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ABSTRACT

Most optical metamaterials fabricated and studied to date employ metallic components resulting in
signi�cant losses, heat and overall low e�ciencies. A new era of metamaterial physics is associated with
all-dielectric meta-optics, which employs electric and magnetic Mie resonances of subwavelength particles
with high refractive index for an optically induced magnetic response, thus underpinning a new approach
to design and fabricate functional and practical metadevices. Here we review the recent developments in
meta-optics and subwavelength dielectric photonics and demonstrate that the Mie resonances can play a
crucial role in the realization of the unique functionalities of meta-atoms, also driving novel e�ects in the
�elds of metamaterials and nanophotonics. We discuss the recent research frontiers in all-dielectric
meta-optics and uncover howMie resonances can be employed for a �exible control of light with full phase
and amplitude engineering, including unidirectional metadevices, highly transparent metasurfaces,
non-linear nanophotonics and topological photonics.
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INTRODUCTION

Electromagnetic metamaterials, arti�cial media in
which subwavelength electromagnetic constituents
replace atoms as the basic structural elements to
control the light–ma�er interaction, have led to
the prediction and observation of many novel opti-
cal phenomena that are not available or are much
weaker in natural materials [1–5]. �is includes
a negative index of refraction, invisibility cloak-
ing, giant chirality, etc. Many such important phe-
nomena are the manifestation of optical magnetism,
predicted and observed in speci�cally designed ar-
ti�cial subwavelength structures that allow a strong
magnetic response, even when such structures are
made of non-magnetic materials. Indeed, although
real quantum-origin magnetism in its conventional
sense is not available at high optical frequencies,
the metamaterial concept allows the design of arti�-
cial ‘meta-atoms’ to engineer macroscopic magnetic
permeabilityμ and magnetic response by achieving
strong resonances in structured non-magnetic sys-
tems, through the spatial dispersion and non-local
electric-�eld e�ects, inducing a strong magnetic-
dipole moment.

�e most popular constitutive elements of
metamaterials are split-ring resonators, cut-wire
pairs and metal–dielectric layered structures with
the so-called �shnet geometry [3]. Such classical
‘meta-atoms’ are made of metals where free elec-
trons oscillate back and forth, creating e�ective
loops of current, thus inducing an e�cient magnetic
response. �e meta-atom in the form of a split-ring
resonator was �rst introduced at microwaves to
realize arti�cial magnetically active inclusions with
subwavelength footprints, and then it was translated
to the optics exploiting the plasmonic features of
metallic nanoparticles [3].�is concept was realized
inmany non-magnetic plasmonic structures ranging
from nanobars [6] and nanoparticle oligomers [7,8]
to split-ring-based structures [9,10] and more com-
plex metal–dielectric layered structures associated
with hyperbolic-type electric andmagnetic response
of metamaterials [11,12]. �ese earlier results cre-
ated a platform for the subsequent development of
the entirely new �elds of metadevices [13] as well as
metasurfaces and metalenses [14,15].

�e idea of using metallic elements in metama-
terials is based on the main assumption that the
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subwavelength trapping of light may occur due to
the localization of electromagnetic waves at metal-
lic interfaces in the form of surface plasmon polari-
tons. Plasmonic resonators are always accompanied
by losses because of their response nature: in or-
der to achieve the resonant behavior for subwave-
length plasmonic resonators, part of the optical en-
ergy must be stored in the kinetic energy of elec-
trons [16]. Even high-Tc superconductors cannot
be a good alternative for noble metals because they
wouldhave tooperate at energies less than the super-
conductive gap, being in theTHzor far-IR frequency
range [17].�e use of highly doped semiconductors
in place of metal is also not a panacea because the
decline of the Fermi level necessarily means a de-
crease in the plasma frequency and, thus, lowering of
surface and localized plasmonic resonances, where
thenoblemetals demonstrate superior properties. In
particular, doped semiconductors with lower losses
have been proposed as new plasmonic materials
to replace noble metals [18–20]. However, recent
studies suggest that noble metals outperform doped
semiconductors even with their larger ohmic losses
because of the inherently higher plasma frequencies
in metals. While the intrinsic loss in doped semicon-
ductors can be an order of magnitude lower than in
metals, their electron densities and thus plasma fre-
quencies are at least thirty times smaller.

By now, it has become clear that practically
useful methods to control light–ma�er interactions
at the nanoscale need to go beyond plasmonics.
Probably the most disruptive strategy would be to
replace metals by all-dielectric components with high
refractive index, supporting the light localization
due to dielectric resonators, and provide �ne control
over the amplitude, phase and polarization of light.
Because this approach requires nanostructures
of the order of a few hundred nanometers, the
ability to describe composite media by averaged
parameters via the homogenization procedure can
be lost, so such structures should be classi�ed from
the viewpoint of ‘meta-optics’ rather than ‘metama-
terials’. On the other hand, the use of silicon and
other semiconductors brings the great advantage
of CMOS compatibility that will be appreciated in
practical applications [21].

�e recent developments of the physics of high-
index dielectric nanoparticles [22–25] suggest the
importance of an alternative mechanism of light lo-
calization in subwavelength optical structures via
low-order dipole andmultipoleMie resonances [26]
that may generate magnetic response via the dis-
placement current contribution. �e study of reso-
nant dielectric nanostructures has been established
as a new research direction inmodern nanoscale op-
tics and metamaterial-inspired nanophotonics [22–
24]. Because of their unique optically induced

electric and magnetic geometry-driven resonances,
high-index nanophotonic structures are expected to
complement or even replace di�erent plasmonic
components in a range of potential applications.

�e aim of this invited review paper is twofold.
First, we provide a broad viewof the rapidly develop-
ing �eld of all-dielectric resonant meta-optics, uncov-
ering a great potential of optically induced electric
andmagneticMie resonances for the design of novel
types of low-loss optical metasurfaces and metade-
vices. Second, we discuss brie�y two emerging �elds
of multipolar non-linear nanophotonics and topolog-
ical optics based on the engineering of high-index
subwavelength dielectric nanoparticles, their arrays,
la�ices and meta-crystals, which employ both elec-
tric and magnetic resonant modes. We envisage the
rapid progress of all these �elds for achieving �exi-
ble control of light with all-dielectric metamaterials,
metasurfaces and metadevices.

METAMATERIALS AND MIE
RESONANCES

Magnetic response

Asmentioned above, themagnetic response ofmany
natural materials at optical frequencies is very weak.
�us, only the electric component of light is directly
controlled in many optical devices. However, arti�-
cial magnetism can be achieved at high frequencies
in nanostructured materials. One of the canonical
examples is the split-ring resonator (SRR), shown
in Fig. 1(a), an inductive metallic ring with a gap
(a building block of a majority of metamaterials)
that can support an oscillating current, giving rise to
an optically induced magnetic moment. However,
intrinsic losses of metals set the fundamental limit
for the use of SRRs at optical frequencies. �is is
where high-index dielectric (e.g. silicon) nanopar-
ticles of hundreds of nanometers make an a�rac-
tive alternative [27]. According to the Mie theory,
dielectric nanoparticles can exhibit strong magnetic
resonances in the visible [28]. �e basic physics of
the excitation of such modes is similar to that of
SRRs, provided that the electron current in met-
als is replaced by the displacement current in di-
electrics, but silicon nanoparticles have much lower
losses. Amagnetic resonance originates from the ex-
citation of a particular electromagnetic mode inside
thenanoparticlewith a circular displacement current
of the electric �eld. �is mode is excited when the
wavelength of light in the material becomes compa-
rable to the particle’s diameter. It has an antiparallel
polarization of the electric �eld at opposite sides of
the particle while themagnetic �eld oscillates up and
down in the middle [29] (see Fig. 1(b)).
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Figure 1. Optically induced magnetic response. (a), (b) Schematic of magnetic-dipole moments excited in a metallic split-ring resonator and high-index

dielectric nanoparticle. (c), (d) Comparison of the scattering cross sections of gold (Au), silver (Ag) and silicon (Si) nanoparticles of the same geometrical

shapes and diameters of (c) 50 nm and (d) 150 nm, respectively. These results suggest that, in addition to a new type of resonances, dielectric particles

scatter light more ef�ciently than plasmonic nanoparticles of larger sizes [27].

�is fundamental phenomenon of strong
magnetic resonances in optics was independently
observed experimentally throughout the whole
visible spectral range from violet to red for silicon
nanoparticles with sizes ranging from 100 to 270 nm
[30] and 200 to 265 nm [31].�us, it makes silicon
nanoparticles good candidates for lossless magnetic
response at high frequencies and lossless metamate-
rials, in sharp contrast to plasmonic nanoparticles of
the same size and geometry [27] (see Fig. 1(c) and
(d)).

Dielectric nanoparticles with strongmagnetic re-
sponse can be used as building blocks to explore
new types of multipolar interaction at the nanoscale
[32]. Coupling of silicon nanoparticles and SRRs al-
lows control of themagnetic interactionbetweenop-
tically induced dipole moments. If the spacing be-
tween a nanoparticle and an SRR becomes smaller
than a critical value, the induced magnetization can
be inverted [33,34]. �is approach can be gener-
alized to construct a variety of hybrid structures
supporting and controlling optically induced spin
waves.

In the visible and near-IR spectral ranges, large
permi�ivity is known to occur for semiconduc-

tors such as Si, Ge and AlGaAs. In the neighbor-
ing mid-IR range, which is also of great interest to
nanophotonics, narrow-band semiconductors (Te
and PbTe) and polar crystals such as SiC can be
implemented for all-dielectric resonant metadevices
drivenbyMie resonances. A search for be�ermateri-
als and fabrication techniques for high-index dielec-
tric nanophotonics is an active area of research [21].

Multipolar interference effects

Tounderstand themajor characteristics of light scat-
tering at the nanoscale, one usually employs the
multipole decomposition of electromagnetic �elds.
In this way, the Mie sca�ering is characterized by
partial intensities and radiation pa�erns of domi-
nant excited multipole modes, not only the electric
andmagnetic dipoles but also higher-ordermultipo-
lar modes and modes with toroidal geometry. For
metallic nanoparticles, the electric-dipolemode usu-
ally dominates theMie sca�ering. In contrast, incor-
porating the optical magnetic response for dielectric
particles provides an extra degree of freedom for ef-
�cient light control, through interference of electric
and magnetic dipoles and multipolar modes.
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Figure 2. Unidirectional scattering of light. (a) CCD images of the forward and back-

ward scattering by Si nanoparticles and (b) the experimentally measured forward-to-

backward ratio [43]. (c) Schematic of two physical mechanisms leading to unidirec-

tional scattering. (d) Experimentally measured (black) and numerically calculated (red)

backscattering spectrum from a single GaAs nanodisk [44].

In the simplest case, when multipole modes
are of the same type and are produced by di�erent
elements, the interference physics of dielectric
nanoparticles is associatedwith Fano resonances, and
it resembles plasmonic analogues [35]. Nanoparti-
cle structures demonstrate sharp Fano resonances
with characteristic asymmetric sca�ering due to
interference between non-radiative and radiative
modes. Importantly, magnetic-dipole resonances of
individual dielectric particles play a crucial role in
the appearance of the Fano resonances [36–38].

�e possibility of exciting simultaneously both
magnetic- and electric-dipolemodesmay lead to en-
tirely new classes of sca�ering phenomena. Kerker [39]
revealed that it is possible to suppress the backscat-
tering by using a hypothetical nanoparticle made of
a material with identical electric permi�ivity ǫ and
magnetic permeabilityμ.�is condition implies that
two excited dipole modes have equal amplitudes,
and they interfere destructively in the backward di-
rection.

�is type of interference between two optically
induced dipole-mode resonances and Kerker’s con-
dition can be realized in layered core–shell nanopar-
ticles with metal cores and dielectric shells [40]. A
superposition of electric andmagnetic resonances of
a single core–shell nanoparticle results in the sup-
pression of the backward sca�ering and unidirec-
tional emission by a single subwavelength element
[40]. �e directivity of emission can be further en-
hanced by forming a chain of such nanoparticles.

Importantly, the unique property of the uni-
directional sca�ering and Kerker conditions (see
Fig. 2(a) and (b)) can be found in dielectric
nanoparticles [41,42], which allow the introduction
of a novel concept of optical nanoantennas made of
high-permi�ivity dielectric nanoparticles. Such all-
dielectric nanoantennas exhibit much higher radia-
tion e�ciency, allowing more practical design com-
pared to their plasmonic counterparts.

�us, nanoparticles made of low-loss high re-
fractive index dielectric materials o�er a promising
solution for a new generation of metadevices, also
removing many severe limitations of plasmonic
structures but exhibiting a strong resonant response
at the nanoscale. �e key to such novel functionali-
ties of high-index dielectric nanophotonic elements
is the ability of subwavelength dielectric nanopar-
ticles to support simultaneously both electric and
magnetic resonances, which can be controlled inde-
pendently [43,44].

To explain the basic physics of these novel in-
terference e�ects, we remind ourselves that, in the
Rayleigh approximation, any single subwavelength
element radiates light as an electric dipole, i.e. uni-
formly in the transverse direction relative to the
dipole orientation. �us, to control any radiation
pa�ern, one needs to have at least two elements and
take advantage of the interference of their radiative
�elds. An ideal optical nanoantennawould emit light
predominantly in one prede�neddirection.�e sim-
plest structure exhibiting a unidirectional radiation
pa�ern consists of twodipoles separatedby aquarter
of a wavelength with an additional π/2 phase shi�
between them(see Fig. 2(c)). It turns out thatwaves
generated by such a dipole pair interfere construc-
tively in one direction and destructively in the oppo-
site direction. However, the interference condition
implies that the system’s size should remain of the
order of a wavelength.

Dielectric nanoparticles with high refractive in-
dex o�er new possibilities for achieving wave inter-
ference. Indeed, the coexistence of both electric and
magnetic resonances results in unidirectional scat-
tering (see Fig. 2(a)).�is propertymakes subwave-
length dielectric nanoparticles the smallest andmost
e�cient nanoantennas. Moreover, unidirectionality
canbe swapped for di�erentwavelengths. In particu-
lar, Fu et al. [43] and Person et al. [44]measured the
forward and backward radiation pa�erns of spheri-
cal Si nanoparticles with radii ranging from 50 nm to
100 nm exhibiting resonance behavior; see Fig. 2(b)
and (d).

Metasurfaces

Huygens’ principle, formulated in the 17th century,
assumes that every point on a wavefront becomes
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Figure 3. Examples of dielectric metasurfaces. Top left: (a), (b) SEM image of a fab-

ricated silicon Huygens’ metasurface (that transforms a Gaussian beam into a vortex

beam), with a retrieved phase of the generated vortex beam, respectively [48]. Top

right: Optical microscope and SEM images of a metasurface-based perfect re�ector

[53]. Bottom: SEM images of the fabricated meta-optics holograms and an experimen-

tal holographic image at 1600 nm wavelength [57].

the source of a secondary, forward-propagating
wave. Despite its simplicity, this well-known princi-
ple intuitively explains why shaping of a wavefront
requires imprinting a spatially variant phase distri-
bution onto an incident light �eld. Control over the
wavefront of light is the key to many optical func-
tionalities including focusing, beam shaping, beam
de�ection and holographic imaging. While conven-
tional optical components providing these function-
alities are rather bulky, optical metasurfaces (2D
arrangements of designed nanophotonic building
blocks) allow for wavefront shaping using just a
sheet of nanoscale thickness. Metasurfaces consist-
ing of planar arrangements of designed nanores-
onators are of particular interest, as they can provide
many degrees of freedom not supported by conven-
tional phasemasks, such as a tailored polarization re-
sponse or engineered spatial or spectral dispersion.
However, typically such metasurfaces exhibit a very
low transmission at resonance because, unlike the
�ctitious secondary sources of Huygens’ principle,
the �elds sca�ered by the nanoresonators are not
forward-propagating.

In the last few years, a new way has been demon-
strated to shape the wavefront of a light �eld with
close-to-unity e�ciency and full phase coverage.
�e very e�cient approach to create highly trans-
parent metasurfaces is based on disk-shaped sili-
con nanoresonators carefully designed to exhibit
spectrally overlapping electric and magnetic dipo-
lar Mie-type resonances [45]. Such nanoresonators
sca�er the incoming light almost entirely in the
forward direction, thereby mimicking the forward-
propagating behavior of the elementary Huygens’

sources [41,46] and making the metasurface highly
transparent at the resonance. Furthermore, by using
silicon as a constituent material, absorption losses
become negligible at near-infrared operation wave-
lengths, thus boosting the metasurface e�ciency
compared to intrinsically lossy plasmonic metasur-
faces. In combination, all the typicalmajor loss chan-
nels of transmi�ing metasurfaces are eliminated in
these silicon Huygens’ metasurfaces [47].

To demonstrate this concept for wavefront
shaping with high e�ciency, Chong et al. [48,49]
designed, fabricated and characterized several
wavefront-shaping metadevices (see also some
related earlier [50] and more recent [51] papers).
In order to implement the desired space-variant
distribution of transmi�ance phases, they varied
the la�ice constant of the silicon nanoresonator
arrays as a function of the in-plane sample position;
see Fig. 3(a) and (b). �is allows the transmission
to be kept high enough, while covering a large
phase range. Both devices have experimental
transmi�ance e�ciencies exceeding 70% and work
for any input polarization. Furthermore, they
demonstrated tuning of the resonance wavelength
of silicon nanoresonator arrays using liquid crystals
[52], paving the way towards dynamic wavefront
control. Altogether, silicon Huygens’ metasurfaces
o�er important opportunities for e�cient, �at and
lightweight photonic devices.

Dielectric metasurfaces based on silicon nan-
odisks have emerged as a versatile tool for vari-
ous applications since they support strong electric
and magnetic modes that can be tailored in ev-
ery relevant aspect—like resonance position, qual-
ity factor and resonance strength—by tailoring their
shape and their arrangement within the metasur-
face. Utilizing the strong dipolar response of the
nanoparticles, it is possible to realize ultrathin per-
fect metasurface-based re�ectors with a re�ectance
of 99.7%, even surpassing the re�ectance of metallic
mirrors, at 1530 nmwavelength with a bandwidth of
200 nm [53]; see Fig. 3.

Importantly, metadevice multiplexers made of
all-dielectric metasurfaces can be employed for en-
gineering the mode pro�les of arbitrary complex-
ity, including Eisenbud–Wigner–Smith states [54]
and orbital angular momentummodes [55]. Highly
transparent all-dielectric resonant metasurfaces can
be employed for engineering the mode pro�les with
high e�ciency, e.g. for the conversionof LP01modes
into LP11 and LP21 modes for free-space optical
communication [56]. In this way, a single meta-
surface is capable of mode-multiplexing with an
extinction ratio in excess of 20 dB over the C-
band with negligible penalty even for 100 Gb/s sig-
nals. �e metasurface is expected to introduce no
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performance degradation except for an excess loss
due to re�ections that can beminimized by applying
an antire�ective coating.

Multipolar e�ects can also be employed success-
fully for achieving the broadband operation ofmeta-
optics holograms [57]. Today, we are witnessing
an exciting rise in holographic optics driven by the
enormous progress in our ability to structuremateri-
als at the nanoscale.�is enables a newway to create
highly e�cient holograms with single-step pa�ern-
ing. A�racting concepts of complex wavefront en-
gineering and multimodal resonant response, Wang
et al. [57] designed highly transparent silicon holo-
grams that allow high-resolution images to be en-
coded; see Fig. 3 (bo�om).

Finally, we mention one more important de-
velopment in the physics and applications of all-
dielectric resonant metasurfaces for creating color
pixels for bright �eld full color print [58–61]. Print-
ing technology based on plasmonic structures has
many advantages over pigment-based color print-
ing, such as high resolution and low power con-
sumption. However, due to high losses of metals
in the visible spectrum, it becomes challenging to
produce well-de�ned colors. Planar structures of
dielectric nanoresonators enable high-quality reso-
nances in the visible spectral range, and they can
be employed for high-quality colors with selective
wavelengths. Structural colors can be conveniently
produced by nanoscale structuring of high-index di-
electric materials. Compared to plasmonic analogs,
color surfaces with high-index dielectrics, such as Si
and Ge, have a lower re�ectance and superior color
contrast [61]. Laser-printable high-index dielectric
color metasurfaces are scalable to a large area and
open a new paradigm for printing and decoration
with non-fading and vibrant colors.

Metamaterials

�e idea of employing Mie resonances for build-
ing 3D metamaterials with low losses is relatively
old, and a number of papers have suggested employ-
ing dielectric resonators for achieving magnetic re-
sponse in bulk structures [62,63], with experimen-
tal demonstrations at microwaves [64–66]. Scaling
such structures to optical wavelengths requires ma-
terialswithhigh refractive index, andquiteo�en they
become inconsistent with the major concepts of the
metamaterial physics based on homogenization and
averaged parameters.

Being made of a periodic la�ice of dielectric ele-
ments, all-dielectric metamaterials resemble closely
their relatives, photonic crystals.However, these two
types of periodic structures are usually considered
in di�erent physics regimes: ‘metamaterials’ are of-
ten associated with averaged parameters and neg-

ative refractive index, so it is silently assumed that
they operate either in the long-wavelength limit or
far from the Bragg resonances, whereas ‘photonic
crystals’ have been introduced to create bandgaps,
and the properties of Bragg sca�ering are important.
Because such regimes can be realized in one struc-
ture by varying its parameters, such as permi�ivity
and la�ice constant, the more general term ‘meta-
crystal’ is sometimes employed.

�ings become more complex when each of the
dielectric elements supports Mie resonances in the
bandgap frequency range. To illustrate the physics
of the associated phenomena, we notice that Ry-
bin et al. [67] discussed a transition between pho-
tonic crystals and dielectricmetamaterials and intro-
duced the concept of a phase diagram, based on the
physics of Mie and Bragg resonances.�ey revealed
that a periodic photonic structure transforms into
a metamaterial when the Mie gap opens up below
the lowest Bragg bandgap, where the homogeniza-
tion approach can be justi�ed and the e�ective per-
meability becomes negative.�at theoretical predic-
tion was con�rmed by microwave experiments for
a meta-crystal composed of tubes �lled with heated
water [67].�is analysis provides auseful tool for de-
signing di�erent classes of electromagneticmaterials
with variable parameters.

Unlike metasurfaces operating at the normal or
weakly oblique propagation of incoming light, 3D
resonant dielectric structures operate at di�erent an-
gles, and in a majority of cases they are not de-
scribed by averaged parameters introduced via the
homogenization procedure. As mentioned above,
such structures should be classi�ed from the view-
point of ‘meta-optics’, where subwavelength ele-
ments support various resonances and may be em-
ployed for the control of the light propagation, in
contrast to e�ective media described by averaged
parameters.

NON-LINEAR META-OPTICS

Second-harmonic generation (SHG) is one of the
most important non-linear processes in optics. In
SHG, the frequency of an incident light beam is
doubled inside of a non-linear crystal, as shown
schematically in Fig. 4(a) and (b). SHG is nowa-
days employed in many applications, including laser
sources and non-linearmicroscopy.�e simplest ex-
ample is a green laser pointer employing an e�cient
frequency-doubling non-linear crystal and emi�ing
light at 532 nm.

Usually, non-linear optics relies on bulk non-
linear crystals, such as lithium niobate. Unfortu-
nately, these materials are di�cult to integrate with
other devices, due to the di�culties inherent in their
manufacturing and machining, and they are also not
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(a) (b)

(c) (d)

(e)

ω

ω
2ω

x(2) crystal

x(2) nanocrystal

Figure 4. Non-linear optics: micro versus nano. (a)

Schematic of SHG. (b) A conventional SHG process within a

bulk non-linear crystal, generating a blue light in the forward

direction. (c) SHG from small objects, such as anisotropic

molecules, is emitted in both forward and backward direc-

tions, resulting in a dipolar radiation. (d) For larger nanocrys-

tals, the emission can differ in forward and backward di-

rections due to the interference of several multipoles inside

the nanocrystal. (e) SHG from small nanocrystals with a de-

signed radiation pattern and complex beam shape with high

conversion ef�ciency (adapted from Ref. [68]).

cost-e�ective. Furthermore, special phase-matching
conditions are o�en required in order to obtain
useful conversion e�ciencies. Although the output
beam pro�le in bulk crystals can be engineered by
complex periodic poling, this technique is not easily
accessible due to its requirement for a spatially inho-
mogeneous distribution of high voltages across the
crystals.

To overcome these issues, it would be useful if we
could replace bulk non-linear crystals with ultrathin
surfaces composed of nanocrystals that can gener-
ate SHGwith high e�ciency. Such non-linear meta-
atoms could also be used to manipulate the SHG
radiation to form complex beams with arbitrary
pa�erns, as shown schematically in Fig. 4(c)–(e).

Recent progress of meta-optics suggest that Al-
GaAsnanocrystals fabricated on a glass substrate not
only enable a non-linear conversion e�ciency ex-
ceeding 10−4 (for subwavelength-thick structures),
but also provide an opportunity to de�ne the beam
shape and polarization in both forward and back-
warddirections [68].�egenerationof complex and
high-e�ciency vector beams o�ers unique opportu-
nities formany novel applications such as non-linear
microscopy, non-linear holography, sum-frequency
and di�erence-frequency generation, spontaneous
parametric down-conversion, and parametric am-
pli�cation. A wide range of opportunities requires
much deeper studies of non-linear optics at the
nanoscale.

General formalism

Within the macroscopic description based on
Maxwell’s equations, the light–ma�er interaction
is described in the electric-dipole approximation
speci�ed by the non-linear relationship between the
applied electric �eld E and induced polarization P as
(for non-magnetic media)

P = ǫ0

[

↔
χ

(1)
·E +

↔
χ

(2)
:EE +

↔
χ

(3)...EEE + . . .

]

,

(1)
wri�en as a Taylor series in E. In this approach, the
�rst term describes the linear regime at weak exter-

nal �elds, and
↔
χ

(N)
are the Nth-order susceptibil-

ity tensors of the rank N + 1, which describe the
polarization-dependent parametric interaction and
symmetries of the speci�c non-linear media. Usu-
ally, optical non-linearities of natural materials are
weak, and the non-linear e�ectsmanifest themselves
for strong applied electromagnetic �elds, generated
by powerful and coherent sources of light. Because
considerable amounts of the electromagnetic energy
can be con�ned to tiny volumes in nanoparticles or
even smaller hot spots, they enable downscaling of
the required optical powers, because the intensity of
parametric processes scales with the fourth or sixth
power of the fundamental �eld strength.

Under high intensities of light, an anharmonic
motionof electronsproducesphotons at frequencies
di�erent from that of the incoming light, with SHG
and third-harmonic generation (THG) as promi-
nent examples. It is a widely adopted concept that
only the electric polarization of the material is af-
fected by the anharmonic motion of the electrons
driven by the electromagnetic �eld. However, meta-
materials can exhibit a non-linear magnetic response,
resulting in a new type of magnetic non-linearities
[69]. �is picture is at large adapted in the mi-
crowave regime, and a vast number of research
groups are engaged in utilizing the tailored non-
linear response of metamaterials, as discussed in the
recent review papers [70,71]. However, the idea of
generic magnetic non-linearities remains distant to
the non-linear optics community, while new direct
observations of the e�ects induced by magnetic re-
sponse are being reported, as discussed below.

An important issue in non-linear optics is
crystalline symmetry. In particular, within the
electric-dipole approximation of the light–ma�er
interaction, second-order non-linear e�ects are not
possible in uniform centrosymmetric media such
as plasmonic metals and group IV semiconductors,
because of the simple symmetry constraints, while
no such restriction exists for third-order non-linear
processes [72]. However, the inversion symmetry
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can be broken at surfaces and interfaces, thus
enabling the second-order non-linear processes to
occur, being generated from surfaces of isotropic
media due to the electric-dipole surface contri-
bution to the e�ective non-linear polarization.
�e sensitivity of such non-linear e�ects to the
properties of surfaces can be used in probing and
sensing techniques. Importantly, the bulk non-
linear polarization originates from higher-order
non-local magnetic-dipole and electric-quadrupole
interactions with light at the microscopic level. To
account for such multipolar e�ects, we can present
the e�ective light–ma�er interaction Hamiltonian
in the form [73,74]

Hint = −p · E − m · B − [Q∇] · E − . . . ,

(2)
whereE is a local electric �eld, p is the electric-dipole
moment,m is themagnetic-dipolemoment, andQ is
the electric-quadrupole moment.

Strong interaction of subwavelength structures
with an external light �eld may occur due to the
resonant excitation of low-order modes (up to
quadrupoles) due to surface plasmon resonances (in
plasmonic materials, such as metals and doped
graphene), or Mie-type resonances (in dielectric
nanoparticles with high refractive index) being sup-
ported by large displacement currents. �e physics
of these resonances can be understood from the
classical problem of Mie sca�ering by spherical
particles. �e macroscopic source of non-linear po-
larization is de�ned by the induced near-�eld dis-
tribution, and it is expressed in terms of multipolar
bulk and surface contributions inherent to the non-
linear medium. Non-linear response functions ap-
pear due to averaging multipolar light–ma�er inter-
actions, which can be described by the Hamiltonian
Hint at themicroscopic level, accounting for the sym-
metry and structural properties of the material. �e
induced non-linear polarization generates electric
and magnetic multipoles of di�erent orders, yield-
ing non-trivial radiation and polarization pa�erns
through far-�eld interference. In the framework of
this approach, the ‘optical magnetic’ Mie mode can
support strong �elds that drive the electric-dipole-
allowed bulk non-linearity of the material, and in
turn, the non-linear source induced in the nanopar-
ticle can give rise to higher-order multipoles in non-
linear sca�ering.

Non-linear effects at the nanoscale

In the last few years, the role of the non-linear
magnetic response in optics has been intensively
addressed. Shcherbakov et al. [75] employed a
novel type of optically magnetic nanostructures

to show that they can signi�cantly enhance non-
linear conversion; see Fig. 5(a)–(d). As mentioned
above, silicon nanoparticles support the Mie-type
modes including the fundamental magnetic dipo-
lar mode. Along with being optically magnetic, they
do not su�er from intrinsic losses in the infrared
and are CMOS-compatible. Shcherbakov et al. [75]
con�rmed that the THG response from silicon
nanodisks prevails over the THG from the bulk
silicon by using THG microscopy and THG spec-
troscopy techniques. �e low intrinsic losses of the
disks made it possible to reach conversion e�cien-
cies high enough for the generatedUV light to be ob-
served even under table-lamp illumination. Bringing
the nanodisks into the oligomer arrangement pro-
vides another degree of freedom for non-linear mag-
netoelectric coupling [76]; see Fig. 5(e).

Similar studies of the multipolar enhancement
of SHG have been conducted for hybrid metal–
dielectric nanoparticles [77]. In order to straightfor-
wardly identify themagnetic dipolar contribution to
optical non-linearities, the authors performed spec-
trally resolved second-harmonic measurements and
multipolar analysis of the SHG from a hybrid nan-
odisk. �e la�er can sustain antisymmetric move-
ment of electron plasma leading to the resonant
magnetic response. �ey employed the multipolar
decomposition of the experimental and calculated
SHG spectra, and observed that the main contribu-
tion to the detectednon-linear signal originates from
the conventionally neglected electric quadrupolar
and magnetic dipolar sources [77].

Generation of di�erent localized modes can re-
shape completely the physics of non-linear e�ects at
the nanoscale [78]. Utilizing the Mie resonances in
resonant dielectric nanoparticles has recently been
recognized as a promising strategy to gain higher ef-
�ciencies of non-linear parametric processes at low
modal volumes, and novel functionalities originat-
ing from optically induced magnetic response. In
particular, it is possible not only to discover novel
regimes of non-linear optical magnetism in nanoan-
tennas [79], but also to distinguish experimentally
non-linear contributions of electric and magnetic
responses by analyzing the structure of polariza-
tion states of vector beams in SHG with continu-
ous tuning of the polarization of the optical pump
[79]. �e electric multipoles generated can be dis-
tinguished from magnetic multipoles in the far-�eld
region by their distinct polarization. For example,
an electric-dipole polarization follows the polar an-
gle unit vector, whereas the �eld generated from a
magnetic-dipole mode follows the azimuthal angle
unit vector. �is results in ‘radial’ polarization from
an electric dipole in the projection plane perpen-
dicular to the dipole moment and, correspondingly,
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Figure 5.Non-linear harmonic generation at the nanoscale. (a)–(d) THG from an Si dielectric nanoparticle with the magnetic Mie resonance. Local �elds

calculated for the electric dipolar and magnetic dipolar modes, respectively. Map of the THG intensity from the nanodisks normalized over the THG

from a bulk silicon slab. Eye-visible THG from the silicon nanodisk array [75]. (e) Coupling of nanodisks within oligomers tailors the non-linear optical

response [76]. (f) Electric versus magnetic SHG in nanoantennas, with distinct polarization patterns for the generated electric and magnetic multipoles

[79].

‘azimuthal’ polarization distribution from a mag-
netic dipole (see Fig. 5(f)).

Another important mechanism for enhancing
non-linear interactions at the nanoscale is to em-
ploy multipolar interference for creating a tight �eld
con�nement in the so-called optical anapole mode
[80,81]. �is anapole mode is associated with the
concept of non-radiating current con�gurations, and
in optics it can be viewed as an engineered super-
position of electric and toroidal optical dipole mo-
ments, resulting in destructive interference of the
radiation �elds. �is may happen due to a similar-
ity of the far-�eld sca�ering pa�erns generated by
an optical dipole mode and toroidal modes, and,
usually, for the generation of toroidal modes in
metamaterials, some more complex structures of
nanoparticles are suggested [82]. However, dielec-
tric nanoparticles can support the (almost radia-
tionless) anapole mode, allowing an overlap of the
toroidal and electric-dipole modes through geom-
etry tuning, with a pronounced dip in the far-�eld
sca�ering accompaniedby the speci�c near-�eld dis-
tribution [80]. Importantly, these anapole modes
can be employed to resolve a major challenge with
the e�cient coupling of light to nanoscale optical

structures. Indeed, as has been shown theoretically
[81], a nanoscale laser based on a tightly con�ned
anapole mode in InGaAs nanodisks allows the e�-
cient coupling of light into waveguide channels with
four orders ofmagnitude intensity compared to clas-
sical nanolasers, as well as the generation of ultrafast
(of 100 fs) pulses via spontaneous mode locking of
several anapoles, o�ering an a�ractive platform for
integrated photonics sources for advanced and e�-
cient nanoscale circuitry.

Recently, Grinblat et al. [83,84] employed the
property of the anapole mode for the observation
of strong third-order non-linear processes and
e�cient THG from Ge nanodisks. �ey observed
a pronounced valley in the sca�ering cross section
at the anapole mode, while the electric �eld energy
inside the disk is maximized due to high con�ne-
ment within the dielectric nanoparticle. Grinblat
et al. [83] investigated the dependence of the third
harmonic signal on the size of the nanodisk and
pump wavelength and revealed the main features of
the anapole mode, corresponding to an associated
THG conversion e�ciency of 0.0001% at an excita-
tion wavelength of 1650 nm, which is four orders of
magnitude greater than the case of an unstructured
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germanium reference �lm. Furthermore, they
concluded that the non-linear conversion via the
anapole mode outperforms that via the radiative
dipolar resonances by about at least one order of
magnitude.

With a compact size and novel functionalities en-
abled by magnetic-dipole and multipolar Mie reso-
nances, the engineered dielectric nanoparticles are
perfect candidates to become important building
blocks for novel and superior non-linear nanopho-
tonic metadevices.

Non-linear metasurfaces

In the same way as conventional metamaterials can
be employed to engineer non-linear optical e�ects
[70], many metasurfaces can be used to provide an
e�cient control over the parameters of non-linear
optical interactions to produce tunable optical de-
vices. Moreover, as non-linear response is governed
to a large extend by the e�ects of the �eld localiza-
tionwithinnanostructures, itmayprovide additional
information on optical properties of metasurfaces.
�erefore, various parameters of the non-linear op-
tical response such as intensity, phase and state of
polarization can be e�ectively controlled by chang-
ing the shape anisotropy and geometry of a particu-
lar metasurface, especially important for plasmonic
metamaterials [85].

Given the inherently weak non-linear response
of natural materials, non-linear metasurfaces [86,87]
can be employed to realize signi�cant non-linear
responses in much smaller volumes, with current
research devoted to the quest of synthesizing
novel materials with enhanced optical non-
linearities at moderate input intensities. In particu-
lar, several approaches to engineer the non-linear
properties of arti�cial materials, metamaterials and
metasurfaces have been introduced, including high-
harmonic generation from ultrathin metasurfaces
based on high-index dielectric resonators, as well as
semiconductor-loaded metasurfaces.

One of the �rst demonstrations of a strong
non-linear response of metasurfaces was reported
[88] for n-doped multi-quantum-well semiconduc-
tor heterostructures employing intersubband tran-
sitions, with one of the largest known non-linear
optical responses with a non-linear susceptibility of
greater than 5× 104 picometers per volt for second-
harmonic generation under normal incidence. Such
non-linear metasurfaces can be applied to engineer
the Pancharatnam–Berry phase [89], thus establish-
ing a platform to control the non-linear wavefront at
will and design �at non-linear metasurfaces for ef-

�cient second-harmonic radiation, including beam
steering, focusing and polarization manipulation.

�e use of non-linear meta-atoms based on di-
electric nanoparticles provides much higher con-
version e�ciencies for both second- and third-
order non-linear processes. Recent studies suggest
that non-linear nanoparticles can be employed for
the demonstration of highly e�cient all-dielectric
non-linear metasurfaces. One design is a non-linear
mirror based on the third-harmonic generation in di-
electric metasurfaces that employs strong enhance-
ment of THG in isolated silicon nanodisks opti-
cally pumped near the magnetic dipolar resonance
[90]. �e non-linear mirror generates a third har-
monic from a laser with 1556 nm wavelength (thus,
the third harmonic should be generated at 519 nm
wavelength) in a way that the fundamental wave and
the third harmonic are directed in opposite direc-
tions from the metasurface plane. A�er the inter-
action with the metasurface, all light at the funda-
mental wavelength gets re�ected backward, and all
light at the generated third harmonic gets transmit-
ted forward. Such a non-linear mirror can be readily
used as a frequency converter for laser cavities. �e
other type of non-linear mirror can act in the oppo-
site way, transmi�ing light at the fundamental wave-
length and directing the generated third harmonic
backwards.

�ese very recent �ndings open a new direction
for non-linear optics, in which phase-matching is-
sues are relaxed, and an unprecedented level of local
wavefront control is achieved over thin devices with
very large non-linear responses and very low losses.

TOPOLOGICAL META-OPTICS

For decades, many branches of physics have been
dominated by la�ice symmetries and chemical com-
position as the key concepts in the classi�cation
and design of various solid-state materials. How-
ever, it has recently been demonstrated that topol-
ogy may be more important than symmetry in de-
termining certain material properties. Topology is a
subtle global property of the system governing how
its parts connect. Connection of two topologically
distinct materials results in the formation of peculiar
states at the interface between them.�ese topolog-
ical edge states have a built-in tra�c control mech-
anism that enforces one-way propagation of elec-
trons along the edges or interfaces and protects elec-
tron current from sca�ering on impurities. Materi-
als insulating in a bulk but conducting at the surfaces
through topological edge states were discovered in
solid-state physics in 2006, and they are currently
known as topological insulators [91].
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Figure 6. Topological meta-optics based on dielectric nanoparticles. Left: (a) Fabricated zigzag array of nanodisks. (b) Energy spectrum and parity of

the winding number of a zigzag chain versus the angle between three consecutive particles [96]. (c) Experimental observation of the topological phase

transition in zigzag arrays of nanoparticles of different lengths [99], and (d) false-color optical images of the third-harmonic radiation from a topological

chain; arrows indicate polarization of pump (shown are the images for the excitation from the top and bottom, respectively) [100]. Right: 3D all-dielectric

photonic topological insulator, and �eld distribution of the surface modes propagating without re�ection across the domain wall with a sequence of

sharp bends [101].

�e discovery of topological insulators has trig-
gered a vast pursuit of novel topologically protected
states of light creating a new �eld of topological pho-
tonics [92,93]. In solids, such states do not con-
duct any bulk current but possess conducting sur-
faces due to topologically protected edge states [94],
which can carry current without dissipation even
in the presence of impurities. By now, several so-
phisticated designs have been developed, and unidi-
rectional photon transport has been predicted and
demonstrated [92].

Topological states of optical materials character-
ize the quantized global behavior of light. While �rst
demonstrations of optical topological states were re-
alized in systemsof coupledopticalwaveguides [95],
resonant nanophotonics allows the creation of topo-
logical states on the subwavelength scale.

Poddubny et al. [96] suggested the �rst re-
alization of subwavelength topological states at
the nanoscale. �ey revealed that hybridization
of the polarization-degenerate modes of a zigzag
chain of plasmonic nanoparticles engenders a chiral-
symmetric energy spectrum. �e structure exhibits
a topological transition when the chain changes
its structure from a line to a zigzag, as shown in

Fig. 6(a). Namely, the spectrum of a straight chain
is topologically trivial; it has a vanishing parity of the
winding numberP. For the zigzag chain thisZ2 topo-
logical invariant is non-zero (see Fig. 6(b)), being
the hallmark of the edge states at both chain edges
[96].

A proof-of-concept experiment con�rmed the
presence of edge states in the zigzag chain of gold
nanodisks in the visible [97]. �e chain was excited
from the substrate side and near-�eld pa�erns of
the plasmonic modes induced in the structure were
mapped by a near-�eld scanning opticalmicroscope.
�e measured near �eld demonstrates hot spots at
the chain edges that were switched by rotating the
polarization of the incident light.

Slobozhanyuk et al. [98] generalized this theory
to a broader class of electromagnetic structures in-
cluding dielectric nanoparticles with di�erent sym-
metries of the coupled opticalmodes.�eyobserved
subwavelength topological edge states for electric-
and magnetic-dipole and magnetic-quadrupole
modes. Moreover, they demonstrated directly the
robustness of the edge states against disorder [98].
�ese results opened novel avenues to engineering
topological states of light at the nanoscale.
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Later, it was established that polymeric arrays of
subwavelength silicon nanodisks can support two
types of topological edge modes based on magnetic
and electric Mie resonances, and their topological
properties are fully dictated by the spatial arrange-
ment of the nanoparticles in the array. Kruk et al.
[99] observed experimentally and described theo-
retically topological phase transitions at the nanoscale
controlling a change from trivial to non-trivial topo-
logical states when the edge mode is excited (see
Fig. 6(c)), and they traced these topological phase
transitions experimentally by employing near-�eld
scanning optical microscopy.

Recently, Kruk et al. [100] demonstrated
topology-enhanced THG at photonic edge states
in zigzag arrays of silicon nanodisks. �e har-
monic generation was observed only for one
direction of the plane-wave excitation, manifesting
the non-linearity-induced non-reciprocal nature
of the photonic topological states. Figure 6(d)
shows the distribution of the third-harmonic radi-
ation across the zigzag arrays for several di�erent
polarizations of the pump. �ey observed exper-
imentally localized modes at the third-harmonic
frequency when the laser pump excites the topolog-
ical edge states. Non-linear e�ects are stronger for
the edge states due to a higher concentration of the
electric �eld. �e observed edge-to-center intensity
contrast is about 8. Selective excitation of the le�
or right edges is controllable by the polarization
of the pump wave (shown by arrows in Fig. 6(d)).
Namely, the edge is excited when the electric �eld
is transverse to the link between the last pair of
nanodisks. �e electric-dipole a�ribution of the
edge state was con�rmed by full-wave numerical
simulations [100].

A zigzag array of nanoparticles provides the sim-
plest example of a topological photonic systemat the
nanoscale, and it might be useful for designing fun-
damentally new types of photonic topological cir-
cuitry with complex magneto-electric coupling and
high-intensity �elds delivered on demand, not exist-
ing in any solid-state system.

More recently, a proposal was made for all-
dielectric 3D meta-crystals consisting of resonant
building blocks exhibiting electromagnetic duality
between electric andmagnetic �elds thatmaybe em-
ployed to create photonic topological insulators sup-
porting propagating edge states [101]. In such sys-
tems, the magneto-electrical coupling plays the role
of a synthetic gauge �eld that determines a topolog-
ical transition to an ‘insulating’ regime with a com-
plete photonic bandgap. �e proposed all-dielectric
meta-crystal design suggests the topological robust-
ness of the surface states enabling re�ectionless rout-
ing of electromagnetic radiation along arbitrarily
shaped pathways in three dimensions (see Fig. 6,

right column), which makes these modes promis-
ing for applications in photonics. �is all-dielectric
platform could also avoid undesirable e�ects such
as ohmic loss, which is inevitably present in metallic
and plasmonic structures.

SUMMARY AND OUTLOOK

Electromagnetic metamaterials were initially sug-
gested for thedemonstrationof novelwavephenom-
ena such as negative refraction, and later they were
employed for engineering electromagnetic space
with transformation optics. However, the overall
demand for realistic applications of metamateri-
als in optics is growing, and it cannot be satis�ed
by conventional designs and concepts, which suf-
fer from large losses in metallic components. �e
recent rapid progress in low-loss dielectric meta-
optics and all-dielectric resonant nanophotonics has
seen the rebirth of the metamaterial concept, and it
is associated with the physics of high-index dielec-
tric nanoparticles supporting optically induced elec-
tric and magnetic Mie resonances. �is may revo-
lutionize modern nanophotonics by bringing novel
properties driven by optical magnetic response. All-
dielectric resonant subwavelength structures have
many advantages, including resonant behavior and
low-energy dissipation into heat; they also provide
the resonant enhancement of magnetic �elds in di-
electric components andbring new functionalities in
both linear andnon-linear regimes.�eymay also al-
low simpler integration approaches than plasmonic
structures.

Novel opportunities are expected to appear with
the use of new materials with high refractive index
and low losses. In particular, the recently emerged
phase-changeable materials such as GST alloys (e.g.
Ge3Sb2Te6 [102]) can be explored for mid-infrared
chiral metasurfaces with tunable electric and
magnetic Mie resonances, achieving multifaceted
functionalities controlled by phase transitions. In
addition, novel opportunities appear with the use
of organic–inorganic materials [103] for develop-
ing a novel hybrid platform for non-linear optics
and optoelectronics based on organic–inorganic
materials combined with nanophotonic structures.
Recently, it was demonstrated that metasurfaces
based on nanoimprinted perovskite �lms optimized
by alloying the organic cation part of perovskites
can exhibit a signi�cant enhancement of both linear
and non-linear photoluminescence (up to 70 times)
combined with advanced stability [104]. �ese
results suggest a cost-e�ective approach based on
nanoimprint lithography and combined with simple
chemical reactions for creating a new generation of
functional metasurfaces that may pave the way
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toward highly e�cient planar optoelectronic
metadevices.

Research in the �eld of all-dielectric meta-optics
is now moving towards tunable, non-linear and ac-
tive structures and towards practical and miniature
metadevices, de�ned as the devices having unique
and useful functionalities that are realized by struc-
turing of functional ma�er on the subwavelength
scale. We expect that all-dielectric resonant meta-
optics will ultimately employ all of the advantages
of optically induced magnetic resonances and shape
many important applications, including optical sens-
ing, parametric ampli�cation, fast spatial modula-
tion of light for telecom applications, non-linear
active media, as well as both integrated classical
and quantum circuitry and topological photonics,
underpinning a new generation of nanoantennas,
nanolasers, highly e�cient metasurfaces and ultra-
fast metadevices.
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