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operations Among  the numerous apphcatlons of algebraic functions are symbolic mathematics  and combina- 
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1 Introduction 

Let 

P(W, z) = A,(z)W" + ... + Ao(z), (1.1) 

where the A,(z) are polynomials over a field h.  In general we shall take h to be the 
field of complex numbers;  Section 7 is an exception. (Many of the results hold for an 
algebraically closed field of characteristic 0.) Without loss of generality we assume 
Ao(z) ~ 0 and An(z) -~ O. Usually, but not always, capital letters wdl denote polynomials 
or series; lower-case letters will denote scalars. 

The zero of (1.1), a function S(z) such that P(S(z), z) ~ 0, is called the algebraic 
function corresponding to P(W, z). Let Zo be an arbitrary complex number ,  finite or 
infinite It is known from the general theory of algebraic functions that S(z) has n 
fractional power series expansions around z0. By the computation o f  an algebraic 
function we shall mean the computation of the first N coefficients (including zero 
coeffmients) of one of its expansions. (This will be made precise in Section 3.) The 
problem we study m this paper ts the computation of one expansion of the algebraic 
function Our results can be modified for computing more than one expansion or all 
expansions of the algebraic function. 

As described in most texts, the classical method computes algebraic functions by 
comparison of coeffloents It ~s not difficult to show that the method can take O(N n) 
operations, where n is the degree of P(W, z) with respect to W. Hence the classical 
method is very slow when n is large 
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The main result of this paper is that every algebraic funct ion can be computed  fast. 
Let M(N)  denote the number of operations sufficient to multiply two Nth-degree 
polynomials over the field z~. Let C(N) be the number of operations needed to compute 
any algebraic function We prove that C(N) = O(nM(N)) .  Since M(N)  = O ( N  ~) (or 
M(N)  = O ( N  log N) If the FFT is used), our algorithms are considerably faster than the 
classical method even for moderate n. It is an open problem whether or not a general 
algebraic function can be computed in less than O(M(N))  operations 

The "fast computation" of  the title is because the coefficients of a "regular" problem 
can always be computed fast by iteration (Section 5) and the general problem can be 
reduced to a regular problem (Section 6) with cost independent of N 

Brent and Kung [5] showed that the cost for reversion of a polynomial, which ts a 
very special case of an algebraic function (see discussion later m this section), is 
O ( ( N  log N)II2M(N)). We stated above that the cost of expanding an algebratc function 
is O(nM(N)) .  These results are reconciled by the observation that we are considering 
the case that the degree n of  P ( W ,  z) with respect to W is fixed and independent of  N, 
while Brent and Kung considered the case where n = N. 

There are known examples of computation using Newton-like iteration m settings 
such as algebraic number theory [8, 2], power series computation [10, 5], and the 
Zassenhaus construction in p-adlc analysis [21]. Computation of algebraic functions 
raises certain ~ssues not present in these other settings; see especially Section 6. As we 
will see in Section 5, there ~s nothing special about Newton-like iteration; any "normal 
iteration" can be used. 

Although the complexity results are stated asymptotically, Theorems 5.1 and 6.1 
give nonasymptotic analyses of the algorithms. Hence various nonasymptot tc  analyses 
can also be carried out. 

We are interested in the computation of algebraic functions for a number of reasons. 
These include 

1. A number of problems where fast algorithms are known are special cases of 
algebraic functions. (More details are given below.) 

2. There are numerous applications. For example, many generating functions of 
combinatorial analysis and functions arising in mathematical physics are algebraic 
functions. The integrands of elliptic and more generally Abelian integrals are algebraic 
functions. See Section 9 for an example. 

3. Algorithms for expanding algebraic functions are needed in systems for symbolic 
mathematics such as MACSYMA [14]. 

4. Algebraic functions are of  theoretical interest in many areas of  mathematics. 
These include integration in finite terms [17], theory of plane curves [20], elliptic 
function theory [6], complex analysis [1, 18], and algebraic geometry [12]. Algebraic 
function theory is a major subject in its own right. (See, for example, [3, 7].) 

We exhibit special cases of algebraic functions where fast algorithms are known. 
A .  Reciprocal o f  a polynomial .  P ( W ,  z) = A i ( z ) W  - 1. (See Kung [10].) (Actually 

Kung uses P ( W ,  z) = W -1 - A l ( z )  which is not of the form (1.1), and allowsAl(z) to be 
a power series.) 

B.  n-th root o f  a polynomial .  P ( W ,  z) = W n - Ao(z).  (See [4, Sec 13], where the 
Ao(z) is allowed to be a power series.) 

C. Reversion o f  a po lynomta l  Let F be a given polynomial with zero constant 
term. We seek a function G such that F(G(z)) = z. To see that this Is a special case of 
an algebraic function, let F(x) = anX n + an_iX n-~ + "'" + a~x. Then we seek G(x) such 
that anGn(z) + "'" + a~ G(z) - z = 0. This is an instance of  our general problem with 
As(z) = al, i = 1, ... , n ,  Ao(z) = - z .  See [5]. 

We summarize the results of this paper. In Section 2 we show that without loss of 
generality we can take z0 = 0 and assume An(0) ~ 0. Notation is established and a few 
basic facts from algebraic function theory are summarized in Section 3 The concept of 
normal iteration ~s introduced in Section 4 and convergence of normal iterations for 
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regular problems is established in Section 5 In Section 6 we state and analyze the 
Newton Polygon Process, which reduces the general problem to a regular problem A 
symbohc mode of computation with exact arithmetic is introduced in Secuon 7. Section 
8 shows that C(N) = O(nM(N)).  In Section 9 we gwe a number of examples, several of 
which are more general than the theory of the preceding sections. Section 10 discusses 
extensions of the work presented here. 

In this paper we analyze algorithms under the assumption that the coefficient of 
power series are "nongrowmg," e.g all coefficient computations are done in a finite 
field or in finite-precision floating point arithmetic An analysis deahng with varmble- 
precision coefficients is yet to be performed. 

2. Prehminary Transformations 

Recall that we wish to compute one of the expansions around z0 of the algebraic 
function S(z) corresponding to 

P(W, z) = A , ( z ) W  n + "" + Ao(z), 

l.e. P(S(z), z) ~ O. In this section we show that after two simple transformations we 
need only deal with the case that z0 = 0 and A,(0) ~ 0. If we transform P(W, z) to 
P(W, z), then S(z) is defined by P(S(z), z) -~ 0. 

Consider first the case z0 = ~ Let 

P(W, z) = zme(w ,  l / z ) ,  (2.1) 

where m = max 0 . . . .  (deg A,). By definition, an expansion of S(z) around z0 = oo is an 
expansion of ,~(z) around zo = 0 

Consider next the case that z0 is any fimte complex number.  Define ~P(W, z) = P(W, 
z + Zo). An expansion of S(z) around the origin is an expansion of S(z) around z = z0. 

For the remamder o f  thts paper we shall therefore take Zo = O. 
Let An(O) = 0. Then the algebraic function S(z) corresponding to P(W, z) has one or 

more expansions with negatwe powers. Using the foUowmg transformation, we need 
only deal with expansions with nonnegative powers. It is convenient to use ord notation. 

Definition 2.1. Let A(z)  be an integral or fractional power series. If A(z)  -~ O, then 
ord(A) denotes the degree of the lowest degree term m A(z) .  If A(z)  -~ O, then 
ord(A) = ~. [] 

Choose nonnegative integers/z and h to satisfy the following conditions: 

/x +ord(An)  = nh, /z + o r d ( A 0 _ > i h ,  t = 1 , . . .  , n  - 1. 

Let PP(W, z) = z "P(W/z  ~, z). Then the coefficients o f / ' (W,  z), A,(z), are polynomials 
with A,(0) -~ 0, and S(z) has only expansions with nonnegative powers. Since the 
expansions of S(z) are those of S(z) divided by z ~, it suffices to compute expansions of 
S(z). For the remainder o f  thts paper, we therefore assume that An(O) ~ O. (One should 
note, however, that the results of Section 5 hold without the assumption.) 

3. Facts from Algebraic Functton Theory 

We introduce some notation and state a basic result of algebraic function theory which 
characterizes the expansions of the algebraic function corresponding to 

P(W, z) = An(z)W ~ + ... + Ao(z). 

There exist r positive integers d~, ... , dr such that d~ + ... + dr = n and the expansions 
of the algebraic function are given by 

oQ 

S,~(z) = ~ s,.t~ z" z ua' (3.1) 
/ = o  

for t = 1 . . . .  , r and j = 0 . . . .  , d, - 1, where s ¢, is a primitive dJh  root of unity and the 
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s,,l are  complex  numbers .  Fo r  each l ,  the expansions  S, . ,  / = 0, ... , d, - 1, are  said to 
constituce a cycle. 

The p rob lem cons idered  in this paper  is to compu te  one  expansion of  an algebraic  
funct ion.  For  nota t ional  conven ience ,  let the expansion be deno ted  by 

o o  

S(~) = ~ s~. ~"~. 
/=0 

H e n c e  our  p rob lem can be fo rmula ted  as that  of  comput ing  the value  of  d and the 
coeff icients  So, s~, . . . .  (In this paper  S(z) represents  e i ther  an algebraic  funct ion or  one  
of  its expansions ,  depend ing  upon the contex t  ) No te  that  since P(S(z),  z) =- O, we have  
P(so, 0) = 0. Thus ,  So is a zero  of  the numerica l  po lynomml  P(W,  0). We  say our  
p rob lem is regular with respect  to So If s0 is a s imple  zero  of  P(W,  0). (In this def ini t ion 
we al low A,(0)  to be 0.) For  a regular  p rob lem,  we have d = 1, that is, the expansion 
S(z) is an integral  power  series.  In Sect ion 5 we shall show that a regular  p rob lem can 
always be  solved by i terat ion.  In Sect ion 6 we shall show how the genera l  p rob lem can 
be t ransformed to a regular  p rob lem.  

4. Normal  Iterations 

We in t roduce  the concept  of  a normal  numertca l  i terat ion We  gtve a novel  defmt t lon  
of  the o rder  of  a normal  i terat ion which is conven ien t  for the applicat ion to power  
series i terat ion.  In Sect ion 5 we shall show that a normal  i terat ion with o rde r  grea te r  
than unity will always converge  if used for a regular  p rob lem 

Le t  p(w) be the numer ica l  po lynomia l  P(W,  0), let  s be a zero  o f p ( w ) ,  and let e t') = 
w ¢') - s deno te  the e r ror  of  the ~th i terate .  To  mot iva te  the defini t ion of  normal  
i terat ion we first cons ider  two examples .  

Example  4 1 Newton  i terat ion.  

w~,+~) = w~,~ _ p(w~,~)/p '(w<"). 

From the Taylor  series expansions  

and 

we have  

p(w  ~,~) = p'(s)e  ~'~ + (p"(s)/2)(e~'~) z + ... 

p ' (w  ~°) = p'(s)  + p"(s)e ~') + ... , 

e <'+'~ = (p"(s)/2p '(s))(e(')) z + ~ c,.  (e")) ', (4.1) 

where  the cj are rat ional  expressions of  the der ivat ives  o f p  at s ,  with powers  o f p ' ( s )  as 
the denomina to r s  [] 

Example  4.2.  Secant  i tera t ion.  

w C'+1~ = w~'~ - ( ( w  ~'~ - w " - l ~ ) / ( p ( w  ~'~) - p ( w ~ ' - ~ ) ) ) " p ( w ~ ' ~ ) .  

Using the Taylor  series expansions  of  p(w ~')) and p(w<'-~), we obtain  

e ~+1) = (p"(s)/2p'(s))e~')e <~-1) + ~ c~l" (e<'))~(e°-l)) l, (4.2) 
2+l~-3 
3,l~1 

where  the c~z are  rat ional  express ions  of  the der ivat ives  of  p at s ,  with powers  of  p ' (s)  as 
the denomina to r s  [] 

Cons ider  now a genera l  i tera t ion 

w ~'+1) = qJ(w ~'), w <'-l) . . . .  , w~'-m)), (4.3) 

which is def ined in terms of  ra t ional  express ions  of  p and its der ivat ives .  
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Assume  that  by using Taylor  series expansions ,  we can der ive  

= " (,)~J . . . .  (e(,-m))~,% (4.4) e('+l) ~ c~0, o, , ' te 1 

where  the c~, .,~. are rat ional  expressions of  the der iva twes  of  p at s. 
D e f i n i t i o n  4.1.  to is said to be a n o r m a l  i t era t ton  if the denomina to r  of  each  c~, .z, 

is a power  o f p ' ( s ) .  [] 

From (4.1)  and (4.2) we have that  both  Newton  i terat ion and secant  i tera t ion are 
normal .  In fact most  commonly  used i tera tmns are normal .  We prove  that  the  classical 
one-poin t  inverse in terpola tory  i terat ions  to, (see [19, Sec. 5.1]; in par t icular  to2 is the 
Newton  i terat ion)  are normal .  Le t  q deno te  the inverse functmn to p and v (') = p(w(')) .  
Then  

s = q(O) = q (v  `')) - q '(v( '))v '') + 1/2 q"(v('))(v")) 2 + . . . .  

By def lmt lon of too, 

and 

Note  that 

s = tOo(w '')) + ~ ( ( -1 )~ / l ! )q° ) (v" ) ) (p(w(") )  ~ 
3>---p 

e,,+,) = ~ ( ( -  1)~+l/j !)qO'(v('))(p(w("))~. 

p ( w  (')) = p ' ( s ) e  °) + 1/2 p"(s)(e(,)) 2 + ... 

and that  qU)(v")) is a rat ional  expression of p(~)(w '')) for  k = 1, . . , j and has the 
d e n o m i n a t o r  (p'(w('))) J. Expand ing  the ptk)(wt')) a round s shows that too is a normal  
~teration. 

D e f i n i t t o n  4.2.  For  a normal  i te ra tmn to def ined by (4 3) and satisfying (4 .4) ,  we 
define the o r d e r  p of to by 

p = s u p { r [ r  m+l _<jo rm + j l r  m-1 + ... + jm for all q0 . . . . .  jm) 

such that c . . . .  ~,, ~ f o r  s o m e  p o l y n o m t a l  p} .  [] 

By (4.1) ,  it is easy to check that the Newton  i terat ion has o rde r  2. In genera l  it can 
be shown that the one-poin t  inverse in terpola tory  i tera tmn too has o rder  p Cons ider  
now the secant  i tera tmn.  By (4.2) ,  the o rde r  of the i terat ion is given by 

p = sup{r[r 2 --<jr + l for a l l / ,  l -> 1}, 

which Is e q m v a l e n t  to p = sup{r l r  2 _< r + 1}. Hence  19 is the posi t ive root  of  r z = r + 1, 
i.e. p = 4) = (1 + ~ /5 ) / 2 .  

5 R e g u l a r  P r o b l e m s :  N o r m a l  I t e ra t ions  on  P o w e r  Ser ies  

We show how normal  numerica l  i terat ions with o rder  grea ter  than umty  can always 
compu te  an expansion of  an algebraic  functmn for a regular  problem.  The mare result  
is T h e o r e m  5 1 As a corol lary of  this t heo rem we show that  a Newton- l ike  i terat ion 
always "converges  quadra t ica l ly . "  We also show the convergence  of  a secant-hke 
~teratmn We end the section with an example  of  a convergent  f i r s t - o rder  i terat ion.  

We begin with some def imtions.  Recal l  that a meromorph lc  series is a power  series 
with a finite number  of negat ive  powers  

D e f i n i t i o n  5.1. Given a m e r o m o r p h m  series A ( z )  and a real number  o', then by the 
nora, ton B(z )  -~ A ( z )  (mod z~), we mean B(z)  is a finite series consist ing of  all terms of  
A ( z )  of degree  less than o ' . .  [] 

Let  to be a normal  numerica l  i terat ion Let  the numbers  w(? ), . , w ( ' - ' )  in (4 3),  the 
defining relat ion for to, be replaced  by m e r o m o r p h i c  serms W(')(z) . . . . .  w ° - m ) ( z ) .  T h e n  
the I terate W('+l)(z) def ined by 
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W('+l>(z)  = ¢ ( ~ ' ) ( z )  . . . . .  W('-'n>(z)) 

is in general  a meromorphic  series, provided that it is well defined. Let  E")(z) = 
W<°(z) - S(z) denote  the error  of  the ith iterate.  

Definition 5.2. We say an i teration on a meromorphic  series converges if lim,~o~ 
ord(E">) = ~ .  [] 

Our  main result for regular  problems is given by the following theorem.  
THEOREM 5.1. I f  

(i) P(so, O) = O, P'(so, O) * O, 
(ii) ~ is a normal  iteration with order p > 1, 

(iii) W(°)(z) = So, W(t)(z) . . . . .  w(m)(z) are polynomtals  m z such that ord(E ")) -> p~ for  
t = O, ... , m ,  where S(z) is the expansion startmg wtth the term so, 

(iv) ¢(W°)(z), W°-l)(z) ,  ... , W°-m)(z)), i = m ,  m + 1 . . . . .  is a well-defined mero- 
morphic series, 

then the iterates 

W°+l)(z) ------ O(W")(z), W°-I)(z) . . . . .  W~-m)(z)) (mod z °'+~) 

satisfy the property that 

ord(E,+l)) > p,+l, (5.1) 

and hence the tteration converges. 
PROOF. Let  i = m. By (iv), q/W°n)(z), W(m-l)(z), ... , W(°)(z)) is a well-defined 

meromorphic series. Since (4.4) is derived by Taylor  series expansions and since the 
Taylor series expansion is valid over meromorphic  series, we have that 

= ( m )  o • • • E°~+t)(z) ~ Cjo" .,m(E (z)) j (E<°)(z)) ~" (5.2) 
3~-->0 

holds for meromorphlc  series. The constant term of P'(S(z),  z) is P'(so, 0), which is 
nonzero by condition (i). Thus by condmons (fi) and (iii), (5.2) implies that 

ord(E,n+~)) > min(lopm + jlpm-~ + ... + jm), 

where the minimum is taken over all the (lo . . . . .  jm) such that c~.. ~ is nonzero for 
some P(W,  z). By the definition of  p in Section 4, we have 

ord(E(m+l)) > pm+l. 

By induction, (5.1) can be established for i = m + 1, m + 2, ... , using similar 
arguments.  The convergence of the iteration follows immediately from Definition 5.2. [] 

Remark  5 1. Thus well-defined normal i terations on regular problems always 
converge This behavior is strikingly different from the behavior  of these i terations on 
numerical polynomials,  where only local convergence is assured unless strong con&tions 
are imposed.  Note that the expansion S(z) may converge in only a small disk around 
the origin; we shall not pursue the domain of convergence here. 

Remark  5.2 (5.1) shows that W ~° is a power series with nonnegatwe powers only 
rather than a meromorphic  series. Until  this fact was established it was necessary to 
work over  the field of meromorphic  series. 

Remark  5.3. Observe that we do not define order  for power series valued iteration 
but only for normal numerical i terations. 

Remark  5.4 Note that m Theorem 5.1 we need not assume that A~(0) -~ 0. This 
fact wdl be used in the proof  of Theorem 6.1. 

We apply Theorem 5.1 to two specific iterations. We begin with a Newton-hke 
i teration,  which Is defined by (5.3) below This i teration Is obta ined from the numerical 
Newton iteration In the power series setting we hesitate to call it Newton i terat ion,  
since Newton [15] actually used a different method for computing the expansion His 
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method computes one coefficient per iteration and m general is not as efficient as the 
Newton-hke iteration defined below. We will dtscuss the Newton-l ike  iteration in some  
detail smce we anttctpate tt wdl be the most  c o m m o n l y  used tteratton in practice. Here 
and elsewhere we use the notatmn 

P ' ( W ,  z) ~- (OP/OW)(W,  z). 

Recall that the numerical Newton iteration is a normal iteration of order 2. From 
Theorem 5 1 we have 

COROLLARY 5.1.1 I f  

(0 P(s,,, 0) = 0 and P'(so, 0) 4~ 0, 
(ii) W ~°) = so, i.e. ord(E ~°)) ~- 1, 

then the tterates W °~ generated by the Newton-hke  tteratton 

W"+' (z )  ~ W<')(z) - P(W")(z) ,  z ) /P ' (W¢°(z) ,  z) (rood z 2'+') (5.3) 

are well defined and satisfy 

ord(E "~) ~- 2' (5.4) 

for i = O, 1, 2, ... , and hence the tteratton converges. 
PROOF. We need only show that the iterations W~'l(z) are all well defined. This 

holds since for all t the constant term in P ' W  ~'~, z) is P'(so, 0), which is nonzero. [] 
Remark 5.5. If we define the valuation of a power series A ( z )  to be b -°rdta), where 

b is any posmve constant, then Corollary 5.1 follows from a known theorem in 
valuation theory (see [2, Ch. II, Theorem 4.2]). 

It is easy to show that if S(z) is a polynomial of degree q, then iteration (5.3) will 
compute it in [log2 q] + 1 iterations. By a slight modification of the hypotheses of 
Corollary 5.1 we can replace the inequality (5.4) by equality. 

COROLLARY 5 2. I f  

(t) P(so, O) = O, P'(so, O) 4= O, P"(So, O) 4: O, 
(ii) W ~°) = So, ord(E ~°)) = 1, 

then the tterates generated by the Newton-hke  iteration satisfy ord(E <') = 2 ~. [] 
Corollaries 5.1 and 5 2 can easily be generalized to any one-point reverse interpola- 

tory lteratmn ~o 
As our second example we consider a secant-like iterauon. One has to be somewhat 

careful in defining this iteration. A straightforward approach would generate iterates by 

W "+1) --- W ('' - ( ( W  ") - W ° - ' ) / ( P ( W  ~'~) - P(W"-~>)) ) 'P(W ~)) (mod z+'+~), (5.5) 

where ~b = (1 + X/5)/2. Then W ~+" becomes undefined when W ") = W <~-~. This 
happens when there is a "large" gap between the degrees of two consecutive terms, in 
the expansion which we want to compute. A solution to the problem is given in the 
foUowmg corollary. The idea is to use a perturbed F¢ x° in (5 5) so that the denominator 
is guaranteed to be nonzero. 

COROLLARY 5.3. I f  

O) P(so, O) = O, P'(so, O) -~ O, 
(u) W °~ = So, W "  = So + s l z ,  

then the tterates W ~'~ generated by 

W "+" -= 1~ :~'' - ((12¢ "~ - W " - ' ) / ( P ( 1 4  :~'') - P ( W " - ' ) ) ) "  P(I~ z<')) (rood z F,+3 (5.6) 

are well defined and saris f3' 

A result similar to Corollary 5 1 has been proved independently by Professor Llpson [13] 
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ord(E "~) > F,+2, 

where the F, ~s the t-th Fibonacci number  (i.e. Fo = O, F, = 1, and F,+, = F, + F,_,) and 
17~'~ = W "  + z F'+~. 

PROOF. Cons ider  the case i = 1. Clear ly,  17V<" = W ") + z 2 ¢ W <0> and o r d ( f f  "<1) - 
W ~°)) < F~. Since by the Taylor  series expansion,  

p(l~z(1)) _ p(w<0~) = p,(w<o)).( lTV<,_ W<0~) + ... , 

and since P ' ( W  ~°>) has a nonze ro  constant  te rm P'(so, 0), we have 

ord(e(17V <'>) - P(W(°))) = ord(fTV ('> - W (°)) -< F3. 

Hence  (P(ITV ('>) ~ P(W<°>). This  ensures  that  W (2) is well  def ined by (5.6) .  No te  that for 
i = 1, (4.2) holds  with E ('> rep laced  by E<" = 17V<'> - S. Thus,  

ord(P(ITVt') - P(17V(°))) = ord(17V <" - W ~°)) -< F3. 
-> m i n ( o r d ( E ( ' ) ,  F3) + o rd (E  t°~) -> F3 + F2 = F4. 

By m d u c n o n ,  one  can similarly p rove  that for t = 2, 3, ... , W ") is well def ined and 
ord(E (,)) _> F,+ 2 [] 

Resul ts  s~milar to Corol la ry  5 3 hold for o ther  suitably modif ied  l te rauons  wHh 
m e m o r y  (i.e. i terat tons w t t h m  > 0 m (4.3))  

So far we have only dealt  with i t e ranons  of  o rder  grea ter  than one  We now cons ider  
an i terat ion with o rder  one  De fme  

w"+') = w(,) _ p(w")) /p ' (w (°~) 

f o r t  = 0, 1, 2, . Then  

eO+, = e,~ - P'(s)e ") + Vzp"(s)e "~2 + ... 

p' (s) + p"(s)e <°~ + ... 

= (p"(s)/p'(s))e<O)e,>- (p"(s)/2p'(s))(e"') 2 + c,,t(e<°')~(e")) t, 
J+l~-3 

3>--0,l~1 

(5.7) 

where  the cj,t are ra t ional  express ions  whose  denomina to r s  are powers  of  p'(s).  This 
implies  that  the i terat ion is normal  and has o rde r  p = 1. We  may use the i tera t ion on 
power  series and obtain  the fol lowing t h e o r e m ,  which is an easy consequence  of  (5 7) '  

THEOREM 5.2 I f  

(z) P(so, 0) = 0, e'(so, O) ¢ O, 
(ii) W (°) = So, 

then the iterates W (" generated by 

W<'+l>(z) ~ W<°(z) - P(W"~(z))/P'(W(°)(z))  (mod z '+2) (5.8) 

are well defined and sattsfy 

ord(E ")) -> l + 1, 

and hence the tteratzon converges. [] 
The  i terat ion (5 8) can be used,  for example ,  to fred the minal  i terates  of an l t e rauon  

with m e m o r y  

6. The General Problem" Newton Polygon Process 

Recal l  that our  genera l  p rob lem is to compu te  the value of  d and the coeff lcmnts  So, s , ,  
... o f  an expans/on 

S ( z )  = --" s l  • z ' ld 
I=O 
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of  the  a lgebra ic  func t ion  c o r r e s p o n d i n g  to a g iven  

P(W, z) = An( z )W n + ... + Ao(z). 

In this sec t ion  we show tha t  the  genera l  p r o b l e m  can be  r ed u ced  to a r egu la r  p r o b l e m  
by t r a n s f o r m i n g  P(W, z) to  some  tiff(W, z). T h e  regu la r  p r o b l e m  can t hen  be  so lved  by 
n o r m a l  i t e ra t ions ,  as desc r ibed  m Sect ion  5 

Since P(so, O) = O, so can be  o b t a i n e d  by f m d m g  a zero  of  the  n u m e r i c a l  p o l y n o m i a l  
P(W, 0). In this  sect ion we assume  tha t  f inding a zero  of  a n u m e r i c a l  po lynomia l  is a 
p r i m m v e  o p e r a t i o n  2 (This  a s sumpt ion  will be  r e m o v e d  in Sect ion  7 by ca r rymg  t h e  
zeros  symbol ica l ly  ) If P'(so, 0) -~ 0, we have  a regu la r  p r o b l e m  so lvable  by a n o r m a l  
i t e ra t ion  H e n c e  we a s sume  tha t  P'(so, 0) = 0. T h e n  so is a mul t ip le  ze ro  of  the  
numer i ca l  po lynomia l  P(W, 0) and  the re  is m o r e  t han  o n e  e x p a n s i o n  of  the  a lgebra ic  
func t ion  s ta r t ing  wi th  So. W e  would  no t  expec t  an  i t e ra t ion  s ta r t ing  wi th  W ~°) = so to 
conve rge  since the  i t e ra t ion  would  no t  " k n o w "  to which  e x p a n s i o n  it shou ld  c o n v e r g e .  
In tu i t ive ly  the  c o n v e r g e n c e  of  an  i t e ra t ion  r equ i r e s  t ha t  it s tar t  w i th  an  ini t ia l  s e g m e n t  
of  a u n i q u e  expans ion .  This  suggests  tha t  we f ind an  imtial  s e g m e n t  of  a u m q u e  
e x p a n s i o n  s ta r t ing  w~th So. T h e  ex i s tence  of  the  s e g m e n t  is g u a r a n t e e d  on ly  if n o  two 
expans ions  co inc ide ,  i .e. t he  d i s c r im lnan t  D(z) of  P(W,  z) with  r e spec t  to  W is no t  
ident ical ly  equa l  to  zero .  T h e r e f o r e ,  in this sectton we shall assume that D(z) ~ O. T h e  
a s s u m p t i o n  ho lds  w h e n  P(W,  z) is i r r educ ib le  or  s imply  w h e n  P(W,  z) is squa re - f r ee  
[20, T h e o r e m  3.5] .  H e n c e  we can  m a k e  this  cond i t i on  ho ld  by  using fac to r i za t ion  or  
square - f ree  d e c o m p o s i t i o n  a lgo r i thms ,  bu t  we do  not  p u r s u e  this  he re .  

A classical m e t h o d  for  f ind ing  an i n m a l  s e g m e n t  of a u n i q u e  expans ion  uses  a 
g e o m e t r i c  aid known  as the  N e w t o n  Po lygon ,  which  p rov ides  a c o n v e m e n t  tool  for  
ana lyz ing  a set of inequa l i t i es .  ( S o m e  au tho r s  re fe r  to Pulseux ' s  T h e o r e m  b e c a u s e  of  
the  work of  Puiseux [16],  bu t  clearly the  idea o r ig ina t ed  wi th  N e w t o n  [15,  p. 50] . )  T h e  
m e t h o d  has  not  b e e n  sub jec t  to  a lgor i thmic  analysis  

W e  s ta te  the  N e w t o n  Polygon Process  adap t ing ,  wi th  some  m o & f i c a t i o n s ,  the  
descr ip t ion  in [20] In T h e o r e m  6 1 we show tha t  the  N e w t o n  Po lygon  Process  
t r a n s f o r m s  the  genera l  p r o b l e m  to a r egu la r  p r o b l e m .  T h e o r e m  6.1 also gives the  
c o n n e c t i o n  b e t w e e n  the  n u m b e r  of  ident ica l  t e rms  m at least  two e x p a n s i o n s  an d  the  
n u m b e r  of N e w t o n  Polygon s tages  T h e o r e m  6 2 gwes  an a p n o n  b o u n d  on  the  n u m b e r  
of  s tages which  differs  by at mos t  a fac tor  of  two f rom the  op t ima l  b o u n d  E x a m p l e  6 1 
shows tha t  in genera l  P(W, z) must  be  t r a n s f o r m e d  to a new po lynomia l  P(W,  z); it is 
not  e n o u g h  to c o m p u t e  an init ial  s e g m e n t  of  a u n i q u e  expans ion  an d  use it as the  imt la l  
i t e ra te  for  a n o r m a l  i t e ra t ion  on  the  or ig inal  po lynomia l  P(W, z). 

In the  fol lowing a lgo r i thm let  A,,h(z) be the  coeff ic ient  of  W' m Pk(W, z). IfA, ,k(z)  
0, let a,.~z "~,,~ be the  lowest  deg ree  t e rm  in A,,~(z). 

NEWTON POLYGON PROCESS 
N1 ks---l, P~(W,z)~---P(W,z). 
N2 Plot the pomtsf,.k = (t, ot,,k) on thexy plane fort such thatA,,k(z) ~ 0 Join f0.k tofn,k wtth a convex 

polygon arc each of whose vernces is an f,,k and such that no f,.k hes below any hne extending an arc 
segment 

N3 If k = 1, choose any segment y + y ~  = /3~ of the arc If k > 1, choose a segment with Yk > 0. (Such a 
segment always exists ) Let gk denote the set of radices t for which f,,~ hes on the chosen segment Solve 
the polynomml equation 

~,~x' = 0 (6.1) 
aEg/¢ 

Let ch be any of the nonzero roots (Such a nonzero solutmn always exists ) 
N4 If c~ is a simple zero, go to N6, else go to N5 
N5 P~+i(W,z) ~ z  -a~.Pk(z vk (W+ ce),z), k ~ k  + 1 Go toN2 
N6 t ~ k (Hence t represents the number of stages taken by the Newton Polygon Process ) 

k(W, z) ~ z-a,.Pt(z ~, W, z), ]~(W, z) ~ P(W, za), 

2 I e zeros ot a polynomml can be computed to any prespec~fled prec~smn 
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where d is the smallest common denominator of T~ ... .  , Tt- (T1 may be zero. If T1 = 0 we assume that ,yl 
has one as its denominator ) Terminate the process 

LEMMA 6.1.  After the Newton Polygon Process terminates, thefollowing properties 
hold: 

(i) The coefficients o f  P(W, z) are polynomials in z. 
(ii) ct is a simple zero o f  the numerwal polynomial P(W, 0). 

PROOF. It is easy to verify (1). To  prove (ii) we show that  

P(w, o) = E a,,w, 
/Eg l 

For  nota t ional  convenience ,  let a,,t ~ ct,, a,,t -= a,, fit --= fl, Yt ~ T, gt -~ g, and  let 
denote  the set complemen ta ry  to g with respect to {0, 1, ... , n}. Let 

Pt(W, z) = (a,,z '~. + Qn(z))W n + ... + (ao z% + Qo(z)), 

where ord(Q,) > ct,. Then  

F(W, z) = ~,  a,W' + ,.., a , .  W' + 
lEO ~ 0  ~=0 

S i n c e / 3 =  a , + t y <  a , + j y ,  Vt E g ,  V j E g ,  

P(W, O) = P(W, O) = Z a,W'. [] 
t~g 

THEOREM 6.1. After the Newton Polygon Process terminates, the followmg proper- 
ties hold: 

(i) The general problem o f  computing an expanston S(z) o f  the algebraic function 
corresponding to P(W, z) has been reduced to the following regular problem: Compute 
the expansion S(z) starting from ct for the algebraic funcnon corresponding to P(W, z). 
Then let 

t--1 

S ( z )  • E CtZ ~1+" +Y' + Z TIT "+Tt" S(z l /d) .  
1=1 

(d) S(z) is the unique expansion with starting segment ~ [=l c~z v~+ +~' 
(iii) There is more than one expanszon whwh starts with ~ = l  c~z ~+'" +~ for every 

I < t. That is, there are at least two expansions which comcide m their first t - I terms. 
PROOF. By L e m m a  6.1,  we conclude that the p rob lem of comput ing  S(z) is 

regular.  (Note that  the leading coefficient of  P ( W ,  z) may vanish at z = 0. See Remark  
5.4.)  (i) follows from P(W, z) = P(W, z d) and  

(~,t--1 ) 
' ( W ,  Z) ~ Z -(BI+ +ot)p,~__~= c , z y ,+  +Y, ...]- ZTi+ +3'tW, z . 

(ii) and  (ii 0 hold since the Newton  Polygon Process does not  t e rmina te  untt l  ct is a 
simple zero. [] 

Since there is only one  expansmn  which starts with ~ = a  c,z ~1+ '+~,, we might  expect  
that if thts segment  ~s taken  as the initial i terate for a normal  ~teration then the i terat ion 
on the original  po lynomml  P(W, z) rather  than on the t ransformed polynomial  fi(W, z) 
wdl converge.  The  following example  shows this not  to be  the case; in general  we must  
use the t ransformed prob lem 

Example 6.1.  This p rob lem appears  in [9, p. 29], a l though it ts not  used to 
il lustrate the point  we wish to make  here.  Let 

P(W, z )  = W z - (2  + z + z 3 ) W  + 1 + z + t /4z2 + z 4. 

The two expansions are 
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S t ( z ) =  l + l / 2 z + z  3 / 2 + . . . ,  S2(z)=  1 + l / 2 z - z  3 / 2 + . . - .  

Suppose that  we want  to compute  Sl(z)  by the Newton- l ike  i terat ion.  If  we take  1,1 ,'~°) = 
1 + I / 2 z + z  3/2m 

W "+') = W ~'~ - P ( W  <'), z ) / P ' ( W  ~'), z) ,  

we find W <1) = 1 + l/2z - V4z 512 + . . . .  W (1) differs f rom $1 even  in the coeff ic ient  of  
zn/2! A l though  there  is only one  expans ion  starting with W ~°), namely ,  $1, the Newton-  
like i terat ion starting f rom W <°) does  not  converge  to $1. [] 

We illustrate the Newton  Polygon t ransformat ion ,  the t ransformat ions  of  Sect ion 2, 
and the l terat ive process with ano ther  p rob lem in [9, p. 31]. 

E x a m p l e  6.2. Find all the expansions of  the algebraic funct ion cor responding  to 
P ( W ,  z) = - W  a + z W  + z 2 around  z0 = ~. The  first t ransformat ion  of  Sect ion 2 
converts  P ( W ,  z) to - z z W  3 + z W  + 1, which is then conver ted  by ano ther  t ransformat ion  
to - I ,W + z W  + z.  The  Newton  Polygon Process yields t = 1,/31 = 1, Yl = I/3, cl = 
1, d = 3, and P ( W ,  z) = - W  3 + z W  + 1. Take  W ~°) = 1. T h e n  the Newton- l ike  
i terat ion (5.3)  appl ied to P ( W ,  z) gives 

W <1~= 1 + z / 3 ,  W tz~= 1 + z / 3 - z a / 8 1 .  

Thus 

S(z)  = zltZS(zllZ) = z 11n + zZlZ/3 - z41Z/81 + "'" . 

Let  T(z )  = S ( z ) / z  = z -21n + z-113/3 - zVZ/81 + . . - .  Then  an expansion of  the given 
prob lem is 

T ( 1 / z )  = z 21~ + l/3zllS - 1/81z-llz + . . . .  

The o ther  two expansions are 

Oz 213 + (02/3)z  113 - (0/81)z-113 + . . . ,  ~z2/3 + (O/3)z  113 - (02/81)z-113 + . . . ,  

where  0 is the pr imi twe third root  of  unity. [] 
The  fol lowing theorem gives an a priori  bound  on the n u m b e r  t of  stages in the 

Newton  Polygon Process which differs by at most a factor  of  two f rom the  opt imal  
bound.  

THEOREM 6.2.  

t <- o r d ( D )  + 1. (6.2) 

F u r t h e r m o r e  f o r  all t there exist  p r o b l e m s  f o r  wh tch  t = */z o r d ( D ) .  
PRooF. The  theo rem is trivial if t = 1. We assume that  t - 2. Then  by (in) of  

T h e o r e m  6.1,  there  are at least two series expansions $1 and $2 which agree  in the first 
t - 1 nonzero  terms.  Wri te  

Sl=~S,,a, Za,lda, S2=~S2,bozb,ld=, 
/ = l  1=1 

where  the {a,}, {b,} are strictly increasing nonnega t ive  integer  sequences  such that  none  
of  the sl ,a, ,  Sz,b, vanish and sl,~, = sz,b,, a,/d~ = b , /d2  for t = 1, ... , t - 1. Wi thou t  loss 
of  general i ty ,  assume dl <- dz. Note  that the cycle which contains  $1 has the series 

$1~ = ~ S l , a ,  ~ a " z a d a ' ,  j = 0 . . . . .  d l  - 1, 
1=1 

and the cycle which contains  $2 has the series 

o o  

$2~ = ~Szbg~b,'zb'la,,= • j = 0 . . . .  , d2 - 1, 

where  
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~1 = e21rV-11dl and  ~2 = e2CrV-11d2. 

Note that we do not  rule out  the possibility that S~ and  $2 are in the same cycle and that 
therefore the cycles {$1,~} and  {$2~} are identical .  Since 

~a,  = e(2~V-,Id,),a,, ~b,  = e(2~'V-,Id2),b, 

anda , /d l  = b, /dz fo r /  = 1 . . . . .  t - 1, S ~  and  S~,~ agree in the first t - 1 terms f o r j  = 
0 . . . . .  d l -  1. Hence ,  

ord(Sao - $2,~) -> (bt-~ + 1)/d2 = at-~/dl + 1/d2. 

Let 

Then  

d l -1  

V(z) = l-I ( s , . ( z )  - &o(z)) .  
j=0 

ord(D) >_ ord(V) _> dl(at-1/dl + l /d2)  ~ at-~ + 1. 

Since the {a,} as a stractly increasing nonnega t lve  in teger  sequence ,  at-1 -> t - 2. Thus ,  
ord(D) _> t - 1, which establishes (6.2).  Let  

t 

S,(z)  = ~ ~ ,  &(z)  = Sl(~) - z~, 
J=O 

and 

P ( W ,  z) = ( W  - S i (z ) ) (W - S2(z)). 

By Theorem 6.1,  the Newton  Polygon Process has t stages, ord(D) = ord((S1 - $2) 2) = 
2t, which completes  the proof  [] 

Theorem 6.2 gwes a computab le  a priori  b o u n d  but  requires the computa t ion  of 
ord(D).  A very cheap b o u n d  is given by 

COROLLARY 6 1. t --< m(2n -- 1) + 1, where m = maxo . . . .  (deg A,) .  
PROOF. D(z) is a de t e rminan t  of order  2n - 1 whose e lements  are polynomials  of 

maxamal degree m.  Hence  D(z) as a polynomial  of degree at most  m(2n - 1). Since D(z) 
cannot  vanish identically,  ord(D) _< m(2n - 1). [] 

7. A Symbol ic  Mode  o f  Computat ion 

The Newton  Polygon Process involves comput ing  roots of polynomial  equat ions  (6.1) .  
Ins tead  of actually solving the equa t lons ,  m this sectaon we carry the roots symbolically 
through thear m i n i m u m  polynomials .  We assume that the under ly ing  field A is one  
where  exact ar i thmetic  can be per formed,  such as a finite field or the field Q of ra t ional  
number s  Then  the expansaons can be computed  symbohcal ly wath exact ar i thmetic .  
The following example ,  where  A is t aken  to be Q,  wdl dlustrate the adea. 

Example  7.1. 

e ( w ,  z) = V¢ 3 + (z + z2)W 2 - 2 z 2 W  - 2z 3. 

We shall compute  an expansaon of the algebrmc functaon corresponding  to P ( W ,  z), 
using exact rat ional  ar i thmetic .  The first stage of the Newton  Polygon Process yields T1 
= 1, /31 = 3, and  c ] + c Z ~ - 2 c l - 2 = 0 .  Since c a 1 + c ~ - 2 c l - 2 = ( c ~ - 2 ) ( c 1 +  
1), cl = x/2, - . , /2 ,  or  - 1 .  Suppose that we are in teres ted in the equataon start ing with 
.,/2 or -x /2 .  Ins tead  of using an approximat ion  to x/2 or - x /2 ,  we carry cl symbolically 
through its m immal  polynomial  M~(x) = x 2 - 2. That  is, 

d l -  2 = 0. (7.1) 

Since the equataon has only sample zeros, the Newton  Polygon Process te rmina tes  with 
t = 1, and  
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P(W,  z) = z-SP(zW, z) = W a + (1 + z)l,l r2 - 2W - 2. 

We use the Newton-like iteration (5 3) to compute S(z) such that P(S(z), z) ~ 0. Let  
Wt°)(z) = cl. Then 

W ( 1 ) ( z ) ~ c ~ -  ( c ~ -  (1 + z ) c ~ -  2 c l -  2)/(3c~ + 2 ( 1 + z ) c l - 2 )  (modz2) .  

Using (7.1),  we obtain 

W">(z) = c, - ~13z. 

Similarly all coefficients of x ~ in W°>(z) can be represented as linear polynomials in c~ 
with rational coefficients. By (il) of Theorem 6.1, a solution to the given problem is 

S ( z )  = z ~ ( z )  = c ~ z  - ~/3z ~ + " . ' ,  

which represents both the numerical expansions starting with x/2z and -x/2z .  [] 
In general ,  when the Newton Polygon Process is performed,  ok, k = 1, ... , t, can be 

carried symbolically through its mimmum polynomial  Mk(x) over Q(c~ . . . . .  ck-O. Then 
all the coefficients of the expansion S(z) are in the extension field Q(c~, ... , ct). To 
simplify the computat ion,  one can compute from Mk(x) the minimum polynomtal  M(x) 
for c, where c is a primitive element of the extension field Q(c~ . . . . .  ct), i.e. Q(c) = 
Q(c~ . . . . .  ct). Then the coefficients of the expansion S(z) can all be represented by 
polynomials of the form ~h,-o~q,c' , where h = deg M and q, ~ Q. S(z) can be 
computed entirely with exact arithmetic.  Fur thermore ,  S(z) gives a simultaneous 
representat ion of h numerical expansions; S(z) can be used to produce h numerical  
expansions by substituting zeros of M(x) for c in the coefficients of S(z). (This implies 
that h -< n . )  

8. Asymptottc Cost Analysis 

In this section we analyze the cost of computing the first N terms (including zero terms) 
of an expansion for large N. Since the Newton Polygon Process is independent o f  N, by 
Theorem 6.1 we can without loss o f  generality assume the problem is regular. Further-  
more,  since the asymptotic results will be the same for any normal ~teration with order  
greater than one, we shall assume that the iteration (5.3) is used. Our  cost measure is 
the number of operations used over the field A. If we carry zeros symbolically as 
described in Section 7, then we work over an extension field A(c) rather  than A. If the 
minimum polynomial for c is of degree h,  then operations m a(c) are more expenswe 
than in A by a factor of O(h) or O(hZ). Since h is independent  of N,  in our analysis we 
shall not be concerned with whether or not zeros of polynomials are earned  symbohcally.  

Let Mq) be the number of operations needed to multiply twoj th-degree  polynomials 
over the field A Assume that Mq) satisfies the following mild condition: There are a ,  
/3 ~ (0, 1) such that 

M(ga]]) --< t iM([]]) (8.1) 

for all sufficiently large]  Observe that 14,V)(z) is a polynomial of degree at most 2' - 1, 
and that the computing W°+~)(z) by (5.3) takes O(nM(2' - 1)) operat ions.  Hence the 
total cost of computing N terms in the expansion is O(n(M(N) + M([N/2]) + M([N/4]) 
+ ..-)), which is O(nM(N)) by condition (8.1). (See [5, Lemma 1 1].) We summarize 
the result of this section in the following. 

THEOREM 8 1 The first N terms o f  an expansion o f  any algebratc function can be 
computed m O(nM(N)) operattons over the field A. [] 

9 Examples 

We choose as our examples calculation of the Legendre polynomials through their 
generating function, solution of an equation wxth transcendental  coefficients, and 
calculation of the expansion of a complete elliptic integral. Al though the first two 
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examples are not covered by the theory of this paper, they are covered by easy 
extensions of our results. Examples 9.1 and 9.3 are illustrations of the many applications 
of algebraic function expansions. 

We use the Newton-hke iteration (5.3) in all three examples with the notation: 

P, -~ P (W°~(z ) ,  z) ,  P; -: P ' ( W " ) ( z ) ,  z) ~- (0 P/O W<'))(W<'), z ' ) ,  8, = p , / P  [. 

Within each iteration step we exhibit enough terms so that l,t,~')(z) can be computed to 
2' - 1 terms. 

Legendre polynomials. The generating function for Legendre poly- E x a m p l e  9.1. 
nomials, 

satisfies 

(1 - 2tz + z2) -1/2 = ~ L,(t)z ' ,  

P ( W ,  z ,  t) = (1 - 2tz + z Z ) W  z - 1. 

Take W ~°) = 1. Then 

Po = - 2 t z ,  P~ = 2, 8 o =  - t z ,  W ~1> = 1 + tz; 
P1 = (1 - 3f)z 2 + (2t - 2tZ)z 3, P~ = 2(1 - tz) ,  81 = V2(1 - 3tZ)z 2 + Vz(3t - 

5t3)z 3, W ~2)= 1 + tz + Uz(3t 2 -  1)z 2 + l / 2 (5 t a -  3t)z 3. 

Hence the first four Legendre polynomials are 

Lo(t) = 1, Ll ( t )  = t, L2(t) = Vz(3t 2 - 1), and L3(t) = Vz(5t 3 - 3t). 

B. Neta, a student at Carnegie-Mellon Umversity, computed the first 32 Legendre 
polynomials by this iteration using MACSYMA 

This example is for illustration; it may not be the best way to compute Legendre 
polynomials. [] 

E x a m p l e  9.2. 

P ( W , z )  = W 2 +  (z + 1) W + s i n z .  

Note that sin z = z - z3/3! + zS/5! - z7/7! + . . . .  Take W ~°) = 0. Then 

P0 = z, P ~ =  1, 8 o = Z ,  W ~lJ= - z ;  
Pl = - z 3 / 6 ,  P; = 1 ,  ~1 = --Z3/6, W (2) = - z  + z3/6. [] 

E x a m p l e  9.3. A complete elhptic integral. Define the integral by 

f ~rl2 
f ( t )  = (1 - t 2 sin 2 0) -1/2 dO. 

a 0  

Let 

P ( W , z )  = ( 1 - z ) W  z -  1, z = t  2sin 20. 

Take W ~°) = 1. Then 

Po = - z ,  P~ = 2, 8 o =  - z / 2 ,  W ~ =  1 + z/2; 
P1 = - S / 4 z 2 -  U4z3, P~ = 2 -  z ,  81 = - 3 / 8 z 2 -  5/16z3, 

w ~2~ = 1 + z / 2  + S/sz2 + s/16z 3. 

V¢ ~z~ is an initial segment of the algebraic function S(z) corresponding to P ( W ,  z). Since 

f lrl2 
f ( t )  = S(t2sin20)dO, 

JO 
f ( t )  = 'q0 + 112~1/2 + 3/8T~2/4 "q- 5/16"1c/3 t0 "q" " ' "  , 

where 
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f Tt12 
T~, = slnz~OdO. 

JO 
For  this s imple example  the result  can be obta ined  directly by a b inomial  expans ion ,  
but this cannot  of  course be done  in general .  [] 

10 Extens ions  

Our  aim in this paper  has been  to show that algebraic  functions form an interest ing and 
useful domain  in which to do a lgor i thmic and complexi ty  analysis and to exhibit  fast 
a lgori thms for comput ing  an expansion of  an algebraic  funct ion.  In this initial paper  
we have restr ic ted ourselves  to the " p u r e "  case of  algebraic  funct ions where  P ( W ,  z) is 
a polynomial  m W with polynomial  coefficients  We hst some addi t ional  p rob lems  
which we hope  to discuss in the future.  For  a number  of  these our  results (especially on 
regular  problems)  apply with minor  modif icat ions;  o thers  will r equ i re  ma jo r  new 
results. 

1. Let  W be a scalar var table  but  take z to be a vec tor  var iable .  Resul ts  similar to 
those in Section 5 should hold.  We  have seen this case m Example  9.1.  

2. Let  the coefficients  of  P, A , ( z ) ,  be power  series ( ra ther  than polynomials)  
Resul ts  similar to those in Sect ion 5 should hold.  See Example  9.2 

3. Let  both  W and z be vec tor  variables.  This ~s the fully mul t ivar ia te  case,  which,  
except  for regular  problems,  ~s in genera l  very difficult 

4. The  domain  over  which we have  worked  is not  algebraically closed since p rob lems  
with polynomial  coefficients  lead to solutions rep resen ted  by fract ional  power  series.  If 
the coefficients  are fract ional  power  series,  the domain  is algebraically d o s e d  (Puiseux 's  
T h e o r e m ;  see,  e.g.  [12]), and this is the re fore  a natural  sett ing. T h e  Newton- l ike  
i terat ion is still valid on fract ional  power  series for regular  p rob lems .  

5. The  field A need  not be restr icted to the complex  number  field. It  is of  par t icular  
interest  to ex tend  all the results to finite fields. 

6. An  impor tan t  computa t iona l  mode l  ~s the "fully symbol ic"  one  where  the 
coefficients  of  the expansion series are expressed as funct ions of  the input  coefficients.  

7. Per form complexi ty  analysis which includes the cost due to the " g r o w t h "  of  
coefficients .  
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