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The spin-wave transportation through a transverse magnetic domain wall (DW) in a magnetic nanowire

is studied. It is found that the spin wave passes through a DW without reflection. A magnon, the quantum

of the spin wave, carries opposite spins on the two sides of the DW. As a result, there is a spin angular

momentum transfer from the propagating magnons to the DW. This magnonic spin-transfer torque can

efficiently drive a DW to propagate in the opposite direction to that of the spin wave.
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Magnetic domain wall (DW) propagation along nano-
wires has attracted much attention in recent years [1–8]
because of its fundamental interest and potential applica-
tions [1,2]. So far, a spin-polarized electric current and/or
magnetic field including a microwave [3] are the two
known control parameters for manipulating DW propaga-
tion along nanowires: A magnetic DW propagates along a
wire under a static magnetic field because of energy dis-
sipation [4] while a DW moves under an electric current
because of spin-transfer torque (STT) [9,10]. In terms of
spintronic applications based on an electron spin current
STT, the Joule heating due to the excessive high critical
current density [5,6] is a bottleneck. Thus, it should be very
interesting and important both academically and techno-
logically if one can find other effective control methods
and principles for DW manipulation in magnetic
nanowires.

Both electrons and magnons, quanta of spin waves, carry
spins. A magnon is a spin-1 object with an angular mo-
mentum of @ [11]. Similar to the STT from electrons to
magnetization, a STT from magnons to magnetization
should in principle exist. Indeed, polarized electric current
generated by heat induced magnons in spin valves was
predicted theoretically [12,13] and was confirmed experi-
mentally [14]. The interaction between spin waves and
DW had also been investigated quantum mechanically
[15] and classically [16–18]. The time-dependent
Schrödinger equation was used [15] to show that a DW is
stable when it interacts with a spin wave, and the spin wave
is reflected by the DW which is different from our finding
below. Of course, they did not study magnonic STT.
However, the phase change of spin waves after passing
through a DWwas predicted. In terms of STT directly from
magnons, the question is how one can facilitate a spin
exchange between magnons and magnetization. In this
Letter, we show that the spin wave inside a DW satisfies
a Schrödinger equation with a reflectionless potential well.
A magnon changes its spin by 2@ (the magnon spin flips
from �@ to @) after passing through the DW, as shown in
Fig. 1. This angular momentum is absorbed by the DW,

resulting in propagation of the DW in the opposite direc-
tion to that of spin-wave propagation. The validity of these
findings is verified by solving the Landau-Lifshitz-Gilbert
(LLG) equation numerically in a one-dimensional nano-
wire with material parameters of ferrimagnet yttrium iron
garnet (YIG). The frequency and the field dependences of
the DW propagation speed are also studied.
Consider a head-to-head DW in a magnetic nanowire

whose easy axis defined as the z axis is along the wire as
shown in Fig. 1, the magnetization dynamics is described
by the LLG equation [4],

@m

@t
¼ �m� heff þ �m� @m

@t
; (1)

where m is the unit direction of local magnetization
M ¼ mMs with a saturation magnetization Ms, � is the
phenomenological Gilbert damping constant, and heff is
the effective magnetic field consisting of anisotropy and

FIG. 1 (color online). Illustration of a transverse DW structure
whose m is denoted by the (blue) arrows. The spin wave
(magnon) is a small amplitude precession of m (represented
by the red cones) around the static DW. A linearly polarized
microwave hðtÞ is applied in a small region on the left side of the
DW so that the generated spin wave propagates through the DW
from the left. � is the DW width. Inset: The magnons (wavy
lines with arrows indicating the propagating directions) pass
through the DW (represented by the rectangular block) from
the left to the right without any reflection. The magnon spin
(solid circle with an arrow) is�@ on the left side of the DWand @
on the right side. The magnonic STT drives the DW propagating
to the opposite direction (green arrow) of the spin wave, with the
velocity VDW.
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exchange fields in the unit of Ms. t is normalized by
ð�MsÞ�1 and � is the gyromagnetic ratio. For simplicity,

we consider a uniaxial wire with heff ¼ Kmzẑþ A @2m
@z2

where mz is the z component of m, and K and A are the
anisotropy and exchange coefficients, respectively. In the
spherical coordinates of polar angle � and azimuthal angle
�, m ¼ ðsin� cos�; sin� sin�; cos�Þ. For a static DW,

m ¼ m0 is given by the Walker profile tan�02 ¼ expð z�Þ
and lies in a fixed plane, say the y-z plane (�0 ¼ �=2),

where � ¼ ffiffiffiffiffiffiffiffiffiffi

A=K
p

is the DW width [19].
To derive the equation of motion for the spin wave, a

small fluctuation of m around m0 is expressed in terms of
unit directions êr, ê�, and ê� defined by m0,

m ¼: êr þ ½m�ðzÞê� þm�ðzÞê��e�i!t; (2)

where ! is the spin-wave frequency. m� and m� are small,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
� þm2

�

q

� 1. Substituting Eq. (2) into Eq. (1) and

neglecting the higher-order terms, such as m2
�, m�m

0
�,

m�m�, etc., (
0 denotes the derivative in z), we obtain, in

the absence of the damping,

� i!m� ¼ Am00
� þ Kð2sin2�0 � 1Þm�; (3)

i!m� ¼ Am00
� þ Kð2sin2�0 � 1Þm�: (4)

Defining ’ ¼ m� � im�, (3) and (4) can be recasted as

q2’ð�Þ ¼
�

� d2

d�2
� 2 sech2�

�

’ð�Þ; (5)

with � ¼ z
� , and q2 ¼ !

K � 1. This is a Schrödinger equa-

tion with propagating waves [20,21],

’ð�Þ ¼ �
tanh�� iq

�iq� 1
eiq�; (6)

where � is the spin-wave amplitude. Equation (5) also
supports a bound state of ’ð�Þ ¼ 1

2 sech� for q ¼ �i

(! ¼ 0) [20,21]. Equation (6) describes propagating spin
waves without reflection, and takes an asymptotic form of

’ð� ! �1Þ ¼ �eiq� and ’ð� ! þ1Þ ¼ �� 1�iq
1þiq e

iq�.

The spin wave maintains its amplitude and only captures
an extra phase after passing through the DW. Interestingly,
this phase shift is indeed observed in recent calculations
[16–18]. The above result is very robust, and holds even
with the extra Dzyaloshinskii-Moriya interaction [22,23]
Dm � ðẑ� @m

@z Þ in Eq. (1).

A very interesting consequence of the above results is
schematically illustrated in the inset of Fig. 1: The mag-
nons whose spins point to the left (opposite to the magne-
tization of the left domain) are injected into the DW from
the left. The magnons transmit completely through the DW

with their spins reversed (to the right). The change of
magnon spins should be transferred to the DW, an all-
magnonic STT. Thus the DW propagates to the left, oppo-
site to the magnon propagation. One can also understand
this result directly from Eq. (1). In the absence of damping,
Eq. (1) can be cast as

@m

@t
¼ �m� Kmzẑ� @

@z
J; (7)

where J ¼ Am� @m
@z is the magnetization current, also

called spin-wave spin current [24]. The z component of
Eq. (7) is conserved so that @tmz þ @zJz ¼ 0, where Jz is
the z component of J. In terms of ’, Jz ¼ A

2i� ð’@�’� �
’�@�’Þ cos�0 in the two domains. For the propagating spin

wave (6), Jz ¼ �A�2k in the far left of the wire (z ! �1
and �0 ¼ 0), while Jz ¼ A�2k in the far right (z ! 1 and
�0 ¼ �), where k ¼ q=� is the spin-wave vector in real
space. The spin current changes its sign after passing
through the DW, and results in an all-magnonic STT on
the DW. Thus, in order to absorb this torque, the DW must

propagate to the left with the velocity VDW ¼ � �2

2 Vgẑ,

where Vg ¼ @!=@k ¼ 2Ak is the group velocity.

To test the validity of these findings in the realistic
situation when both damping and transverse anisotropy
are present, we solve Eq. (1) numerically in a one-
dimensional magnetic nanowire. In the simulations, the
time, length, and field amplitude are in the units of

ð�MsÞ�1,
ffiffiffiffiffiffiffiffiffiffiffiffi

A=Ms

p

, and Ms, respectively, so that velocity
is in the unit of �

ffiffiffiffiffiffiffiffiffiffi

AMs

p
. If one uses the YIG parameters:

Ms¼0:194�106 A=m, K ¼ 0:388� 105 A=m, and A ¼
0:328� 10�10 Am [25], these units are 1:46� 10�10 s,
13 nm, 2:44� 103 Oe, and 89 m=s. The wire length is
chosen to be 1000 (from z ¼ �500 to z ¼ 500) with
open boundary conditions and a transverse DW is initially
placed at the center of the wire. Spin waves are generated
by applying an external sinusoidal magnetic field hðtÞ ¼
h0 sinð�tÞx̂ of frequency� and amplitude h0 locally in the
region of [� 60,�55] in the left side of the wire. Thus, the
spin wave (may not be monochromatic as explained later)
propagates from the left to the right as illustrated in Fig. 1.
We solve Eq. (1) numerically by using the standard method
of lines. The space is divided into small meshes of size 0.05
and an adaptive time-step control is used for the time
evolution of the magnetization. In terms of YIG parame-
ters, the geometry of our nanowire is 0:65 nm� 0:65 nm
in cross section and 13 �m in length. The DW will move
under the influence of the spin wave. The spatial-temporal
dependence ofmz is used to locate the DW center which, in
turn, is used to extract the DW velocity.
Below, we present our simulations for a set of realistic

material parameters of YIG: � ¼ 10�5 and K? ¼
2� 10�3. We present also the simulation results when
both damping and transverse magnetic anisotropy are
absent in order to show the quantitative effects of damping
and transverse anisotropy although the qualitative results
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are the same. Figure 2(a) is the numerical results of
the spatial-temporal dependence of mz at h0 ¼ 1 and
� ¼ 0:75 (optimal frequency explained later) for YIG.
The simulations show the following interesting results.
First, spin waves are generated by the external field. The
spin waves propagate to both sides of the wire, resulting in
the parallel strap pattern in the density plot of mz. Second,
when the spin waves reach the DWat z ¼ 0, the DW starts
to move towards the left, opposite to the spin-wave prop-
agating direction. The straight trajectory of the DW center
before hitting the wave source indicates that the DW
propagation speed is almost a constant. Third, the slopes
of the spin-wave straps and DW trajectory tell us that the
DW propagation speed is smaller than the spin-wave group
velocity, a reasonable result that is consistent with our
picture. It is also clear that there is no reflection when
the spin waves pass through the DW in the presence of both
damping and transverse magnetic anisotropy. This is
highly nontrivial since it is not so clear from our earlier
analysis. We will present further evidence for this finding.
Figure 2(b) shows the frequency dependence of DW ve-
locity at h0 ¼ 1 for both YIG parameters (circles) and the
case without damping and transverse magnetic anisotropy
(squares). The error bars are smaller than the symbol sizes.
The complicated and irregular frequency dependence of
the DW velocity at low frequency is probably related to the
observation of the polychromatic spin-wave generation. At
a large enough frequency (�> 0:55), the excited spin
wave is almost monochromatic with the same frequency
as the oscillating field. These curves show that the DW
propagation velocity is very sensitive to the microwave
frequency. In fact, there exists an optimal frequency at
which the DW velocity is maximal for a given set of
parameters. For the cases shown in the figure, the optimal
frequencies are � ¼ 0:75 in the presence of damping and
transverse magnetic anisotropy and a higher optimal fre-
quency � ¼ 0:85 without them.

The reflectionless property (total transmission) of the
spin wave through DW can also be verified through quan-
titative analysis of spin-wave amplitude on the two oppo-
site sides of the DW. If the spin wave is monochromatic (a
sinusoidal wave) and passes through the DW without
reflection, the difference of the spin-wave amplitudes on
the two sides of the DW is around zero. We evaluate the
spin-wave amplitude difference at z ¼ �160 and z ¼ 45 at
the same time, denoted as 	�. Figure 3 is the numerical
results of 	� as a function of microwave field h0. Indeed,
	� is almost zero (green dashed line) both with (circles)
and without (squares) damping and transverse magnetic
anisotropy. Of course, for nonmonochromatic (sum of
many sinusoidal waves) spin waves, the amplitudes on
the two sides of the DW may be different at any particular
time due to the complicated interference of waves with
different frequencies. This is indeed the case for large h0,
as shown by the oscillatory 	� around zero. The total
transmission of spin waves through a DW is an important
property because it results in a larger spin-wave spin
current, and generates a larger magnonic STT.
Figure 4(a) shows the h0 dependence of the spin-wave

amplitude �. It is almost linear at low fields both with
(circles) and without (squares) damping and transverse
magnetic anisotropy. The behavior is complicated at high
fields, and a large error bar of � is observed, accompanying
less regular and polychromatic spin-wave generation. This
also results in a large fluctuation of �. The h0 dependence
of the DW velocity VDW is shown in Fig. 4(b). It is non-
monotonic for the realistic situation with YIG parameters
(red circles) and almost quadratic for the case without
damping and transverse magnetic anisotropy (blue
squares). Although the field dependence of DW velocity
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FIG. 2 (color). (a) Density plot of mz in the z-t plane at
frequency � ¼ 0:75 for � ¼ 10�5 and K? ¼ 2� 10�3 (YIG
parameters). The center of the DW is initially at z ¼ 0. The spin
wave is generated in the region of z 2 ½�60;�55�. (b) The
frequency dependence of DW velocity. The red circles are for
YIG parameters, and the blue squares are the results of the case
without damping and transverse magnetic anisotropy.

FIG. 3 (color online). Field dependence of spin-wave ampli-
tude differences at two sites located in the opposite sides of the
DW. Red circles are for the YIG parameters at the optimal
frequency (� ¼ 0:75), and blue squares are the results without
damping and the transverse magnetic anisotropy also at its
optimal frequency (� ¼ 0:85).

PRL 107, 177207 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

21 OCTOBER 2011

177207-3



is nonmonotonic, the relationship between the DW veloc-
ity and the spin-wave amplitude is much simpler. As shown
in the inset of Fig. 4(b), the DW velocity VDW is almost
quadratic in � both with (circles) and without (squares)
damping and transverse magnetic anisotropy. We also plot
�2

2 Vg (solid lines) without any fitting parameters, where

Vg ¼ 1:48 at� ¼ 0:75 for the YIG case and Vg ¼ 1:61 at

� ¼ 0:85 in the absence of damping and transverse an-
isotropy, and � is calculated numerically. Although there is
no reason why the early velocity formula derived under the
approximation of zero damping for uniaxial wire and small
spin-wave amplitude should be applicable to the realistic
case when both damping and transverse magnetic anisot-
ropy are presented, the theoretical formula is, in fact, not
too far from the numerical data for both cases. Of course, it
should not be surprising for the deviation at large � since
quadratic � dependence of VDW is derived based on the
conservation of the z component of angular momentum
that does not hold for the generic cases. Also the main
purpose of the current study is to demonstrate the prin-
ciples rather than the exact mathematical expression of
DW velocity which can be the subject of future studies.

Most studies [12–14,24,26,27] of magnonic effects in
nanomagnetism so far are about the conversion of magnon
spins with electron spins. Very often, it goes through the
Seebeck effect that involves both thermal and electronic
transport. Thus, like usual electronic STT, devices based on
these effects must also contain metallic parts so that Joule
heating shall be present. In contrast, the magnonic STT
presented here does not require electron transport. Devices
based on this all-magnonic STT could be made of magnetic
insulators like YIG so that the Joule heating is, in principle,
avoided. It is also known that the stray field is important in

DW dynamics. Our results here are consistent with the
OOMMF [28] simulations including this field. Remarkably,

these results are consistent with a phenomenological the-
ory on thermomagnonic STT proposed by Kovalev and
Tserkovnyak [29].
In conclusion, we proposed an all-magnonic spin-

transfer torque mechanism for magnetic domain wall
manipulation in nanowires. This spin-transfer torque can
effectively drive a DW to propagate along the wires. The
propagation speed is sensitive to both microwave fre-
quency and its amplitude. There is an optimal frequency,
order of the usual ferromagnetic resonance frequency, at
which DW propagating speed is the fastest. All-magnonic
STT should have advantages over its electronic counterpart
on energy consumption as well as on the spin-transfer
efficiency. It also opens the door for using magnetic insu-
lators in spintronic devices.
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