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We demonstrate theoretically that the interaction of electrons in gapped Dirac materials (gapped graphene

and transition-metal dichalchogenide monolayers) with a strong off-resonant electromagnetic field (dressing

field) substantially renormalizes the band gaps and the spin-orbit splitting. Moreover, the renormalized electronic

parameters drastically depend on the field polarization. Namely, a linearly polarized dressing field always

decreases the band gap (and, particularly, can turn the gap into zero), whereas a circularly polarized field

breaks the equivalence of valleys in different points of the Brillouin zone and can both increase and decrease

corresponding band gaps. As a consequence, the dressing field can serve as an effective tool to control spin and

valley properties of the materials and be potentially exploited in optoelectronic applications.

DOI: 10.1103/PhysRevB.95.125401

I. INTRODUCTION

Advances in laser physics and microwave techniques

achieved in recent decades have made possible the use of

high-frequency fields as tools of flexible control of various

atomic and condensed-matter structures (so-called “Floquet

engineering” based on the Floquet theory of periodically

driven quantum systems [1–5]). As a consequence, the

properties of electronic systems driven by oscillating fields

are actively studied to exploit unique features of composite

states of field and matter. Particularly, an electron strongly

coupled to an electromagnetic field—also known as “electron

dressed by field” (dressed electron)—has become a commonly

used model in modern physics [6,7]. Recently, the physical

properties of dressed electrons were studied in various nanos-

tructures, including quantum wells [8–13], quantum rings [14–

17], graphene [18–25], and topological insulators [26–30].

Developing this excited scientific trend in the present paper,

we elaborated the theory of dressed electrons for gapped Dirac

materials.

The discovery of graphene—a monolayer of carbon atoms

with linear (Dirac) dispersion of electrons [31–33]—initiated

studies of the new class of artificial nanostructures known

as Dirac materials. While graphene by itself is characterized

by the gapless electron energy spectrum, many efforts have

been dedicated towards fabrication Dirac materials with the

band gap between the valence and conduction bands (gapped

Dirac materials). The electron energy spectrum of the materials

is parabolic near band edges but turns into the linear Dirac

dispersion if the band gap vanishes. Therefore, electronic

properties of gapped Dirac materials substantially depend

on the value of the gap and, consequently, are prospective

for nanoelectronic applications [34–36]. Although dressed

condensed-matter structures have been the focus of attention

for a long time, a consistent quantum theory of the gapped

Dirac materials strongly coupled to light was not elaborated

before. Since the electronic structure of Dirac materials differs
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crucially from conventional condensed-matter structures, the

known theory of light-matter coupling cannot be directly

applied to the gapped Dirac materials. Moreover, it should be

noted that gapped Dirac materials are currently considered as a

basis for new generation of optoelectronic devices. Therefore,

their optical properties deserve special consideration. This

motivated us to fill this gap in the theory. To solve this problem

in the present study, we will focus on the two gapped Dirac

materials pictured schematically in Fig. 1. The first of them

is the graphene layer grown on a hexagonal boron nitride

substrate [37,38], where the band gap can be tuned in the broad

range with an external gate voltage [39] [see Fig. 1(a)]. The

second is a transition-metal dichalchogenide (TMDC) which

is a monolayer of an atomically thin semiconductor of the type

MX2, where M is a transition-metal atom (Mo, W, etc.) and

X is a chalcogen atom (S, Se, or Te) [40,41] [see Fig. 1(b)].

The specific feature of the TMDC compounds is the giant

spin-orbit coupling [42,43] which is attractive for use in novel

spintronic and valleytronic devices [44].

Formally, electronic properties of these materials near the

band edge can be described by the same two-band Hamiltonian

Ĥ =
(

εc
τs γ (τkx − iky)

γ (τkx + iky) εv
τs

)
, (1)

where k = (kx,ky) is the electron wave vector in the layer

plane, γ is the parameter describing electron dispersion,

εc
τs =

�g

2
+

τs�c
so

2
(2)

is the energy of the conduction band edge,

εv
τs = −

�g

2
−

τs�v
so

2
(3)

is the energy of the valence band edge, �g is the band gap

between the conduction band and the valence band, �c,v
so is the

spin-orbit splitting of the conduction (valence) band, s = ±1

is the spin index describing the different spin orientations,

and τ = ±1 is the valley index which corresponds to the two

valleys in the different points of the Brillouin zone (the K

and K ′ valleys in graphene [32] and the K and −K valleys
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FIG. 1. Sketch of the considered gapped Dirac materials subject

to an electromagnetic wave (dressing field): (a) Graphene grown

on the substrate of hexagonal boron nitride; (b) transition-metal

dichalcogenide monolayer MoS2.

in TMDC monolayers [43]). If �g �= 0 and �c,v
so �= 0, the

Hamiltonian (4) describes TMDC monolayer [43]. In the case

of zero spin-orbit splitting, �c,v
so = 0, the Hamiltonian (4)

describes gapped graphene [37], whereas the case of �g =
�c,v

so = 0 corresponds to usual gapless graphene [32]. It

should be noted that the two-band Hamiltonian (1) describes

successfully low-energy electron states near the band edge.

As to omitted terms corresponding to the trigonal-warping

deformation of electron bands in monolayer graphene, they can

be neglected if the Rashba spin-orbit coupling is stronger than

the intrinsic spin-orbit coupling [45]. In the present paper, we

elaborate the theory of electromagnetic dressing for electronic

systems described by the low-energy Hamiltonian (1) and

demonstrate that both the band gap and the spin splitting can

be effectively controlled with the dressing field.

The paper is organized as follows. In Sec. II, we apply the

conventional Floquet theory to derive the effective Hamilto-

nian describing stationary properties of dressed electrons. In

Sec. III, we discuss the dependence of renormalized electronic

characteristics of the dressed materials on parameters of the

dressing field. The last two sections contain the Conclusion

and Acknowledgments.

II. MODEL

Let us consider a gapped Dirac material with the Hamilto-

nian (1), which lies in the plane (x,y) at z = 0 and is subjected

to an electromagnetic wave propagating along the z axis (see

Fig. 1). The frequency of the wave, ω, is assumed to be far from

all resonant frequencies of the electron system. Therefore, the

electromagnetic wave cannot be absorbed by electrons near

band edge and should be considered as a dressing field for the

states around k = 0. Considering the electron-field interaction

within the minimal coupling approach, properties of dressed

electrons can be described by the Hamiltonian

Ĥ(k) =
(

0 |e|γ (τAx − iAy)/h̄

|e|γ (τAx + iAy)/h̄ 0

)

+
(

εc
τs γ (τkx − iky)

γ (τkx + iky) εv
τs

)
, (4)

which can be easily obtained from the Hamiltonian of “bare”

electrons (1) with the replacement k → k − (e/h̄)A, where

A = (Ax,Ay) is the vector potential of the dressing field,

and e is the electron charge. It should be noted that the

quantum electrodynamics predicts the quadratic (in the vector

potential) additions to the Hamiltonian (4) [46,47]. To avoid

complication of the model, we will assume that the considered

dressing field is classically strong and can be described

successfully with the minimal coupling. In what follows, we

will show that the properties of dressed electrons strongly

depend on the polarization of the dressing field. Therefore, we

have to discuss the solution of the corresponding Schrödinger

problem for different polarizations successively.

Linearly polarized dressing field. Assuming the dressing

field to be linearly polarized along the x axis, the vector

potential can be written as

A =
(

E0

ω
cos ωt,0

)
, (5)

where E0 is the electric field amplitude, and ω is the wave

frequency. Correspondingly, the Hamiltonian of the dressed

electron system (4) can be rewritten formally as

Ĥ(k) = Ĥ0 + Ĥk, (6)

where

Ĥ0 =
(

0 �τh̄ω/2

�τh̄ω/2 0

)
cos ωt (7)

is the Hamiltonian of electron-field interaction,

Ĥk =
(

�g/2 + τs�c
so/2 γ (τkx − iky)

γ (τkx + iky) −�g/2 − τs�v
so/2

)
(8)

is the Hamiltonian of “bare” electron, and

� =
2γ |e|E0

(h̄ω)2
(9)

is the dimensionless parameter describing the strength of

electron coupling to the dressing field. The nonstationary

Schrödinger equation with the Hamiltonian (7),

ih̄
∂ψ0

∂t
= Ĥ0ψ0, (10)

describes the time evolution of electron states at the band

edge (k = 0). The two exact solutions of the Schrödinger

problem (10) read as

ψ±
0 =

1
√

2

(
1

±1

)
exp

[
∓

i�τ sin ωt

2

]
. (11)

Since the two wave functions (11) form a complete basis at

any fixed time t , we can seek solutions of the nonstationary

Schrödinger equation with the full Hamiltonian (6) as an

expansion

ψk = a1(t)ψ+
0 + a2(t)ψ−

0 . (12)

Substituting the expansion (12) into the Schrödinger equation,

ih̄
∂ψk

∂t
= Ĥ(k)ψk, (13)

we arrive at the expressions

ih̄ȧ1(t) =
[
εc
τs + εv

τs

2
+ γ τkx

]
a1(t)

+
[
εc
τs − εv

τs

2
+ iγ ky

]
ei�τ sin ωta2(t),
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ih̄ȧ2(t) =
[
εc
τs + εv

τs

2
− γ τkx

]
a2(t)

+
[
εc
τs − εv

τs

2
− iγ ky

]
e−i�τ sin ωta1(t). (14)

It follows from the conventional Floquet theory of quan-

tum systems driven by an oscillating field [1–3] that the

sought wave function (12) must have the form 
(r,t) =
e−iε̃(k)t/h̄φ(r,t), where the function φ(r,t) periodically depends

on time, φ(r,t) = φ(r,t + 2π/ω), and ε̃(k) is the quasienergy

of an electron. Since the quasienergy (the energy of dressed

electrons) is the physical quantity which plays the same role

in quantum systems driven by an oscillating field as the

usual energy in stationary ones, the present analysis of the

Schrödinger problem (13) should be aimed to find the energy

spectrum, ε̃(k). It follows from the periodicity of the function

φ(r,t) that one can seek the coefficients a1,2(t) in Eq. (12) as

a Fourier expansion,

a1,2(t) = e−iε̃(k)t/h̄

∞∑

n=−∞
a

(n)
1,2e

inωt . (15)

Substituting the expansion (15) into Eq. (14) and applying the

Jacobi-Anger expansion,

eiz sin θ =
∞∑

n=−∞
Jn(z)einθ ,

one can rewrite the equations of quantum dynamics (14) in the

time-independent form,

∞∑

n′=−∞

2∑

j=1

H
(nn′)
ij a

(n′)
j = ε̃(k)a

(n)
i , (16)

where Jn(z) is the Bessel function of the first kind, andH
(nn′)
ij is

the stationary Hamiltonian of a dressed electron in the Floquet

space with the matrix elements

H
(nn′)
12 =

[
εc
τs − εv

τs

2
+ iγ ky

]
Jn′−n(�τ ),

H
(nn′)
21 =

[
εc
τs − εv

τs

2
− iγ ky

]
Jn′−n(�τ ),

(17)

H
(nn′)
11 =

[
εc
τs + εv

τs

2
+ γ τkx + nh̄ω

]
δnn′ ,

H
(nn′)
22 =

[
εc
τs + εv

τs

2
− γ τkx + nh̄ω

]
δnn′ ,

where δnn′ is the Kronecker delta. It should be noted that

the Schrödinger equation (16) describes still exactly the

initial Schrödinger problem (13). Next we will make some

approximations.

In what follows, let us assume that the field frequency, ω,

is high enough to satisfy the condition

∣∣∣∣
H

(0n)
ij

H
(00)
ii − H

(nn)
jj

∣∣∣∣ ≪ 1 (18)

for n �= 0 and i �= j . Mathematically, the condition (18)

makes it possible to treat nondiagonal matrix elements of

the Hamiltonian (17) with n �= n′ as a small perturbation

which can be omitted in the first-order approximation of the

conventional perturbation theory for matrix Hamiltonians (see,

e.g., Ref. [48]). Since the condition (18) corresponds to an

off-resonant field, the field can be neither absorbed nor emitted

by the electrons. As a consequence, the main contribution to the

Schrödinger equation (16) under the condition (18) stems from

terms with n,n′ = 0, which describe the elastic interaction

between an electron and the field. Neglecting the small terms

with n,n′ �= 0, the Schrödinger equation (16) can be rewritten

in the simple form

2∑

j=1

H
(00)
ij a

(0)
j = ε̃(k)a

(0)
i , (19)

where H
(00)
ij is the 2 × 2 Hamiltonian with the matrix

elements (17). Subjecting this Hamiltonian to the unitary

transformation

U =
1

√
2

(
1 1

1 −1

)
,

we arrive at the effective stationary Hamiltonian of electrons

dressed by a linearly polarized field, Ĥeff = U †H(00)U , which

is given by the matrix

Ĥeff(k) =
(

�̃g/2 + τs�̃c
so/2 τ γ̃xkx − iγ̃yky

τ γ̃xkx + iγ̃yky −�̃g/2 − τs�̃v
so/2

)
, (20)

where

�̃g = �gJ0(�) (21)

is the effective band gap,

�̃c
so =

�c
so − �v

so

2
+

�c
so + �v

so

2
J0(�) (22)

is the effective spin splitting of the conduction band,

�̃v
so =

�v
so − �c

so

2
+

�c
so + �v

so

2
J0(�) (23)

is the effective spin splitting of the valence band, and

γ̃x = γ, γ̃y = γ J0(�) (24)

are the effective parameters of electron dispersion along the

x,y axes. The eigenenergy of the effective Hamiltonian (20),

ε̃±
τs(k) =

τs
(
�̃c

so − �̃v
so

)

4

±

√[
2�̃g + τs

(
�̃c

so + �̃v
so

)

4

]2

+ γ̃ 2
x k2

x + γ̃ 2
y k2

y,

(25)

is the sought energy spectrum of electrons dressed by

the linearly polarized field. Mathematically, the unperturbed

Hamiltonian (1) is equal to the effective Hamiltonian (20)

with the formal replacements �g → �̃g , �c,v
so → �̃c,v

so , and

γx,y → γ̃x,y . Therefore, the behavior of a dressed electron

is similar to the behavior of a “bare” electron with the

renormalized band parameters (21)–(24). It should be noted

that the effective Hamiltonian (20) is derived under the

condition (18). Taking into account Eq. (17), the condition (18)

125401-3



O. V. KIBIS, K. DINI, I. V. IORSH, AND I. A. SHELYKH PHYSICAL REVIEW B 95, 125401 (2017)

can be rewritten as γ k,�g ≪ h̄ω. Therefore, the effective

Hamiltonian is applicable to describe the dynamics of a dressed

electron near the band edge if the photon energy of the dressed

field, h̄ω, substantially exceeds the band gap, �g . It should be

noted that such high-energy photons will lead to direct electron

transitions between the valence band and the conduction band.

However, the transitions take place very far from the band edge

and do not affect the considered renormalization of low-energy

electron states.

Circularly polarized dressing field. For the case of a

circularly polarized electromagnetic wave, the vector potential

A = (Ax,Ay) can be written as

A =
(

E0

ω
cos ξωt,

E0

ω
sin ξωt

)
, (26)

where the different chirality indices ξ = ±1 correspond to the

clockwice/counterclockwise circular polarizations. First of all,

let us consider electron states at the wave vector k = 0, where

the Hamiltonian (4) can be written in the form

Ĥ(0) =
(

εc
τs −(h̄ω�τ/2)e−iτ ξωt

−(h̄ω�τ/2)eiτ ξωt εv
τs

)
, (27)

which is similar to the well-known Hamiltonian of mag-

netic resonance. The corresponding nonstationary Schrödinger

equation,

ih̄
∂ψτs(0)

∂t
= Ĥ(0)ψτs(0), (28)

describes the time evolution of electron states at the wave

vector k = 0. Solutions of Eq. (28) can be sought as

ψ±
τs(0) = e−iε̃±

τs (0)t/h̄

(
A±e−iτ ξωt/2

B±eiτ ξωt/2

)
e±iτ ξωt/2, (29)

where ε̃±
τs(0), A±, and B± are the undefined constants.

Substituting the wave function (29) into the Schrödinger

equation (28) with the Hamiltonian (27), we arrive at the

system of two algebraic equations,

A±

[
εc
τs − τξ

h̄ω

2
(1 ∓ 1) − ε̃±

τs(0)

]
− B±

h̄ω�τ

2
= 0,

A±
h̄ω�τ

2
− B±

[
εv
τs + τξ

h̄ω

2
(1 ± 1) − ε̃±

τs(0)

]
= 0,

(30)

which can be easily solved. As a result, the two orthonormal

exact solutions of the Schrödinger problem (28) are

ψ±
τs(0) = e−iε̃±

τs (0)t/h̄e±iτ ξωt/2

×

⎛
⎝

∓
[√

�2+δ2±|δ|
2
√

�2+δ2

]1/2
e−iτ ξωt/2

sgn(δ)
[√

�2+δ2∓|δ|
2
√

�2+δ2

]1/2
eiτ ξωt/2

⎞
⎠, (31)

where

ε̃±
τs(0) =

εc
τs + εv

τs

2
± τξ

h̄ω

2
± sgn(δ)

h̄ω

2

√
�2 + δ2 (32)

is the quasienergy (energy of a dressed electron in the

conduction/valence band) at k = 0, and

δ =
εc
τs − εv

τs − τξh̄ω

h̄ω

is the resonance detuning assumed to be nonzero in order to

avoid the field absorption near the band edge. Correspondingly,

the effective stationary Hamiltonian of dressed electron states

at k = 0 can be written in the basis (31) as

Ĥeff(0) =
(

ε̃+
τs(0) 0

0 ε̃−
τs(0)

)
. (33)

In order to find the energy spectrum of a dressed electron at the

wave vector k �= 0, let us restrict the consideration by the case

of � ≪ 1, which corresponds physically to high frequencies

ω [see Eq. (9)]. Expanding the electron wave function, ψτs(k),

on the basis (31),

ψτs(k) = a+(t)eiε̃+
τs (0)t/h̄ψ+

τs(0) + a−(t)eiε̃−
τs (0)t/h̄ψ−

τs(0), (34)

and substituting the expansion (34) into the Schrödinger

equation with the total Hamiltonian (4), we arrive at the system

of equations

ih̄ȧ+(t) ≈ ε̃+
τs(0)a+(t) − sgn(δ)γ (τkx − iky)a−(t),

(35)
ih̄ȧ−(t) ≈ ε̃−

τs(0)a−(t) − sgn(δ)γ (τkx + iky)a+(t).

The quantum dynamics equations (35) are equal to the

stationary Schrödinger equation,

ih̄
∂

∂t

(
a+(t)

a−(t)

)
= Ĥeff(k)

(
a+(t)

a−(t)

)
,

where

Ĥeff(k) =
(

ε̃+
τs(0) −sgn(δ)γ (τkx − iky)

−sgn(δ)γ (τkx + iky) ε̃−
τs(0)

)

(36)

is the effective stationary Hamiltonian of the considered

system. The eigenenergy of the Hamiltonian,

ε̃±
τs(k) =

ε̃+
τs(0) + ε̃−

τs(0)

2
±

√[
ε̃+
τs(0) − ε̃−

τs(0)

2

]2

+ (γ k)2,

(37)

presents the sought energy spectrum of dressed electrons. If

�g = �c,v
so = 0, Eq. (37) exactly coincides with the known

spectrum of electrons in gapless graphene irradiated by a

circularly polarized light [25]. It follows from Eq. (37) that

the renormalized band gap is

�̃g = τξh̄ω + sgn(�g − τξh̄ω)h̄ω

√

�2 +
[
�g − τξh̄ω

h̄ω

]2

≈ τξh̄ω −
√

�2 + 1

(
τξh̄ω −

�g

�2 + 1

)
, (38)

where the last equality holds under condition h̄ω ≫ �g . The

spin splittings in the conduction and valence bands can be

written in simple form for the two limiting cases:

�̃c,v
so = ±

�c
so − �v

so

2
+

�c
so + �v

so

2
√

1 + �2
, h̄ω ≫ �g, (39)

and

�̃c,v
so = ±

�c
so − �v

so

2
+

�c
so + �v

so

2

[
1 −

�2

2

(h̄ω)2

�2
g

]
,

h̄ω ≪ �g. (40)
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As expected, the renormalized band gap (38) and spin

splittings (39)–(40) turn into their “bare” values, �g and �c,v
so ,

if the dressing field is absent (E0 → 0).

Elliptically polarized dressing field. Assuming the large

axis of polarization ellipse to be oriented along the x axis, the

vector potential of arbitrary polarized electromagnetic wave,

A = (Ax,Ay), can be written as

A =
E0

ω
(cos ωt, sin θ sin ωt), (41)

where θ ∈ [−π/2,π/2] is the polarization phase: the polariza-

tion is linear for θ = 0, circular for θ = ±π/2, and elliptical

for other phases θ . Substituting the vector potential (41) into

Eq. (4), we can write the total Hamiltonian (4) as

Ĥ(k) = Ĥk + (V̂ eiωt + V̂ †e−iωt ), (42)

where the Hamiltonian Ĥk is given by Eq. (8) and

V̂ =
h̄ω�

4

(
0 τ − sin θ

τ + sin θ 0

)
(43)

is the operator of electron interaction with the dressing

field (41). Generally, the effective stationary Hamiltonian of

an electron driven by an oscillating field can be sought in the

form [3]

Ĥeff(k) = eiF̂ (t)Ĥ(k)e−iF̂ (t) + i

(
∂eiF̂ (t)

∂t

)
e−iF̂ (t), (44)

where F̂ (t) is the anti-Hermitian operator which is periodical

with the period of the oscillating field, F̂ (t) = F̂ (t + 2π/ω).

In the particular case of weak electron-field coupling, � ≪ 1,

this operator and the effective Hamiltonian (44) can be easily

found as power series expansions,

F̂ (t) =
∞∑

n=1

F (n)(t)

ωn
, Ĥeff(k) =

∞∑

n=0

Ĥ
(n)
eff (k)

ωn
, (45)

where F (n)(t) ∼ �n (the Floquet-Magnus expansion [3]).

Substituting the expansions (45) into Eq. (44) and restricting

the accuracy by terms ∼�2, we arrive at the effective

Hamiltonian

Ĥeff(k) = Ĥk +
[V̂ ,V̂ †]

h̄ω
+

[[V̂ ,Ĥk],V̂ †] + H.c.

2(h̄ω)2
. (46)

Taking into account Eqs. (8) and (43), the effective stationary

Hamiltonian (46) can be written as a matrix (20), where

�̃g = �g

[
1 −

�2

4
(1 + sin2 θ )

]
−

τh̄ω�2

2
sin θ, (47)

�̃c,v
so = ±

�c
so − �v

so

2
+

�c
so + �v

so

2

×
[

1 −
�2

4
(1 + sin2 θ )

]
, (48)

γ̃x = γ

[
1 −

�2

4
sin2 θ

]
, γ̃y = γ

[
1 −

�2

4

]
(49)

are the band parameters renormalized by an elliptically

polarized dressing field. Correspondingly, the eigenenergy of

the effective Hamiltonian (46) represents the sought energy

spectrum of dressed electrons,

ε̃±
τs(k) =

τs(�̃c
so − �̃v

so)

4

±

√[
2�̃g + τs(�̃c

so + �̃v
so)

4

]2

+ γ̃ 2
x k2

x + γ̃ 2
y k2

y,

(50)

with the renormalized band parameters (47)–(49). It should

be stressed that the effective Hamiltonian (20) with the

band parameters (47)–(49), which describes electrons dressed

by an arbitrary polarized weak field, is derived under the

assumption of small coupling constant (9) and high frequency,

ω. On the contrary, the effective Hamiltonian (20) with the

band parameters (21)–(24) and the effective Hamiltonian (33)

are suitable to describe electrons dressed by linearly and

circularly polarized dressing fields of arbitrary intensity. As

a consequence, the band parameters (21)–(24) and (38)–(39)

turn into the band parameters (47)–(49) for � ≪ 1, h̄ω ≫ �g ,

and θ = 0,±π/2.

III. RESULTS AND DISCUSSION

First of all, let us apply the developed theory to gapped

graphene, assuming �̃c,v
so = 0 in all derived expressions. The

electron dispersion in gapped graphene, ε̃(k), is plotted in

Fig. 2 for the particular cases of linearly and circularly

polarized dressing fields. In the absence of the dressing field,

the electron dispersion is isotropic in the graphene plane [see

the solid lines in Figs. 2(a) and 2(b)]. However, a linearly

polarized field breaks the equivalence of the x,y axes [see

Eq. (25)]. As a consequence, the anisotropy of the electron

dispersion along the wave vectors kx and ky appears [see the

dashed and dotted lines in Figs. 2(a) and 2(b)]. In contrast

to the linear polarization, a circularly polarized dressing

field does not induce the in-plane anisotropy [see Eq. (37)].

However, the electron dispersion is substantially different

for clockwise and counterclockwise polarizations [see the

dashed and dotted lines in Fig. 2(c)]. Moreover, both linearly

and circularly polarized fields renormalize the band gap (see

Fig. 3). Mathematically, the dependence of the renormalized

band gap, |�̃g|, on the irradiation intensity, I ∼ E2
0 , is given

by Eqs. (21) and (38) [which are plotted in Fig. 3(a)] and

Eq. (47) [which is plotted in Fig. 3(b)]. It should be noted

that Eq. (38) correctly describes the gap for any off-resonant

frequencies ω, whereas Eqs. (21) and (47) are derived under

the conditionh̄ω ≫ �g and, therefore, applicable only to small

gaps. However, the gap can be gate-tunable in the broad

range, �g = 1–60 meV [37–39]. Assuming the gap to be

of meV scale and the field frequency to be in the terahertz

range, we can easily satisfy this condition. It follows from

Eqs. (21), (32), and (47) that the renormalized gap, �̃g ,

crucially depends on the field polarization. Particularly, the

clockwise/counterclockwise circularly polarized field (polar-

ization indices ξ = ±1) differently interacts with electrons

from different valleys of the Brillouin zone (valley indices

τ = ±1). Namely, for the case of τξ = −1, the value of the

gap monotonously increases with intensity [see the dashed line

in Fig. 3(a)]. On the contrary, for the case of τξ = 1, the gap

first decreases to zero and then starts to grow [see the solid
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FIG. 2. The energy spectrum of dressed electron, ε̃(k), near

the band edge of gapped graphene (�g = 2 meV, γ /h̄ = 106 m/s)

irradiated by a dressing field with the photon energy h̄ω = 10 meV

and the different intensities, I . In parts (a) and (b) the dressing field is

linearly polarized along the x axis; the irradiation intensities are I = 0

(solid lines), I = 7.5 kW/cm2 (dashed lines), and I = 15 kW/cm2

(dotted lines). In part (c) the dressing field is circularly polarized; the

solid line describes the energy spectrum of “bare” electron (I = 0),

whereas the dotted and dashed lines correspond to the different

circular polarizations (τξ = −1 and τξ = 1, respectively) with the

same irradiation intensity I = 300 W/cm2.

line in Fig. 3(a)]. This light-induced difference in the band

gaps for the two different valleys is formally equivalent to

the appearance of an effective magnetic field acting on the

valley pseudospin and, therefore, can be potentially used in

valleytronics applications. It should be noted that this optically

induced lifting of valley degeneracy has been observed for

TMDC in recent experiments [49] which are in reasonable

agreement with the present theory. As to linearly polarized

dressing field, it always quenches the band gap and can even

turn it into zero [see the dotted line in Fig. 3(a)]. Formally,

the collapse of the band gap originates from zeros of the

Bessel function in Eq. (21). Since the linearly and circularly

polarized fields change the gap value oppositely, there are field

polarizations which do not change the gap. The polarization

phases, θ , corresponding to such polarizations are marked by

the dashed lines in Fig. 3(b).

FIG. 3. Dependence of the band gap in irradiated gapped

graphene (�g = 2 meV, γ /h̄ = 106 m/s) on the irradiation intensity,

I , and the polarization, θ , for the photon energy h̄ω = 10 meV. In

part (a) the dotted line corresponds to the linearly polarized dressing

field, whereas the dashed and solid lines correspond to the different

circular polarizations (τξ = −1 and τξ = 1, respectively). In part

(b) the dashed lines correspond to the polarizations, θ , which do not

change the band gap.

Applying the elaborated theory to analyze the renormal-

ized spin splitting in TMDC monolayers, let us restrict the

consideration by the most examined TMDC monolayer MoS2.

The dependence of the spin splitting on the dressing field is

described by Eqs. (22) and (23) for the case of a linearly

polarized field, Eqs. (39) and (40) for the case of a circularly

polarized field, and Eq. (48) for an arbitrary polarized field.

It follows from analysis of these expressions that the most

pronounced renormalization of the splitting takes place for a

circularly polarized field. The dependence of the field-induced
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FIG. 4. Dependence of the band gap, �̃g , and the spin splitting

of conduction and valence bands, �̃c,v
so , on the irradiation intensity

for MoS2 monolayer (�g = 1.58 eV, �c
so = 3 meV, �v

so = 147 meV,

γ /h̄ = 7.7 × 105 m/s) irradiated by a circularly polarized field with

the photon energy h̄ω = 10 meV: (a) The field-induced changing of

the band gap and the spin splitting for the circularly polarized field

with τξ = −1; (b) The renormalized spin-slitting of conduction band

for different field polarizations (the solid and dashed lines correspond

to τξ = −1 and τξ = 1, respectively).

renormalization of the band gap, �̃g , and the spin splitting,

�̃c,v
so , in MoS2 monolayer on the field intensity, I ∼ E2

0 , is

plotted in Fig. 4 for such a field. It is seen in Fig. 4(a) that

absolute values of the field-induced renormalization are of

the same order for both the band gap, �̃g − �g , and the spin

splitting, �̃c,v
so − �c,v

so . However, the unperturbed spin splitting

of the conduction band, �c
so, is small as compared to both the

unperturbed band gap, �g , and the unperturbed spin splitting

of the valence band, �v
so (see Ref. [43]). Therefore, the relative

field-induced renormalization, |�̃c
so/�

c
so|, is most pronounced

for the spin splitting of the conduction band [see Fig. 4(b)]. It

should be stressed that the renormalized splitting depends on

the product of the polarization and valley indices, τξ = ±1,

and can be turned into zero by a dressing field [see Fig. 4(b)]. It

should be noted also that the renormalization of both band gap

and spin splitting is the result of mixing electron states from

the valence and conduction bands by the field. Therefore, the

renormalized band parameters strongly depend on the value of

the “bare” band gap, �g . In contrast to gapped graphene with

band gaps of meV scale, TMDC monolayers have band gaps

of eV scale [43]. As a consequence, the considered terahertz

photons effect on the gaps of TMDC is very weak (in contrast

to the previously considered case of narrow-gapped graphene).

Particularly, it follows from this that the irradiation intensity

which collapses the spin splitting in TMDC monolayers [see

Fig. 4(b)] is much larger than the intensity collapsing the band

gap in gapped graphene [see Fig. 3(a)].

It should be noted that the similar optically induced spin

splitting was recently observed experimentally in GaAs [50].

However, the one-band energy spectrum of conduction elec-

trons in GaAs differs crucially from the electron spectrum of

gapped Dirac materials described by the two-band Hamilto-

nian (1). Therefore, the known theory of optically induced

spin splitting for electrons with simple parabolic dispersion—

including both the recent paper [50] and the classical arti-

cle [51]—cannot by applied directly to the materials under

consideration. One has to also take into account that optical

properties of TMDC are dominated by excitons [52,53]. To

avoid the influence of excitons on the discussed dressing-field

effects, the photon energy, h̄ω, should be less than the binding

exciton energy (which is typically of hundreds of meV in

TMDC).

From the viewpoint of experimental observability of the

discussed phenomena, it should be noted that all dressing-field

effects increase with increasing the intensity of the dressing

field. However, an intense irradiation can melt a condensed-

matter sample. To avoid the melting, it is reasonable to use

narrow pulses of a strong dressing field. This well-known

methodology has been elaborated long ago and is commonly

used to observe various dressing effects—particularly modi-

fications of energy spectrum of dressed electrons arisen from

the optical Stark effect—in semiconductor structures (see, e.g.,

Refs. [54–56]). Within this approach, giant dressing fields (up

to GW/cm2) can be applied to the structures. It should be

noted also that we consider the electromagnetic wave as a

purely dressing field which cannot be absorbed by electrons.

Within the classical Drude theory, the collisional absorption

of the oscillating field (5) by conduction electrons is given by

the well-known expression

Q =
1

T

∫ T

0

j(t)E(t)dt =
E2

0

2

σ0

1 + (ωτ0)2
,

where T is the period of the field, Q is the period-averaged

field energy absorbed by conduction electrons per unit time

and per unit volume, j(t) is the ohmic current density induced

by the oscillating electric field E(t) = E0 sin ωt , σ0 is the

static Drude conductivity, and τ0 is the electron relaxation

time. Evidently, the Drude optical absorption, Q, is negligibly

small under the condition ωτ0 ≫ 1. Thus, an electromagnetic

wave can be considered as a purely dressing field in the

high-frequency limit (see, e.g., Ref. [10] for more details). It

should be stressed that the increasing of temperature decreases

the time τ0 because of the strengthening of the electron-phonon

scattering. Therefore, the temperature should be low enough

to meet the aforementioned condition.
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IV. CONCLUSION

We showed that the electromagnetic dressing can be used

as an effective tool to control various electronic properties

of gapped Dirac materials, including the band gap in gapped

graphene and the spin splitting in TMDC monolayers. Par-

ticularly, both the band gap and the spin splitting can be

closed by a dressing field. It is demonstrated that the strong

polarization dependence of the renormalized band parameters

appears. Namely, a linearly polarized field decreases the band

gap, whereas a circularly polarized field can both decrease

and increase one. It is found also that a circularly polarized

field breaks equivalence of valleys in different points of the

Brillouin zone, since the renormalized band parameters depend

on the valley index. As a consequence, the elaborated theory

creates a physical basis for novel electronic, spintronic, and

valleytronic devices operated by light.
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