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ABSTRACT

Timely, high-resolution forecasts of infectious disease incidence

are useful for policy makers in deciding intervention measures and

estimating healthcare resource burden. In this paper, we consider

the task of forecasting COVID-19 confirmed cases at the county

level for the United States. Although multiple methods have been

explored for this task, their performance has varied across space

and time due to noisy data and the inherent dynamic nature of the

pandemic. We present a forecasting pipeline which incorporates

probabilistic forecasts from multiple statistical, machine learning

and mechanistic methods through a Bayesian ensembling scheme,

and has been operational for nearly 6 months serving local, state and

federal policymakers in the United States. While showing that the

Bayesian ensemble is at least as good as the individual methods, we

also show that each individual method contributes significantly for

different spatial regions and time points. We compare our model’s

performance with other similar models being integrated into CDC-

initiated COVID-19 Forecast Hub, and show better performance

at longer forecast horizons. Finally, we also describe how such

forecasts are used to increase lead time for training mechanistic

scenario projections. Our work demonstrates that such a real-time

high resolution forecasting pipeline can be developed by integrating

multiple methods within a performance-based ensemble to support

pandemic response.
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1 INTRODUCTION

COVID-19 pandemic has been the greatest public health challenge

facing humanity in over a century with more than 100 million con-

firmed cases worldwide, leading to nearly 2.3 million recorded

deaths. United States has been the most affected country with approx-

imately 25% and 20% of the reported cases and deaths respectively.

While early response was marred by lack of adequate testing and

medical resources, subsequent surges can be attributed to uncoor-

dinated response across spatial scales. Although multiple crowd-

sourced1 and academic2 efforts led to databases on high resolution

disease surveillance, actionable forecasts for early indicators were

difficult to integrate into policy response.

For instance, in April 2020, the Centers for Disease Control and

Prevention (CDC) in collaboration with academic partners initiated

the COVID-19 Forecast Hub (hereon referred to as The Hub), a

consortium of modeling teams to coordinate the forecasting efforts3.

Due to lack of reliable data on other outcomes and at higher res-

olutions, this early effort was limited to probabilistic forecasts of

deaths at the national and state level. Multiple classes of statistical

and mechanistic models were employed by individual groups[31]

and the forecasts were combined through a naive equally-weighted

ensemble of eligible methods. Unlike seasonal influenza forecasting

where statistical methods have been shown to be better overall[32],

due to lack of training data and the need for integrating various dis-

ease parameter estimates, it was noted that mechanistic models such

as the Susceptible-Infected-Recovered (SIR) and its variants proved

to be more useful for COVID-19 forecasting. However, due to deaths

being a lagging indicator of disease activity, it proved difficult to

use for guiding policy interventions in real-time. Subsequently this

effort was expanded in July 2020 to include incident case forecasts

at the county level.

Forecasting disease incidence at finer spatial resolution is im-

pacted by multiple factors such as: (a) higher noise partly due to

lower population counts, (b) lack of exogenous observables such as

mobility or testing rates at equivalent resolution, and (c) greater level

of connectivity across regions leading to interdependence. Further,

the COVID-19 experience across the United States has been quite

heterogeneous spatially and temporally, making it difficult to obtain

sufficient training data and reasonably track the different phases of

the pandemic. Other aspects such as reporting errors, back-filled

cases may lead to uncharacteristic spikes not necessarily reflecting

1https://covidtracking.com/
2https://nssac.bii.virginia.edu/covid-19/dashboard/
3https://viz.covid19forecasthub.org/
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the state of the pandemic. Finally, for geographically and demo-

graphically heterogeneous states like California and Virginia, it is

difficult to understand the state level epidemic trajectories without

considering the evolution at finer resolution, such as the county

level. Thus, beyond aiding targeted interventions and resource de-

mand estimation, forecasting at the county level for United States

can help improve the overall forecasting quality and robustness at

the state and national level. It is to be noted that of the nearly 70

teams contributing to The Hub, only 20% of them produce county

level forecasts, many of them starting in late 2020. Further, not

every team provides probabilistic forecasts due to the aforemen-

tioned challenges complicating uncertainty quantification. Since it

is well accepted that ensemble forecasts tend to have better per-

formance compared to individual forecasts [32, 37, 43], The Hub

employs a non-performance-based ensemble approach to combine

the probabilistic forecasts from multiple teams provided in the form

of quantiles. Each quantile of the ensemble forecast is constructed

by taking the median of the forecasts across the models for the

corresponding quantile.

Thus we note that there is a need for a comprehensive forecasting

framework that combines multiple individual methods from var-

ious modeling paradigms within a performance-based ensemble.

Instead of combining multiple contributed models, developing a sin-

gle framework allows the models to share common datasets, runtime

environments and improves overall robustness of the system. In our

approach, we consider a combination of statistical, machine learning

and mechanistic approaches, with a performance based ensembler

to combine the models. Specifically, we use a variety of autoregres-

sive methods (AR and ARIMA) [30] with exogenous variables, an

Long Short-Term Memory (LSTM) model [14], nonlinear ensemble

Kalman Filter (EnKF) [47], and compartmental SEIR model at the

county level, and employ Bayesian Model Averaging (BMA) [16] to

aggregate the individual forecasts. Further, since BMA computes the

weighted average of probabilistic forecasts based on recent past per-

formance, it allows us to provide robust forecasts while leveraging

the best performing individual methods for different spatial regions

and time points. Our approach is unique in the variety of methods

incorporated for this task, and the only trained ensemble to the best

of our knowledge for forecasting the COVID-19 pandemic in the

United States.

Our key contributions and findings are as follows:

• We demonstrate the utility of a diverse, multi-model, perfor-

mance based ensemble within a forecasting pipeline which

can be quickly re-purposed for other pandemics and emerg-

ing outbreaks. Owing to the non-stationarity of the data, the

individual methods and the BMA ensemble have to be trained

periodically to keep pace with available disease surveillance.

We thus describe a forecasting pipeline which has been oper-

ational for nearly 6 months, updated weekly at county level

resolution.

• We highlight the challenges in building such an ensemble,

and show how it leverages individual models at different time

points and geographical regions. Through ablation analyses

we show that at individual county level, some methods may be

highly preferred, and contribute significantly to the ensemble.

We compare the performance of our approach with our pub-

licly available contributed models and The Hub’s unweighted

ensemble using probabilistic scoring functions, and show that

our model is ranked among the top three and increasingly

preferred for longer forecast horizons.

• The framework we have described, in addition to being part

of The Hub’s ensemble, also provides additional 1-2 weeks

of synthetic data (i.e., forecast) for the mechanistic models

to train on and produce more realistic projections for policy

makers. One such model is publicly deployed on the Virginia

Department of Health COVID-19 Data Insights portal4.

1.1 Related Work

As discussed previously, most of the COVID-19 forecasting ap-

proaches have involved mechanistic models [1, 6], including mul-

tiple variants that are part of The Hub. Traditionally, statistical and

other data-driven methods have shown to be effective in epidemic

forecasting but also rely heavily on high-quality data. Autoregres-

sive (AR) models have been employed extensively in forecasting

epidemics such as ILI and Dengue [26, 30, 34, 41, 46] and have

yielded quality forecasts with the incorporation of exogenous vari-

ables such as social media and syndromic surveillance data sources.

For COVID-19, linear models have been largely restricted to fore-

casting case time series at the national level and typically employ

time series data from multiple regions to better model the data

[5, 13, 22]. Modelers have also considered more complex systems

such as deep-learning models. Specifically, Long Short-Term Mem-

ory (LSTM) networks owing to their ability to capture long-distance

dependencies in a time series have been employed in ILI forecasting

[36, 38, 40] with the inclusion of auxiliary data such as weather and

geographical proximity casual model simulations. Another, model

has been Graph Neural Networks which provide a natural framework

to capture spatio-temporal interdependencies in epidemics dynamics

[7, 42]. Some early examples of such models include [29] and [33]

which incorporated auxiliary data and has been one of the long-

standing national and state-level models in the The Hub. With the

progression of the pandemic multiple papers have emerged [9, 20]

that incorporate mobility data into GNNs to better model interven-

tions. Recently, Gao et al. [11] proposed an attention-based GNN to

integrate causal theory equations to regularize predictions. Finally,

Bayesian model averagin (BMA) is a well-studied, effective frame-

work for model averaging that, unlike the model selection, also takes

into account the uncertainty in predictions. Its application to com-

bining multiple weather models has been studied exhaustively by

Raftery et al [27, 28], while its effectiveness in weighting competing

ILI models has been demonstrated in [43, 44].

2 FORECASTING MODELS AND ENSEMBLE

Consider the COVID-19 confirmed cases time series {𝑦𝑐,𝑡 }
𝑇
𝑡=1 cor-

responding to a county 𝑐 until 𝑇 . The forecasting problem involves

predicting forward 𝑆−steps ahead {𝑦𝑐,𝑡 }
𝑇+𝑆
𝑡=𝑇+1

and we attempt to

predict it by employing a variety of methods and then combining

their forecasts. In the context of The Hub, we generate short-term

forecasts of 1 to 4 week ahead, at weekly resolution. Since we are

dealing with real-time systems and highly non-stationary data, the

4https://www.vdh.virginia.gov/coronavirus/covid-19-data-insights/
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Figure 1: Forecasting pipeline. (a) The weekly work flow, (b) Example forecasts for few counties with high case counts. Gray vertical

lines indicate date of forecast (date of last observed data) and dashed lines to its right are the corresponding forecasts produced by

the methods.

individual models as well as the ensemble model need to be retrained

every week. As mentioned previously, each method consumes data

in a different format and trains in slightly different ways. In this

section, we briefly describe the individual models, associated data

preparation and their training procedures.

2.1 Auto Regressive Models

This class of linear methods model the signal to be forecast using

its lagged versions. We also incorporate the lagged time series data

of other counties from that state to capture the spatial-temporal

correlation between counties within a state. Since the time series

under consideration is typically non-stationary, we log-transform it

(to nullify the large variations in variance across time) and train the

model every week over short segments with the assumption that the

signal is relatively stationary over that period. The forecast model

for county 𝑖 is given by

𝑦𝑖,𝑡+𝑠 =

𝐶∑

𝑗=0

𝑃∑

𝑝=0

𝑎
(𝑠)
𝑝,𝑡 𝑦 𝑗,𝑡−𝑝 𝑖 = 1, 2, 3,& 4 (1)

where 𝑃 is the length of the training window. A sparse set of 𝑎
(𝑠)
𝑝,𝑡

is estimated using an efficient bi-directional step-wise regression

variable selection procedure [15, 30], a method that has proved

effective in ILI and Dengue forecasting. Note that 𝑎
(𝑠)

𝑘,𝑡
is time-

varying and the model in (1) does not use rolling forecasts, that is,

𝑦𝑖,𝑡+𝑠 is not incorporated in the forecast for 𝑦𝑖,𝑡+𝑠+1. This ensures

that large errors do not propagate through the model (a trade-off

as accurate forecasts are dropped). In the ensemble, we use two

versions of this framework, the vanilla AR with only 𝑖 = 𝑗 and

is denoted AR, while AR_spatial includes time series from other

counties. After much experimentation, we set 𝑃 = 7 for AR and

AR_spatial with a training window of 8 weeks for both methods.

The uncertainty in the forecasts were obtained by perturbing the

coefficients by the training RMSE and run for multiple iterations to

obtain the forecast distribution. Although we have experimented with

other exogenous regressors such as aggregate mobility data, hospital

visits, etc., they are not part of the current framework. The more

general non-seasonal Autoregressive Integrated Moving Average

(ARIMA) are effective for modeling signals with some degree of non-

stationarity (trends), by specifying three parameters: autoregressive

lag parameter 𝑝, the order of differencing 𝑑, and the order of the

moving average filter 𝑞. We employ the popular forecast package

[18] in order to determine the parameters. A separate model for each

county is trained for each week and a training window of 10 weeks

is considered. A range of parameters 𝑝 [0, 3], 𝑑 [0, 2], 𝑞 [0, 3] was

prespecified for the package to sweep through and the optimality of

the model was determined using the Bayesian Information Criterion.
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2.2 Long Short-Term Memory (LSTM) Networks

This method uses Long Short-Term Memory (LSTM) [14, 39] net-

works to capture the temporal dynamics of COVID-19 time series.

Given the region’s time series X𝑡 = [x𝑡−𝑇+1, ..., x𝑡 ], an LSTM model

consists of k-stacked LSTM layers and each LSTM layer consists

of 𝑇 cells corresponding to 𝑇 time points. The output of the last

cell at the 𝑘th LSTM layer is fed into a fully connected layer to

make the final prediction. Deep learning models usually require a

large amount of training data which is not available in the context

of COVID-19. Particularly, for counties of small population size

where the surveillance data is sparse and noisy. Thus training a

single model for each such region is highly susceptible to overfit-

ting. In this respect, we explored a clustering-based approach that

simultaneously learns COVID-19 dynamics from multiple regions

within the cluster and infers a model per cluster. For the instance

described in this framework, we grouped counties by their state, and

trained one LSTM model per state. Other clutersing methods includ-

ing k-means [12], time series k-means (tskmeans) [17] and k-shape

[25] were also investigated but provide no significant improvement

over geo-clustering method. The model was implemented as one

LSTM layer with hidden size 32, one dense layer with hidden size

16 and a rectified linear unit (ReLU) [24] activation function, and

one dropout layer with a dropout rate of 0.2. The output layer is a

dense layer with linear activation and L2 kernel regularization with

a 0.01 penalty factor. The historical window size is 3 weeks. We

use the mean squared error (MSE) loss function and train the model

with the Adam optimizer by setting a batch size of 32 and an epoch

number of 200 using early stopping with a patience 50 for training.

Probabilistic forecasts are generated using MCDropout [10].

2.3 Ensemble Kalman Filter

Ensemble Kalman Filter (EnKF) [4] is an approximate form of the

Kalman filter that is particularly suited for practical applications. It

represents the distribution of the state with sample mean and covari-

ance which makes the filter updates computational less expensive

compared to the update steps of the Kalman filter, and instead of

a single model it takes an ensemble of model states that are propa-

gated in parallel [45]. This is suited for nonlinear problems and large

models since the ensemble covariance replaces the actual error co-

variance matrix and avoids large computations. The ensemble mean

is the best estimate for the actual state and the uncertainty of the

forecast can be computed using the state covariance. The implemen-

tation of the Ensemble Kalman Filter [19, 23] involves three steps

- initialization, prediction, and update. The ensemble members are

randomly sampled around the estimate, and perturbations are added

at each update and predict step. For model selection, we tried four

different models using weekly and daily versions of incident and cu-

mulative case series. The daily incident version was smoothed with a

7-day moving average to remove within week variations. Evaluation

was done using median absolute percent error (APE) for counties

withmore than 10 cases. The model with weekly cumulative case

counts performed consistently well across different forecast duration.

Using this model, we varied the number of samples from 5 to 2500

over forecasts generated retrospectively for a 25-week time period,

with higher 𝑁 leading to better performance at increasing computa-

tional costs. Based on the observed performance-speed trade-off, we

set 𝑁 = 100.

2.4 Compartmental SEIR Model

This method uses an Susceptible-Exposed-Infectious-Recovered

(SEIR) model with outcome processing for case confirmation, hospi-

talization, and death, generated at a county-level resolution. While

earlier variants of the model used inter-county travel and mixing

(similar to [35]), due to time-varying social distancing and variable

prevalence/incidence across counties, training a network model be-

comes difficult for an increasingly unsynchronized epidemic. Hence,

in the model included in the ensemble, we train each county in

isolation, where effects of social distancing and miscellaneous adap-

tations are captured as temporal variations in the SEIR model’s

transmissibility term 𝛽. Using a simulation optimization approach,

we sequentially estimate 𝛽 (𝑡) with appropriate delays and scaling

applied from simulated infections to confirmed cases. For each 𝑡 , the

estimation is done using Golden Section Search (GSS), a maximally

efficient extremum search method within a specified interval [21].

Each county’s confirmed cases is fit precisely through a daily vary-

ing transmissibility, and a smoothed version of recent 𝛽 (𝑡) is used

for projections/forecasting. For this analysis we used the mean 𝛽 (𝑡)

of recent 14 days, with the previous 21 days used for outlier re-

moval (defined as a 𝛽 (𝑡) outside the 3𝜎 range) . We also perform

1-week ahead linear interpolation to smooth transitions for rapidly

changing trajectories. While this method allows for layering coun-

terfactual projections (i.e., increase or decrease in future 𝛽), we used

the status-quo projection for the ensemble. Widespread pandemic

eliminates sensitivity to initial conditions, hence we assumed steady

low-level of importation/external seeding ( 1 case per 10 million).

Other varied parameters include: duration of incubation (5-9 days)

and infectiousness (2-7 days), case ascertainment rate (1x to 12x,

depending on published seroprevalence testing), and delay from

exposure to confirmation (4-12 days). The projected 𝛽’s for each

cell in the experiment design are further randomized with 5 samples

taken from the uniform distribution [0.8𝛽, 1.1𝛽].

2.5 Bayesian Model Averaging Ensemble

Since there is considerable variation in the case counts across coun-

ties, unlike [27, 44] we independently train a single BMA model

per county. Considering 𝐾 methods per county 𝑀1, 𝑀2, · · · , 𝑀𝑘 , we

assume that the forecasts have a Normal distribution N(𝑓𝑘 , �̃�
2

𝑘
). The

BMA model assumes that the forecast 𝑦 (note that we drop county 𝑐

subscript as each county is trained independently) given the mean of

the individual forecasts has a probability density

𝑝 (𝑦 |𝑓1, 𝑓2, · · · , 𝑓𝐾 ) =

𝐾∑

𝑘=1

𝑤𝑘𝑔𝑘 (𝑦 |𝑓𝑘 , 𝜎𝑘 ), (2)

where 𝑤𝑘 is the posterior probability of the 𝑘 th method’s forecast

being the best one and is determined using 𝜏 training samples. (2)

is a mixture of Gaussians and we proceed to determine the weights

𝑤𝑘 and 𝜎𝑘 . It is to be noted that despite each method providing

its own uncertainty, we optimize further to refine it to obtain 𝜎𝑘 .

Given the distribution (2), the weights and variance parameters

are obtained as the maximum likelihood estimate. The resulting
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log-likelihood function does not have an analytical solution, so we

employ the standard expectation-maximization (EM) algorithm [2].

The optimization procedure is iterative and alternates between the

E-step and the M-step with the updates for 𝑤𝑘 and 𝜎𝑘 in the 𝑗 th

iteration given by

𝑧
( 𝑗)

𝑘,𝑡
=

𝑤
( 𝑗−1)

𝑘
𝑔(𝑦𝑡 |𝑓𝑘,𝑡 , 𝜎

( 𝑗−1)

𝑘
)

∑𝐾
𝑖=1𝑤

( 𝑗−1)

𝑘
𝑔(𝑦𝑡 |𝑓𝑖,𝑡 , 𝜎

( 𝑗−1)
𝑖 )

(E-step)

and

𝑤
( 𝑗)

𝑘
=

1

𝜏

𝜏∑

𝑡=1

𝑧
( 𝑗)

𝑘,𝑡

𝜎
( 𝑗)2

𝑘
=

∑
𝑡 𝑧𝑘,𝑡 (𝑦𝑡 − 𝑓𝑘,𝑡 )

2

∑
𝑡 𝑧𝑘,𝑡

(M-step) (3)

The EM steps typically converge to a local minima and the estimates

are highly sensitive to initialization for which we consider 𝜎
(0)

𝑘
= �̃�𝑘

as a possible initial value.

3 THE PIPELINE

An overview of the forecasting pipeline is provided in Figure 1.

As indicated, the individual models and the ensemble are updated

weekly, using data until Saturday of the previous week. In order

to align with the other models that are part of The Hub, we use

confirmed cases at county level from the Johns Hopkins University

Center for Systems Science and Engineering (JHU CSSE)[8] dash-

board. Data updates are around 4AM EST, and each model consumes

the 7-day smoothed version of confirmed cases data which are then

preprocessed as described in Section 2. The AR, AR_spatial, LSTM

and SEIR exploit parallelization and are run on multiple nodes of

University of Virginia’s HPC cluster. ARIMA and EnKF are run on

independent work stations. Simultaneously, the weights for BMA are

also computed using the stored forecasts from previous weeks and

the updated disease surveillance. Once the individual model runs are

completed, the probabilistic forecasts for 1− to 4− week ahead are

computed and formatted according to the guidelines. The forecasts

are then checked to ensure that the forecast date and target dates are

in agreement. We also verify if the forecast values for the individual

models are below the county population. In the event it is over the

population value the model forecasts for the particular location are

disqualified and the model is rerun after inspection. If the individual

model reruns are not complete by Sunday 8PM (ET), the model’s

forecast is not incorporated into the week’s forecast and the BMA

for that county is rerun with the respective method removed. Once

the set of methods get approved, the forecasts are combined with the

BMA weights to create probabilistic forecasts which are converted

to quantiles and submitted to the GitHub repository of The Hub 5.

In addition to being included in the The Hub ensemble, the BMA

forecast is used to provide additional training data for the com-

partmental SEIR model. The SEIR model is useful for capturing

potential future interventions and vaccination scenarios, and hence

will benefit from a forecast that captures the statistical trends from

individual models.

5https://github.com/reichlab/covid19-forecast-hub
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Figure 2: Weights distribution: (a) Spatial distribution of meth-

ods with the highest weights for a county across three different

forecast weeks. (b) A heatmap depicting the temporal evolution

of the dominant methods across forecast weeks.

4 RESULTS

4.1 Forecasts and weights distribution

In an attempt to understand the spatio-temporal pattern of the dom-

inant methods (the method with the highest weight) we present

choropleth maps of US counties Figure 2(a) where each county’s

color indicates the method with the highest weight for that particular

week. In August 2020, we observe a nearly uniform distribution

of weights. In November 2020, ARIMA appears to be dominating

while in December 2020 the SEIR model is the dominant one. Fig-

ure 2(b) provides an insight into the number of counties a method

is chosen for a particular week. Heat map suggests that ARIMA

gets picked by many counties consistently while methods like EnKF

dominate initially but in the later months LSTM starts to get higher

weights for a lot more counties. Visual inspection indicates that each

method dominates different regions at different times suggesting no

spatial or temporal preferences for any particular method. We next

provide a quantitative evaluation of the ensemble and its constituent

methods using standard metrics.

4.2 A Comparison of Individual Methods

We evaluate 22 weeks of forecast data starting from the first week

of August 2020 to the second week of January 2021 for all 3142

counties. The performance across 1-, 2-, 3-, and 4-week ahead targets

(horizon) are evaluated separately. It is to be noted that since the

county-level incident cases are typically small values. In all the

evaluation, we consider only counties with observed forecast values

greater than 10 cumulative cases. We employ mean absolute error

(MAE) for comparing a set of 𝑁 point forecasts {𝑦𝑖 }
𝑁−1
𝑖=0 with the

observed values {𝑦}𝑁−1
𝑖=0 : MAE =

∑𝑁−1
𝑖=0

|�̂�𝑖−𝑦𝑖 |
𝑁 .

First, we consider the overall performance of each method by

computing the MAE across all the forecast weeks and counties.
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Figure 3: The overall performance of individual methods and

the BMA ensemble. (a) The overall performance is the MAE

computed across all counties and forecast dates. The results

indicate that average performance of BMA is comparable to

method with the least MAE. (b) Performance of BMA and

the individual models across various forecast weeks since Au-

gust 2020. The performance of individual models vary across

weeks and while the BMA shows relatively less variations across

weeks.

The results are shown in Figure 3(a) and indicate that the average

performance of individual models are similar. Also, the performance

of BMA ensemble is comparable to, if not better than, the best

performing model which is in accordance with previous observations

made by [16, 43]. The average performance of the methods across

all counties for each forecast week is shown plot Figure 3(b). In

comparison to most methods the BMA has lower variations.

4.3 Relative Importance of Methods

To measure the relative importance of the models, we performed

ablation analysis by omitting out forecast of a specific method in

the ensemble. The ensemble is retrained and its performance is com-

pared with the BMA trained using all models. In Figure 4(a) we show

the results of the experiment. Although the drop in performance is

1 wk ahead 2 wk ahead 3 wk ahead 4 wk ahead
Target
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M
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(a)

County Most picked

method

MAE change

on drop

Maricopa AZ SEIR (8) 1576.1%

Los Angeles CA AR_spatial (10) 1678.7%

San Bernardino CA ARIMA (11) 999.1%

Kings NY LSTM (10) 2085.4%

(b)

Figure 4: Ablation analysis to study the relative importance of

individual methods that feed into the BMA ensemble. The MAE

is computed across all counties and forecast weeks. (a) A com-

parison of forecast performances of BMA(𝐾) with the other 𝐾

BMA(𝐾−1) models. (b) % change in MAE for few county fore-

casts after dropping the most picked method (computed across

forecast weeks) with respect to the MAE of BMA with all meth-

ods included. The number of times a method is picked is indi-

cated next to it.

significant it can be attributed to large errors incurred by making

poor forecasts for counties with large number of cases. Further, this

can be explained using Table 4(b) where we compute the change

in MAE after the removal of a method. Let MAE(𝐾) denote the

MAE for the BMA with all 𝐾 models and let MAE(𝐾−1) denote the

MAE of the BMA with a specific method removed. The % change in

performance is computed as MAE(𝐾 )−MAE(𝐾−1)

MAE(𝐾 ) . We picked some of

the top COVID-19 hit counties and determined the best performing

method across all weeks for that county. For Maricopa county, Ari-

zona, SEIR model had the highest weights for eight weeks. When

the SEIR model is dropped from the ensemble and the weights re-

trained, the relative change in performance is 1576.1%. This large

change indicates that the other methods were unable to substitute for

the SEIR model. These large errors are quite possible for individual

statistical methods.

4.4 Comparison with The Hub Models

Among the 70 modeling teams present in The Hub only a handful

of them provide county-level forecasts. In order to make a fair com-

parison, we only consider teams that have been providing consistent

forecasts across most locations and targets since August 2020. The

competing models are COVIDhub-ensemble, JHU_IDD-CovidSP,

LANL-GrowthRate, and CU-select (the names are as specified in
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their respective submission to ForecastHub). Our forecasts are sub-

mitted under the team name UVA_ensemble.

JHU_IDD-CovidSP and CU-select are both county-level SEIR

models that employ mobility to adjust for the disease spread parame-

ters. LANL-GrowthRate, on the other hand, is a susceptible-infected

model and determines the evolution of number of infections using a

statistical model and then maps the infections to confirmed case data.

The COVIDhub-ensemble uses ensembles forecasts from all eligible

models (only models that produce all four week ahead forecasts)

and takes the median prediction across all eligible models at each

quantile. In order to make a comparison of probabilistic forecasts,

we employ the interval score (IS) and its weighed version, an agreed

upon metric in the community [3]. IS is defined as

𝐼𝑆𝛼 (𝐹,𝑦) = (𝑢 − 𝑙) +
2

𝛼
(𝑙 − 𝑦)✶(𝑦 < 𝑙) +

2

𝛼
(𝑦 − 𝑢)✶(𝑦 > 𝑢) (4)

where (1 − 𝛼) × 100% is the prediction interval characterized by the

upper bound 𝑢 and the lower bound 𝑙 that is likely to contain the

forecast value 𝑦, and ✶ is the indicator function. The first term in (4)

captures the spread while the second and the third term are penalties

for under- and over-prediction, respectively. The IS is computed for

various prediction intervals and their weighed combination yields

the Weighted Interval Score (WIS):

𝑊𝐼𝑆𝛼0:𝑘 =

1

𝐾 + 1

𝐾∑

𝑘=0

𝛼𝑘
2
𝐼𝑆𝛼𝑘 (𝐹,𝑦) (5)

We compute the WIS for each modeling team’s forecasts and rank

them accordingly for each target (horizon) and location. Rank 1 indi-

cates the best performing team. In Figure 5(a) we plot the number of

locations across the weeks that a model is ranked 1. We observe that

across targets the UVA-ensemble is one of the top three performing

models. We disaggregate the data into the respective months and

plot the data in Figure 5(b). Mostly, COVIDHub-ensemble, CU-

select, and UVA-ensemble are the top-performing models across

most months but in December the performance of UVA-ensemble

dropped. This drop in ranking could be due to multiple reasons;

surges in cases and our model not being able to predict the trend;

Model enhancements by other teams.

5 DISCUSSION

Infectious disease forecasting is a rapidly evolving discipline with

significant scope for improvement across tools, techniques, platforms

and policy-making. As can be seen from the COVID-19 experience

that, while simpler models are easy to setup, it is difficult to keep

them regularly updated to ever-changing surveillance caused by

epidemiological and socio-behavioral processes. Further, providing

high resolution forecasts (e.g., at county level) require considerable

scaling up and optimization of individual models to be able to pro-

vide regular updates. Understanding how the different data streams

and modeling techniques can be integrated in a timely yet reliable

fashion remains an open challenge. Depending on the epidemic out-

come being forecast (e.g., cases, hospitalizations, deaths), they can

be used to guide interventional measures, supplement healthcare

resources or shape public messaging. While existing frameworks

such as The Hub are quite successful in wrangling forecasts from

multiple modeling teams for weekly updates to policymakers, our
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Figure 5: Ranking of teams based on Mean WIS scores: (a) The

plot indicates the number of locations across all weeks a given

model was the best. (b) Performance of models across differ-

ent months of 2020. The length of stacked bar indicates the to-

tal number of rank 1 assigned to a model while the individual

stacks indicates the division for each target (horizon).

approach shows how a forecasting pipeline based on trained ensem-

ble can still be beneficial under such dynamic conditions. While we

have integrated methods from different modeling paradigm, given

the available datasets and training approaches, an exhaustive search

over the model space will still be challenging. Hierarchical model

selection approaches along with ensembles that account for model

complexity and diversity, will help produce more robust frameworks.

Finally, using expert feedback as part of the loop, will help refine

the objective functions by which the models are evaluated, thus

providing more useful forecasts.

The codes related to the pipeline and an extended version of this

paper containing more analysis can be accessed at https://github.

com/aniruddhadiga/covid-19_forecast.
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