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ARTICLE

All-optical control of lead halide perovskite
microlasers
Nan Zhang1, Yubin Fan 1, Kaiyang Wang1, Zhiyuan Gu1, Yuhan Wang1, Li Ge 2,3, Shumin Xiao1,4 &

Qinghai Song 1,4

Lead halide perovskites based microlasers have recently shown their potential in nanopho-

tonics. However, up to now, all of the perovskite microlasers are static and cannot be

dynamically tuned in use. Herein, we demonstrate a robust mechanism to realize the all-

optical control of perovskite microlasers. In lead halide perovskite microrods, deterministic

mode switching takes place as the external excitation is increased: the onset of a new lasing

mode switches off the initial one via a negative power slope, while the main laser char-

acteristics are well kept. This mode switching is reversible with the excitation and has been

explained via cross-gain saturation. The modal interaction induced mode switching does not

rely on sophisticated cavity designs and is generic in a series of microlasers. The switching

time is faster than 70 ps, extending perovskite microlasers to previously inaccessible areas,

e.g., optical memory, flip-flop, and ultrafast switches etc.
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L
ead halide perovskites (MAPbX3, X= Cl, Br, I, or their
mixtures) are an emerging class of semiconductors with a
promising future in optoelectronic devices1–4. In past few

years, driven by the continuous success in photovoltaics3,5, other
MAPbX3 perovskite devices such as photodetectors6–8 and light-
emitting diodes9–11 have also been rapidly developed. Perovskite
microlasers are another prominent example and expected to have
important applications in optical and quantum networks12–36.
Soon after the discovery of exceptional gain in 201413,14,
MAPbX3 perovskite microlasers have been intensively studied in
single-crystalline microstructures15–19 and poly-crystalline
films20–22. The threshold and quality (Q) factors of perovskite
microlasers have been improved to 220 nJ cm−2 17 and 1 × 104 12,
respectively. With the progresses in nanofabrication techniques,
top-down fabricated perovskite microlasers have also been
experimentally realized in circular microdisks12,22,24, distributed
feedback structures25–30, and even metasurfaces35. Very recently,
continuous-wave (CW) perovskite microlasers have also been
demonstrated at low temperature around 100 K30, making room-
temperature CW perovskite lasers very promising. Despite these
exciting progresses, the demonstrated perovskites lasers are
mostly static in use and their real applications are strongly
hindered.

The footprints of micro- and nano-lasers are typically too small
to implement additional control elements12,36. Thus fundamental
mechanisms such as linear mode coupling and bistability were
developed to control the lasing action37–41. In principle, these
techniques are strongly dependent on the precise control of cavity
sizes and resonant wavelengths, and thus are incompatible with
lead halide perovskites because of their instability in polar sol-
vents. The simple techniques including anion exchange42–44,
infiltration of liquid crystals45, and phase transition of crystals at
low temperature30 can of course tune the lasing wavelengths. But
they either are too slow for optical communications or require
extreme conditions. To date, the mechanism for in situ and
ultrafast control of perovskite microlasers is still absent and a
breakthrough in fundamental mechanism is highly desirable. In
this research, we explore nonlinear modal interactions in per-
ovskite microlasers and demonstrate their impact on ultrafast
mode switching, especially with cross-gain saturation46,47 where
the intensity of one lasing mode reduces the available gain for all
other modes in the same system.

Results
Synthesis and characterization of MAPbBr3 microrods. Lead
halide perovskite microrods were synthesized with a solution-
based precipitation method12 (see Methods). The top-view
scanning electron microscope (SEM) image depicted in Fig. 1a
shows that a large number of MAPbBr3 perovskite microrods
were synthesized simultaneously. The lengths, widths, and
thicknesses are statistically analyzed (see Supplementary Fig. 1).
They are around 10 µm, 800 nm, and 800 nm, respectively. The
single crystal nature of synthesized perovskite microrods were
determined by the following X-ray diffraction spectrum and high-
resolution transmission electron microscopy investigation (see
Fig. S2). Figure 1b shows the absorption and photoluminescence
spectra of MAPbBr3 perovskites microrods (see Methods, Sup-
plementary Fig. 3 and Supplementary Fig. 4). A clear bandedge
can be seen at ~2.32 eV, consistent with previous reports12.

The mode switching in MAPbBr3 perovskite microlasers. Then
the laser characteristics of perovskite microrods were studied via
optical excitation under a home-made microscope system (see
Methods, Supplementary Fig. 3). When the microrod was entirely
pumped, Fabry–Perot (FP) lasers along the axial direction were

observed17. Once the microrod was partially excited, whispering
gallery mode (WGM) lasers were usually formed in the transverse
plane19. In general, lasing modes are in one-to-one correspon-
dence with the passive cavity modes. Under a fixed excitation
scheme (entirely or partially pumping), the main laser char-
acteristics in a perovskite microrod are typically preserved very
well during the lasing experiments.

Interestingly, there are also some novel perovskite microlasers
that show different performances. Although the percentage of
such lasers is quite low (detailed see Supplementary Note 4), they
can still provide some hints for a new mechanism to control the
perovskite microlasers. One example is depicted in Fig. 2. The tilt-
view SEM image (inset in Fig. 2a) shows that the microrod has a
rectangle cross-section with width and thickness of 1.67 and 1.81
μm. The length of microrod is 20 μm. The microrod was
transferred to a clean substrate and placed onto another microrod
with one end suspended in the air (see Fig. 2a) via micro-
manipulation. In the optical experiment, only the suspended part
was excited by adjusting the relative position between microrod
and pumping laser spot (with R ~ 20 μm). At a low-pumping
density, a broad photoluminescence peak appeared at 540 nm.
With the increase of pumping density to 3.36 μJ cm−2, one sharp
peak (mode-1) emerged at 548 nm and rapidly dominated the
emission spectrum at higher pumping density (see Fig. 2b). The
corresponding full with at half maximum (FWHM) also reduced
from 30 to 0.5 nm. The crosses in Fig. 2(c) depict the integrated
intensity of mode-1 as a function of pumping density. When the
pumping power was above 3.36 μJ cm−2, a drastic increase in
emission intensity was observed, indicating the onset of lasing
actions in perovskite microrod. Due to the strong scattering loss
and leakage at the overlapping region, the longitudinal
Fabry–Perot modes in microrods will be suppressed19. Mean-
while, since the ends of two modes are widely separated, the
coupling between transverse WGMs in two rods are also
negligible. In this sense, the observed lasing actions shall be
formed by the transverse WGMs in the top microrod only. This
information can be simply confirmed with the fluorescent
microscope image. As depicted in the inset of Fig. 2c, two bright
laser spots can only be observed at the suspended end.

The interesting phenomenon occurred by further increasing
the pumping power. When the pumping density was above 3.8 μJ
cm−2, the initial lasing peak gradually reduced and a new peak at
562 nm (mode-2) emerged (see Fig. 2b). To better understand the
evolution between two lasing modes, we have finely tuned the
pumping power in small steps and recorded the emission spectra.
All the results are summarized in Fig. 2c. With the increase of
pumping power, the intensities of peaks at 548 and 562 nm
crossover. The latter one becomes the dominant peak above 4.31
μJ cm−2 and the initial peak vanishes rapidly via a negative power
slope. It is worth noting that the emission intensity of mode-2
shows a slight drop with further increase of pumping density,
which is caused by Auger recombination at high pumping
fluence. This limitation can be reduced with additional technique
such as covering the sample with few-layer graphene48. Figure 2d
shows the corresponding extinction ratio (defined as 10 log(I1/I2))
of the spectrum. The extinction ratio changed linearly from 15 to
−15 dB with the increase of pumping density. The inset of Fig. 2d
shows the polarization of these two WG modes, which are both
transverse electrically (TE) polarized with dominant electric field
perpendicular to the light propagation direction in the cross-
sectional plane.

Discussion
All of the above observations are intrinsically different from
typical mode competition and clearly demonstrate the mode
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switching in perovskite microlasers. Therefore, it is very inter-
esting and important to explore the underlying mechanisms. In
the literatures, there are several kinds of mechanisms that can
generate mode switching. We can simply rule out the pump-
dependent linear coupling between the two modes; it requires a
noticeable change of the refractive index with the pump power or
the change of its spatial profile40, and hence would have sig-
nificantly changed the frequency spacing between these two
modes, for both strong coupling and weak coupling49. Instead, we
have observed a constant frequency spacing (see Supplementary
Fig. 8). And the 14 nm mode spacing is too large for typical linear
mode coupling. Another possible mechanism is the optical bist-
ability37–39. Figure 3a summarizes the lasing spectra as a function
of pumping power. With the increase of pumping power from
3.36 to 5.07 μJ cm−2 and then back to 3.17 μJ cm−2 (see Fig. 3a),
it is clear that the transition from mode-1 to mode-2 and back to
mode-1 shows no hysteresis. More quantitatively, we plotted the
extinction ratio of the spectrum along the loop in Fig. 3b, and the
absence of bistability is clearly reflected by the good left–right
symmetry. In addition, the mode switching behavior we observed
is also different from mode hopping that manifests as a random

jump of the lasing peak between two modes. Mode hopping is
driven by fluctuations such as the spontaneous emission noise
and can take place at the same pump power41. In contrast, here
the mode switching behavior was deterministic and did not occur
when the pump power was fixed.

In our experiment, as the spatial pumping profile was fixed, we
neglected the influence of evolving pumping profile. Below we
turn to consider the influences of nonlinear modal interactions.
In principle, the modal intensities I1 and I2 of two lasing modes
can be understood with the following two-mode model50 (see
detail deviations in Supplementary Note 3)
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� �
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transition frequency. D0 is the pump strength and γ⊥ is the
longitude relaxation rate of the gain medium. χ11, χ22 are the self-
interaction coefficients and χ12, χ21 are the cross-interaction
coefficients, which are given by

χ
μν

¼
1

V

Z

cavity

dru2
μ
ðrÞ u

ν
ðrÞj j2

�����

����� ð2Þ

where V ¼
R
cavitydr and uμ(r) is the normalized and dimen-

sionless field distribution of mode-μ in the cavity. Then the
parameters in the above equation were studied with numerical
calculations and SALT theory (see Methods and Supplementary
Note 3). In our calculations, the structural parameters followed
the SEM image, whereas the refractive index (n) and light
extinction coefficient (k) were measured by ellipsometer experi-
mentally (see Supplementary Fig. 9). Figure 4a summarizes the
TE (see inset in Fig. 2d) polarized resonances within the trans-
verse plane, where tens of resonances can be seen. Most of the
resonances are FP modes with low-Q factors except two modes
with similar and relatively high-Q factors. The corresponding

field patterns in Fig. 4b show that these two modes are both 4-
bounce WGMs. Following the SALT calculation, the non-
interaction thresholds of two modes were D0

(1)
= 3 μJ cm−2 and

D0
(2)
= 3.0004 μJ cm−2. The self-interaction coefficients χ11, χ22

and the cross-interaction coefficients χ21, χ12 were calculated from
Eq. (2). They are χ11= 3.8648 × 10−6, χ12= 3.862 × 10−6, χ21=
3.862 × 10−6, and χ22= 3.8607 × 10−6.

According to Eq. (1), the power slope of the first mode is S1 ¼
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By using the above values for χμν, it is easy to see that the power
slope eS1 becomes negative in Eq. (3). Figure 4c illustrates the
modal intensities of two lasing modes as a function of D0. We find
that mode-1 lases first and its modal intensity increases until
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mode-2 reaches the threshold. Further increasing D0 increases the
intensity of mode-2 quickly, while the power slope of the first
lasing mode changes to a negative value. All of these behaviors are
consistent with our experimental results and show that the modal
interaction played a crucial role in the mode switching. For a
direct comparison, we have also calculated the power slopes
without considering the cross-interaction. As shown in Fig. 4d,
these two modes, which have almost identical noninteracting
thresholds D0

(1), D0
(2), turn on almost simultaneously and

both maintain a positive power slope as the pump power
increases. This is intrinsically different from our experimental
observations.

Following the Eq. (3), the criterion for modal interaction
induced mode switching can be derived as

χ21

χ11

<
χ22

χ12

<
D

1ð Þ
0

D
2ð Þ
0

: ð4Þ

This criterion is quite generic and provides a simple rule to
select the perovskite nanorod for mode switching. Basically, two
requirements must be fulfilled. The noninteraction thresholds of
two modes, which are determined by cavity Q factors and the
gain spectrum, must be very close without considering the modal
interaction. Meanwhile, the mode profiles of two modes shall
largely overlap to fulfill Eq. (4). The above criterion can guide us
to search and realize mode switching in perovskite nanorods.

One example is illustrated in Fig. 5. As the side-view SEM
image depicted as inset in Fig. 5c, the new perovskite microrod is
largely rectangular with surface roughness increasing from left to
right. The corresponding photoluminescence experiment shows
that the right part was not well grown and converted to MAPbBr3
perovskites. As a result, the right end purely provides strong
scattering loss and only random lasers along axial direction can
be formed. Following the SEM image, we have numerically stu-
died the resonances within the nanorods. Air holes were intro-
duced to represent the surface roughness shown in the SEM. Two
modes have been obtained with similar Q factors higher than the
others. The insets in Fig. 5b show their mode profiles. We can see
that two modes that are mainly confined in the left half, ensuring
their spatial overlap and the corresponding modal interaction
induced mode switching. Figure 5b shows the calculated inten-
sities of two resonances following SALT theory. A clear mode
switching process can also be observed.

Then the laser characteristics of the microrod was also studied
with optical excitation. The perovskite microrod exhibited a
broad photoluminescence peak at low-pump power. When the
pump power was 4.8 μJ cm−2, a lasing peak at 546.5 nm (mode-1)
could be clearly observed (black line in Fig. 5a). Once the pump
power was further increased to 5.2 μJ cm−2, the initial lasing peak
was suppressed and a new lasing peak at 556 nm (mode-2)
appeared (red dashed line in Fig. 5a). Figure 5c summarizes the
integrated output intensity as a function of pump power. Mode-1
lased first and dominated the laser spectrum at the beginning.
Once mode-2 turned on, mode-1 experienced a negative power
slope and almost disappeared at around 5.4 μJ cm−2. During this
process, the extinction ratio between two modes changed from 10
to −10 dB (see Fig. 5d). The corresponding fluorescent micro-
scope image (inset in Fig. 5d) also shows that the lasers were well
trapped within the left parts. All of these observations are con-
sistent with the numerical calculations in Fig. 5b and confirm the
above criterion well. In experiments, the preferable condition that
leads to this phenomenon cannot be satisfied by all types of
modes, and based on this strict requirement of the criterion and
the random sizes of as-grown, mode switching is not ubiquitous
in the as-grown perovskite microlasers (detailed see

Supplementary Note 4). This can be solved by high-quality top-
down nanofabrication technique to precisely fabricate the
designed cavities (see Supplementary Note 8).

In additional to the switch in wavelengths, it is also interesting
to study the response in the time domain, which is a key para-
meter for applications in optical communications and quantum
information. In our experiment, we have studied the switching
time by two pump pulses with variable delay time (τ). The
experimental setup is shown in the Supplementary Fig. 10. As
depicted in Fig. 6a, the pumping powers of two laser pulses are
designed in the following way. One pulse (pulse-1) can excite
mode-1, whereas the other one (pulse-2) can only generate the
spontaneous emission. However, the superposition of two pulses
is large enough to switch the mode-1 to mode-2. The inset of
Fig. 6a is the SEM image of a new perovskite sample, where the
length of scale bar is 10 µm. The lasing actions were also gener-
ated in its transverse plane. The mode intensity as a function of
time delay is summarized in Fig. 6b. With the decrease of delay
time, the intensity of mode-1 increased first and decreased rapidly
at around τ=−125 ps. The microlaser was dominated by mode-1
at τ <−125 ps and only the mode-2 was observed at τ >−50 ps.
The extinction ratio was plotted in Fig. 6c. We consider the
change of 10 dB (5 to −5dB) as the main switching process.
According to the results in Fig. 6c, the switching time is around
75 ps, which is fast enough for a lot of practical applications.

In summary, we have studied the lasing actions in lead halide
perovskite microrods. In contrast to the previous reports of static
microlasers, we show that a single-mode laser can be switched off
by varying the excitation density, making the perovskite microlasers
dynamically switchable for the first time. The experimental obser-
vations and the corresponding theoretical analysis reveal that strong
modal interactions play a key role in this mode switching process.
In addition, the speed of interacting-induced mode switching is
found to be less than 75 ps. Our results have provided a simple and
robust approach for all-optically controllable microlasers. This
mechanism is not limited in MAPbBr3 perovskites. It also works
well in other materials such as polymer. Importantly, with the
mature top-down fabrication technique of polymer, this mode
switching phenomenon can be well reproduced in a series of
polymer microcavities (see Supplementary Note 7), indicating that
the low production rate of switchable perovskite lasers can be
eventually improved with the development of top-down fabrication
techniques. This kind of mode switching may find practical appli-
cations in optical memory, flip-flop, and other functional devices
such as Raman lasers and sensors.

Methods
Synthesis of perovskite microwires. The lead halide perovskites were synthesized
on hydrophobic indium tin oxides (ITO) coated glass with one-step solution self-
assembly method. Basically, CH3NH3Br and PbBr2 were independently solved in
N, N-dimethylformamide (DMF) with concentrations around 0.1 M. Then two
solutions were mixed at room temperature with 1.05:1 volume ratio to form
CH3NH3Br∙PbBr2 solution (0.02 M). The diluted solution was dip-casted onto an
ITO glass side, which was placed on a Teflon stage in 50 ml beaker. Totally, 35 ml
dichloromethane (DCM) of CH2Cl2 was placed in the beaker and sealed with a
porous Parafilm (3M) to control the evaporation speed. After 48 h, lead halide
perovskites (CH3NH3PbBr3) have been successfully synthesized on the substrate.

Lasing measurement. The experimental setup of optically pumped lasing mea-
surement is shown in Supplementary Fig. 2. The perovskite samples were mounted
onto a three-dimensional translation stage under a home-made microscope and
excited by a frequency doubled laser (400 nm, using a BBO crystal) from a
regenerative amplifier (repetition rate 1 kHz, pulse width 100 fs, seeded by MaiTai,
Spectra Physics). The pump light was focused onto the top surface of the samples
through a 40× objective lens and the radius of the beam size was adjusted to R ~20
μm. The emitted lights were collected by the same objective lens and coupled to a
CCD (Princeton Instruments, PIXIS UV enhanced CCD) coupled spectrometer
(Acton SpectroPro s2700) via a multimode fiber. All the emission spectra were

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09876-6 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1770 | https://doi.org/10.1038/s41467-019-09876-6 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


measured using a 150 g mm−1 grating with 0.3-nm resolution. The fluorescent
microscope images were recorded by a CCD camera behind a longpass filter.

Numerical simulation. The numerical calculations were performed with com-
mercial finite-element-methods based software (Comsol Multiphysics 5.3a). The
cross-section and the axial direction of the microrods were treated as two-
dimensional objects with an effective refractive index. The openness of the system
was simulated with a perfectly matched layer to absorb the outgoing waves without
reflection. Thus the calculated frequencies of quasi-bound states were complex
numbers. Then the calculated frequencies and field patterns of modes were used as
inputs in SALT49–54 to study their lasing actions. Similar to the experiments, only
TE (E in plane) field was considered in the numerical calculations.

Data availability
The data that support the findings of this study are available from the corresponding

author upon reasonable request.
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