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A method is presented that enables the measurement of spin-orbit coefficients in a diffusive two-

dimensional electron gas without the need for processing the sample structure, applying electrical

currents or resolving the spatial pattern of the spin mode. It is based on the dependence of the

average electron velocity on the spatial distance between local excitation and detection of spin

polarization, resulting in a variation of spin precession frequency that in an external magnetic field

is linear in the spatial separation. By scanning the relative positions of the exciting and probing

spots in a time-resolved Kerr rotation microscope, frequency gradients along the [100] and [010]

crystal axes of GaAs/AlGaAs QWs are measured to obtain the Rashba and Dresselhaus spin-orbit

coefficients, a and b. This simple method can be applied in a variety of materials with electron

diffusion for evaluating spin-orbit coefficients.VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4934671]

The spin-orbit (SO) interaction acts as an effective mag-

netic field for electron spins and enables the generation,

manipulation, and detection of spin polarization, which are

fundamental building blocks for future spintronic technolo-

gies.1,2 In III-V semiconductor heterostructures, two types of

SO interactions exist: Rashba originating from structure inver-

sion asymmetry in a quantum well (QW)3 and Dresselhaus

originating from bulk inversion asymmetry in the crystal

structure.4 Under drift motion, electron spins move in a direc-

tion given by an applied electric field and therefore precess

about a drift-induced SO effective magnetic field.5,6 By

measuring this precession, the SO coefficients in a two-

dimensional electron gas (2DEG) can be determined by con-

trolling the drift direction and speed.7,8 Even without applica-

tion of a drift field, spins precess about SO fields on their

diffusive paths. This leads to dephasing,9,10 but not to preces-

sion of the net spin polarization. After local spin excitation, a

spatially varying spin rotation can be resolved as exemplified

for the spin helix case11–13 and laterally confined wire struc-

tures.14,15 Such a spatial mapping of the spin mode allows the

determination of the SO parameters, but requires a spatial re-

solution better than the SO length. Photogalvanic effects16 are

sensitive to the ratio of the Rashba and the Dresselhaus field

but require electric contacts to the 2DEG. Here, we introduce

an optical method for characterizing SO fields that does not

require electric contacts, works with arbitrary ratios of Rashba

and Dresselhaus SO fields, and needs only modest spatial re-

solution where spot sizes may be larger than the SO length. It

is based on the effect that the spin polarization probed at a dif-

ferent location from where it was excited moves on average

with a velocity that points from the point of excitation to that

of measurement. The probed spins therefore see an effective

SO field that affects their precession frequency. We imple-

mented this idea using a time-resolved Kerr rotation (TRKR)

technique. The spin precession frequency of electrons under

an external magnetic field is found to depend linearly on the

spatial separation between the excitation and detection of

spins. By analyzing this frequency gradient along two orthog-

onal axes of the 2DEG, both the Rashba and the Dresselhaus

SO coefficients are evaluated. As we demonstrate, this method

allows a precise determination of SO fields in unprocessed

2DEG samples without application of external electric fields.

The samples studied were 10-, 20-, and 30-nm-wide

GaAs/AlGaAs QWs grown on (001) GaAs substrates. Each

sample contains 15 equivalent QWs, and the carrier densities

are 1.2, 1.3, and 1.7� 1015m�2 for the 10-, 20-, and 30-nm

QWs, respectively.17,18 The Dresselhaus SO coefficient,

b1 ¼ �chk2z i, depends systematically on the QW width

through its dependence on the expectation value of the

squared wavenumber, hk2z i, along the growth direction, z.

The bulk value of the Dresselhaus SO coefficient is denoted

by c. The cubic Dresselhaus coefficient, b3 ¼ � 1
4
ck2F, is sub-

tracted from b1 to obtain the total Dresselhaus coefficient

b ¼ b1 � b3, where kF is the Fermi wave number. The

Rashba SO coefficient, a, is controlled by the Si d-doping

profile in the AlGaAs barrier layer and its absolute value is

chosen to be smaller than b. In the TRKR measurement, a

mode-locked Ti:sapphire laser generates 2-ps-long optical

pulses with 79.2MHz repetition rate. The pulse train is split

into pump and probe beams that are focused onto the sample

surface [see Fig. 1(a)]. The circularly polarized pump pulses

excite electron spins S polarized along the growth direction z

in a Gaussian distribution of sigma width rpp depicted in yel-

low. Linearly polarized probe pulses detect the out-of-plane

spin component Sz as a function of the delay time t in a

Gaussian spot shown in red in Fig. 1(a) (sigma width rpb).

The distance r between the centers of the pump and probe

spots can be controlled by a mirror. All measurements were

taken at a temperature of 15K. Positive x- and y-axes are

defined along the [100] and [010] directions of the QW
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samples. The pump spot size is changed from rpp¼ 3 to

30 lm, while the probe spot size is fixed to rpb¼ 3–4 lm.

Exemplarily, Fig. 1(c) shows the spatial profile of the nor-

malized Kerr signal 10 ps after excitation with rpp¼ 18.0 lm

and rpb¼ 3.5 lm for displacement along the x-direction in a

20-nm GaAs/AlGaAs QW. The observed spin distribution is

well fitted by a Gaussian function, see solid line in Fig. 1(c).

The evaluated sigma width reff¼ 18.3 lm is a convolution of

the pump and probe spots.

The mean velocity vd of the electron spins excited

within the pump spot that arrive at a time t in the displaced

probe spot is given by

vd ¼
2Ds

2Dstþ r2eff
r; (1)

where Ds is the spin-diffusion coefficient, and reff

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2pp þ r2pb

q

is the size of the convoluted spot size. Those

electrons see an average SO field that depends on the direc-

tion and magnitude of vd. As a consequence of this field, a

spatial displacement between the pump and probe spots leads

to a spin precession. The strength of the SO field under such

diffusive motion is described by the two contributions

BR ¼
2a

glB

m

�h
vd (2-a)

BD ¼
2b

glB

m

�h
vd; (2-b)

where g is the electron g factor, lB is the Bohr magneton, m

is the electron effective mass, and �h is the reduced Planck’s

constant. The directions of BR and BD as a function of

the direction of vd are depicted in Fig. 1(b). By applying

an external magnetic field Bex�BR, BD along either the x or

the y direction, we map out frequency changes related to the

projection of the SO field along Bex. For small times and

large spot sizes (r2eff � 2Dst), the SO field is constant and

induces spin precession with a constant frequency. Our

method works in this limit of large spot sizes. In the opposite

limit of small spot sizes and long times, vd and thus the SO

field are proportional to 1/t. Then, spins do not precess in

time but exhibit a spatial oscillation characteristic of the

evolving spin mode.

To validate our idea, we first perform a Monte Carlo

(MC) numerical simulation to calculate the spin-diffusion

dynamics, specifically the spin precession frequency X for

diffused electron spins under Rashba and Dresselhaus fields,

BR and BD. Details of the simulation are described in Ref.

[19]. We take the following parameter values: rpp¼ 4 lm,

rpb¼ 3.3 lm, Bex¼þ1.0 T along x, a¼�0.21� 10�13 eVm,

b1¼ 1.58� 10�13 eVm, b3¼ 0.27� 10�13 eVm, electron

scattering time s¼ 0.49 ps, electron g factor g¼�0.35, and

carrier density Ns¼ 1.5� 1011cm�2. These values lead to a

configuration of BR, BD, and Bex as shown in Fig. 2(a).

Corresponding Ds and Dyakonov Perel spin relaxation time

become 0.0069m2/s and 1.28 ns, respectively. The simulated

time evolution of Sz due to the external and the SO fields is

averaged within a probe Gaussian spot and fitted by

Sz0 exp ð�t=ssÞ cos ðXtÞ, where Sz0 is the initial spin compo-

nent along z, and ss is the spin relaxation time. The X

obtained depends on the spatial displacement of the probe

spot, indicating the contributions of SO fields due to both BR

and BD. Because Bex�BR or BD, we obtain the components

of BRþBD parallel to Bex by considering XSOI ¼ X� Xex

with Xex ¼ glBBex=�h. We plot XSOI as a function of x and

y in Fig. 2(b). Both crystal directions exhibit a linear

change of XSOI, reflected by the linear vd change with x

FIG. 1. (a) Schematic configuration of the positions of the pump (yellow)

and the probe (red) spots for detecting the spatial modulation of the spin pre-

cession frequency. The scanning axes are the [100] and [010] directions

under an inplane external magnetic field Bex. The probe spot displacement r

along the [100] or [010] axis is defined as the distance between the centers

of the probe and pump spots. (b) Directions of diffusion-induced SO fields

for Rashba (red arrows) and Dresselhaus (blue arrows) SO interactions

assuming g< 0, b> 0, and a< 0. (c) The spatial profile of normalized Kerr

signal at 10 ps after excitation with a pump sigma width rpp¼ 18.0lm and

probe sigma width rpb¼ 3.5lm in a 20-nm-wide GaAs QW. Solid line is a

fit by a Gaussian function.

FIG. 2. (a) Configuration of the effective magnetic fields BR (red arrows)

and BD (blue arrows) and external magnetic field Bex (green arrow) with

respect to the crystal orientation for MC simulation. (b) Spatially modulated

frequency components XSOI ¼ X� Xex due to the SO fields, obtained from

MC simulation with Bex¼þ1.0 T, plotted as a function of x- and y-displace-

ments of the probe spot. Solid lines are calculated from Eq. (3).
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and y (see Eq. (1)). As seen in Fig. 2(a), BD (BR) points along

Bex for scans along the x (y) direction, whereas the other field

is perpendicular to Bex. Therefore, the spatial modulation of

XSOI is only sensitive to BD (BR). The opposite XSOI slope is

due to the sign of BR and BD with respect to Bex. As

XSOI ¼ glBBRðDÞ=�h, an analytical expression of XSOI is

obtained by using Eqs. (1) and (2)

XDSOI xð Þ ¼ �
4mDsb

�h2 2Dsss þ r2eff
� � x (3-a)

XRSOI yð Þ ¼ �
4mDsa

�h2 2Dsss þ r2eff
� � y: (3-b)

Owing to the diffusive expansion of the spin distribution

profile with time t, X depends slightly on t. Because

r2eff � 2Dst, this effect is small enough such that we can fit

the data with a constant X. The X obtained in this way is an

average of the frequencies within the observed time window.

Because of the exponential decay of the spin polarization,

earlier times are weighted more. It is therefore a good

approximation to replace t in Eq. (1) by the spin lifetime ss,

which we did to obtain Eq. (3). The solid lines in Fig. 2(b)

are calculated using Eq. (3) with the parameters used in the

MC simulation. The analytical formulae reproduce the MC

result remarkably well. This demonstrates that the SO fields

can be extracted from the spatial modulation of the spin pre-

cession frequency.

We experimentally measured TRKR traces along the

x- and y-axes with Bex¼þ1.0 T along x, which is the same

configuration as in the simulation of Fig. 2(a). Figure 3(a)

shows TRKR traces at x¼�29, 0, and þ28 lm for a 20-nm

QW, taken with rpp¼ 18 lm. From positive to negative x, X

increases. As there is no contribution of vd at x¼ 0 lm, the g

factor is obtained directly from X, jgj ¼ 0.34, which is con-

sistent with the previous results.17,18 To analyze this spatial

modulation of X, the XSOI evaluated is plotted as a function

of x and y in Fig. 3(b). As expected, we observe a linear

change of XSOI with displacement. The spatial modulation of

the spin precession frequency, dXSOI/dr, exhibits opposite

slopes along the x- and y-scans, indicating opposite signs of

the Rashba and Dresselhaus SO coefficients.

We now verify that according to Eqs. (1) and (3), vd and

thus XSOI depend on the convoluted Gaussian spot size, reff.

We systematically measured dXSOI/dr for different pump

spot sizes and plotted it as a function of 1=ð2Dsss þ r2effÞ in
Fig. 3(c) (black symbols). A linear dependence with opposite

slopes is observed for the x- and y-directions and is fitted

very well by Eq. (3) (dashed lines). The slopes correspond to

4mDsb=�h
2 and 4mDsa=�h

2 for displacements along the x- and

y-axes, respectively. Values for Ds can be determined from

the spatially resolved expansion of the spin polarization.

Using Ds¼ 0.0078m2/s,18 we obtain b¼ 1.19� 10�13 and

a¼�1.6� 10�14 eVm. The signs of b and a are determined

from the direction of BR and BD with respect to Bex. Red

symbols in Fig. 3(c) correspond to MC-simulated values

based on the parameters obtained, which reproduce the

measurements remarkably well.

As dXSOI/dr is proportional to the projection of BRþBD

onto Bex, its value and sign should depend on the relative

directions between BRþBD and Bex. We apply Bex¼þ1.0 T

along different crystal directions, 6x and þy, and measure

the dependence of dXSOI/dr on the pump spot size in a

20-nm QW [Fig. 4(a)]. Filled circles correspond to dXSOI/dx,

empty diamonds to dXSOI/dy. The relations of BR, BD, and

Bex with respect to the scan axes are shown in Fig. 4(b).

Scans along x or y measure either BR or BD depending on the

exact configuration. For Bex jj 6x (black and orange

FIG. 3. (a) Measured spin polarization Sz as a function of the delay time t at

x¼�29, 0, and þ28lm and with Bex¼þ1.0 T applied along the x-direction

in a 20-nm-wide GaAs QW. As seen in the magnified inset, the precession

frequency increases from positive to negative x. (b) Spatially modulated fre-

quency component XSOI as a function of the probe positions x (filled circles)

and y (empty diamonds). (c) The measured (black symbols) and simulated

(red symbols) spin precession frequency gradient, dXSOI/dr, as a function of

1=ð2Dsss þ r2effÞ, where r is either x or y depending on the scan axis. Dashed

lines are fits based on Eq. (3).

FIG. 4. (a) The spin precession frequency gradient dXSOI/dr as a function of

1=ð2Dsss þ r2effÞ for x (filled circles) and y (empty diamonds) scans under

different Bex directions; Bex¼ 1T along þx (black), along þy (green), and

along �x (orange). Dashed blue and red lines are fits based on Eq. (3). (b)

Relative directions of the effective magnetic fields, BR and BD, and direc-

tions of the external magnetic field Bex. Colors of Bex correspond to the mea-

surement conditions of dXSOI/dr in (a).
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symbols), x-scans measure BD and y-scans BR, but with dif-

ferent signs for the two directions of Bex. This is consistent

with the measured slopes in Fig. 4(a) where we observe

larger (BD) and smaller (BR) slopes. For Bex jj y (green sym-

bols), x-scans measure �BR, and y-scans þBD. The b and a

evaluated are 1.09� 10�13 and �1.6� 10�14 eVm for

Bex jj þy, and 0.98� 10�13 and �2.6� 10�14 eVm for

Bex jj �x, respectively, and consistent with the results of

Bex jj þx. By considering the symmetry relation of BR and

BD with Bex, we unambiguously detect Rashba and

Dresselhaus SO interactions.

We obtained the SO parameters in all QWs of width 10,

20, and 30 nm. We plot b and a of the three samples as a

function of hk2z i in Fig. 5. hk2z i was calculated taking wave-

function leakage into the barrier region into account. Circles,

triangles, and squares correspond to the results from different

symmetry measurements, i.e., Bex jj þx, Bex jj þy, and

Bex jj �x, respectively. The evaluated b increases with hk2z i
and is well explained by b ¼ �chk2z i þ

1
4
ck2F with

c¼�11 eVÅ3 (dashed line in Fig. 5), which is consistent

with the result evaluated from drift-induced BD
18 and other

experimental works.20,21 The jaj obtained is smaller than b

and does not depend systematically on hk2z i. This is

explained by the doping profile chosen, which leads to a

small potential gradient across the GaAs/AlGaAs QW.17

In conclusion, we investigated the influence of Rashba

and Dresselhaus SO-induced effective magnetic fields on the

spin dynamics measured by spatially separated spin-

excitation and spin-detection locations. By changing the rela-

tive position between the pump and probe spots as well as

the pump spot size in a TRKR measurement, a spatial modu-

lation of the spin precession frequency is observed that

depends on the scan direction. This reflects the anisotropic

SO field due to Rashba and Dresselhaus SO interactions and

makes it possible to evaluate both SO coefficients without

having to process sample structures or apply electrical

currents.
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172402-4 Kohda et al. Appl. Phys. Lett. 107, 172402 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

79.207.22.158 On: Tue, 27 Oct 2015 19:45:08

http://dx.doi.org/10.1038/nphys551
http://dx.doi.org/10.1038/nmat3279
http://dx.doi.org/10.1088/0022-3719/17/33/015
http://dx.doi.org/10.1103/PhysRev.100.580
http://dx.doi.org/10.1038/nature02202
http://dx.doi.org/10.1103/PhysRevLett.94.236601
http://dx.doi.org/10.1038/nphys675
http://dx.doi.org/10.1038/nphys675
http://dx.doi.org/10.1103/PhysRevLett.103.027201
http://dx.doi.org/10.1103/PhysRevLett.103.027201
http://dx.doi.org/10.1038/nature07871
http://dx.doi.org/10.1038/nphys2383
http://dx.doi.org/10.1063/1.4807171
http://dx.doi.org/10.1103/PhysRevB.90.201306
http://dx.doi.org/10.1103/PhysRevB.90.201306
http://dx.doi.org/10.7567/JJAP.53.04EM04
http://dx.doi.org/10.1002/pssb.201350261
http://dx.doi.org/10.1103/PhysRevB.83.155313
http://dx.doi.org/10.1103/PhysRevB.86.195309
http://dx.doi.org/10.1103/PhysRevB.90.121304
http://dx.doi.org/10.1103/PhysRevB.76.195305
http://dx.doi.org/10.1103/PhysRevB.83.041301

