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ARTICLE

All-dielectric metasurface for high-performance
structural color
Wenhong Yang1, Shumin Xiao 1,2,3✉, Qinghai Song 1,2, Yilin Liu1, Yunkai Wu1, Shuai Wang1, Jie Yu1,

Jiecai Han3 & Din-Ping Tsai 4✉

The achievement of structural color has shown advantages in large-gamut, high-saturation,

high-brightness, and high-resolution. While a large number of plasmonic/dielectric nanos-

tructures have been developed for structural color, the previous approaches fail to match all

the above criterion simultaneously. Herein we utilize the Si metasurface to demonstrate an

all-in-one solution for structural color. Due to the intrinsic material loss, the conventional Si

metasurfaces only have a broadband reflection and a small gamut of 78% of sRGB. Once they

are combined with a refractive index matching layer, the reflection bandwidth and the

background reflection are both reduced, improving the brightness and the color purity sig-

nificantly. Consequently, the experimentally demonstrated gamut has been increased to

around 181.8% of sRGB, 135.6% of Adobe RGB, and 97.2% of Rec.2020. Meanwhile, high

refractive index of silicon preserves the distinct color in a pixel with 2 × 2 array of nanodisks,

giving a diffraction-limit resolution.
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C
olors, arising from the light-matter interaction, play vitally
important roles in the world in which we live1,2. The most
frequently used colors are produced by pigments and dye.

Such colors are formed by absorbing certain wavelength range in
visible3. They are typically dim and has a tiny gamut. The spot
sizes of pigments are on the order of 25 µm, resulting in a poor
resolution below 1000 dpi. To tackle the obstacles of pigments,
the colors from structured materials have been revisited and
several technologies are developed. One prominent example is the
plasmonic structural color4–7. The interplay between light and
plasmonic nanostructures such as gratings8,9, nanogaps10,11, and
nanoparticles12,13 can produce vivid colors covering the entire
visible spectrum. The local surface plasmon of individual Mie
scatter has even pushed the imaging resolution to the resolution-
limit of a bright-field microscope14–16. All-dielectric structural
color is another important approach17–19. The electric/magnetic
dipole modes and the collection resonance make the metasurfaces
selectively transmit or reflect particular wavelengths. As some
dielectrics are transparent in the visible, all-dielectric structural
color are usually more vibrant and their gamut can be several
times larger20. Recently, dynamically reconfigurable structural
color have also been demonstrated by applying liquid crystals,
microfluids, phase transition materials, or gain materials21–23.

Despite of the above continuous successes, the practical
applications of structural color in surface decoration24, digital
displays25, molecules sensing26, optical security27, and informa-
tion storage28 are still restricted. This is because both types of
structural color only possess one or a few the above unique
characteristics, far from the commercial requirements. This pre-
dicament is more overt in Fig. 1, where the recent breakthroughs
are summarized using five key parameters—the manufactur-
ability, the reflectance, the full width at half maximum (FWHM)
ratio, the spatial resolution, and the gamut area in the interna-
tional commission on illumination (CIE) color diagram. The
plasmonic colors have subwavelength resolution but suffer from
the low intensity and small gamut (~45% of sRGB)29. All-
dielectric nanostructures such as TiO2 metasurfaces are distinct
and vibrancy in bright-field30. But their spatial resolutions are an
order of magnitude lower than their plasmonic counterparts. In
addition, the record gamut area in experiment is only 68% of the
Rec.202031, far below the industrial requirements. Up to now,
there is no structural color that can match all the above critical
criterion simultaneously. Herein, we propose and experimentally
demonstrate an all-in-one solution for structural color. By
combing Si metasurface with a refractive index matching layer,
high-brightness and distinct structural color with diffraction-limit

resolution has been realized. The corresponding gamut area has
been increased to 181.5% of sRGB.

Results and discussions
To achieve an ultimate solution, we revisited the Si meta-
surfaces. From the material side, silicon is extremely stable and
compatible to the modern CMOS technologies, naturally
matching the requirements on mass-manufacturability and
long-time durability18–20,32–34. The sophisticated design on
nanostructures gives the possibility of concealing its shortage
and improving the color impression20,35–37. In addition, the
large refractive index of Si enables simple structures for high-
performance structural color, essential for the cost-effective
nanofabrication20,38,39. Fig. 2a shows the schematic of the Si
metasurface, which is composed of Si nanodisks on a sapphire
substrate with radius R and lattice size l. The thickness is fixed at
h= 100 nm. Panel I in Fig. 2b shows the numerically calculated
reflection spectrum at the metasurface with diameter of nano-
disk /lattice size of 180 nm/320 nm. Two resonances can be
clearly seen at 581 and 609 nm, corresponding to the electric
dipole (ED) resonance and magnetic dipole (MD) resonance
(see left column in Fig. 2d), respectively. Due to the small
thickness, the intrinsic material absorption is alleviated, and the
maximal reflectance can be as high as 84%. As a result, orange
color shall be clearly seen under a bright-field microscope (see
inset in Fig. 2b). With the reduction of lattice size and the
diameter of nanodisk, the reflection peak blue-shifts con-
tinuously, simply covering the entire visible spectrum. While the
reflectance decreases with the wavelength, it is still about 84% at
600 nm and 29% at 402 nm, producing China pink, blue-violet,
blue-gray, african-violet, caribbean-green, apple-green, bitter-
lime, Erin and orange as well (panels I–IX and their insets in
Fig. 2b). However, the displayed colors in Fig. 2b are still rela-
tively pale. It can be seen more clearly when the structural color
of 63 samples are plotted in the CIE1931 color map (triangles
Fig. 2e). The gamut area is only 92% of sRGB, slightly larger
than the gamut of plasmonic colors29.

The small gamut of Si metasurfaces is caused by the reflection
background at the undesirable wavelengths and the broad reflection
peak (see Fig. 2b and details in Supplementary Note 18). The first
one produces a white background, whereas the second one spoils
the color impression. To solve these problems, a refractive index
matching layer is applied. Basically, the reduced refractive index
contrast between sapphire and the refractive index matching layer
can effectively suppress the reflection from the substrate. Similar to
the situation to match the Kerker condition20,40, the destructive
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Fig. 2 The schematic and the numerical simulation of Si metasurfaces. a The schematic of the Si metasurfaces. The left panel shows the colors are pale

with a background reflection in air. The right panel shows distinct colors can be achieved by adding a refractive index matching layer such as PMMA or
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corresponding structural color. From top to bottom, the panels are labeled as I–IX. d The electromagnetic field distributions of electric dipole mode and

magnetic dipole mode in air and in refractive index matching layer with n= 1.48. Here the size parameter is diameter/period of 180/320 nm. e The CIE1931
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interference between electric dipole resonance and magnetic dipole
resonance shall further decrease the undesirable reflection outside
the main reflection peak. Meanwhile, the electrical dipole resonance
is localized closer to the boundaries and is more sensitive to the
environmental refractive index changes than the magnetic dipole.
As a result, the refractive index matching layer can push the electric
dipole resonance to the magnetic dipole resonance and thus narrow
the FWHM of reflection spectrum. Figure 2c shows the reflection
spectra of the same Si metasurfaces in Fig. 2b but coated with a
refractive index matching layer with n= 1.48. As expected, both the
white-background and the FWHM are well suppressed by the
Kerker condition, which are caused by the reduced refractive index
contrast and the different responses of electric and magnetic dipole
resonances (see Supplementary Note 18). The reflectance of mag-
netic dipole resonance is well preserved at ~74%–21% in the visible
spectrum. The modifications on background reflection and FWHM
look trivial but are very important to pushing the performances of
structural color to the limit, i.e. Rec.2020, a standard for ultrahigh-
definition television since 2012. Consequently, more vivid structural
color can be seen in the insets of Fig. 2c.

For a direct comparison, we have also plotted these colors as
stars in the same CIE 1931 color map in Fig. 2e. With the
refractive index matching layer, the simulated color gamut is

around 186% of the sRGB, 138.7% of the Adobe RGB, and even
approaches 99.5% of the Rec.2020. Similar to the conventional
all-dielectric metasurfaces20,30,41,42, the structural color from Si
metasurface with a refractive index matching layer (n= 1.48) are
also independent to the incident angle (see Supplementary
Note 19) and only slightly increase the material absorption (see
Supplementary Note 20). Therefore, adding a refractive index
matching layer to high refractive index all-dielectric metasurface
is an effective approach to improve the structural color to
the limit.

We then fabricated the designed nanostructures on a com-
mercially available silicon on sapphire (SOS) wafer (http://www.
roditi.com/SingleCrystal/silicon-on-sapphire.html) with a com-
bined process of electron-beam lithography and reactive ion
etching (see the “Methods” section). To test the influences of
refractive index matching layer, the metasurfaces were integrated
into a microfluidic channel after the fabrication and simply
infiltrated with dimethyl sulfoxide (DMSO) with n= 1.48. The
color performances were optically characterized with a bright-
field optical microscope (see the “Methods” section). Figure 3a
shows the top-view scanning electron microscope (SEM) images
of the Si metasurfaces with different lattice sizes. Figure 3b, c
summarize their reflection spectra. High reflection peaks appear
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at 406, 433, 472, 467, 526, 529, 576 and 600 nm when the
metasurfaces are placed in air. China pink, blue-violet, blue-gray,
african-violet, caribbean-green, apple-green, Erin and orange are
also recorded under a bright-field microscope. Once the DMSO is
infiltrated as the refractive index matching layer, the reflection
peaks shift (see Fig. 3c) and the structural color immediately
transit to Fandango, electric violet, dark violet, blue, cyan, bright
green, yellow, and red (insets in Fig. 3c), demonstrating the
possibility in dynamic color displays. More than the wavelength
shift, the FWHMs of main peaks are around 34–40 nm in Fig. 3c,
close to the FWHM of TiO2 metasurfaces30,43 and 40% narrower
than the ones in air (see Fig. 3b). The background reflection from
substrate is also suppressed to ~zero (see Supplementary Fig. 2).
As a result, the 108 structural color in Fig. 3f become more dis-
tinct and vibrancy than the ones in air (Fig. 3e). By plotting the
structural color in the same CIE 1931 colormap (see Fig. 3d), we
can see that the gamut area has been increased from 78% of sRGB
in air to around 181.8% of sRGB, 135.6% of Adobe RGB, and
97.2% of Rec.2020 in DMSO.

The above results are different from the previous reports on
hybrid nanostructures. In previous reports31, while the simulated
gamut can also be around 171% of sRGB, the experimentally
demonstrated gamut is only about 124% of sRGB (68% of
Rec.2020). This is because the fabrication technologies of different
materials are in-compatible and the top layers are usually
deformed during the etching of bottom materials. In current
experiment, only single-crystalline silicon has been employed in
the nanofabrication process. The CMOS compatible fabrication
technology of Si is mature and highly reproducible. As a result,
the nanostructures can be well produced by lithography and
transferred to silicon via reactive ion etching. The high-resolution

tilt-angle SEM images show that the roughness is smaller than
10 nm and the sidewall is nearly 90° in the vertical direction
(Supplementary Fig. 4). Therefore, both of reflectance and the
gamut area perfectly follow the design in Fig. 2 and a record large
gamut area of structural color has been experimentally realized.
Meanwhile, the single-crystalline Si has lower material absorption
than poly-crystalline Si and amorphous Si in the visible spectrum,
making the gamut area in Fig. 3d 110 and 238% larger than the
latter two materials.

In addition to the high reflectance, small FWHM, large gamut,
mass-manufacturability, and long-time durability, the spatial
resolution is another key parameter for structural color. In TiO2

nanostructures, the dependence on collective resonance restricts
the resolution around 104 dpi30. Here the high refractive index of
Si has the potential to improve the spatial resolution. To test the
resolution, we have fabricated a series of samples consists of 3 × 3
and 2 × 2 arrays of Si disks per pixel (see Fig. 4a). The center-to-
center distances for yellow, green, blue, and purple colors are 320,
250, 200, and 190 nm, which correspond to the resolution limit of
the optical microscope (×100, NA= 0.9) at their operating
wavelengths. Figure 4b summarizes the corresponding bright-
field structural color. While the number of disks per pixel has
been reduced to nine and four, the colors of each pixel is still well
preserved. Compared with the simple reduction of pixel size, it is
more essential to ensure that the color impression and color
distinction will not be spoiled. These are the fundamental bases
for the construction of high-resolution color image. To test the
first characteristic, we have fabricated pure color “Phoenix” pat-
terns with different pixel sizes (see the other patterns in Sup-
plementary Note 3–9). While the pixels of “Phoenix” vary from
5 × 5 to 2 × 2 (see SEM images in Fig. 4c), the Phoenix patterns

a b c d

e f

Fig. 4 The resolution test of the all-dielectric structural color. a The top-view SEM images of Si metasurfaces with different lattice and different pixel

sizes. The scale bar is 400 nm. b The experimentally recorded bright-field microscope images. The smallest pixel sizes for yellow, green, blue, and purple

colors are 320, 250, 200, and 190 nm, respectively. c The top-view SEM images of “Phoenix”. d The pure color image of a “Phoenix” with different pitch

sizes. No color degradation can be seen with the reduction of pixel size. The insets show the SEM images at different locations. e The top-view SEM images

of “rainbow”. f The microscope image of a color “Rainbow” with different pixel sizes. Different colors can be well distinguished at the diffraction-limit

resolutions. The scale bars are 100 µm in (c, d), and 20 µm in (e, f). The scale bars of insets in (c, e) are 250 nm.
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are quite uniform both in air (see Supplementary Fig. 3) and in
DMSO solution (Fig. 4d), even with a large viewing angle (see
Supplementary Fig. 22). These images show that the color
impression produced by Si metasurfaces will not degrade
obviously with the decrease of pixel sizes. Figure 4e and f show
another “Rainbow” pattern consisted of different structural color.
From left to right, the pixel sizes keep decreasing from 5 × 5 to
2 × 2 array of Si nanodisks. The microscope images show that
different colors can still be distinguished even they approach the
diffraction limit. The small pixel size, color uniformity, and color
distinguishability in Fig. 4 have confirmed that Si metasurfaces
can produce structural color with diffraction-limit resolution.

At last, we have presented a microscopic color image of a
“Peacock” to demonstrate the creation of arbitrary images. Fig-
ure 5a shows the top-view SEM image of the peacock. The overall
size of the image is 220 × 260 µm. The colors of the “Peacock” are
defined by controlling the lattices size l and radius R. Owing to
the preserved color impression and distinction in Fig. 4, the pixel
sizes vary between 9 × 9 and 2 × 2 array of Si nanodisks to fit the
entire image. When the sample is illuminated with a white light
source under bright-field microscope, a “Peacock” image with
uniform and distinguished green, blue, and purple colors can be
clearly seen in Fig. 5b. After the infiltration of DMSO solution,
the “Peacock” changes immediately and the new image consists of
red, green, and blue colors (see Fig. 5c). By comparing Fig. 5b and
c, it is easy to see that the color image can be dynamically swit-
ched. Meanwhile, the background in DMSO solution is almost
completely dark. Similar to all the above studies, the “Peacock”
image becomes more distinct and vibrancy. This is also a direct
proof of the reduction of background reflection in Figs. 2 and 3.
Note that the refractive index matching layer is not limited to the
solution such as DMSO. It is also applicable to liquid crystals44 or

solid-state materials (see Supplementary Note 21). Figure 5d
shows the image of the “Peacock” after packaging with poly-
methyl methacrylate (PMMA). It is almost the same as the result
in Fig. 5c.

In summary, we have proposed and experimentally demon-
strated structural color produced by the Si metasurfaces. By
applying an index matching layer, the structural color from Si
metasurfaces can possess a series of unique properties, i.e. high
reflectance (76% at 600 nm), narrow FWHM (~34 nm), negligible
background reflection. As a result, the gamut area has been
pushed to a record value around 97.2% of Rec.2020. and the
spatial resolution is increased to the diffraction limit without
spoiling the color uniformity and impression. As the nanos-
tructures are purely made of silicon, they naturally inherit the
mass-manufacturability and long-time stability characteristics of
silicon photonics. As the stars plotted in Fig. 1, it is clear to see
that all the critical criterion for a good structural color has been
realized in Si metasurfaces. This research routes a key step
towards the commercialization of structural color in dynamic
displays, optical security, and information storage as well (http://
www.roditi.com/SingleCrystal/silicon-on-sapphire.html)45.

Methods
Numerical simulation. The simulations of the reflectance spectrum are calculated
by the commercial software Lumerical FDTD Solutions and the COMSOL Mul-
tiphysics. The periodic condition is used in the plane to mimic the periodic
structures. Perfectly matched layers are applied in the transmission and reflection
directions to absorb the outgoing waves. The refractive index of single-crystalline
silicon is taken from the material date of the software. The refractive index of
sapphire is fixed at 1.76. A MATLAB code is used to calculate the xy coordinates,
which are plotted in International Commission on Illumination (CIE) 1931
chromaticity diagram (see details in Supplementary Note 16). The contributions of
electric dipole and magnetic dipole resonances are analyzed with the multipolar
decomposition (see Supplementary Note 18).

a b

c d

PMMA package

Air

DMSO

Fig. 5 Full-color image printing with Si metasurface. a The top-view SEM image of a peacock with an orchid. The scale bar is 100 µm. Panels b–d are the

corresponding bright-field microscope images in air, DMSO solution and packaged with PMMA. The scale bar is 100 µm, and the scale bar of inset SEM is 1 µm.
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Fabrication and optical measurements. The Si metasurfaces are fabricated with
electron beam lithography technique followed by a reactive ion etch (RIE) process
in an Oxford Plasma System (Oxford 80). Basically, the inversed nano-pattern is
generated within a PMMA electron beam resist (A2, Microchem). The pattern is
transferred to Cr mask via a lift-off process. Then the Si nanostructures are pro-
duced by the RIE process and removing the Cr mask with the chromium etchant
(see details in Supplementary Note 10).

The samples are placed onto an optical microscope (ZEISS, Axio Scope AI)
stage associated with a home-made optical setup to control the polarization and
incident angle. The reflection spectrum is recorded with a spectrometer under the
×50 objective lens (NA= 0.55), see details in Supplementary Note 11.

Data availability
The data that support the findings of this study are available from the corresponding

author upon reasonable request.
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