over the field A. If we carry zeros symbolically as
described in Section 7, then we work over an extension field A(c) rather than A. If the
mimmum polynomal for ¢ 1s of degree k, then operations 1n A(c) are more expensive
than in A by a factor of O(h) or O(h?). Since £ is independent of N, in our analysis we
shall not be concerned with whether or not zeros of polynomials are carried symbolically.

Let M(j) be the number of operations needed to multiply two jth-degree polynomials
over the field A Assume that M(j) satisfies the following mild condition: There are «,
B € (0, 1) such that

M([aj]) = BM(j D) (8.1)
for all sufficiently large ; Observe that W(z) 1s a polynomual of degree at most 2' — 1,
and that the computing Wt+P(z) by (5.3) takes O(nM(2' — 1)) operations. Hence the
total cost of computing N terms in the expansion is O(n(M(N) + M(IN/2]) + M(IN/4))
+ «-)), which 1s O(nM(N)) by condition (8.1). (See [5, Lemma 1 1].) We summarize
the result of this section 1n the following.
THEOREM 8 1  The first N terms of an expansion of any algebraic function can be
computed in O(nM(N)) operations over the field A. O

9 Examples

We choose as our examples calculation of the Legendre polynomials through their
generating function, solution of an equation with transcendental coefficients, and
calculation of the expansion of a complete elliptic mtegral. Although the first two
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examples are not covered by the theory of this paper, they are covered by easy
extensions of our results. Examples 9.1 and 9.3 are illustrations of the many applications
of algebraic function expansions.

We use the Newton-like iteration (5.3) in all three examples with the notation:

P, = P(W%(2), z), P, = P'(W9(2),z2)= (8 P/a WONW®, z%), § =p,/P].

Within each iteration step we exhibit enough terms so that W”(z) can be computed to
2" — 1 terms.

Example 9.1. Legendre polynomials. The generating function for Legendre poly-
nomials,

(1—-2z+ 2= Lz,
1=0

satisfies
PW,z, ) =1 — 2tz + z2)W? - 1,
Take W® = 1. Then

Py= =2z, P,=2, 8,=—tz, WV =1+ 1tz
Pi=(1 =352 + (& - 25z%, P, =201 — t2), & = 21 — 3%)22 + Vo3 —
5t%)z3, W@ =1 + ¢z + Y2(3¢2 — 1)22 + 1/2(56 — 306)z3.

Hence the first four Legendre polynomials are
L@ =1, Lyt)=¢, Lyt)="12032~1), and Lyt) = "/2(5° - 31).

B. Neta, a student at Carnegie-Mellon University, computed the first 32 Legendre
polynomials by this iteration using MACSYMA

This example is for illustration; it may not be the best way to compute Legendre
polynomials. [J

Example 9.2.

P(W,z) = W2 + (z + )W + sin z.
Note that sin z = z — z3/3! + z3/5! — z?/7' + ---. Take W = 0. Then

P0=2, Pq’)::l, 80=Z, W“’=—z;
P, =-2%6, Pi=1, & = —z3/6, W®= -z + z3/6. O

Example 9.3. A complete elliptic integral. Define the integral by

2
flo = f (1 — ¢ sin® )72 d6.

0
Let

P(W,2) =1 —2)W2 -1, z=¢sin® 6.
Take W@ = 1. Then
Py=—z, Py=2, 8,=—-z/2, WO =1+ z/2;

Py = =3z — Yaz®, P{=2-2z, & = —3s2% — Shez®,
w® =1+ z/2 + 3/s22 + 5/162°.

W® is an initial segment of the algebraic function $(z) corresponding to P(W, z). Since

w2
o= f S(2sin®0)d6,
0
f@) = mo + Yomt® + 3sma* + Shiemyt® + ---

where



All Algebraic Functions Can Be Computed Fast 259

™2
7y =f sin%6de.
0

For this simple example the result can be obtained directly by a binomial expansion,
but this cannot of course be done in general. [

10 Extensions

Our aim in this paper has been to show that algebraic functions form an interesting and
useful domain in which to do algorithmic and complexity analysis and to exhibit fast
algorithms for computing an expansion of an algebraic function. In this initial paper
we have restricted ourselves to the “pure” case of algebraic functions where P(W, z) is
a polynomial in W with polynomial coefficients We list some additional problems
which we hope to discuss 1n the future. For a number of these our results (especially on
regular problems) apply with minor modifications; others will require major new
results.

1. Let W be a scalar variable but take z to be a vector variable. Results similar to
those 1n Section 5 should hold. We have seen this case in Example 9.1.

2. Let the coefficients of P, A,(z), be power series (rather than polynomials)
Results similar to those 1n Section 5 should hold. See Example 9.2

3. Let both W and z be vector varables. This 1s the fully multivariate case, which,
except for regular problems, 1s in general very difficult

4. The domain over which we have worked is not algebraically closed since problems
with polynomual coefficients lead to solutions represented by fractional power series. If
the coefficients are fractional power series, the domain 1s algebraically closed (Puiseux’s
Theorem; see, e.g. [12]), and this is therefore a natural setting. The Newton-like
iteration is still valid on fractional power series for regular problems.

5. The field A need not be restricted to the complex number field. It is of particular
interest to extend all the results to finite fields.

6. An important computational model 15 the “fully symbolic” one where the
coefficients of the expansion series are expressed as functions of the input coefficients.

7. Perform complexity analysis which includes the cost due to the “growth” of
coefficients.
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