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All-electron magnetic response with pseudopotentials: NMR chemical shifts
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A theory for theab initio calculation of all-electron NMR chemical shifts in insulators using pseudopoten-
tials is presented. It is formulated for both finite and infinitely periodic systems and is based on an extension
to the projector augmented-wave approach of Blo¨chl @P. E. Blöchl, Phys. Rev. B50, 17 953~1994!# and the
method of Mauriet al. @F. Mauri, B. G. Pfrommer, and S. G. Louie, Phys. Rev. Lett.77, 5300~1996!#. The
theory is successfully validated for molecules by comparison with a selection of quantum chemical results, and
in periodic systems by comparison with plane-wave all-electron results for diamond.
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I. INTRODUCTION

The experimental technique of nuclear magnetic re
nance~NMR! is widely used in structural chemistry and in
creasingly in solid-state studies.1 Chemical shift (s) spectra
give information about the atomic structure of the sam
under investigation. In the case of molecular systems,
pirical rules are commonly used to extract this informati
from the raw experimental data. However, this approach c
not be applied in the solid state, as the atomic configurati
often cannot be modeled by chemical analogs or refere
compounds. In these casesab initio calculations of the
chemical shifts are the only way to obtain an unambigu
determination of the microscopic structure.

Until recently, there has been no theory for the calculat
of NMR chemical shifts in extended periodic systems, a
the conventional approach to the theoretical interpretation
solid-state NMR spectra has been to approximate the infi
solid by a cluster.2 In this way, the traditional quantum
chemical approaches3–6 can be used to calculate the chemic
shifts. Unfortunately, true convergence with respect to ba
set and cluster size is often not possible due to the limitati
of available computational resources.

The work of Mauri, Pfrommer, and Louie7 ~MPL! solved
the problem of calculating NMR chemical shifts in the so
state with an all-electron Hamiltonian. Integrated with th
approach to the calculation of magnetic susceptibility,8 they
presented a theory for theab initio computation of NMR
chemical shifts in condensed matter systems using peri
boundary conditions~hereafter referred to as the MP
method!. Although the MPL theory has been derived usi
an all-electron Hamiltonian, so far it has only been imp
mented in an electronic structure code based on no
conserving pseudopotentials. In such implementation
complications inherent within the pseudopotential appro
mation have been neglected. For this reason, while sev
useful applications have emerged,9–14 the method’s use ha
been restricted to the calculation of chemical shifts of lig
elements~hydrogen, carbon, and nitrogen! and of silicon.
Moreover, the description of the silicon chemical shifts
0163-1829/2001/63~24!/245101~13!/$20.00 63 2451
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quired the explicit inclusion of the 2s and 2p silicon orbitals
as valence and the use of a very high, and computation
expensive, plane-wave energy cutoff of 600 Ry.14 In the
above applications of the MPL method the pseudopoten
error had been assumed to be small and controllable.
compute the NMR chemical shifts of nuclei heavier th
neon and to truly exploit the ability of pseudopotentials
calculate the properties of complex, low-symmetry structu
~which is well established for a wide range of structu
properties!, a theory is required that does not ignore t
pseudopotential approximation.

Apart from the early and isolated attempt of Ridard, Lev
and Millie,15 it has been widely expected within the quantu
chemical community that any theory for the calculation
NMR chemical shifts for nuclei described with a pseudop
tential would fail16 due to the nonrigid nature of the cor
contributions to the total chemical shift.3 However, a careful
separation of core and valence contributions that ensures
they are individually gauge invariant, by Gregor, Mauri a
Car,17 has shown that this is not the case and that the c
contributions are rigid. This suggests that a pseudopoten
based theory of NMR might, in fact, exist.

One of the most obvious deficiencies of the pseudopo
tial approach is that the pseudopotential approximation
plicitly neglects the form of the electronic wave function
near the nucleus. The pseudo-wave-functions are chose
be as smooth as possible in the core region, and the co
nodal structure of the wave functions is lost. This leads t
good approximation for the calculation of total energies a
their derivatives, and properties for which the matrix e
ments are dominated by the regions outside the core. H
ever, the quantitative calculation of many properties
hyperfine parameters, core-level spectra, electric-fi
gradients, and the NMR chemical shifts—depend critica
on the details of the all-electron wave functions at t
nucleus. Van de Walle and Blo¨chl presented a solution to
this problem for the calculation of hyperfine parameter18

based on Blo¨chl’s projector augmented-wave~PAW! elec-
tronic structure method,19 which is itself closely related to
Vanderbilt’s ultrasoft pseudopotential scheme.20 While in all
©2001 The American Physical Society01-1
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but a few reported cases~where core-electron polarizatio
effects are important21 or in some magnetic systems22! the
PAW method gives similar results to pseudopotential
proaches, it does provide an extremely useful framework
the unification of all-electron~full-potential! linearized
augmented-plane-wave23 and pseudopotential approache
Indeed, it it becoming clear that the PAW approach, wh
will be described in more detail in Sec. III A, offers a gene
approach to the calculation of all-electron properties fr
pseudopotential-based schemes. Following the work of V
de Walle and Blo¨chl, core-level spectra,24,25 momentum ma-
trix elements,26 and electric-field gradients27 have all been
calculated using the PAW scheme.

In this paper we present a theory for all-electron magn
response within the pseudopotential approximation and
application to the calculation of first-principles NMR chem
cal shifts. The connection between the current response
the chemical shifts is outlined in Sec. II. We introduce
extension of Blo¨chl’s PAW approach, which we call th
gauge-including projector augmented-wave~GIPAW! ap-
proach. This will be described in Sec. III. A Hamiltonia
constructed using GIPAW has the required translational
variance in the presence of a magnetic field. This is not t
for the original PAW formulation. In Sec. IV we present o
theory for finite systems. In Sec. V we reformulate our e
pressions for extended systems. To be useful, these ex
sions must be restricted toperiodic extended systems, an
the periodic theory is presented in Sec. VI. Both the theo
for finite and extended periodic systems summarized in S
VII have been implemented in a plane-wave pseudopoten
electronic structure code. Details of our implementation
given in Sec. VIII. We validate the method by comparis
with IGAIM ~individual gauges for atoms in molecules! cal-
culations by Gregoret al.17 for a selection of small mol-
ecules. The theory for extended systems is further valida
by comparison to results obtained by an all-electron pla
wave calculation for a crystalline material, diamond.

II. NMR CHEMICAL SHIFTS

A uniform, external magnetic fieldB applied to a sample
of matter induces an electric current. In an insulating n
magnetic material, only the orbital motion of the electro
contributes to this current. Moreover, for the field streng
typically used in NMR experiments, the induced electro
current is proportional to the external fieldB and is the first-
order-induced current,j (1)(r 8). The currentj (1)(r 8) produces
a nonuniform magnetic field,

Bin
(1)~r !5

1

cE d3r 8j (1)~r 8!3
r2r 8

ur2r 8u3
. ~1!

The chemical shift is defined as the ratio between the
duced magnetic field and the external uniform applied m
netic field,

Bin
(1)~r !52sJ~r !B. ~2!

Here sJ (r ) is the chemical shift tensor, and the isotrop
chemical shift is given bys(r )5Tr@sJ (r )#/3. NMR experi-
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ments can measuresJ (r ) at the nuclear positions. To com
pute the chemical shift tensor we first obtainj (1)(r ) by per-
turbation theory and then we evaluateBin

(1)(r ) using Eq.~1!.
We now describe our new approach to the calculation of
induced all-electron currentj (1)(r 8) using pseudopotential
and in Sec. VIII the computational procedure we use to
tain j (1)(r 8), and finallys(r ), is detailed.

III. PSEUDOPOTENTIALS IN A MAGNETIC FIELD

In this section we develop the gauge-including projec
augmented wave method, first describing the original proj
tor augmented-wave method, and then extending it to
case of a uniform applied magnetic field.

A. Projector augmented-wave method

In Ref. 19, Blöchl introduced a linear transformation op

eratorT that maps the valence pseudo-wave-functionsuC̃&
onto the corresponding all-electron wave function

uC&5T uC̃&. The operator is defined by specifying a set
target all-electron partial wavesufR,n& obtained by the ap-
plication ofT on to a set of pseudo-partial-wavesuf̃R,n& with

T511(
R,n

@ ufR,n&2uf̃R,n&] ^ p̃R,nu, ~3!

and ^ p̃R,nu are a set of projectors such that^ p̃R,nuf̃R8,m&
5dR,R8dn,m . Each projector and partial wave is an atom
like function centered on an atomic siteR, and the indexn
refers to the angular momentum quantum numbers and t
additional number, used if there is more than one projec
per angular-momentum channel. The expectation value o
operatorO between all-electron wave functions can be e
pressed as the expectation value of a pseudo-operatoÕ
5T 1OT between the corresponding pseudo-wave-functio

To obtain a useful formalism we must make some furth
assumptions. In particular, for each atomic site we define
augmentation regionVR and suppose that~i! outside the
augmentation regionVR , the uf̃R,n& coincide with the
ufR,n&, ~ii ! outside the augmentation regionVR , the u p̃R,n&
vanish,~iii ! within the augmentation regionVR , the ufR,n&
form a complete set for the valence wave functions, i.e.,
physical valence all-electron wave function can be writte
within VR , as a linear combination of all-electron parti
waves, and finally~iv! the augmentation regions of differen
sites do not overlap. Blo¨chl has shown that given these a
sumptions, ifO is a local or a semilocal~such asp or p2)
operator

Õ5O1 (
R,n,m

u p̃R,n&@^fR,nuOufR,m&2^f̃R,nuOuf̃R,m&#

3^ p̃R,mu. ~4!

For simplicity, we shall further suppose that the norm
computed withinVR of uf̃R,n& andufR,n& coincide. We then
recover the norm-conserving pseudopotential formalism
1-2
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ALL-ELECTRON MAGNETIC RESPONSE WITH . . . PHYSICAL REVIEW B63 245101
the Kleinman-Bylander28 form. The pseudo-wave-function
that correspond to the all-electron valence eigenstates o
all-electron HamiltonianH are eigenstates of the pseud
HamiltonianH̃ with the same eigenvalues. In the absence
a magnetic field the pseudo-Hamiltonian is

H̃5T 1HT5
1

2
p21Vloc~r !1(

R
VR

nl , ~5!

wherep is the momentum operator, andVloc(r ) is the local
part of the pseudopotentials, which includes the s
consistent part of the Hamiltonian. The nonlocal part of
pseudopotential at the atomic siteR in the above expressio
is

VR
nl5(

n,m
u p̃R,n&an,m

R ^ p̃R,mu. ~6!

The an,m
R are the strengths of the nonlocal potential in ea

channel, and they depend onR since each atomic site may b
occupied by a different chemical species.

The choice of the pseudo-partial-waves and projector
largely arbitrary. However, for a scheme to be useful, all
lowest eigenvalues ofH̃ should coincide with a valence e
genvalue ofH up to an given energyEval

max, i.e., no ghost
states should be introduced into the pseudospectrum up
energyEval

max. The energyEval
max depends on the specific prop

erty we wish to compute, and should at least be larger t
the highest occupied eigenvalue.

In contrast to the traditional formulation of pseudopote
tials, using the PAW formulation it is possible to obtain t
expectation values of all-electron operators in terms
pseudo-wave-functions using the pseudo-operators define
Eq. ~4!.

B. A single augmentation region in a uniform magnetic field

In the presence of a uniform external magnetic fieldB the
all-electron Hamiltonian is

H5
1

2 S p1
1

c
A~r ! D 2

1V~r !, ~7!

wherec is the speed of light,V(r ) is the all-electron local
potential, andB5¹3A(r ). We want to construct the corre
sponding pseudo-Hamiltonian for a complex system, wh
will contain many augmentation regions. However, befo
treating this general case, we consider a simplified sys
with just a single augmentation region. The spatial origin
chosen to coincide with the atomic site of the augmenta
region. In the symmetric gaugeA(r )5 1

2 B3(r2d), whered
is a constant vector that indicates the gauge origin. The
pectation values of the all-electron eigenstates for observ
operators do not depend on the gauge origind. However, the
number of partial waves required to correctly describe
valence all-electron eigenstates in the augmentation re
critically depends on the choice ofd. To minimize the num-
ber of partial waves required we must put the gauge origi
the atomic site of the augmentation region, settingd50.
Making this choice, we minimize the effect of the magne
24510
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field on the all-electron wave functions in the augmentat
region, whereuA(r )u2 and its spatial derivatives attain the
minimum value. Moreover, with this choice of gauge, t
interaction between the valence and core states of the
mented atom is negligibly small.17 This is essential if we are
to make the pseudopotential approximation. With

A~r !5
1

2
B3r , ~8!

the all-electron Hamiltonian becomes

H5
1

2
p21V~r !1

1

2c
L•B1

1

8c2
~B3r !2, ~9!

whereL5r3p is the angular-momentum operator comput
with respect to the atomic site within the augmentation
gion. Using Eqs.~4! and ~5!, we obtain the correspondin
pseudo-Hamiltonian,

H̃5
1

2
p21Vloc~r !1V0

nl1
1

2c
L•B1

1

8c2
~B3r !2

1(
n,m

u p̃0,n&~bn,m
(1) 1bn,m

(2) !^ p̃0,mu, ~10!

where

bn,m
(1) 5

1

2c
B•@^f0,nuL uf0,m&2^f̃0,nuL uf̃0,m&# ~11!

and

bn,m
(2) 5

1

8c2
@^f0,nu~B3r !2uf0,m&2^f̃0,nu~B3r !2uf̃0,m&#.

~12!

If just one projector per angular momentum channel is us
as is usually the case with norm conservi
pseudopotentials,29,30bn,m

(1) exactly vanishes, sinceuf0,n& and

uf̃0,n& are eigenstates ofL andLz with the same norm within
the augmentation region. Moreover, since (B3r )2 goes to
zero in the center of the augmentation region, for nor
conserving pseudopotentials the termbn,m

(2) can also be ne-
glected. Thus, with one augmentation region centered at
gauge origin, the coupling with the magnetic field in th
pseudo- and all-electron Hamiltonians has the same fo
i.e.,

H̃5
1

2
p21Vloc~r !1V0

nl1
1

2c
L•B1

1

8c2
~B3r !2. ~13!

C. Translations in a uniform magnetic field

The derivation in Sec. III B is not useful for systems wi
several augmentation regions. Indeed, the gauge origin
coincide with just one augmentation site at any given tim
As a result, the number for projectors of the other augm
tation regions would have to be increased to reach compl
1-3
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CHRIS J. PICKARD AND FRANCESCO MAURI PHYSICAL REVIEW B63 245101
ness in those regions. The cause of this problem is that
PAW approach does not preserve translational invarianc
a uniform magnetic field.

In a uniform magnetic field the description of the syste
should be invariant upon a rigid translation of all the ato
by a vectort. Following the translation, the all-electron po
tential becomesV8(r )5V(r2t) and the corresponding
Hamiltonian is

H85
1

2 S p1
1

c
A~r ! D 2

1V~r2t!, ~14!

whereA(r ) is still given by Eq.~8!. Because of the transla
tional invariance, the eigenenergies ofH8 coincide with the
eigenenergies of the original HamiltonianH. However, the
new eigenstatesuCn8& are not just obtained by a rigid trans
lation of the original eigenstatesuCn&, but, upon translation
they pick up an additional phase factor proportional to
magnetic field

^r uCn8&5e( i /2c)r•t3B^r2tuCn&. ~15!

The PAW transformation does not ensure exact invaria
upon translation, since the pseudo-wave-functions c
structed with theT transformation operator of Eq.~3! do not
transform according to Eq.~15!.

D. Gauge-including projector augmented-wave method

To restore the translational invariance within a PAW-li
approach, we introduce a field dependent transformation
eratorTB , which, by construction, imposes the translation
invariance exactly,

TB511(
R,n

e( i /2c)r•R3B@ ufR,n&2uf̃R,n&] ^ p̃R,nue2( i /2c)r•R3B.

~16!

This new transformation defines our approach, which we
the gauge-including projector augmented-wave~GIPAW!
method. In the following, we indicate with a bar the pseud
wave-functions and operators obtained using theTB operator
by analogy to Blo¨chl’s use of the tilde. By construction, th

pseudoeigenstatesuC̄&, generated from the all-electro

eigenstates usinguC&5TBuC̄&, satisfy the same translatio
relation as the all-electron eigenstates given by Eq.~15!. The
GIPAW pseudo-operatorŌ5T B

1OTB corresponding to a lo-
cal or a semilocal operatorO is given by

Ō5O1 (
R,n,m

e( i /2c)r•R3Bu p̃R,n&

3@^fR,nue2( i /2c)r•R3BOe( i /2c)r•R3BufR,m&

2^f̃R,nue2( i /2c)r•R3BOe( i /2c)r•R3Buf̃R,m&#

3^ p̃R,mue2( i /2c)r•R3B. ~17!

There are connections between our GIPAW approach and
gauge-including atomic orbitals4 ~GIAO! and the indepen-
dent gauge for localized orbitals3 ~IGLO! methods, widely
24510
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used in the quantum chemical community. However,
should be recognized that in GIPAW the phase required
maintain the translational invariance is carried by the ope
tors, whereas in the GIAO and in IGLO approaches the fie
dependent phase is attached to the basis functions and t
occupied electronic orbitals, respectively.

E. GIPAW Hamiltonian

Using Eq.~17!, the identity

e2( i /2c)r•R3BS p1
1

c
A~r ! D n

e( i /2c)r•R3B5S p1
1

c
A~r2R! D n

,

~18!

for integern, and the outcomes of the discussion concern
bn,m

(1) and bn,m
(2) in Sec. III B, we finally obtain the GIPAW

pseudo-Hamiltonian

H̄5
1

2
p21Vloc~r !1(

R
e( i /2c)r•R3BVR

nle2( i /2c)r•R3B

1
1

2c
L•B1

1

8c2
~B3r !2. ~19!

The GIPAW Hamiltonian coincides with the PAW
Hamiltonian, Eq.~5! for B50, and with the PAW Hamil-
tonian, Eq.~13!, for BÞ0 in systems with a single augmen
tation region centered at the origin. Moreover, as expec
the GIPAW eigenenergies are exactly invariant upon tra
lation, in contrast to the PAW eigenenergies.

For later use in perturbation theory,H̄ can be expanded in
powers ofB,

H̄5H̄ (0)1H̄ (1)1O~B2!, ~20!

where H̄ (0)5H̃ (0) is the unperturbed Hamiltonian given b
Eq. ~5! and

H̄ (1)5
1

2c S L1(
R

R3vR
nlD •B, ~21!

where

vR
nl5

1

i
@r ,VR

nl#, ~22!

and with square brackets we indicate the commutator.

F. GIPAW current operator

Another observable required to compute the NMR che
cal shifts is the current. The all-electron electric current o
erator evaluated at the positionr 8 is

J~r 8!5Jp~r 8!2
A~r 8!

c
ur 8&^r 8u5Jp~r 8!2

B3r 8
2c

ur 8&^r 8u,

~23!

whereJp(r 8) is the paramagnetic current operator,
1-4
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Jp~r 8!52
pur 8&^r 8u1ur 8&^r 8up

2
. ~24!

Using Eqs.~17! and ~18!, we obtain the corresponding G
PAW operator

J̄~r 8!5Jp~r 8!2
B3r 8

2c
ur 8&^r 8u1(

R
e( i /2c)r•R3B@DJR

p ~r 8!

1DJR
d ~r 8!#e2( i /2c)r•R3B, ~25!

where

DJR
p ~r 8!5(

n,m
u p̃R,n&@^fR,nuJp~r 8!ufR,m&

2^f̃R,nuJp~r 8!uf̃R,m&#^ p̃R,mu ~26!

is what we call the paramagnetic augmentation operator,

DJR
d ~r 8!52

B3~r 82R!

2c (
n,m

u p̃R,n&@^fR,nur 8&^r 8ufR,m&

2^f̃R,nur 8&^r 8uf̃R,m&#^ p̃R,mu ~27!

is what we call the diamagnetic augmentation operator.
As for the Hamiltonian, for perturbation theory purpos

it is useful to expand the operatorJ̄(r ) in powers ofB,

J̄~r 8!5 J̄(0)~r 8!1 J̄(1)~r 8!1O~B2!, ~28!

with

J̄(0)~r 8!5Jp~r 8!1(
R

DJR
p ~r 8! ~29!

and

J̄(1)~r 8!52
B3r 8

2c
ur 8&^r 8u1(

R
FDJR

d ~r 8!

1
1

2ci
@B3R•r ,DJR

p ~r 8!#G . ~30!

IV. CURRENT RESPONSE IN FINITE SYSTEMS

Within density-functional perturbation theory, the curre
can be computed using the GIPAW operators and wave fu
tions as

j (1)~r 8!52(
o

@^C̄o
(1)uJ̄(0)~r 8!uC̄o

(0)&1^C̄o
(0)uJ̄(0)~r 8!uC̄o

(1)&

1^C̄o
(0)uJ̄(1)~r 8!uC̄o

(0)&#. ~31!

Here the factor of 2 accounts for spin degeneracy and
sum runs over the occupied orbitalso. The wavefunction

uC̄n
(0)& is an unperturbed eigenstate ofH̃ (0) with eigenvalue

«n and uC̄n
(1)& is its linear variation, projected in the emp

subspace
24510
nd
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e

uC̄n
(1)&5G~«n!H̄ (1)uC̄n

(0)&. ~32!

The Green-function operator is

G~«!5(
e

uC̄e
(0)&^C̄e

(0)u
«2«e

, ~33!

with the sum running over the empty orbitalse. Reordering
the different contributions of Eq.~31! we obtain

j (1)~r 8!5 jbare
(1) ~r 8!1 jDp

(1)~r 8!1 jDd
(1)~r 8!, ~34!

where

jbare
(1) ~r 8!54(

o
Re@^C̄o

(0)uJp~r 8!G~«o!H̄ (1)uC̄o
(0)&#

2
1

2c
rps~r 8!B3r 8. ~35!

Re stands for taking the real part andrps(r 8)

52(o^C̄o
(0)ur 8&^r 8uC̄o

(0)& is the ground-state pseudodensit
The paramagnetic correction to the current is

jDp
(1)~r 8!5 (

R8,o
H 4Re@^C̄o

(0)uDJR8
p

~r 8!G~«o!H̄ (1)uC̄o
(0)&#

12^C̄o
(0)u

1

i2c
@B3R8•r ,DJR8

p
~r 8!#uC̄o

(0)&J ,

~36!

and the diamagnetic correction is

jDd
(1)~r 8!52(

R,o
^C̄o

(0)uDJR
d ~r 8!uC̄o

(0)&. ~37!

Notice that the last two current contributions,jDp
(1)(r 8) and

jDd
(1)(r 8), are written as a sum over augmentation sites a

vanish outside the augmentation regions, where the
electron and pseudo-partial-waves coincide.

By construction, the currentj (1)(r 8) computed within the
GIPAW formalism is, as all physical observables should
invariant upon translation of the system by a vectort, i.e.,
after translation the new current should bej (1)(r 82t). Inter-
estingly, all three terms,jbare

(1) (r 8), jDp
(1)(r 8), and jDd

(1)(r 8), are
individually invariant upon translation. The invariance
jDd
(1)(r 8) is obvious from the definition of theDJR

d (r 8) opera-
tor, Eq.~27!. The invariance of the other two contributions
less evident, and to prove it, we need to manipulate Eqs.~35!
and ~36!. To this end, we notice that the second term in t
right-hand side~rhs! of Eq. ~35! can be rewritten as a com
mutator,

2
1

2c
rps~r 8!B3r 8

52(
o

1

2c
^C̄o

(0)u
1

i
@B3r 8•r ,Jp~r 8!#uC̄o

(0)&.

~38!
1-5
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We can now use the generalizedf-sum rule established in
Appendix A, Eq. ~A7!, with the operatorsJp(r 8) and
DJR8

p (r 8) in the place ofO and the operatorr in the place of
E, to rewrite the second terms in the rhs of both Eqs.~35! and
~36!, obtaining

jbare
(1) ~r 8!54(

o
ReF ^C̄o

(0)uJp~r 8!G~«o!H̄ (1)uC̄o
(0)&

2^C̄o
(0)uJp~r 8!G~«o!

B3r 8
2c

•vuC̄o
(0)&G , ~39!

jDp
(1)~r 8!54(

R8,o

ReF ^C̄o
(0)uDJR8

p
~r 8!G~«o!H̄ (1)uC̄o

(0)&

2^C̄o
(0)uDJR8

p
~r 8!G~«o!

B3R8

2c
•vuC̄o

(0)&G ,
~40!

wherev51/i @r ,H̄ (0)# is the velocity operator. Now the trans
lational invariance ofjbare

(1) (r 8) and jDp
(1)(r 8) is more explicit,

since on translation bothB3r 8•v/2c and B3R8•v/2c gen-
erate an extra term equal toB3t•v/2c, as doesH̄ (1), if, after
the translation, we rewriteH̄ (1) in terms of the variable of the
translated coordinate system (r2t).

V. CURRENT RESPONSE IN EXTENDED SYSTEMS

In Sec. III we developed a theory for a system contain
a single augmentation region located at the origin, and t
later for several augmentation regions. We must now ch
that our results are still useful in situations involving an
finite number of these augmentation regions, as is the cas
the solid state.

The expression forjDd
(1)(r 8) given by Eq. ~37! can be

straightforwardly applied to solid state calculations. But,
contributions to the all-electron currentjbare

(1) (r 8) and jDp
(1)(r 8)

given in Eq.~39! and Eq.~40! involve expectation values o
the position operator. As these are not generally defined i
extended system, one might worry that Eqs.~39! and~40! are
not valid. However, if they are rewritten in the followin
way:

jbare
(1) ~r 8!5

2

c (
o

ReF ^C̄o
(0)uJp~r 8!G~«o!S ~r2r 8!3p

1(
R

~R2r 8!3vR
nlD •BuC̄o

(0)&G ~41!

and

jDp
(1)~r 8!5

2

c (
R8,o

ReF ^C̄o
(0)uDJR8

p
~r 8!G~«o!S ~r2R8!3p

1(
R

~R2R8!3vR
nlD •BuC̄o

(0)&G ~42!
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then it becomes clear that they are indeed well defined.
Green-function operatorG(«o), in an insulator, and both the
paramagnetic augmentation operatorDJR8

p (r 8) and the non-
local pseudopotential operatorvR

nl are short ranged.31 This
ensures that contributions to the current response for la
values of (r2r 8), (R2r 8), (r2R8), or (R2R8) in Eqs.
~41! and ~42! vanish.

VI. CURRENT RESPONSE IN INFINITELY PERIODIC
SYSTEMS

The expressions given above are valid for any exten
system. However, the only such computationally tracta
systems are those exhibiting translational symmetry or i
nitely periodic systems. We now develop the equations m
ing this translational symmetry explicit, by writing the ele

tronic states as Bloch functions,uC̄n,k
(0)&5eik•ruūn,k

(0)&, wherek
is a reciprocal-space vector within the first Brillouin zon
and the corresponding eigenvalues are«n,k . The cell-
periodic function^r uūn,k

(0)& is normalized within the unit cell.
In order to take full advantage of this translational sy

metry we first define the functionsSbare(r 8,q) andSDp(r 8,q)
as

Sbare~r 8,q!5
2

c (
i 5x,y,z

(
o

ReF1

i

3^C̄o
(0)uJp~r 8!G~«o!B3ûi•S eiqûi•(r2r8)p

1(
R

eiqûi•(R2r8)vR
nlD uC̄o

(0)&G , ~43!

SDp~r 8,q!5
2

c (
i 5x,y,z

(
R8,o

ReF1

i

3^C̄o
(0)uDJR8

p
~r 8!G~«o!B3ûi•S eiqûi•(r2R8)p

1(
R

eiqûi•(R2R8)vR
nlD uC̄o

(0)&G , ~44!

where theûi are unit vectors in the three Cartesian dire
tions. We can then write

jbare
(1) ~r 8!5 lim

q→0

1

2q
@Sbare~r 8,q!2Sbare~r 8,2q!#, ~45!

jDp
(1)~r 8!5 lim

q→0

1

2q
@SDp~r 8,q!2SDp~r 8,2q!#. ~46!

This can be seen to be correct by expanding the exponen
in Eqs.~43! and~44! aseiqûi•x511 iqûi•x1O„(qx)2

…, tak-
ing the limits in Eqs.~45! and ~46! and comparing them to
Eqs.~41! and ~42!. The limits taken using the expanded e
ponentials are valid since only finite values ofx contribute to
the total current~as established in Sec. V!.
1-6
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The description of the electronic states as Bloch functi
allows us to rewrite the summations over the infinite num
of occupied states in Eqs.~43! and~44! as summations ove
k-dependent quantities computed within a single unit c
The k-dependent Green function is

Gk~«!5(
e

uūe,k
(0)&^ūe,k

(0)u
«2«e,k

. ~47!

A consequence of reexpressing the current contribution
terms ofSbare(r 8,q) andSDp(r 8,q) is that we must evaluate
several quantities atk and k1q simultaneously. For ex-
ample, the usual form of thek-dependent nonlocal pseudo
potential operator is generalized,

Vk,k8
nl

5(
t

(
n,m

u p̃t,n
k &an,m

t ^ p̃t,m
k8 u. ~48!

This operator acts on Bloch functions atk to the left, andk8
to the right. Fork5k8, Vk,k8

nl coincides with thek-dependent
nonlocal pseudopotential operator, as implemented in pla
wave pseudopotential codes. Thek-dependent projectors in
terms ofu p̃R,n&, the real-space projectors, are given by

u p̃t,n
k &5(

L
e2 ik•(r2L2t)u p̃L1t,n&, ~49!

where theL are lattice vectors and thet are the internal
coordinates of the atoms. We arrive at analogous express
for both the velocity operator,

vk,k852 i¹1k81
1

i
@r ,Vk,k8

nl
#, ~50!

and the paramagnetic current operator,

Jk,k8
p

~r 8!52
~2 i¹1k!ur 8&^r 8u1ur 8&^r 8u~2 i¹1k8!

2
.

~51!

Combining the above we arrive at a compact expression
Sbare(r 8,q):

Sbare~r 8,q!5
2

cNk
(

i 5x,y,z
(
o,k

ReF1

i

3^ūo,k
(0)uJk,k1qi

p ~r 8!Gk1qi
~«o,k!B3ûi•vk1qi ,kuūo,k

(0)&G ,
~52!

whereqi5qûi andNk is the number ofk points included in
the summation. Similarly, by also defining

DJL ,t,k,k8
p

~r 8!5(
n,m

u p̃t,n
k &@^fL1t,nuJp~r 8!ufL1t,m&

2^f̃L1t,nuJp~r 8!uf̃L1t,m&#^ p̃t,m
k8 u, ~53!

the expression for the paramagnetic augmentation term
24510
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SDp~r 8,q!5
2

cNk
(

i 5x,y,z
(

L ,t,o,k
ReF1

i

3^ūo,k
(0)uDJL ,t,k,k1qi

p ~r 8!Gk1qi
~«o,k!BÃûi•vk1qi ,kuūo,k

(0)&G . ~54!

These expressions forSbare(r 8,q) and SDp(r 8,q) allow the
evaluation of the all-electron current response through E
~45!, ~46!, and~37!.

VII. SUMMARY OF APPROACHES

There are three different approaches that we could tak
the calculation of the first-order current response to a u
form external applied magnetic field. If the current respon
in an extended periodic system is required, then the appro
described in Sec. VI must be taken. In this case, the exp
sions given in Eqs.~45!, ~46!, ~52!, ~54!, and~37! are evalu-
ated, and it is referred to as the ‘‘crystal approach.’’ The to
current response in a finite system can be calculated u
Eqs.~35!, ~36!, and~37!. This approach is referred to as th
‘‘molecular approach.’’ Alternatively, using the results of th
generalizedf-sum rule, Eqs.~39!, ~40!, and~37! can be used.
This is the ‘‘molecular sum-rule approach.’’ SettingTB51 in
the GIPAW formalism, i.e., in the all-electron case, the cry
tal approach becomes equivalent to the MPL method,7 the
molecular approach becomes equivalent to the single ga
method @Eq. ~3! of Ref. 17#, and the molecular sum-rule
approach becomes equivalent to the continuous set of ga
transformation method32 ~CSGT! with the d(r )5r gauge
function @Eq. ~8! of Ref. 17#.

The crystal approach can be used to calculate molec
properties through the use of large supercells. If the gene
ized f-sum rule holds, then the results obtained by each of
three approaches should be equivalent. This is demonstr
in Sec. IX. If the generalizedf-sum rule does not hold wel
~for example, if the basis set used is far from completenes
is the case for the atomic-orbital basis sets used in m
quantum chemical calculations17!, then the crystal approac
and the molecular sum-rule approach will still give the sa
results. However, the results obtained using the molec
approach will be different. In particular, we expect that t
molecular approach will require a much larger atomic-orb
basis set to converge the NMR chemical shifts than the o
two methods, as it has been proved to be the case for
electron Hamiltonians.32 This is because the two terms in E
~35! @as well as the two terms in Eq.~36!# of the molecular
approach converge at different rates with respect to the c
pleteness of the basis set.32,17

VIII. CALCULATION OF NMR CHEMICAL SHIFTS

It is important to show that the GIPAW method is a pra
tical approach to the calculation of NMR chemical shifts. W
have therefore implemented the method into a paralleli
plane-wave pseudopotential electronic structure code.33 Such
codes self-consistently calculate the ground-state electr
1-7
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structure. Specifically, the self-consistent HamiltonianH̄ (0)

and the corresponding wave functionsuC̄n
(0)& that appear in

the above expressions are obtained. In this section we ou
the features of the implementation that are specific to
GIPAW method, and not to the pseudopotential method
general. The plane-wave pseudopotential method is m
naturally suited to the crystal approach for the calculation
NMR chemical shifts. However, we also implemented bo
molecular methods in our plane-wave code, for comple
ness. This is described in Sec. VIII D.

A. Application of the Green function

There are several points at which first-order wave fu
tions of the form

uC̄n
(1)&5G~«n!H̄ (1)uC̄n

(0)& ~55!

must be evaluated. The Green functionG(«) is given by

G~«!5(
e

uC̄e
(0)&^C̄e

(0)u
«2«e

, ~56!

and a naive approach would require the explicit summa
over all empty states. This is unnecessarily arduous. We
multiply Eq. ~55! through by («n2H̄ (0)). If we then write

Q5(euC̄e
(0)&^C̄e

(0)u512(ouC̄o
(0)&^C̄o

(0)u, where the sums
overo ande are over the occupied and empty states, resp
tively, we obtain

~«n2H̄ (0)!uC̄n
(1)&5QH̄ (1)uC̄n

(0)&. ~57!

This is a linear system involving only the occupied stat
and can be solved using a conjugate gradient minimiza
scheme,34 as in Ref. 7. This approach ensures that o
method is comparable in computational cost to the calc
tion of the ground-state electronic structure.

B. The velocity operator

The velocity operatorv5 1/i @r ,H̄ (0)# appears in various
guises throughout the relevant expressions above. The ve
ity operator may also be written as the first derivative of
k-dependent Hamiltonian with respect tok. The term related
to the kinetic energy is straightforward to evaluate, and
simply the momentum operator. The term due to the non
cal potential, which is defined numerically, is best obtain
numerically. In our implementation we simply take the a
propriate numerical derivative of thek-dependent nonloca
potential operators. The derivatives are evaluated by ca
lating the nonlocal potential at, say,k andk1q, whereq is
chosen to be small enough that the resulting numerical
rivative is accurate, but not so small so as to introduce
merical noise.

C. The crystal approach

The crystal approach requires that the limits of Eqs.~45!
and ~46! are evaluated. These are, in effect, similar to
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numerical derivatives which must be take in reciprocal sp
in order to evaluate the velocity operators. And in pract
we take the same value for the reciprocal-space step siz
both cases. The same considerations apply. The step sh
be chosen to be small enough that the resulting limit is
curately approximated, but not so small that numerical no
dominates. A typical value is 0.01 Bohr21.

D. Finite systems in periodic boundary conditions

Both the molecular approach and the molecular sum-r
approach were implemented. The major difference betw
these approaches and the crystal approach, from a comp
tional perspective, is that the reciprocal-space numerical
rivative is replaced by a direct application of the positi
operator to the wave functions. Clearly, the position opera
is not defined within periodic boundary conditions. But w
can treat it approximately by constructing a periodic sa
toothlike function~in practice we build the function in recip
rocal space!. Near the center of the simulation cell, or abo
wherever the sawtooth is centered, this operator appr
mates the position operator. This approximation improves
the size of the simulation cell is increased, and for go
results the magnitude of the induced current should be sm
on the surface where the sawtooth function changes sign

E. From the current to the NMR chemical shifts

The GIPAW approach separates the contributions to
current response into a bare term,jbare

(1) (r ), and two correction
terms, the paramagnetic and diamagnetic corrections,jDp

(1)(r )
and jDd

(1)(r ), respectively. To compute the NMR chemic
shifts, using Eq.~2!, the induced magnetic field,Bin

(1)(R),
must be evaluated at each nuclear positionR. In principle,
one could combine the three current contributions and ob
Bin

(1)(R) from the total current using Eq.~1!. We use a dif-
ferent approach. We take advantage of the linearity of
~1!, and we solve it for each of the three current contrib
tions, obtaining a bare induced fieldBbare

(1) (R), a paramagnetic
correction field,BDp

(1)(R), and a diamagnetic correction field
BDd

(1)(R).
To compute the correction fields, we suppose that just

correction currents,jDp
(1)(r ) and jDd

(1)(r ), within the augmenta-
tion region VR contribute toBDp

(1)(R) and BDd
(1)(R) at the

nuclear positionR. Using this on-site approximation, com
bining Eqs.~1! and ~37!, we obtain

BDd
(1)~R!52 (

o,n,m
^C̄o

(0)u p̃R,n&en,m
R ^ p̃R,muC̄o

(0)&, ~58!

where

en,m
R 5^fR,nu

~R2r !3@B3~R2r !#

2c2uR2r u3
ufR,m&

2^f̃R,nu
~R2r !3@B3~R2r !#

2c2uR2r u3
uf̃R,m&. ~59!
1-8
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The coefficientsen,m
R depend only on the atomic species, a

need only be calculated once. Similarly, within the on-s
approximation, by combining Eq.~1! with the equations for
the jDp

(1)(r ) correction current, we obtain expressions for t
paramagnetic correction field,BDp

(1)(R), which depend lin-
early on the coefficientsfn,m

R ,

fn,m
R 5^fR,nu

LR

ur2Ru3
ufR,m&2^f̃R,nu

LR

ur2Ru3
uf̃R,m&,

~60!

where LR5(r2R)3p is the angular momentum operat
evaluated with respect to the atomic siteR. Again, the coef-
ficients fn,m

R depend only on the atomic species, and ne
only be evaluated once.

To compute the bare induced field,Bbare
(1) (R), we Fourier

transform Eq.~1! and jbare
(1) (r 8) into reciprocal space. The

induced magnetic field can then be simply evaluated as,

Bbare
(1) ~G!5

4p

c

iG3 jbare
(1) ~G!

G2
, ~61!

whereG is a reciprocal-lattice vector. We subsequently o
tain Bbare

(1) (R) by a slow Fourier transform at the nuclear p
sitions R ~since the nuclear positions do not coincide,
general, with the points of the fast Fourier transform grid!.

For G50, Eq. ~61! cannot be applied. Indeed theG50
component of the induced magnetic field is not a b
property.7 The G50 component of the induced field is a
fected by the surface currents that appear on the surfac
the sample. In particular, its value depends on the the sh
of the sample, and is determined by macroscopic magn
statics. Following the experimental convention, we assum
spherical sample in our calculations, for which

Bin
(1)~G50!5

8p

3
xJ B, ~62!

wherexJ is the macroscopic magnetic susceptibility.7 To be
consistent with the on-site approximation for the correct
currents, we should not take into account the contribution
jDp
(1)(r ) and jDd

(1)(r ) to Bin
(1)(G50), and so we use

Bin
(1)~G50!5

8p

3
xJbareB, ~63!

wherexJbare is the contribution to the macroscopic suscep
bility coming from the bare currentjbare

(1) (r ). Within the crys-
tal approach, we use the following ansatz forxJbare:

xJbare5 lim
q→0

FI~q!22FI~0!1FI~2q!

q2
, ~64!

whereFi j (q)5(22d i j )Qi j (q), i andj are Cartesian indices
24510
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QJ ~q!52 (
i 5x,y,z

(
o,k

ReF 1

c2NkVc

3^ūo,k
(0)uûi3~2 i“1k!Gk1qi

~«o,k!ûi3vk1qi ,kuūo,k
(0)&G , ~65!

andVc is the unit-cell volume. In support of this ansatz, o
can show that whenTB51, i.e., in the all-electron case, th
definition ofxJbare, Eq. ~64! becomes equal to the expressio
for the calculation of the all-electron macroscopic magne
susceptibility, as derived in Ref. 8.

F. Projectors

In our implementation, we use norm-conservin
Troullier-Martins pseudopotentials30 with single projectors
for each angular-momentum channel. As a result, the a
ment in Section III B holds and thebn,m

(1) terms are zero.
However, in contrast to what Van de Walle and Blo¨chl found
for the calculation of hyperfine parameters,18 we found that a
minimum of two projectors per channel were required
ensure good transferability of the GIPAW current corre
tions. Otherwise, the projectors are constructed as descr
in Ref. 18, except that we choose a polynomial step funct
f (r ) so that the pseudo-wave-functions are cutoff smoot
at some distance less than the pseudopotential core rad

IX. NUMERICAL TESTS OF THE GIPAW METHOD

A. Comparison with IGAIM results

Quantum chemical approaches have long been abl
predict the NMR chemical shifts of small molecules, and o
of the most widely used is theGAUSSIAN9435 quantum chemi-
cal code. Rather than compare our GIPAW method direc
to experimental chemical shifts, to avoid ambiguity w
choose to benchmark our method against this established
electron quantum chemical approach. The agreemen
quantum chemically calculated chemical shifts with expe
ment has been comprehensively examined by Cheesemet
al,6 and so success in this benchmarking exercise would
us to expect that the GIPAW method will show simil
agreement with experiment. Gregoret al.17 used theGAUSS-

IAN94 code to optimize the geometry and calculate the i
tropic chemical shift of a selection of small molecules usi
both the GIAO and IGAIM methods.6 We compare our GI-
PAW results@all chemical shifts reported here have be
calculated within the local-density approximation36 ~LDA !#
to the IGAIM results for several of these molecules~using
exactly the same relaxed geometries! in Table I. The total
isotropic chemical shifts computed with GIPAW agree ve
well in all cases with theGAUSSIAN94 results.

The GIPAW results presented in Table I were evalua
using the crystal approach, but results obtained using
molecular approaches differ typically by less than 0.1 pa
per million ~ppm! in sufficiently large simulation cells, a
demonstrated in Table II.

The GIPAW results are converged to the 0.1 ppm le
using a plane-wave cutoff of 100 Rydbergs, a super-cell v
ume of 6000 Bohr3, and a 23232 Monkhorst-Pack
1-9
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TABLE I. Isotropic absolute chemical shifts calculated using the IGAIM method by Gregoret al ~Ref.
17! and the corresponding GIPAW-LDA results. The GIPAW calculations were performed using a p
wave cut-off of 100 Ry and in a 6000 Bohr3 simulation cell. With ‘‘bare,’’ ‘‘Dd,’’ and ‘‘Dp,’’ we indicate
the valence GIPAW contributions to the chemical shifts, given by the bare fieldBbare

(1) (R) and the two
correction fieldsBDd

(1)(R) andBDp
(1)(R), respectively. The core contribution to the GIPAW chemical shifts

assumed to be constant and evaluated in an all-electron atomic code. All quantities are given as pp

Molecule sGIPAW s IGAIM

Core bare Dd Dp Total Total

H atom
CH4 0.00 30.47 0.40 0.00 30.87 30.99
CH3F 0.00 25.71 0.41 0.00 26.13 26.50
C6H6 0.00 22.33 0.41 0.00 22.74 23.25
TMS 0.00 30.41 0.40 0.00 30.80 31.02
SiH3F 0.00 24.92 0.38 0.00 25.30 25.13
Si2H4 0.00 24.53 0.36 0.00 24.90 24.78
SiH4 0.00 26.96 0.37 0.00 27.33 27.28
C atom 1s
CO 198.88 2126.25 4.59 2100.15 222.93 221.16
CH4 198.88 16.86 3.97 228.76 190.96 191.22
CH3F 198.88 249.64 3.93 254.70 98.47 99.66
CH3NH2 198.88 213.98 3.91 239.05 149.77 150.44
C6H6 198.88 289.51 4.07 277.32 36.12 39.52
CF4 198.88 292.12 3.51 276.05 34.22 35.29
TMS 198.88 9.12 3.97 232.65 179.33 182.08
Si atom 1s2s2p
SiF4 832.39 219.43 5.28 2408.26 409.97 409.69
SiH3F 832.39 219.50 5.70 2510.30 308.29 305.45
Si2H4 832.39 29.04 5.80 2622.45 206.70 202.99
SiH4 832.39 20.21 5.98 2410.20 427.97 424.37
TMS 832.39 217.39 5.70 2518.00 302.70 304.39
P atom 1s2s2p
PF3 902.47 232.94 6.08 2697.61 178.00 172.52
P2 902.47 233.84 7.58 21236.95 2360.75 2375.45
P4 902.47 49.84 7.42 2126.79 832.94 826.62
a
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k-point grid.38 The states indicated in Table I were treated
core states in the pseudopotential calculations. The core
tribution to the GIPAW chemical shifts is assumed to
constant~following the observations of Gregoret al.17!, and
evaluated in an all-electron atomic code. For hydroge
pseudization core radius of 1.2 Bohr was used and only
s-channel was augmented. As a result, since the param
netic correction term is proportional to the angular mom
tum of the augmentation channel@see Eq.~60!#, only the
bare and diamagnetic correction terms contribute to the t
isotropic chemical shifts. There is no core contribution
hydrogen. For the carbon shifts thes and p channels were
augmented and a core radius of 1.6 Bohr used in the gen
tion of the pseudopotential. For silicon and phosphorus thd
channel was also augmented and core radii of 2.0 Bohr u
in both cases. Gregoret al.attempted to converge the chem
cal shifts with respect to their localized basis-set size, and
convergence appears to be to the 1 ppm level for the ca
and silicon shifts~see Fig. 2 of Ref. 17!. However, the con-
vergence appears to be less complete for the phosph
shifts. It is just these chemical shifts for which the GIPA
24510
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and IGAIM results differ the most~although the errors as
fraction of the range of the chemical shifts are similar for
nuclei!. So, the dominant reason for the small residual d
ferences between the GIPAW and IGAIM results is due
the problems associated with achieving convergence with
spect to localized basis functions. However, remain
sources of the discrepancies may be due to the small, m
less than 1 ppm, nonrigidity of the core contributions,17 and
a difference in the parametrization of the local-density fun
tional used. The GIPAW calculations use the parameter
tion due to Ceperley-Alder,36 while the IGAIM calculations
use that due to Vosko-Wilk-Nusair.37 While the diamagnetic
correction term is found to be rigid with respect to th
chemical environment, both the bare and paramagnetic
rection terms are found to be strongly dependent on the
tem. The correction terms introduced by the GIPAW a
proach are therefore seen to be important even in
prediction of relative chemical shifts, and the rigid nature
the core contribution is reconfirmed.

In Table III we examine the robustness of the GIPA
method with respect to pseudopotentials used. A variety
1-10
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Troullier-Martins pseudopotentials,30 with core radii ranging
from 1.2 to 1.8 Bohr, were used to calculate the NM
chemical shift for carbon in methane. While the bare con
bution to the chemical shift is observed to change by over
ppm, the total shifts, including the GIPAW correction term
are constant to within 1 ppm. There is virtually no differen
in the total shifts between potentials with core radii of 1
and 1.4 Bohr.

B. Comparison with all-electron plane-wave results
for diamond

As the GIPAW method presented here is, to the autho
knowledge, the only approach available for the calculation
all-electron NMR chemical shifts in solids, a truly indepe
dent validation is not possible. However, by constructing
suitable pseudopotential and taking a high enough pla
wave cut-off energy we are able to compare with essenti
all-electron results—in which all the electrons in the chos
system are considered to be valence electrons. In this wa
can check the corrections to the conventional pseudopo
tial results. Obviously, such calculations are computation
intensive due to the extremely large number of plane wa

TABLE II. Comparison of the three different GIPAW ap
proaches described in Sec. VII. The GIPAW-LDA calculatio
were performed using a plane-wave cutoff of 100 Ry and in
6000 Bohr3 simulation cell. The total isotropic chemical shifts a
given as ppm.

Molecule Molecular Molecular sum rule Crystal

H atom
CH4 30.75 30.76 30.87
CH3F 26.02 26.01 26.13
C6H6 22.69 22.69 22.74
TMS 30.76 30.76 30.80
SiH3F 25.40 25.40 25.30
Si2H4 24.92 24.93 24.90
SiH4 27.57 27.58 27.33
C atom
CO 222.92 222.90 222.93
CH4 191.08 191.09 190.96
CH3F 98.53 98.52 98.47
CH3NH2 149.61 149.62 149.77
C6H6 36.13 36.14 36.12
CF4 34.62 34.30 34.22
TMS 179.17 179.19 179.33
Si atom
SiF4 410.12 409.85 409.97
SiH3F 308.27 308.23 308.29
Si2H4 206.50 206.49 206.70
SiH4 427.95 427.95 427.97
TMS 302.61 302.61 302.70
P atom
PF3 177.90 177.70 178.00
P2 2360.97 2360.97 2360.75
P4 832.87 832.87 832.94
24510
i-
0
,

s’
f

a
e-
ly
n
we
n-
y
s

required to reach convergence. We therefore choose diam
as our example periodic system. Carbon is sufficiently lig
that an all-electron plane-wave calculation is possible, a
the diamond structure has a very small primitive unit cell a
a high degree of symmetry. The 1s, 2s, and 2p electrons are
all considered to be valence electrons and we constru
purely local Troullier-Martin30 pseudopotential with a core
radius of 0.4 Bohr radii.

Table IV compares the results of a GIPAW pseudopot
tial calculation~the 1s electrons are treated as core electro
and a core radius of 1.6 Bohr radii used! and the all-electron
plane-wave calculation obtained with the purely loc
Troullier-Martin pseudopotential. The contributions can
separated into core and valence terms in a gauge-inva
way, as shown in Ref. 17. Thus, in the case of the
electron result we performed two calculations of the che
cal shift after achieving self-consistency, once taking in
account all the electrons, and a second time excluding
valence electrons from the calculation of the chemical sh
The valence term presented is the difference between t
two results. We present the all-electron results at two pla
wave cutoffs—800 and 1400 Rydbergs and a 10310310
Monkhorst-Packk-point grid. All the contributions to the
chemical shifts are converged to within a part per millio
The valence contributions of the GIPAW and all-electr
results differ by only 1.39 ppm which may be attributed
the slight uncorrected pseudization error that remains in
all-electron result. We have confidence that if the core rad
were reduced to less than 0.4 Bohr radii the difference
tween the results of the two approaches would decrease.
GIPAW pseudopotential result is expected to be closer to
true all-electron NMR chemical shift.

a

TABLE III. The NMR chemical shift for carbon in methan
using Troullier-Martins potentials with a range of core radii. The
LDA calculations were performed using a plane-wave cutoff of 1
Ry ~converged to 0.01 ppm for the hardest potential! and in a simu-
lation cell of 1000 Bohr3. With ‘‘bare,’’ ‘‘ Dd,’’ and ‘‘Dp,’’ we
indicate the valence GIPAW contributions to the chemical shi
given by the bare fieldBbare

(1) (R) and the two correction fields
BDd

(1)(R) andBDp
(1)(R), respectively.

Core radius sGIPAW

~Bohr! Core Bare Dd Dp Total

1.2 198.88 7.30 3.96 219.14 191.00
1.4 198.88 12.22 3.99 224.08 191.01
1.6 198.88 17.03 3.98 228.64 191.25
1.8 198.88 21.65 3.92 232.86 191.59

TABLE IV. The valence contribution to the isotropic chemic
shift of crystalline diamond~ppm!.

Method Valence contribution tos

GIPAW 265.85
All-electron at 800 Ry 264.89
All-electron at 1400 Ry 264.46
1-11
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X. CONCLUSIONS

We have presented anab initio theory for the evaluation
of NMR chemical shifts in both finite and infinitely periodi
systems. We have correctly treated the complications in
duced due to the use of pseudopotentials, and so, in con
to the original implementation of the MPL approach,7 we are
not restricted to the calculation of the chemical shifts
light elements. We introduced an extension to the projec
augmented-wave method which is valid for systems in n
zero uniform magnetic fields, the gauge-including projec
augmented-wave method.

Our implementation of GIPAW into a parallelized plan
wave pseudopotential code allows the calculation of NM
chemical shifts in large, low-symmetry extended system
We expect that the methodology will prove useful in t
calculation of other magnetic properties. Our work also s
gests that the implementation of GIPAW into quantu
chemical approaches would lead to a considerable impro
ment in their efficiency for the calculation of NMR chemic
shifts for heavy elements.
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APPENDIX: THE GENERALIZED f-SUM RULE

The generalizedf-sum rule holds for any pair of Hermit
ian operatorsO andE, whereO andE are, respectively, odd
and even on time reversal, i.e.,

^fuOuf8&52^f8uOuf& ~A1!

and

^fuEuf8&5^f8uEuf& ~A2!

for any uf& and uf8& such that̂ r uf& and^r uf8& are real. It
is straightforward to verify thatp, L , v, vR

nl , Jp(r 8), and
DJR

p (r 8) are odd, and thatr and operators that are a functio
of r are even. To derive the sum rule, we consider the qu
tity

s524(
o

ReF ^C̄o
(0)uOG~«0!

1

i
@E,H̄ (0)#uC̄o

(0)&G . ~A3!
2451
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The sums overo and o8 ~below! run over the occupied or
bitals, and those overe8 over the empty ones. Using the fa

that H̄ (0)uC̄k
(0)&5«kuC̄k

(0)&, Eq. ~33!, and(e8uĈe8&^C̄e8u51

2(o8uC̄o8&^C̄o8u, the expression fors may be rewritten as

s524(
o

ReF1

i
^C̄o

(0)uOEuC̄o
(0)&G

14(
o,o8

ReF1

i
^C̄o

(0)uOuC̄o8
(0)&^C̄o8

(0)uEuC̄o
(0)&G . ~A4!

Since the eigenstatesuC̄k
(0)& can be chosen in such a way th

^r uC̄k
(0)& is a real quantity, ^C̄k

(0)uOuC̄k8
(0)&5

2^C̄k8
(0)uOuC̄k

(0)& and ^C̄k
(0)uEuC̄k8

(0)&5^C̄k8
(0)uEuC̄k

(0)&. Using
these relations it follows that

(
o,o8

^C̄o
(0)uOuC̄o8

(0)&^C̄o8
(0)uEuC̄o

(0)&

52 (
o,o8

^C̄o8
(0)uOuC̄o

(0)&^C̄o
(0)uEuC̄o8

(0)&

52 (
o,o8

^C̄o
(0)uOuC̄o8

(0)&^C̄o8
(0)uEuC̄o

(0)&, ~A5!

where for the last equality we just interchanged the dum
indexes o and o8. From Eq. ~A5! we conclude that the
double summation of Eq.~A4! is equal to zero and

s524(
o

ReF1

i
^C̄o

(0)uOEuC̄o
(0)&G

52(
o

^C̄o
(0)u

1

i
@E,O#uC̄o

(0)&. ~A6!

From this expression we finally obtain the generalizedf-sum
rule

(
o

^C̄o
(0)u

1

i
@E,O#uC̄o

(0)&

524(
o

ReF ^C̄o
(0)uOG~«0!

1

i
@E,H̄ (0)#uC̄o

(0)&G .
~A7!
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