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Abstract

Many methods have set state-of-the-art performance on

restoring images degraded by bad weather such as rain,

haze, fog, and snow, however they are designed specifically

to handle one type of degradation. In this paper, we pro-

pose a method that can handle multiple bad weather degra-

dations: rain, fog, snow and adherent raindrops using a

single network. To achieve this, we first design a generator

with multiple task-specific encoders, each of which is asso-

ciated with a particular bad weather degradation type. We

utilize a neural architecture search to optimally process the

image features extracted from all encoders. Subsequently,

to convert degraded image features to clean background

features, we introduce a series of tensor-based operations

encapsulating the underlying physics principles behind the

formation of rain, fog, snow and adherent raindrops. These

operations serve as the basic building blocks for our archi-

tectural search. Finally, our discriminator simultaneously

assesses the correctness and classifies the degradation type

of the restored image. We design a novel adversarial learn-

ing scheme that only backpropagates the loss of a degra-

dation type to the respective task-specific encoder. Despite

being designed to handle different types of bad weather, ex-

tensive experiments demonstrate that our method performs

competitively to the individual and dedicated state-of-the-

art image restoration methods.

1. Introduction

Bad weather image restoration problem has been stud-

ied intensively in the research fields of image processing

and computer vision; examples include deraining [20, 18,

59, 8, 53, 30, 50, 62, 36, 4, 44, 29], dehazing/defogging

[47, 3, 1, 57, 7, 13, 26, 43], desnowing [44, 37], and adher-

ent raindrops removal [41, 42], etc.. Most of these works

focus only on single weather types and propose dedicated
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Figure 1: High-level view of our network, with different

types of bad weather images as input and the respective

clean images as output. The proposed method is able to pro-

cess multiple types of bad weather images using the same

set of weights/parameters.

solutions [29, 43, 41]. While they can attain excellent per-

formance, they may not yield optimal results on other types

of bad weather degradations, since the factors that cause

the degradations in other types are not carefully considered.

As a result, real outdoor systems would have to decide and

switch between a series of bad weather image restoration

algorithms.

In this paper, we develop a single network-based method

to deal with many types of bad weather phenomena includ-

ing rain, fog, snow and adherent raindrop. It is worth noting

that a few recent studies attempt to recover multiple degra-

dation problems [39, 6]. However, none of them can deal

with multiple degradations with solely one set of pretrained

weights. To achieve our goal, we need to consider a few

factors related to our problem.

First, different bad weathers are formed based on differ-

ent physical principles, which means the degraded images

do not share the same characteristics. In order to yield the
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optimal performance, we need to design the network ac-

cording to the underlying physics principles.

Second, bad weather image restoration can be consid-

ered as a many-to-one feature mapping problem, i.e., image

features from different bad weather domains (rain, fog, rain-

drop, snow) are transformed to clean image features by a set

of network parameters (multiple encoders), after which the

clean features are transformed to the clean natural images

(one decoder). Hence, it is critical to find a proper way to

process features from multiple domains and subject them to

further appropriate operations. This motivates us to design

an architectural-search approach that automatically finds an

optimal network architecture for the aforementioned task.

The basic building blocks for our network-search module

are made up of a series of fundamental operations that can

convert degraded image features to clean features based on

the physics characteristics of bad weather image degrada-

tion.

Third, most existing discriminators in GAN-based ap-

proaches are trained to judge whether the restored images

are real or not. However, it does not provide error signals for

the generative network to differentiate the images into dif-

ferent degradation types. The encoders may not be able to

update their learnable parameters based on its own assess-

ment of degradation type independently. To solve this prob-

lem, we propose a multi-class auxiliary discriminator that

can classify the image degradation type and judge the cor-

rectness of the restored image simultaneously. In addition,

unlike other existing GAN-based methods, our network has

multiple feature encoders, each of which corresponds to a

particular degradation type. When we backpropagate the

discriminative loss, the network propagates only the loss to

the respective encoder based on the classified results. Thus,

only the corresponding encoder will update the parameters

based on the adversarial loss; and, all the other encoders

will not be affected.

We summarise the contributions of our method as follow:

1. We propose an all-in-one bad weather removal method

that can deal with multiple bad weather conditions

(rain streaks, rain veiling effect, snow, and adherent

raindrop) in one network.

2. We propose a neural architecture search technique to

find the best architecture for processing the features us-

ing different weather encoders. A series of fundamen-

tal operations that result in features invariant to bad

weather are introduced. These fundamental operations

form the basic building blocks for the search.

3. We propose a novel end-to-end learning scheme that

can handle multiple bad weather image restoration

tasks. The key idea is to let the errors of the discrim-

inative loss backpropagate into a specific encoder, in

accordance to the type of the bad weather input.

2. Related Works

Deep learning based solutions have achieved promising

performance in various image processing problems such

as denoising [58], image completion [16], super-resolution

[21], deblurring [45], style transfer [9], etc. This is also true

for bad weather restoration or image enhancement, such as

dehazing [47, 3, 1, 57, 7, 13, 26, 43], removal of raindrop

and dirt [20, 18, 59, 8, 53, 30, 50, 62, 36, 4], of moderate

rain [44, 29], and of heavy rain [25, 54]. These recent works

have all shown the superiority of deep neural network mod-

els to conventional methods.

Rain Removal Kang et al.’s [20] is the first work to in-

troduce single image deraining method that decomposes an

input image into its low frequency and high-frequency com-

ponents using bilateral filter. Recent state-of-the-art rain re-

moval strategies are dominated by deep neural networks.

Fu et al.’s [8] develop a deep CNN to extract discrimina-

tive features from the high frequency component of the rain

image. Yang et al. [54] design a multi-task deep learn-

ing architecture that learns the location and intensity of rain

streaks simultaneously. Li et al.’s [25] propose a network

that addresses the rain streaks and rain veiling effects preva-

lent in heavy rain scenes. This method not only proposes

a residue decomposition step, but also elegantly integrates

the physics-based rain model and adversarial learning to

achieve state-of-the-art performance. It jointly learns the

physics parameters of heavy rain, including streak inten-

sity, transmission, atmospheric light and utilizes generative

adversarial network to bridge the domain gaps between the

proposed rain model and real rain.

Raindrop Removal There are a number of methods that

detect and remove raindrops from single image based on

traditional hand-crafted features [52, 55]. Eigen et al.’s [5]

train a CNN with pairs of raindrop-degraded images and

the corresponding raindrop-free images. Its network is a

fairly shallow model that only has 3 convolutional layers.

While the method works, particularly for relatively sparse

and small droplets as well as dirt, the result tends to be

blurry. Qian et al. [41] use attention maps in a GAN net-

work that successfully removes raindrop from single image.

However, the main drawback of this approach is the atten-

tion maps that are inherently difficult to obtain. The au-

tomatically computed attention map ground truth often re-

sults in poor quality. Quan et al.’s [42] further explore the

generation of attention maps based on the mathematical de-

scription of the shape of raindrops. It combines the raindrop

attention maps and detected raindrop edges to obtain state-

of-the-art performance of single image raindrop removal.

Snow Removal [2, 46] use HOG techniques to capture

characteristics of snow flakes for snow removal from sin-

gle images. Xu et al. [51] utilize color assumptions to

model the falling snow particles. In contrast to these hand-

crafted features that capture partial characteristic of snow
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Figure 2: Left: Full architecture of the proposed network. The dotted lines indicate the back-propagation paths of the

adversarial loss from the discriminator. The discriminator classifies the degradation type and also determines whether the

input image is real or fake. The classification error of a particular degradation type is only used to update the corresponding

encoder assigned to this type in the generative network. The loss from one degradation type is only propagated to update the

corresponding feature encoder. Right: The detailed structure of the generator of the proposed network. In our experiment,

we set the number of cells to 3 ( cell-2, cell-1 and cell 0 ). FE stands for Feature Extractor.

flakes and streaks, Li et al.’s [24] encode snow flakes or

rain streaks using an online multi-scale convolutional sparse

coding model.

Neural Architecture Search (NAS) Neural Architecture

Search aims at automatically designing neural network ar-

chitectures to achieve optimal performance, while minimiz-

ing human hours and efforts. Early works like [63, 19, 11]

directly construct the entire network and train it automat-

ically with supervision from designing a reinforcement

learning controller RNN. Many recent papers [32, 40] point

out that searching the repeatable cell structure and fixing the

network level structure are more effective and efficient. The

PNAS method [32] proposed a progressive search that sig-

nificantly reduces the computation cost. Our work is closely

related to [34, 31] that further relax the network searching

task into an end-to-end optimization problem.

3. Proposed Method

3.1. Problem Formulation

Different weather phenomena degrade images accord-

ing to different physics principles. For example, a heavy

rain image (where rain veiling effect, visually similar to

fog/mist, is prevalent) is modelled as [25]:

I(x) = t(x)(J(x) +
∑

i

Ri(x)) + (1− t(x))A, (1)

where I(x) is the rain image at location x, t is the transmis-

sion map and A is the global atmospheric light of the scene.

Ri represents the rain streaks at the i-th layer along the line

of sight. An adherent raindrop image is modelled as [41] :

I(x) = (1−M(x))J(x) +K(x), (2)

where I is the colored raindrop image and M is the binary

mask. J is the background image and K is the imagery

brought about by the adherent raindrops, representing the

blurred imagery formed the light reflected by the environ-

ment. Lastly, a snow image can be modelled as [37]:

I(x) = zS(x) + J(x)(1− z), (3)

where S represents the snow flakes and z is a binary mask

indicating the location of snow.

From the formulations of these different bad weather im-

ages, it is evident that these problems do not share the same

intrinsic characteristics, which explains why a dedicated al-

gorithm designed for one task does not work on the other

tasks. To address this problem, we model the bad weather

tasks with the following generic function:

J(x) = F(I(x)), (4)

where F represents an auto-encoder that maps degraded im-

ages to clean background images, and should embody the

mentioned formulations such as Eq. (1)(2)(3). To realize

this, we consider a network with multiple encoders:

J(x) = G ⊙ Eρ(Iρ(x)), (5)

where Eρ represents the encoder that takes in a degraded im-

age Iρ with respect to a degradation type ρ. G is the generic

decoder that restores the input to a clean background image

J.
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block in our proposed network. This diagram shows a pos-

sible architecture layout after training. In the figure, dil5x5

refers to dilated convolution with kernel 5×5. sep3x3 refers

to separable convolution with kernel 3×3.
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Figure 4: An detailed illustration of the 4 fundamental op-

erations in the search component designed for bad weather

restoration tasks.

3.2. Architectural Search Methodology

To effectively process features coming in from multiple

encoders, we utilize an NAS technique at the ends of the

multiple encoders. In this search module (details shown

in Fig. 3), we follow the configuration of most of the re-

cent NAS methods, which define a cell to be the smallest

basic module that can be repeated multiple times to con-

struct the entire network architecture. Therefore, the net-

work search space comprises of both a network level search,

which refers to finding the structure of connections between

cells, and a cell level search, which explores the structure

inside a cell.

3.2.1 Network Cell Architecture

Due to limited computing resources, we adopt the funda-

mental rule of [31] in designing the basic cell structure:

a cell is a directed acyclic graph consisting of B blocks.

Each block i in the l-th cell Cl is represented as a 5-tuple

(I1, I2, O1, O2, H) two-to-one mapping structure, where

I1, I2 ∈ I li are the selections of the input tensors; and

O1, O2 ∈ O are the selections of the layer types applied

to the corresponding input tensors. H ∈ H is the method

used to combine the outputs of two layers O1, O2. The set

of possible layer types O consists of the following ten op-

erators:

• 3x3 separable conv

• 5x5 separable conv

• 3x3 dilated conv

• 5x5 dilated conv

• no/skip connection

• Deveiling Ops

• Residue Ops

• Self-Attention Ops

• Decomposition Ops

Beside the common convolutional operations such as

dilated convolution, depthwise-separable convolution, we

introduce new fundamental operations to deal with the

bad weather image degradation according to the physics

laws embedded in the formation of each degradation type,

namely decomposition operation, residue operation, self-

attention operation, and deveiling operation (shown in

Fig. 4). In the following paragraphs, we describe the de-

sign and function of the new operations in details.

Deveiling Operation Most of the existing methods solve

the problem according to the following model of fog/haze

formation:

I(x) = tJ(x) + (1− t)A. (6)

The variables in this equation follow the same meaning in

Eq. (1). Inspired by [23, 28], it is possible to learn a latent

variable M that transforms the veiling images into clean

background images:

J(x) = M(x)⊙ I(x), (7)

where M(x) = (I(x) + tA−A)/tI(x), and is a learnable

latent variable dependent on the input image I. Thus, we

apply one layer of conv1×1 on the extracted image feature

to estimate the latent variable M, and multiply M with the

extracted feature as shown in Fig. 4.1.

Decomposition Operation Image decomposition has

been widely used in rain streaks removal and snow removal

[20, 8, 25]. We consider the decomposition in a feature

space as a fundamental operation that is effective for snow

and rain removal. As shown in Fig. 4.2, we apply deep

image-guided filters with a kernel family ranging in 2k,
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where k = 1,2,...,6. We use a conv1 × 1 layer at the end

of both the low- and high-frequency components to extract

appropriate features for next layer.

Residue Operation Inspired by [28], we have imple-

mented the residue channel operation (shown in Fig. 4.3 in

the feature space. The residue channel [27] has been shown

to be effective to remove rain from a single image.

Self-Attention Operation A few methods [41, 42] have

demonstrated the advantages of using an attention map for

removing adherent raindrops. In these methods, the rain-

drop attention maps are explicitly learned from the ground

truths of raindrop masks. However, obtaining these rain-

drop masks is expensive [12] and any lack of quality may

affect the performance. To overcome this problem, a self-

attention mechanism [56, 48] has been applied to many im-

age reconstruction methods [60, 33]. We consider this self-

attention module as a fundamental block of operation that

can be exploited by the NAS (shown in Fig. 4.4).

3.2.2 Architecture Search Space

Following the continuous relaxation described in [35], in

each blocki, the output tensor T l
i is connected to all the in-

put tensor I li through searched operation Oj→i:

T l
i =

∑

Hl
j
∈Il

i

Oj→i(T
l
j). (8)

We approximate the step of searching best Oj→i with con-

tinuous relaxation, yielding Ōj→i:

Ōj→i =
∑

O∈O

αj→iOj→i(T
l
j), (9)

where
∑

αj→i = 1. In practice, this is implemented as a

softmax operation. Therefore, the cell level architecture can

be summarized as :

T l = Cell(T l−1, T l−2;α). (10)

To maximize the potential of these fundamental knowledge

competencies, we allow heterarchical connections between

cells and blocks.

3.3. Categorical Adversarial Training

In the standard generative adversarial network (GAN)

configuration, the generator G takes a random noise vector

z and produces an image Xfake. The discriminator D takes

a ground truth image and the output image of the generator

to predict a probability distribution P (S|X) over possible

images sources [10]. During training process, the discrimi-

nator is trained to maximize the log-likelihood of the correct

source:

Ls = E[logP (S = real)|Xreal)] (11)

+ E[logP (S = fake|Xfake)]. (12)

In our multi-class discriminator network, however, the dis-

criminator does not only learn to determine the correctness

of the restored image, but also strives to classify the type of

the degradation from the restored image:

Lc = E[logP (C = ci)|Xreal)]+E[logP (C = ci|Xfake)].
(13)

Hence, the discriminator D is trained to minimize Ls +Lc,

while the generator is trained to minimize Lc − Ls. This

approach havs been proven to be effective in tackling mode

collapse in a standard GAN [14]. To summarize, the loss

function for the discriminator is:

Ldis = Lc + Ls. (14)

For the generator, we also apply the MSE loss to compute

the difference between the predicted clean image Jpred and

the ground truth clean image Jgt:

Lgen = Lc + Lmse(Jpred,Jgt)− Ls. (15)

Updating Relevant Encoders As mentioned, different

bad weathers are formed based on different physical prin-

ciples. The classification error of one degradation type Lci

may not be effective to update the encoders of other degra-

dation types j, where j 6= i. In our approach, the classi-

fication error of degradation type i is only used to update

encoder Ei, as shown in Fig. 2. By backpropagating the

adversarial loss specifically to the appropriate encoder, we

strengthen the ability of the multi-encoder generator to map

images from different domains to a common feature space.

4. Implementation

4.1. Datasets

We train our network on different bad weather datasets,

including “Outdoor-Rain” [25], “Snow100K” [38], and

“Raindrop” [41]. “Outdoor-Rain” contains 9,000 train-

ing samples and 1,500 validation samples. “Snow100K”

contains 100k synthetic snow images and the correspond-

ing snow-free ground truth images. “Raindrop” comprises

1,119 pairs of real adherent-raindrop images and the corre-

sponding ground truth background images. Since the num-

ber of images in each datasets are not equal, we sample

9000 images from “Snow100K” at each training epoch. For

the small “Raindrop” dataset, we over-sample them by per-

forming data augmentation, such as rotation, affine trans-

formation, noise and random cropping. As a result, in each
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Table 1: A comparison of our algorithm with the baseline

methods performed on Test 1 [25] dataset.

Method Test 1

Metric PSNR SSIM

DetailsNet [8] + Dehaze
DHF 13.36 0.583

DRF 15.68 0.640

RESCAN [29] + Dehaze
DHF 14.72 0.587

DRF 15.91 0.615

Pix2Pix [17] 19.09 0.710

CycleGAN [61] 17.62 0.656

HRGAN [25] 21.56 0.855

Ours 24.71 0.898

Table 2: A comparison of our algorithm with the baseline

methods performed on Raindrop [41] dataset.

Metric Pix2Pix [17] AttentGAN [41] Quan et al. [42] Ours

PSNR 28.02 31.57 31.44 31.12

SSIM 0.8547 0.9023 0.9263 0.9268

Table 3: A comparison of our algorithm with the baseline

methods performed on Snow100K-L [37] test dataset.

Metric DetailsNet [8] DesnowNet [38] Ours

PSNR 19.18 27.17 28.33

SSIM 0.7495 0.8983 0.8820

epoch, the number of samples from all the datasets is uni-

form at 9,000.

4.2. Training Details

Our network is trained on all of the bad weather datasets

in an end-to-end manner. To reduce the training expenses

under limited resources, we adopt the first-order approxi-

mation in [35] and split the training data into two disjoint

sets Set1 and Set2. We simultaneously optimize the pa-

rameters of the image restoration network on Set1 and the

architecture-search parameters on Set2. The learning rate is

set to 0.002 initially and is divided by 2 after every 5 epochs

until the 40th epoch. We use Adam optimizer [22] with a

weight decay 10−4 to optimize the network parameters.

5. Experiments

We evaluate our method using both synthetic and real

bad weather images, including rain, snow and adherent rain-

drop. The test dataset for rain (with fog) is the test set from

HRGAN [25]. The baseline methods for deraining com-

prise of the state-of-the-art heavy rain removal HRGAN

[25], RESCAN [29], and DetailsNet [8]. The test dataset

for snow is from the Snow100K-L test set adopted from

[37]. Since there are only a few works related to snow re-

cently, we compare DeSnowNet [37] and the baseline meth-

ods from that paper. Lastly, the test dataset for adherent

raindrop is from Qian et al. [41]. We compare our method

with the most recent raindrop removal methods [42] and

Qian et al. [41].

5.1. Qualitative Results

Rain and Fog We show the results produced by the vari-

ous methods on synthetic rain images in Fig. 5. One can

observe that our network, while is trained for multiple bad

weather types, achieve competitive performance compared

with dedicated state-of-the-art deraining methods. We pro-

vide more results in the supplementary material.

Snow We show the results produced by the various method

on synthetic snow images from the Snow100K dataset [38]

in Fig. 9. 1

Raindrop We list the results of our method compared with

recent raindrop removal methods in Fig. 7. Although our

method does not produce the best result in terms of the

PSNR, we still achieve a competitive performance without

incorporating extra information such as that obtained from

the edge attention mechanism in [42].

5.2. Quantitative Results

Table 1 and 2 demonstrate the quantitative results of our

proposed method compared with dedicated state-of-the-art

methods and generic image restoration methods. The quan-

titative results are evaluated based on two metrics: PSNR

[15] and SSIM [49]. For the raindrop removal task, our

method does not yield the best result in terms of the PSNR,

but achieve a competitive performance.

6. Ablation Study

To study the effectiveness of each of the components in

our proposed network, we conduct an ablation study, which

the results are shown in Table. 4. As can be seen, our net-

work with the feature search performs better than simple

concatenation. We also conduct an ablation study on the

categorical adversarial training component. The quantita-

tive results tested on the deraining task are shown in Ta-

ble. 4.

7. Conclusion

In this paper, we propose a novel all-in-one bad weather

image enhancement solution that can handle multiple types

of bad weather degradations using only one single network.

The competitive performance of our network stems from

1Since the original code of [38] is not available, the qualitative results

are based on our implementation. The quantitative results in Table 3 are

directly obtained from the paper.
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(a) input (b) RESCAN [29] (c) HRGAN [25] (d) Ours (e) GT

Figure 5: Synthetic rain and fog removal results of our method compared with state-of-the-art dedicated rain and fog removal

methods.

(a) input (b) DetailsNet [8] (c) RESCAN [29] (d) HRGAN [25] (e) Ours

Figure 6: Realistic rain and fog removal results of our method compared with state-of-the-art dedicated rain and fog removal

methods.

Table 4: Ablation study on our search component and cate-

gorical adversarial learning component in the proposed net-

work. The evaluation is conducted on the test dataset Test 1

[25] for the rain and fog removal task.

Method Rainfog dataset [25]

Metric PSNR SSIM

No Feature Search 20.82 0.827

No Categorical Discriminator 21.58 0.86

Full Architecture 24.71 0.898

our two main contributions. First, to find the most effec-

tive way to process features from different bad weather do-

mains, we propose an architectural search equipped with,

among others, four fundamental operations designed for

bad weather, namely deveiling, residue, self-attention and

decomposition. Second, we design a multi-class discrimina-

tor that classifies image degradation types and assesses im-

age correctness simultaneously. The proposed new training

scheme updates the encoders in the generator based on the

classification results of the discriminator. Finally, compre-

hensive experiments demonstrate the effectiveness of our

method compared with the dedicated state-of-the-art algo-

rithms on rain, snow and raindrop removal tasks.

43273181



(a) input (b) AttentGAN[41] (c) Quan et al. [42] (d) Ours (e) Ground Truth

Figure 7: Raindrop removal results of our method compared with state-of-the-art dedicated raindrop removal methods.

(a) input (b) DetailsNet [8] (c) DeSnowNet [38] (d) Ours

Figure 8: Snow removal results of our method compared with state-of-the-art dedicated snow removal methods.

(a) Input (b) No Categorical Discriminator (c) No Feature Search (d) Ours

Figure 9: Comparison between different networks in ablation study (zoom to view details).
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