
All-optical generation of states for
“Encoding a qubit in an oscillator”

H. M. Vasconcelos,1,* L. Sanz,2 and S. Glancy3

1Departamento de Engenharia de Teleinformática, Universidade Federal do Ceará, Fortaleza, Brazil
2Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, Brazil

3Mathematical and Computational Sciences Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
*Corresponding author: hilma@ufc.br

Received June 2, 2010; revised September 3, 2010; accepted September 3, 2010;
posted September 10, 2010 (Doc. ID 129340); published September 24, 2010

Most quantum computation schemes propose encoding qubits in two-level systems. Others exploit the use of an
infinite-dimensional system. In “Encoding a qubit in an oscillator” [Phys. Rev. A 64, 012310 (2001)], Gottesman,
Kitaev, and Preskill (GKP) combined these approaches when they proposed a fault-tolerant quantum computation
scheme in which a qubit is encoded in the continuous position and momentum degrees of freedom of an oscillator.
One advantage of this scheme is that it can be performed by use of relatively simple linear optical devices,
squeezing, and homodyne detection. However, we lack a practical method to prepare the initial GKP states. Here
we propose the generation of an approximate GKP state by using superpositions of optical coherent states (some-
times called “Schrödinger cat states”), squeezing, linear optical devices, and homodyne detection. © 2010 Optical
Society of America
OCIS codes: 270.5585, 270.6570.

The Gottesman, Kitaev, and Preskill (GKP) scheme [1],
constitutes a type of linear optical quantum computer,
as do other schemes based on the proposals of Knill et al.
[2] and schemes based on the proposal of Ralph et al. [3].
In the GKP scheme, the qubit is encoded in the contin-
uous Hilbert space of an oscillator’s position and momen-
tum variables. This scheme is applicable to any type of
quantum harmonic oscillator, but we focus on an optical
implementation in traveling modes. The GKP encoding
provides a natural error-correction scheme to correct
errors due to small shifts (applications of the displace-
ment operator) on the conjugate quadrature variables
x and p [1].
The ideal GKP logical 0 qubit state, j �0i, is defined as a

statewhosex-quadraturewavefunctionisaninfiniteseries
of delta-function peaks, while the ideal j �1i x-quadrature
wavefunction isdisplacedadistance

ffiffiffiπp
fromthe j �0istate.

Since these states are unphysical, GKP described approx-
imate states whose x-quadrature wave function is a series
ofGaussianpeakswithwidthΔ,containedinalargerGaus-
sian envelope of width 1=k. The approximation of j �0i has
the wave function

ψGKPðxÞ ¼ N
X∞
s¼−∞

e
−
1
2

�
2sk

ffiffiπp �
2

e
−
1
2

�
x−2s

ffiffi
π

p
Δ

�
2

; ð1Þ

whereN is anormalization factor. IfΔandkaresmall, then
ψGKP will better approximate an ideal GKP state, and the
wave function will have many sharp Gaussian peaks con-
tained in a wide envelope. We can think of the deviation
froman idealGKPstate as corresponding tononzeroprob-
ability that the state has suffered from errors causing dis-
placement in the x or p variables. If all displacements are
smaller than

ffiffiffiπp
=6, then the errorswill not increase during

the error-correction protocol. GKP states with Δ < 0:15
and k < 0:15 will have a probability greater than 0.99 of
being free of shift errors larger than

ffiffiffiπp
=6 [4]. Figure 1

shows an example of an approximate GKP state’s x-
quadrature wave function.

Preparing GKP states is a difficult task, and to our
knowledge no experiment has yet demonstrated prepara-
tion of such states. GKP proposed preparing these states
by coupling an optical mode to an oscillating mirror in
[1]. Another proposal was made by Travaglione and Mil-
burn in [5], where the qubit states are prepared in the
oscillatory motion of a trapped ion rather than the
photons in an optical mode. Pirandola et al. [6] discusses
the preparation of optical GKP states by use of a two-
mode Kerr interaction followed by a homodyne measure-
ment of one of the modes. The same authors describe
two proposals for generating GKP states in the position
and momentum of an atom by using a cavity mediated
interaction with light [7,8].

Here we propose the generation of an approximate
GKP state by using superpositions of optical coherent
states (“cat states”), linear optical devices, squeezing,
and homodyne detection. The basic idea is, first, prepare
two cat states (each of which contains two Gaussian
peaks in its x-quadrature wave function), squeeze both
cats (to reduce the width of the Gaussian peaks), inter-
fere them at a beam splitter, then perform homodyne de-
tection on one of the beam splitter’s output ports.
Depending on the measurement result, we will find an
approximate GKP state (with three Gaussian peaks) in

Fig. 1. Approximate GKP state’s x-quadrature wave function.
This shows the logical 0 state ψGKPðxÞ with Δ ¼ k ¼ 0:15.

October 1, 2010 / Vol. 35, No. 19 / OPTICS LETTERS 3261

0146-9592/10/193261-03$15.00/0 © 2010 Optical Society of America



the beam splitter’s other output port. This procedure can
be repeated to produce states with larger numbers of
Gaussian peaks.
A cat state is a superposition of coherent states, such

as

jψcatðαÞi ¼
j − αi þ jαiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ e−2α

2Þ
q ; ð2Þ

where α is the amplitude of the coherent state, which
may be complex, but we assume it is real below. Several
experimental proposals to create cat states are reviewed
in [9]. Cat states of this form have been created in several
experiments with jαj up to 1.75 and fidelities of 0.6 to 0.7
[10–15].
Cat states’ x-quadrature wave functions are superposi-

tions of Gaussian peaks. To simplify notation, we denote a
Gaussian with Gðx; V; μÞ ¼ exp½−ðx − μÞ2=ð2VÞ�. These
Gaussians represent wave functions, so the unnormalized
vacuum state is Gðx; 1; 0Þ. Suppose two modes (1 and 2)
contain states with unnormalized wave functions
Gðx1; V; μ1Þ andGðx2; V; μ2Þ. These modesmeet at a beam
splitter with transmissivity 1=2, which performs the trans-
formation x1 → ðx1 þ x2Þ=

ffiffiffi
2

p
and x2 → ðx1 − x2Þ=

ffiffiffi
2

p
.

After the beam splitter, we use a homodyne detector to
measure mode 2’s p quadrature. In the case that the mea-
surement result is p2 ¼ 0, this entire procedure produces
the transformation

Gðx1; V; μ1ÞGðx2; V; μ2Þ →
ffiffiffiffi
V

p
G

�
x1; V;

μ1 þ μ2ffiffiffi
2

p
�
: ð3Þ

We can write Eq. (2) in the x-quadrature basis as
~ψcatðx; αÞ ¼ Gðx; 1;− ffiffiffi

2
p

αÞ þ Gðx; 1; ffiffiffi
2

p
αÞ, where the tilde

signals that the state is not normalized. We now squeeze
this state by an amount ζ, obtaining ~ψsqcatðx; α; ζÞ ¼
Gðx; e−2ζ;− ffiffiffi

2
p

αÞ þ Gðx; e−2ζ ffiffiffi
2

p
αe−ζÞ. We will choose the

cat state amplitude to be α ¼ ffiffiffi
2

p
m−1 ffiffiffiπp

eζ, where m is
an integer greater than or equal to 1, which we will later
use to count iterations of our scheme. Suppose we have
two copies of this squeezed cat in modes 1 and 2. They
meet at a beam splitter with transmissivity 1=2, and the
p quadrature of mode 2 is measured to be p2 ¼ 0. If
we choose m ¼ 1, the resulting unnormalized state of
mode 1 is

~βðx1; ζ;m ¼ 1Þ ¼ G

�
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which we call the first binomial state; it is similar to an
approximate GKP logical qubit 0, except only the central
three peaks are present.
Consider the order m binomial state given by

~βðx; ζ;mÞ ¼
X2m
n¼0

�
2m

n

�
G

�
x; e−2ζ; 2

ffiffiffi
π

p ðn − 2m−1Þ
�
: ð5Þ

This state is a series of Gaussian peaks separated by 2
ffiffiffiπp

along the x-quadrature axis, and the amplitudes of the

peaks are given by the (2m)th row of Pascal’s triangle
(where row 0 contains only 1). We will show that, given
two copies of the order m binomial state, one can make
the mþ 1 order binomial state. We begin with one copy
of the state given by Eq. (5) in each of the modes 1 and 2.
These two modes meet in a beam splitter of transmissiv-
ity 1=2, and we measure the p quadrature, obtaining the
result p2 ¼ 0. The new state is given by applying Eq. (3)
to ~βðx1; ζ;mÞ~βðx2; ζ;mÞ. The result is
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After a little algebra and application of Vandermont’s
identity, we obtain

X2mþ1

q¼0
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This state is equivalent to βðx1; ζ;mþ 1Þ, except that the
Gaussian peaks are separated by only

ffiffiffi
2

p ffiffiffiπp
rather than

2
ffiffiffiπp
. We can compensate for this shrinking of the spa-

cing between the Gaussian peaks if we begin the proce-
dure with two binomial states with spacing of 2

ffiffiffi
2

p ffiffiffiπp
.

As m increases, these binomial states will approach
the shape of a series of Gaussian peaks in a Gaussian en-
velope, like ψGKPðxÞ.

In Fig. 2, we plot the probability for measuring a cer-
tain value p2 ¼ R as a function of R when making the
m ¼ 1 binomial state from two cat states. If we measure
R ¼ 0, we obtain the wave function as shown in Fig. 2,
whose Gaussian peaks’ widths are determined by the de-
gree of squeezing applied to the initial cat states and
whose heights are proportional to the second row of
Pascal’s triangle (1,2,1), as given by Eq. (5). In Fig. 3,
we show the m ¼ 3 binomial state.

Creating the order m binomial state requires a mini-
mum of 2m cats, but the true number may be much larger,
because we require that p2 ¼ 0 at each measurement
event. However, initial investigations indicate that some
cases in which p2 ≠ 0 can be recovered by applying a p-
quadrature displacement whose size depends on the
measurement result. Creating high-quality states will re-
quire larger squeezing ζ and higher-order m binomial
states, but values for ζ and m sufficient to achieve
scalable fault-tolerant quantum computation are not

Fig. 2. Left, probability for measuring p2 ¼ R as a function of
R. Right, x-quadrature wave function for the state βðx; ζ; 1Þ. In
both cases α ¼ ffiffiffiπp

eζ , and ζ ¼ 1:9 is chosen to produce Gaus-
sian peaks with the same width as shown in Fig. 1. This ζ is
equivalent to −16 dB of quadrature noise power reduction in
conventional squeezing experiments.
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known. [Nor are sufficient values for Δ and k in Eq. (1)
known.]
In this Letter, we began construction of approximate

GKP states with a source of cat states. The most popular
method to make cat states is by subtracting photon(s)
from a squeezed vacuum state. It may be possible to alter
the photon subtraction scheme to benefit our method to
make GKP states. Note also that the experiment de-
scribed in [13] naturally produces squeezed cats, so it
may be a good candidate for an initial demonstration
of our technique.
Although our scheme is built of apparently simple, well-

understood optical operations, it will be difficult to
achieve in an experiment. Matching the transverse and
longitudinal shapes of all of the optical modes, especially
during the squeezing stage [16,17], may be very difficult. A
second concern is controlling photon loss during squeez-
ing and storage of photonswaiting for the next iteration. A
third concern is the need for relative phase coherence of
all-optical modes in this scheme. However, the level of
phase coherence required for an initial demonstration
is achieved inmanymodern quantum optics experiments.
Take, for example, the continuous variable quantum tele-
portation experiments [18,19], which are able to maintain
phase coherence during homodyne measurement, feed-
forward, and displacement of optical modes.
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Fig. 3. Wave function of binomial state βðx; ζ; 3Þ, a closer ap-
proximation of the logical 0 GKP state. Again, here ζ ¼ 1:9.
Creating this state would require at least eight cat states, each
with α ¼ 2

ffiffiffiπp
eζ . The βðx; ζ; 3Þ state also has small peaks at

�8
ffiffiffiπp
, which are not visible here.
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