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Abstract
The precise engineering of materials and surfaces has been at the heart of some of the recent advances in optics and

photonics. These advances related to the engineering of materials with new functionalities have also opened up

exciting avenues for designing trainable surfaces that can perform computation and machine-learning tasks through

light–matter interactions and diffraction. Here, we analyze the information-processing capacity of coherent optical

networks formed by diffractive surfaces that are trained to perform an all-optical computational task between a given

input and output field-of-view. We show that the dimensionality of the all-optical solution space covering the

complex-valued transformations between the input and output fields-of-view is linearly proportional to the number of

diffractive surfaces within the optical network, up to a limit that is dictated by the extent of the input and output

fields-of-view. Deeper diffractive networks that are composed of larger numbers of trainable surfaces can cover a

higher-dimensional subspace of the complex-valued linear transformations between a larger input field-of-view and a

larger output field-of-view and exhibit depth advantages in terms of their statistical inference, learning, and

generalization capabilities for different image classification tasks when compared with a single trainable diffractive

surface. These analyses and conclusions are broadly applicable to various forms of diffractive surfaces, including, e.g.,

plasmonic and/or dielectric-based metasurfaces and flat optics, which can be used to form all-optical processors.

Introduction
The ever-growing area of engineered materials has

empowered the design of novel components and devices

that can interact with and harness electromagnetic waves

in unprecedented and unique ways, offering various new

functionalities1–14. Owing to the precise control of mate-

rial structure and properties, as well as the associated

light–matter interaction at different scales, these engi-

neered material systems, including, e.g., plasmonics,

metamaterials/metasurfaces, and flat optics, have led to

fundamentally new capabilities in the imaging and sensing

fields, among others15–24. Optical computing and infor-

mation processing constitute yet another area that has

harnessed engineered light–matter interactions to perform

computational tasks using wave optics and the propaga-

tion of light through specially devised materials25–38.

These approaches and many others highlight the emerging

uses of trained materials and surfaces as the workhorse of

optical computation.

Here, we investigate the information-processing capa-

city of trainable diffractive surfaces to shed light on their

computational power and limits. An all-optical diffractive

network is physically formed by a number of diffractive

layers/surfaces and the free-space propagation between

them (see Fig. 1a). Individual transmission and/or reflec-

tion coefficients (i.e., neurons) of diffractive surfaces are

adjusted or trained to perform a desired input–output

transformation task as the light diffracts through these

layers. Trained with deep-learning-based error back-

propagation methods, these diffractive networks have

been shown to perform machine-learning tasks such as

image classification and deterministic optical tasks,
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including, e.g., wavelength demultiplexing, pulse shaping,

and imaging38–44.

The forward model of a diffractive optical network can

be mathematically formulated as a complex-valued matrix

operator that multiplies an input field vector to create an

output field vector at the detector plane/aperture. This

operator is designed/trained using, e.g., deep learning to

transform a set of complex fields (forming, e.g., the input

data classes) at the input aperture of the optical network

into another set of corresponding fields at the output

aperture (forming, e.g., the data classification signals) and

is physically created through the interaction of the input

light with the designed diffractive surfaces as well as free-

space propagation within the network (Fig. 1a).

In this paper, we investigate the dimensionality of the

all-optical solution space that is covered by a diffractive

network design as a function of the number of diffractive

surfaces, the number of neurons per surface, and the size

of the input and output fields-of-view (FOVs). With our

theoretical and numerical analysis, we show that the

dimensionality of the transformation solution space that

can be accessed through the task-specific design of a

diffractive network is linearly proportional to the number

of diffractive surfaces, up to a limit that is governed by the

extent of the input and output FOVs. Stated differently,

adding new diffractive surfaces into a given network

design increases the dimensionality of the solution space

that can be all-optically processed by the diffractive net-

work, until it reaches the linear transformation capacity

dictated by the input and output apertures (Fig. 1a).

Beyond this limit, the addition of new trainable diffractive

surfaces into the optical network can cover a higher-

dimensional solution space over larger input and output

FOVs, extending the space-bandwidth product of the all-

optical processor.

Our theoretical analysis further reveals that, in addition

to increasing the number of diffractive surfaces within a

network, another strategy to increase the all-optical pro-

cessing capacity of a diffractive network is to increase the

number of trainable neurons per diffractive surface.

However, our numerical analysis involving different image

classification tasks demonstrates that this strategy of

creating a higher-numerical-aperture (NA) optical net-

work for all-optical processing of the input information is

not as effective as increasing the number of diffractive

surfaces in terms of the blind inference and generalization

performance of the network. Overall, our theoretical and

numerical analyses support each other, revealing that

deeper diffractive networks with larger numbers of

trainable diffractive surfaces exhibit depth advantages in

terms of their statistical inference and learning capabilities

compared with a single trainable diffractive surface.

The presented analyses and conclusions are generally

applicable to the design and investigation of various

coherent all-optical processors formed by diffractive

surfaces, such as, e.g., metamaterials, plasmonic or

dielectric-based metasurfaces, and flat-optics-based

designer surfaces that can form information-processing
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Fig. 1 Schematic of a multisurface diffractive network. a

Schematic of a diffractive optical network that connects an input field-

of-view (aperture) composed of Ni points to a desired region-of-

interest at the output plane/aperture covering No points, through

K-diffractive surfaces with N neurons per surface, sampled at a period

of λ/2n, where λ and n represent the illumination wavelength and the

refractive index of the medium between the surfaces, respectively.

Without loss of generality, n= 1 was assumed in this paper. b The

communication between two successive diffractive surfaces occurs

through propagating waves when the axial separation (d) between

these layers is larger than λ. Even if the diffractive surface has deeply

subwavelength structures, as in the case of, e.g., metasurfaces, with a

much smaller sampling period compared to λ/2 and many more

degrees of freedom (M) compared to N, the information-processing

capability of a diffractive surface within a network is limited to

propagating modes since d ≥ λ; this limits the effective number of

neurons per layer to N, even for a surface with M >> N. H and H* refer

to the forward- and backward-wave propagation, respectively
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networks to execute a desired computational task between

an input and output aperture.

Results
Theoretical analysis of the information-processing capacity

of diffractive surfaces

Let the x and y vectors represent the sampled optical

fields (including the phase and amplitude information) at

the input and output apertures, respectively. We assume

that the sizes of x and y are Ni × 1 and No × 1, defined by

the input and output FOVs, respectively (see Fig. 1a);

these two quantities, Ni and No, are simply proportional to

the space-bandwidth product of the input and the output

fields at the input and output apertures of the diffractive

network, respectively. Outside the input FOV defined by

Ni, the rest of the points within the input plane do not

transmit light or any information to the diffractive net-

work, i.e., they are assumed to be blocked by, for example,

an aperture. In a diffractive optical network composed of

transmissive and/or reflective surfaces that rely on linear

optical materials, these vectors are related to each other

by Ax= y, where A represents the combined effects of the

free-space wave propagation and the transmission

through (or reflection off of) the diffractive surfaces,

where the size of A is No ×Ni. The matrix A can be

considered the mathematical operator that represents

the all-optical processing of the information carried by

the input complex field (within the input FOV/aperture),

delivering the processing results to the desired

output FOV.

Here, we prove that an optical network having a larger

number of diffractive surfaces or trainable neurons can

generate a richer set for the transformation matrix A up to

a certain limit within the set of all complex-valued

matrices with size No ×Ni. Therefore, this section analy-

tically investigates the all-optical information-processing

capacity of diffractive networks composed of diffractive

surfaces. The input field is assumed to be monochromatic,

spatially and temporally coherent with an arbitrary

polarization state, and the diffractive surfaces are assumed

to be linear, without any coupling to other states of

polarization, which is ignored.

Let Hd be an N ×N matrix, which represents the

Rayleigh–Sommerfeld diffraction between two fields

specified over parallel planes that are axially separated by

a distance d. Since Hd is created from the free-space

propagation convolution kernel, it is a Toeplitz matrix.

Throughout the paper, without loss of generality, we

assume that Ni=No=NFOV, N ≥NFOV and that the dif-

fractive surfaces are separated by free space, i.e., the

refractive index surrounding the diffractive layers is taken

as n= 1. We also assume that the optical fields include

only the propagating modes, i.e., traveling waves; stated

differently, the evanescent modes along the propagation

direction are not included in our model since d ≥ λ

(Fig. 1b). With this assumption, we choose the sampling

period of the discretized complex fields to be λ/2, where λ is

the wavelength of the monochromatic input field.

Accordingly, the eigenvalues of Hd are in the form ejkzd for

0 ≤ kz ≤ ko, where ko is the wavenumber of the optical field45.

Furthermore, let Tk be an NLk ×NLk matrix, which

represents the kth diffractive surface/layer in the network

model, where NLk is the number of neurons in the cor-

responding diffractive surface; for a diffractive network

composed of K surfaces, without loss of generality, we

assume min(NL1, NL2, …, NLK) ≥NFOV. Based on these

definitions, the elements of Tk are nonzero only along its

main diagonal entries. These diagonal entries represent

the complex-valued transmittance (or reflectance) values

(i.e., the optical neurons) of the associated diffractive

surface, with a sampling period of λ/2. Furthermore, each

diffractive surface defined by a given transmittance matrix

is assumed to be surrounded by a blocking layer within

the same plane to avoid any optical communication

between the layers without passing through an inter-

mediate diffractive surface. This formalism embraces any

form of diffractive surface, including, e.g., plasmonic or

dielectric-based metasurfaces. Even if the diffractive sur-

face has deeply subwavelength structures, with a much

smaller sampling period compared to λ/2 and many

more degrees of freedom (M) compared to NLk, the

information-processing capability of a diffractive surface

within a network is limited to propagating modes since

d ≥ λ, which restricts the effective number of neurons per

layer to NLk (Fig. 1b). In other words, since we assume

that only propagating modes can reach the subsequent

diffractive surfaces within the optical diffractive network,

the sampling period (and hence, the neuron size) of λ/2 is

sufficient to represent these propagating modes in air46.

According to Shannon’s sampling theorem, since the

spatial frequency band of the propagating modes in air is

restricted to the (−1/λ, 1/λ) interval, a neuron size that is

smaller than λ/2 leads to oversampling and overutilization

of the optical neurons of a given diffractive surface. On

the other hand, if one aims to control and engineer the

evanescent modes, then a denser sampling period on each

diffractive surface is needed, which might be useful to

build diffractive networks that have d � λ. In this near-

field diffractive network, the enormously rich degrees of

freedom enabled by various metasurface designs with

M � NLk can be utilized to provide full and independent

control of the phase and amplitude coefficients of each

individual neuron of a diffractive surface.

The underlying physical process of how light is modu-

lated by an optical neuron may vary in different diffractive

surface designs. In a dielectric-material-based transmis-

sive design, for example, phase modulation can be

achieved by slowing down the light inside the material,
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where the thickness of an optical neuron determines the

amount of phase shift that the light beam undergoes.

Alternatively, liquid-crystal-based spatial light modulators

or flat-optics-based metasurfaces can also be employed as

part of a diffractive network to generate the desired phase

and/or amplitude modulation on the transmitted or

reflected light9,47.

Starting from “Analysis of a single diffractive surface”, we

investigate the physical properties of A, generated by differ-

ent numbers of diffractive surfaces and trainable neurons. In

this analysis, without loss of generality, each diffractive sur-

face is assumed to be transmissive, following the schematics

shown in Fig. 1a, and its extension to reflective surfaces is

straightforward and does not change our conclusions. Finally,

multiple (back-and-forth) reflections within a diffractive

network composed of different layers are ignored in our

analysis, as these are much weaker processes compared to

the forward-propagating modes.

Analysis of a single diffractive surface

The input–output relationship for a single diffractive

surface that is placed between an input and an output

FOV (Fig. 1a) can be written as

y ¼ H 0
d2
T1H

0
d1
x ¼ A1x ð1Þ

where d1 ≥ λ and d2 ≥ λ represent the axial distance between

the input plane and the diffractive surface, and the axial

distance between the diffractive surface and the output

plane, respectively. Here we also assume that d1 ≠ d2; the

Supplementary Information, Section S5 discusses the special

case of d1= d2. Since there is only one diffractive surface in

the network, we denote the transmittance matrix as T1, the

size of which is NL1 ×NL1, where L1 represents the diffractive

surface. Here, H 0
d1

is an NL1×NFOV matrix that is generated

from the NL1 ×NL1 propagation matrix Hd1
by deleting the

appropriately chosen NL1−NFOV-many columns. The posi-

tions of the deleted columns correspond to the zero-

transmission values at the input plane that lie outside the

input FOV or aperture defined by Ni=NFOV (Fig. 1a), i.e.,

not included in x. Similarly,H 0
d2

is anNFOV×NL1matrix that

is generated from the NL1 ×NL1 propagation matrix Hd2
by

deleting the appropriately chosen NL1−NFOV-many rows,

which correspond to the locations outside the output FOV or

aperture defined by No=NFOV in Fig. 1a; this means that the

output field is calculated only within the desired output

aperture. As a result, H 0
d1

and H 0
d2

have a rank of NFOV.

To investigate the information-processing capacity of

A1 based on a single diffractive surface, we vectorize

this matrix in the column order and denote it as vec

(A1)= a1
48. Next, we show that the set of possible a1

vectors forms a min NL1;N
2
FOV

� �
-dimensional subset of

the N2
FOV-dimensional complex-valued vector space.

The vector, a1, can be written as

vec A1ð Þ ¼ a1 ¼ vec H 0
d2
T1H

0
d1

� �

¼ H 0T
d1

�H 0
d2

� �

vec T1ð Þ

¼ H 0T
d1

�H 0
d2

� �

t1

ð2Þ

where the superscript T and ⊗ denote the transpose

operation and Kronecker product, respectively48. Here,

the size of H 0T
d1

�H 0
d2

is N2
FOV ´N2

L1, and it is a full-rank

matrix with rank N2
FOV . In Eq. (2), vec(T1)= t1 has at most

NL1 controllable/adjustable complex-valued entries,

which physically represent the neurons of the diffractive

surface, and the rest of its entries are all zero. These

transmission coefficients lead to a linear combination of

NL1-many vectors of H 0T
d1

�H 0
d2
, where d1 ≠ d2 ≠ 0. If

NL1 � N2
FOV , these vectors subject to the linear combina-

tion are linearly independent (see the Supplementary

Information Section S4.1 and Supplementary Fig. S1).

Hence, the set of the resulting a1 vectors generated by

Eq. (2) forms an NL1-dimensional subspace of the

N2
FOV-dimensional complex-valued vector space. On the

other hand, the vectors in the linear combination start to

become dependent on each other in the case of

NL1 >N2
FOV and therefore, the dimensionality of the set

of possible vector fields is limited to N2
FOV (also see

Supplementary Fig. S1).

This analysis demonstrates that the set of complex field

transformation vectors that can be generated by a single

diffractive surface that connects a given input and output

FOV constitutes a min NL1;N
2
FOV

� �
-dimensional subspace

of the N2
FOV-dimensional complex-valued vector space.

These results are based on our earlier assumption that

d1 ≥ λ, d2 ≥ λ, and d1 ≠ d2. For the special case of d1=

d2 ≥ λ, the upper limit of the dimensionality of the solu-

tion space that can be generated by a single diffractive

surface (K= 1) is reduced from N2
FOV to ðN2

FOV þ
NFOVÞ=2 due to the combinatorial symmetries that exist

in the optical path for d1= d2 (see the Supplementary

Information, Section S5).

Analysis of an optical network formed by two diffractive

surfaces

Here, we consider an optical network with two different

(trainable) diffractive surfaces (K= 2), where the

input–output relation can be written as:

y ¼ H 0
d3
T2Hd2

T1H
0
d1
x ¼ A2x ð3Þ

Nx ¼ max NL1;NL2ð Þ determines the sizes of the matri-

ces in Eq. (3), where NL1 and NL2 represent the number of

neurons in the first and second diffractive surfaces,

respectively; d1, d2, and d3 represent the axial distances
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between the diffractive surfaces (see Fig. 1a). Accordingly,

the sizes of H 0
d1
, Hd2

, and H 0
d3

become Nx ×NFOV, Nx ×

Nx, and NFOV ×Nx, respectively. Since we have already

assumed that min NL1;NL2ð Þ � NFOV , H
0
d1
, and H 0

d3
can be

generated from the corresponding Nx ×Nx propagation

matrices by deleting the appropriate columns and rows, as

described in “Analysis of a single diffractive surface”.

Because Hd2
has a size of Nx ×Nx, there is no need to

delete any rows or columns from the associated propa-

gation matrix. Although both T1 and T2 have a size of

Nx ×Nx, the one corresponding to the diffractive surface

that contains the smaller number of neurons has some

zero values along its main diagonal indices. The number

of these zeros is Nx �min NL1;NL2ð Þ.
Similar to the analysis reported in “Analysis of a single

diffractive surface,” the vectorization of A2 reveals

vec A2ð Þ ¼ a2 ¼ vec H 0
d3
T2Hd2

T1H
0
d1

� �

¼ H 0T
d1

�H 0
d3

� �

vec T2Hd2
T1ð Þ

¼ H 0T
d1

�H 0
d3

� �

TT
1
� T2

� �
vec Hd2

ð Þ

¼ H 0T
d1

�H 0
d3

� �

T1 � T2ð Þvec Hd2
ð Þ

¼ H 0T
d1

�H 0
d3

� �

T1 � T2ð Þhd2

¼ H 0T
d1

�H 0
d3

� �

Ĥd2
diag T1 � T2ð Þ

¼ H 0T
d1

�H 0
d3

� �

Ĥd2
t12

ð4Þ

where Ĥd2
is an N2

x ´N
2
x matrix that has nonzero entries

only along its main diagonal locations. These entries

are generated from vec Hd2
ð Þ ¼ hd2

such that

Ĥd2
½i; i� ¼ hd2

½i�. Since the diag(·) operator forms a vector

from the main diagonal entries of its input matrix, the

vector t12 ¼ diag T1 � T2ð Þ is generated such that

t12½i� ¼ T1 � T2ð Þ½i; i�. The equality T1 � T2ð Þhd2
¼

Ĥd2
t12 stems from the fact that the nonzero elements of

T1⊗ T2 are located only along its main diagonal entries.

In Eq. (4), H 0T
d1

�H 0
d3

has rank N2
FOV . Since all the

diagonal elements of Ĥd2
are nonzero, it has rank N2

x . As a

result, HT
d1

�Hd3

� �

Ĥd2
is a full-rank matrix with rank

N2
FOV . In addition, the nonzero elements of t12 take the

form tij= t1,it2,j, where t1,i and t2,j are the trainable/

adjustable complex transmittance values of the ith neuron

of the 1st diffractive surface and the jth neuron of the 2nd

diffractive surface, respectively, for i∈ {1, 2,…,NL1} and

j∈ {1, 2,…, NL2}. Then, the set of possible a2 vectors

(Eq. (4)) can be written as

a2 ¼
X

i;j

tijhij ð5Þ

where hij is the corresponding column vector of

ðH 0T
d1

�H 0
d3
ÞĤd2

.

Equation (5) is in the form of a complex-valued linear

combination of NL1NL2-many complex-valued vectors,

hij. Since we assume min(NL1, NL2) ≥NFOV, these vec-

tors necessarily form a linearly dependent set of vectors

and this restricts the dimensionality of the vector space

to N2
FOV. Moreover, due to the coupling of the complex-

valued transmittance values of the two diffractive sur-

faces (tij= t1,it2,j) in Eq. (5), the dimensionality of the

resulting set of a2 vectors can even go below N2
FOV,

despite NL1NL2 � N2
FOV. In fact, in “Materials and

methods,” we show that the set of a2 vectors can

form an NL1+NL2− 1-dimensional subspace of the

N2
FOV-dimensional complex-valued vector space and can

be written as

a2 ¼
XNL1þNL2�1

k¼1

ckbk ð6Þ

where bk represents length-N2
FOV linearly independent

vectors and ck represents complex-valued coefficients,

generated through the coupling of the transmittance

values of the two independent diffractive surfaces. The

relationship between Eqs. (5) and (6) is also presented as a

pseudocode in Table 1; see also Supplementary Tables

S1–S3 and Supplementary Fig. S2.

These analyses reveal that by using a diffractive optical

network composed of two different trainable diffractive

surfaces (with neurons NL1, NL2), it is possible to generate

an all-optical solution that spans an NL1+NL2− 1-

dimensional subspace of the N2
FOV-dimensional complex-

valued vector space. As a special case, if we assume

N ¼ NL1 ¼ NL2 ¼ Ni ¼ No ¼ NFOV , the resulting set of

complex-valued linear transformation vectors forms a

2N− 1-dimensional subspace of an N2-dimensional vec-

tor field. The Supplementary Information (Section S1 and

Table S1) also provides a coefficient and basis vector

generation algorithm, independently reaching the same

conclusion that this special case forms a 2N− 1-dimen-

sional subspace of an N2-dimensional vector field. The

upper limit of the solution space dimensionality that can

be achieved by a two-layered diffractive network is N2
FOV,

which is dictated by the input and output FOVs between

which the diffractive network is positioned.

In summary, these analyses show that the dimen-

sionality of the all-optical solution space covered by

two trainable diffractive surfaces (K= 2) positioned

between a given set of input–output FOV is given by

min N2
FOV;NL1 þNL2 � 1

� �
. Different from K= 1 archi-

tecture, which revealed a restricted solution space when

d1= d2 (see the Supplementary Information, Section

S5), diffractive optical networks with K= 2 do not

exhibit a similar restriction related to the axial distances

d1, d2, and d3 (see Supplementary Fig. S2).
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Analysis of an optical network formed by three or more

diffractive surfaces

Next, we consider an optical network formed by

more than two diffractive surfaces, with neurons of

(NL1;NL2; ¼ NLK ) for each layer, where K is the number

of diffractive surfaces and NLk represents the number of

neurons in the kth layer. In the previous section, we

showed that a two-layered network with (NL1, NL2) neu-

rons has the same solution space dimensionality as that of

a single-layered, larger diffractive network having NL1+

NL2− 1 individual neurons. If we assume that a third

diffractive surface (NL3) is added to this single-layer net-

work with NL1+NL2− 1 neurons, this becomes equiva-

lent to a two-layered network with (NL1 þ NL2 � 1;NL3)

neurons. Based on “Analysis of an optical network formed

by two diffractive surfaces”, the dimensionality of the all-

optical solution space covered by this diffractive network

positioned between a set of input–output FOVs is given

by min N2
FOV;NL1 þ NL2 þ NL3 � 2

� �
; also see Supple-

mentary Fig. S3 and Supplementary Information Section

S4.3. For the special case of NL1 ¼ NL2 ¼ NL3 ¼
Ni ¼ No ¼ N , Supplementary Information Section S2 and

Table S2 independently illustrate that the resulting vector

field is indeed a 3N− 2-dimensional subspace of an

N2-dimensional vector field.

The above arguments can be extended to a network

that has K-diffractive surfaces. That is, for a multisurface

diffractive network with a neuron distribution of

ðNL1;NL2; ¼ ;NLK Þ, the dimensionality of the solution

space (see Fig. 2) created by this diffractive network is

given by

min N2
FOV;

XK

k¼1

NLk

" #

� K � 1ð Þ

 !

ð7Þ

which forms a subspace of an N2
FOV-dimensional vector

space that covers all the complex-valued linear transfor-

mations between the input and output FOVs.

The upper bound on the dimensionality of the solution

space, i.e., the N2
FOV term in Eq. (7), is heuristically

imposed by the number of possible ray interactions

between the input and output FOVs. That is, if we con-

sider the diffractive optical network as a black box

(Fig. 1a), its operation can be intuitively understood as

controlling the phase and/or amplitude of the light rays

that are collected from the input, to be guided to the

output, following a lateral grid of λ/2 at the input/output

FOVs, determined by the diffraction limit of light. The

second term in Eq. (7), on the other hand, reflects the

total space-bandwidth product of K-successive diffractive

surfaces, one following another. To intuitively understand

the (K− 1) subtraction term in Eq. (7), one can hypo-

thetically consider the simple case of NLk=NFOV= 1

for all K-diffractive layers; in this case,

½
PK

k¼1 NLk � � K � 1ð Þ ¼ 1, which simply indicates that K-

successive diffractive surfaces (each with NLk= 1) are

equivalent, as physically expected, to a single controllable

diffractive surface with NL= 1.

Without loss of generality, if we assume N=Nk for all

the diffractive surfaces, then the dimensionality of the

linear transformation solution space created by this dif-

fractive network will be KN− (K− 1), provided that

KN � ðK � 1Þ � N2
FOV . The Supplementary Information

(Section S3 and Table S3) also provides the same con-

clusion. This means that for a fixed design choice of N

neurons per diffractive surface (determined by, e.g., the

limitations of the fabrication methods or other practical

considerations), adding new diffractive surfaces to the

same diffractive network linearly increases the dimen-

sionality of the solution space that can be all-optically

processed by the diffractive network between the input/

output FOVs. As we further increase K such that

KN � ðK � 1Þ � N2
FOV , the diffractive network reaches its

linear transformation capacity, and adding more layers or

more neurons to the network does not further contribute

to its processing power for the desired input–output

FOVs (see Fig. 2). However, these deeper diffractive

Table 1 Coefficient (ck) and basis vector (bk) generation

algorithm pseudocode for an optical network that has two

diffractive surfaces

1 Randomly choose t1,i from the set C1,1 and t2,j from the set C2,1, and

assign desired values to the chosen t1,i and t2,j

2 c1b1 ¼ t1;it2;jhij

3 k= 2

4 Randomly choose T1 or T2 if C1;k ≠ ; and C2;k ≠ ;

Choose T1 if C1;k ≠ ; and C2;k ¼ ;

Choose T2 if C1;k ¼ ; and C2;k ≠ ;

5 If T1 is chosen in Step 4:

6 Randomly choose t1,i from the set C1,k, and assign a desired value to

the chosen t1,i

7 ckbk ¼ t1;i
P

t2;j=2C2;k
t2;jhij

� �

8 else:

9 Randomly choose t2,j from the set C2,k, and assign a desired value to

the chosen t2,j

10 ckbk ¼ t2;j
P

t1;i=2C1;k
t1;ihij

� �

11 k= k+ 1

12 If C1;k ≠ ; or C2;k ≠ ;:

13 Return to Step 4

14 else:

15 Exit

See the theoretical analysis and Eq. (6) of the main text. See also Supplementary
Tables S1–S3

Kulce et al. Light: Science & Applications           (2021) 10:25 Page 6 of 17



networks that have larger numbers of diffractive surfaces

(i.e., KN � ðK � 1Þ � N2
FOV) can cover a solution space

with a dimensionality of KN− (K− 1) over larger input

and output FOVs. Stated differently, for any given choice

of N neurons per diffractive surface, deeper diffractive

networks that are composed of multiple surfaces can

cover a KN− (K− 1)-dimensional subspace of all the

complex-valued linear transformations between a larger

input FOV (N 0
i >Ni) and/or a larger output FOV

(N 0
o >No), as long as KN � ðK � 1Þ � N 0

iN
0
o. The conclu-

sions of this analysis are also summarized in Fig. 2.

In addition to increasing K (the number of diffractive

surfaces within an optical network), an alternative

strategy to increase the all-optical processing cap-

abilities of a diffractive network is to increase N, the

number of neurons per diffractive surface/layer.

However, as we numerically demonstrate in the next

section, this strategy is not as effective as increasing the

number of diffractive surfaces since deep-learning-

based design tools are relatively inefficient in utilizing

all the degrees of freedom provided by a diffractive

surface with N>>No;Ni. This is partially related to the

fact that high-NA optical systems are generally more

difficult to optimize and design. Moreover, if we con-

sider a single-layer diffractive network design with a

large Nmax (which defines the maximum surface area

that can be fabricated and engineered with the desired

transmission coefficients), even for this Nmax design,

the addition of new diffractive surfaces with Nmax at

each surface linearly increases the dimensionality of

the solution space created by the diffractive network,

covering linear transformations over larger input and

output FOVs, as discussed earlier. These reflect some

of the important depth advantages of diffractive optical

networks that are formed by multiple diffractive sur-

faces. The next section further expands on this using a
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Fig. 2 Dimensionality (D) of the all-optical solution space covered by multilayer diffractive networks. a The behavior of the dimensionality of

the all-optical solution space as the number of layers increases for two different diffractive surface designs with N= N1 and N= N2 neurons per

surface, where N2 > N1. The smallest number of diffractive surfaces, [Ks], satisfying the condition KSN− (KS− 1) ≥ Ni × No determines the ideal depth of

the network for a given N, Ni, and NO. For the sake of simplicity, we assumed Ni= No= NFOV− i, where four different input/output fields-of-view are

illustrated in the plot, i.e., NFOV�4 >NFOV�3 >NFOV�2 >NFOV�1 . [Ks] refers to the ceiling function, defining the number of diffractive surfaces within an

optical network design. b The distribution of the dimensionality of the all-optical solution space as a function of N and K for four different fields-of-

view, NFOV− i, and the corresponding turning points, Si, which are shown in a. For K = 1, d1 ≠ d2 is assumed. Also see Supplementary Figs. S1–S3 for

some examples of K= 1, 2, and 3
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numerical analysis of diffractive optical networks that

are designed for image classification.

Numerical analysis of diffractive networks

The previous section showed that the dimensionality of

the all-optical solution space covered by K-diffractive

surfaces, forming an optical network positioned between

an input and output FOV, is determined by

minðN2
FOV; ½

PK
k¼1 NLk � � K � 1ð ÞÞ. However, this mathe-

matical analysis does not shed light on the selection or

optimization of the complex transmittance (or reflec-

tance) values of each neuron of a diffractive network that

is assigned for a given computational task. Here, we

numerically investigate the function approximation power

of multiple diffractive surfaces in the (N, K) space using

image classification as a computational goal for the design

of each diffractive network. Since NFOV and N are large

numbers in practice, an iterative optimization procedure

based on error back-propagation and deep learning with a

desired loss function was used to design diffractive net-

works and compare their performances as a function

of (N, K).

For the first image classification task that was used as a

test bed, we formed nine different image data classes,

where the input FOV (aperture) was randomly divided

into nine different groups of pixels, each group defining

one image class (Fig. 3a). Images of a given data class can

have pixels only within the corresponding group, emitting

light at arbitrary intensities toward the diffractive net-

work. The computational task of each diffractive network

is to blindly classify the input images from one of these

nine different classes using only nine large-area detectors

at the output FOV (Fig. 3b), where the classification

decision is made based on the maximum of the optical

signal collected by these nine detectors, each assigned to

one particular image class. For deep-learning-based

training of each diffractive network for this image classi-

fication task, we employed a cross-entropy loss function

(see “Materials and methods”).

Before we report the results of our analysis using a more

standard image classification dataset such as CIFAR-1049,

we initially selected this image classification problem

defined in Fig. 3 as it provides a well-defined linear

transformation between the input and output FOVs. It

also has various implications for designing new imaging

systems with unique functionalities that cannot be cov-

ered by standard lens design principles.

Based on the diffractive network configuration and the

image classification problem depicted in Fig. 3, we com-

pared the training and blind-testing accuracies provided

by different diffractive networks composed of 1, 2, and 3

diffractive surfaces (each surface having N= 40K= 200 ×

200 neurons) under different training and testing condi-

tions (see Figs. 4 and 5). Our analysis also included the

performance of a wider single-layer diffractive network

with N= 122.5K > 3 × 40K neurons. For the training of

these diffractive systems, we created two different training

image sets (Tr1 and Tr2) to test the learning capabilities

of different network architectures. In the first case, the

training samples were selected such that approximately

1% of the point sources defining each image data class

were simultaneously on and emitting light at various

power levels. For this training set, 200K images were

created, forming Tr1. In the second case, the training

image dataset was constructed to include only a single

point source (per image) located at different coordinates

representing different data classes inside the input FOV,

providing us with a total of 6.4K training images (which

formed Tr2). For the quantification of the blind-testing

accuracies of the trained diffractive models, three different

test image datasets (never used during the training) were

created, with each dataset containing 100K images. These

three distinct test datasets (named Te1, Te50, and Te90)

contain image samples that take contributions from 1%

(Te1), 50% (Te50), and 90% (Te90) of the points defining

each image data class (see Fig. 3).

Figure 4 illustrates the blind classification accuracies

achieved by the different diffractive network models that

we trained. We see that as the number of diffractive

surfaces in the network increases, the testing accuracies

achieved by the final diffractive design improve sig-

nificantly, meaning that the linear transformation space

covered by the diffractive network expands with the

addition of new trainable diffractive surfaces, in line with

our former theoretical analysis. For instance, while a dif-

fractive image classification network with a single phase-

only (complex) modulation surface can achieve 24.48%

(27.00%) for the test image set Te1, the three-layer ver-

sions of the same architectures attain 85.2% (100.00%)

blind-testing accuracies, respectively (see Fig. 4a, b).

Figure 5 shows the phase-only diffractive layers com-

prising the 1- and 3-layer diffractive optical networks that

are compared in Fig. 4a; Fig. 5 also reports some

exemplary test images selected from Te1 and Te50, along

with the corresponding intensity distributions at the

output planes of the diffractive networks. The comparison

between two- and three-layer diffractive systems also

indicates a similar conclusion for the test image set, Te1.

However, as we increase the number of point sources

contributing to the test images, e.g., for the case of Te90,

the blind-testing classification accuracies of both the two-

and three-layer networks saturate at nearly 100%, indi-

cating that the solution space of the two-layer network

already covers the optical transformation required to

address this relatively easier image classification problem

set by Te90.

A direct comparison between the classification

accuracies reported in Fig. 4a–d further reveals that the
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Fig. 3 Spatially encoded image classification dataset. a Nine image data classes are shown (presented in different colors), defined inside the input

field-of-view (80λ × 80λ). Each λ × λ area inside the field-of-view is randomly assigned to one image data class. An image belongs to a given data class

if and only if all of its nonzero entries belong to the pixels that are assigned to that particular data class. b The layout of the nine class detectors

positioned at the output plane. Each detector has an active area of 25λ × 25λ, and for a given input image, the decision on class assignment is made

based on the maximum optical signal among these nine detectors. c Side view of the schematic of the diffractive network layers, as well as the input

and output fields-of-view. d Example images for nine different data classes. Three samples for each image data class are illustrated here, randomly

drawn from the three test datasets (Te1, Te50, and Te90) that were used to quantify the blind inference accuracies of our diffractive network models

(see Fig. 4)
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phase-only modulation constraint relatively limits the

approximation power of the diffractive network since it

places a restriction on the coefficients of the basis vectors,

hij. For example, when a two-layer, phase-only diffractive

network is trained with Tr1 and blindly tested with

the images of Te1, the training and testing accuracies are

obtained as 78.72% and 78.44%, respectively. On the other

hand, if the diffractive surfaces of the same network

architectures have independent control of the transmis-

sion amplitude and phase value of each neuron of a given

surface, the same training (Tr1) and testing (Te1) accuracy

values increase to 97.68% and 97.39%, respectively.

As discussed in our earlier theoretical analysis, an alter-

native strategy to increase the all-optical processing cap-

abilities of a diffractive network is to increase N, the number

of neurons per diffractive surface. We also numerically

investigated this scenario by training and testing another

diffractive image classifier with a single surface that contains

122.5K neurons, i.e., it has more trainable neurons than the

3-layer diffractive designs reported in Fig. 4. As demonstrated

in Fig. 4, although the performance of this larger/wider dif-

fractive surface surpassed that of the previous, narrower/

smaller 1-layer designs with 40K trainable neurons, its blind-

testing accuracy could not match the classification accuracies

achieved by a 2-layer (2 × 40K neurons) network in both the

phase-only and complex modulation cases. Despite using

more trainable neurons than the 2- and 3-layer diffractive

designs, the blind inference and generalization performance

of this larger/wider diffractive surface is worse than that of

the multisurface diffractive designs. In fact, if we were to

further increase the number of neurons in this single dif-

fractive surface (further increasing the effective NA of the

diffractive network), the inference performance gain due to

these additional neurons that are farther away from the

optical axis will asymptotically go to zero since the corre-

sponding k vectors of these neurons carry a limited amount

of optical power for the desired transformations targeted

between the input and output FOVs.

Another very important observation that one can make in

Fig. 4c, d is that the performance improvements due to the

increasing number of diffractive surfaces are much more

pronounced for more challenging (i.e., limited) training

image datasets, such as Tr2. With a significantly smaller

number of training images (6.4K images in Tr2 as opposed

to 200K images in Tr1), multisurface diffractive networks

trained with Tr2 successfully generalized to different test

image datasets (Te1, Te50, and Te90) and efficiently learned

the image classification problem at hand, whereas the

single-surface diffractive networks (including the one with

122.5K trainable neurons per layer) almost entirely failed to

generalize; see, e.g., Fig. 4c, d, the blind-testing accuracy

values for the diffractive models trained with Tr2.
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Fig. 4 Training and testing accuracy results for the diffractive surfaces that perform image classification (Fig. 3). a The training and testing

classification accuracies achieved by optical network designs composed of diffractive surfaces that control only the phase of the incoming waves; the

training image set is Tr1 (200K images). b The training and testing classification accuracies achieved by optical network designs composed of

diffractive surfaces that can control both the phase and amplitude of the incoming waves; the training image set is Tr1. c, d Same as in

a, b, respectively, except that the training image set is Tr2 (6.4K images). N= 40K neurons, and mN= 122.5K neurons, i.e., m > 3
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Next, we applied our analysis to a widely used, standard

image classification dataset and investigated the perfor-

mance of diffractive image classification networks com-

prising one, three, and five diffractive surfaces using the

CIFAR-10 image dataset49. Unlike the previous image

classification dataset (Fig. 3), the samples of CIFAR-10

contain images of physical objects, e.g., airplanes, birds,

cats, and dogs, and CIFAR-10 has been widely used for

quantifying the approximation power associated with

various deep neural network architectures. Here, we

assume that the CIFAR-10 images are encoded in the

phase channel of the input FOV that is illuminated with a

uniform plane wave. For deep-learning-based training of

the diffractive classification networks, we adopted two
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Fig. 5 One- and three-layer phase-only diffractive network designs and their input–output-intensity profiles. a The phase profile of a single

diffractive surface trained with Tr1. b Same as in a, except that there are three diffractive surfaces trained in the network design. c The output-intensity

distributions for the 1- and 3-layer diffractive networks shown in a and b, respectively, for different input images, which were randomly selected from

Te1 and Te50. A red (green) frame around the output-intensity distribution indicates incorrect (correct) optical inference by the corresponding

network. N= 40K.
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different loss functions. The first loss function is based on

the mean-squared error (MSE), which essentially for-

mulates the design of the all-optical object classification

system as an image transformation/projection problem,

and the second one is based on the cross-entropy loss,

which is commonly used to solve the multiclass separa-

tion problems in the deep-learning literature (refer to

“Materials and methods” for details).

The results of our analysis are summarized in Fig. 6a, b,

which report the average blind inference accuracies along

with the corresponding standard deviations observed over

the testing of three different diffractive network models

trained independently to classify the CIFAR-10 test ima-

ges using phase-only and complex-valued diffractive sur-

faces, respectively. The 1-, 3-, and 5-layer phase-only

(complex-valued) diffractive network architectures can

attain blind classification accuracies of 40.55∓ 0.10%

(41.52∓ 0.09%), 44.47∓ 0.14% (45.88∓ 0.28%), and

45.53∓ 0.30% (46.84∓ 0.46%), respectively, when they are

trained based on the cross-entropy loss detailed in

“Materials and methods”. On the other hand, with the use

of the MSE loss, these classification accuracies are

reduced to 16.25 ∓ 0.48% (14.92∓ 0.26%), 29.08∓ 0.14%

(33.52∓ 0.40%), and 33.67 ∓ 0.57% (34.69∓ 0.11%),

respectively. In agreement with the conclusions of our

previous results and the presented theoretical analysis, the

blind-testing accuracies achieved by the all-optical dif-

fractive classifiers improve with increasing the number of

diffractive layers, K, independent of the loss function used

and the modulation constraints imposed on the trained

surfaces (see Fig. 6).

Different from electronic neural networks, however,

diffractive networks are physical machine-learning plat-

forms with their own optical hardware; hence, practical

design merits such as the signal-to-noise ratio (SNR) and

the contrast-to-noise ratio (CNR) should also be con-

sidered, as these features can be critical for the success of

these networks in various applications. Therefore, in

addition to the blind-testing accuracies, the performance

evaluation and comparison of these all-optical diffractive

classification systems involve two additional metrics that

are analogous to the SNR and CNR. The first is the
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Fig. 6 Comparison of the 1-, 3-, and 5-layer diffractive networks trained for CIFAR-10 image classification using the MSE and cross-entropy

loss functions. a Results for diffractive surfaces that modulate only the phase information of the incoming wave. b Results for diffractive surfaces that

modulate both the phase and amplitude information of the incoming wave. The increase in the dimensionality of the all-optical solution space with

additional diffractive surfaces of a network brings significant advantages in terms of generalization, blind-testing accuracy, classification efficiency,

and optical signal contrast. The classification efficiency denotes the ratio of the optical power detected by the correct class detector with respect to

the total detected optical power by all the class detectors at the output plane. Optical signal contrast refers to the normalized difference between the

optical signals measured by the ground-truth (correct) detector and its strongest competitor detector at the output plane
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classification efficiency, which we define as the ratio of the

optical signal collected by the target, ground-truth class

detector, Igt, with respect to the total power collected by

all class detectors located at the output plane. The second

performance metric refers to the normalized difference

between the optical signals measured by the ground-

truth/correct detector, Igt, and its strongest competitor,

Isc, i.e., ðIgt � IscÞ=Igt ; this optical signal contrast metric is,

in general, important since the relative level of detection

noise with respect to this difference is critical for trans-

lating the accuracies achieved by the numerical forward

models to the performance of the physically fabricated

diffractive networks. Figure 6 reveals that the improve-

ments observed in the blind-testing accuracies as a

function of the number of diffractive surfaces also apply to

these two important diffractive network performance

metrics, resulting from the increased dimensionality of

the all-optical solution space of the diffractive network

with increasing K. For instance, the diffractive network

models presented in Fig. 6b, trained with the cross-

entropy (or MSE) loss function, provide classification

efficiencies of 13.72∓ 0.03% (13.98∓ 0.12%), 15.10∓

0.08% (31.74∓ 0.41%), and 15.46∓ 0.08% (34.43∓ 0.28%)

using complex-valued 1, 3, and 5 layers, respectively.

Furthermore, the optical signal contrast attained by the

same diffractive network designs can be calculated as

10.83∓ 0.17% (9.25∓ 0.13%), 13.92∓ 0.28% (35.23∓

1.02%), and 14.88∓ 0.28% (38.67∓ 0.13%), respectively.

Similar improvements are also observed for the phase-

only diffractive optical network models that are reported

in Fig. 6a. These results indicate that the increased

dimensionality of the solution space with increasing K

improves the inference capacity as well as the robustness

of the diffractive network models by enhancing their

optical efficiency and signal contrast.

Apart from the results and analyses reported in this sec-

tion, the depth advantage of diffractive networks has been

empirically shown in the literature for some other applica-

tions and datasets, such as, e.g., image classification38,40 and

optical spectral filter design42.

Discussion
In a diffractive optical design problem, it is not

guaranteed that the diffractive surface profiles will

converge to the optimum solution for a given (N, K)

configuration. Furthermore, for most applications of

interest, such as image classification, the optimum

transformation matrix that the diffractive surfaces need

to approximate is unknown; for example, what defines

all the images of cats versus dogs (such as in the

CIFAR-10 image dataset) is not known analytically to

create a target transformation. Nonetheless, it can be

argued that as the dimensionality of the all-optical

solution space, and thus the approximation power of

the diffractive surfaces, increases, the probability of

converging to a solution satisfying the desired design

criteria also increases. In other words, even if the

optimization of the diffractive surfaces becomes trap-

ped in a local minimum, which is practically always the

case, there is a greater chance that this state will be

closer to the globally optimal solution(s) for deeper

diffractive networks with multiple trainable surfaces.

Although not considered in our analysis thus far, an

interesting future direction to investigate is the case where

the axial distance between two successive diffractive sur-

faces is made much smaller than the wavelength of light,

i.e., d≪ λ. In this case, all the evanescent waves and the

surface modes of each diffractive layer will need to be

carefully taken into account to analyze the all-optical

processing capabilities of the resulting diffractive network.

This would significantly increase the space-bandwidth

product of the optical processor as the effective neuron

size per diffractive surface/layer can be deeply sub-

wavelength if the near-field is taken into account. Fur-

thermore, due to the presence of near-field coupling

between diffractive surfaces/layers, the effective transmis-

sion or reflection coefficient of each neuron of a surface

will no longer be an independent parameter, as it will

depend on the configuration/design of the other surfaces. If

all of these near-field-related coupling effects are carefully

taken into consideration during the design of a diffractive

optical network with d≪ λ, it can significantly enrich the

solution space of multilayer coherent optical processors,

assuming that the surface fabrication resolution and the

SNR as well as the dynamic range at the detector plane are

all sufficient. Despite the theoretical richness of near-field-

based diffractive optical networks, the design and imple-

mentation of these systems bring substantial challenges in

terms of their 3D fabrication and alignment, as well as the

accuracy of the computational modeling of the associated

physics within the diffractive network, including multiple

reflections and boundary conditions. While various elec-

tromagnetic wave solvers can handle the numerical analysis

of near-field diffractive systems, practical aspects of a fab-

ricated near-field diffractive neural network will present

various sources of imperfections and errors that might

force the physical forward model to significantly deviate

from the numerical simulations.

In summary, we presented a theoretical and numerical

analysis of the information-processing capacity and function

approximation power of diffractive surfaces that can com-

pute a given task using temporally and spatially coherent

light. In our analysis, we assumed that the polarization state

of the propagating light is preserved by the optical modula-

tion on the diffractive surfaces, and that the axial distance

between successive layers is kept large enough to ensure that

the near-field coupling and related effects can be ignored in

the optical forward model. Based on these assumptions, our
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analysis shows that the dimensionality of the all-optical

solution space provided by multilayer diffractive networks

expands linearly as a function of the number of trainable

surfaces, K, until it reaches the limit defined by the target

input and output FOVs, i.e., minðN2
FOV; ½

PK
k¼1 NLk ��

K � 1ð ÞÞ, as depicted in Eq. (7) and Fig. 2. To numerically

validate these conclusions, we adopted a deep-learning-based

training strategy to design diffractive image classification

systems for two distinct datasets (Figs. 3–6) and investigated

their performance in terms of blind inference accuracy,

learning and generalization performance, classification effi-

ciency, and optical signal contrast, confirming the depth

advantages provided by multiple diffractive surfaces com-

pared to a single diffractive layer.

These results and conclusions, along with the underlying

analyses, broadly cover various types of diffractive surfaces,

including, e.g., metamaterials/metasurfaces, nanoantenna

arrays, plasmonics, and flat-optics-based designer surfaces.

We believe that the deeply subwavelength design features of,

e.g., diffractive metasurfaces, can open up new avenues in the

design of coherent optical processers by enabling indepen-

dent control over the amplitude and phase modulation of

neurons of a diffractive layer, also providing unique oppor-

tunities to engineer the material dispersion properties as

needed for a given computational task.

Materials and methods
Coefficient and basis vector generation for an optical

network formed by two diffractive surfaces

Here, we present the details of the coefficient and basis

vector generation algorithm for a network having two dif-

fractive surfaces with the neurons (NL1,NL2) to show that it is

capable of forming a vectorized transformation matrix in an

NL1+NL2− 1-dimensional subspace of an N2
FOV-dimen-

sional complex-valued vector space. The algorithm depends

on the consumption of the transmittance values from the

first or the second diffractive layer, i.e., T1 or T2, at each step

after its initialization. A random neuron is first chosen from

T1 or T2, and then a new basis vector is formed. The chosen

neuron becomes the coefficient of this new basis vector,

which is generated by using the previously chosen trans-

mittance values and appropriate vectors from hij (Eq. (5)).

The algorithm continues until all the transmittance values

are assigned to an arbitrary complex-valued coefficient and

uses all the vectors of hij in forming the basis vectors.

In Table 1, a pseudocode of the algorithm is also presented.

In this table, C1,k and C2,k represent the sets of transmittance

values that include t1,i and t2,j, which were not chosen before

(at time step k), from the first and second diffractive surfaces,

respectively. In addition, ck= t1,i in Step 7 and ck= t2,j in Step

10 are the complex-valued coefficients that can be inde-

pendently determined. Similarly, bk ¼
P

t2;j=2C2;k
t2;jhij and

bk ¼
P

t1;i=2C1;k
t1;ihij are the basis vectors generated at each

step, where t1;i=2C1;k and t2;j=2C2;k represent the sets of

coefficients that are chosen before. The basis vectors in Steps

7 and 10 are formed through the linear combinations of the

corresponding hij vectors.

By examining the algorithm in Table 1, it is straightfor-

ward to show that the total number of generated basis

vectors is NL1+NL2− 1. That is, at each time step k, only

one coefficient either from the first or the second layer is

chosen, and only one basis vector is created. Since there are

NL1+NL2-many transmittance values where two of them

are chosen together in Step 1, the total number of time steps

(coefficient and basis vectors) becomes NL1+NL2− 1. On

the other hand, showing that all the NL1NL2-many hij vectors

are used in the algorithm requires further analysis. Without

loss of generality, let T1 be chosen n1 times starting from the

time step k= 2, and then T2 is chosen n2 times. Similarly, T1

and T2 are chosen n3 and n4 times in the following cycles,

respectively. This pattern continues until allNL1+NL2-many

transmittance values are consumed. Here, we show the

partition of the selection of the transmittance values from T1

and T2 for each time step k into s-many chunks, i.e.,

k ¼ 2; 3; ¼
|fflfflfflffl{zfflfflfflffl}

n1

; ¼
|{z}

n2

; ¼
|{z}

n3

; ¼
|{z}

n4

; ¼ ; ¼NL1 þ NL2 � 2;NL1 þ NL2 � 1
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ns

8

<

:

9

=

;

ð8Þ

To show that NL1NL2-many hij vectors are used in the

algorithm regardless of the values of s and ni, we first define

pi ¼ ni þ pi�2 for even values of i � 2

qi ¼ ni þ qi�2 for odd values of i � 1

where p0= 0 and q
−1= 1. Based on this, the total number

of consumed basis vectors inside each summation in

Table 1 (Steps 7 and 10) can be written as

nh ¼ 1þ
Pq1

k¼2

1þ
Pp2þq1

k¼q1þ1

q1 þ
Pq3þp2

k¼p2þq1þ1

ðp2 þ 1Þ þ
Pp4þq3

k¼q3þp2þ1

q3

þ
Pq5þp4

k¼p4þq3þ1

ðp4 þ 1Þ þ
Pp6þq5

k¼q5þp4þ1

q5 þ
Pq7þp6

k¼p6þq5þ1

ðp6 þ 1Þ

þ¼ þ
PNL1þps�2

k¼ps�2þqs�3þ1

ðps�2 þ 1Þ þ
PNL1þNL2�1

k¼NL1þps�2þ1

NL1

ð9Þ

where each summation gives the number of consumed hij
vectors in the corresponding chunk. Please note that

based on the partition given by Eq. (8), qs−1 and ps
become equal to NL1 and NL2− 1, respectively. One can

show, by carrying out this summation, that all the terms

except NL1NL2 cancel each other out, and therefore, nh=

NL1NL2, demonstrating that all the NL1NL2-many hij
vectors are used in the algorithm. Here, we assumed that

the transmittance values from the first diffractive layer are

consumed first. However, even if it were assumed that the
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transmittance values from the second diffractive layer are

consumed first, the result does not change (also see

Supplementary Information Section S4.2 and Fig. S2).

The Supplementary Information and Table S1 also report

an independent analysis of the special case for NL1 ¼ NL2 ¼
Ni ¼ No ¼ N and Table S3 reports the special case of NL2 ¼
Ni ¼ No ¼ N and NL1 ¼ ðK � 1ÞN � ðK � 2Þ, all of which
confirm the conclusions reported here. The Supplementary

Information also includes an analysis of the coefficient and

basis vector generation algorithm for a network formed by

three diffractive surfaces (K= 3) when NL1 ¼ NL2 ¼ NL3 ¼
Ni ¼ No ¼ N (see Table S2); also see Supplementary

Information Section S4.3 and Supplementary Fig. S3 for

additional numerical analysis of K= 3 case, further con-

firming the same conclusions.

Optical forward model

In a coherent optical processor composed of diffractive

surfaces, the optical transformation between a given pair

of input/output FOVs is established through the mod-

ulation of light by a series of diffractive surfaces, which we

modeled as two-dimensional, thin, multiplicative ele-

ments. According to our formulation, the complex-valued

transmittance of a diffractive surface, k, is defined as

t x; y; zkð Þ ¼ a x; yð Þ exp j2πϕ x; yð Þð Þ ð10Þ

where a(x, y) and ϕ(x, y) denote the trainable amplitude

and the phase modulation functions of diffractive layer k.

The values of a(x, y), in general, lie in the interval (0, 1),

i.e., there is no optical gain over these surfaces, and the

dynamic range of the phase modulation is between (0,

2π). In the case of phase-only modulation restriction,

however, a(x, y) is kept as 1 (nontrainable) for all the

neurons. The parameter zk defines the axial location of

the diffractive layer k between the input FOV at z= 0

and the output plane. Based on these assumptions, the

Rayleigh–Sommerfeld formulation expresses the light

diffraction by modeling each diffractive unit on layer k at

(xq, yq, zk) as the source of a secondary wave

wk
q x; y; zð Þ ¼

z � zk

r2
1

2πr
þ

1

jλ

� �

exp
j2πr

λ

� �

ð11Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� xq
� �2

þ y� xq
� �2

þ z � zkð Þ2
q

. Combining

Eqs. (10) and (11), we can write the light field exiting the

qth diffractive unit of layer k+ 1 as

ukþ1
q x; y; zð Þ ¼ t xq; yq; zkþ1

� �
wkþ1
q x; y; zð Þ

X

p2 Sk

ukp xq; yq; zkþ1

� � ð12Þ

where Sk denotes the set of diffractive units of layer k.

From Eq. (12), the complex wave field at the output plane

can be written as

uKþ1 x; y; zð Þ ¼
P

q2 SK

t xq; yq; zK
� �

wK
q x; y; zð Þ

P

p2 SK�1

uK�1
p xq; yq; zK
� �

" #

ð13Þ

where the optical field immediately after the object is

assumed to be u0(x, y, z). In Eq. (13), SK and SK− 1 denote

the set of features at the Kth and (K− 1)th diffractive

layers, respectively.

Image classification datasets and diffractive network

parameters

There are a total of nine image classes in the dataset

defined in Fig. 3, corresponding to nine different sets of

coordinates inside the input FOV, which covers a region

of 80λ × 80λ. Each point source lies inside a region of λ ×

λ, resulting in 6.4K coordinates, divided into nine image

classes. Nine classification detectors were placed at the

output plane, each representing a data class, as depicted in

Fig. 3b. The sensitive area of each detector was set to

25λ × 25λ. In this design, the classification decision was

made based on the maximum of the optical signal col-

lected by these nine detectors. According to our system

architecture, the image in the FOV and the class detectors

at the output plane were connected through diffractive

surfaces of size 100λ × 100λ, and for the multilayer (K > 1)

configurations, the axial distance, d, between two

successive diffractive surfaces was taken as 40λ. With a

neuron size of λ/2, we obtained N= 40K (200 × 200),

Ni= 25.6K (160 × 160), and No= 22.5K (9 × 50 × 50).

For the classification of the CIFAR-10 image dataset, the

size of the diffractive surfaces was taken to be ~106.6λ ×

106.6λ, and the edge length of the input FOV containing

the input image was set to be ~53.3λ in both lateral

directions. Unlike the amplitude-encoded images of the

previous dataset (Fig. 3), the information of the CIFAR-10

images was encoded in the phase channel of the input

field, i.e., a given input image was assumed to define a

phase-only object with the gray levels corresponding to

the delays experienced by the incident wavefront within

the range [0, λ). To form the phase-only object inputs

based on the CIFAR-10 dataset, we converted the RGB

samples to grayscale by computing their YCrCb repre-

sentations. Then, unsigned 8-bit integer values in the Y

channel were converted into float32 values and normal-

ized to the range [0, 1]. These normalized grayscale

images were then mapped to phase values between [0, 2π).

The original CIFAR-10 dataset49 has 50K training and

10K test images. In the diffractive optical network designs

presented here, we used all 50K and 10K images during

the training and testing stages, respectively. Therefore, the

blind classification accuracy, efficiency, and optical signal

contrast values depicted in Fig. 6 were computed over the
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entire 10K test set. Supplementary Fig. S4 and S5

demonstrate 600 examples of the grayscale CIFAR-10

images used in the training and testing phases of the

presented diffractive network models, respectively.

The responsivity of the 10 class detectors placed at the

output plane (each representing one CIFAR-10 data class,

e.g., automobile, ship, and truck) was assumed to be

identical and uniform over an area of 6.4λ × 6.4λ. The

axial distance between two successive diffractive surfaces

in the design was assumed to be 40λ. Similarly, the input

and output FOVs were placed 40λ away from the first and

last diffractive layers, respectively.

Loss functions and training details

For a given dataset with C classes, one way of designing

an all-optical diffractive classification network is to place

C-class detectors at the output plane, establishing a one-

to-one correspondence between data classes and the

optoelectronic detectors. Accordingly, the training of

these systems aims to find/optimize the diffractive sur-

faces that can route most of the input photons, thus the

optical signal power, to the corresponding detector

representing the data class of a given input object.

The first loss function that we used for the training of

diffractive optical networks is the cross-entropy loss,

which is frequently used in machine learning for multi-

class image classification. This loss function acts on the

optical intensities collected by the class detectors at the

output plane and is defined as

L ¼ �
X

c2C

gc log ðocÞ ð14Þ

where gc and oc denote the entry in the one-hot label

vector and the class score of class c, respectively. The class

score oc, on the other hand, is defined as a function of the

normalized optical signals, I′′

oc ¼
exp I 0c
� �

P

c2C expðI 0cÞ
ð15Þ

Equation (15) is the well-known softmax function. The

normalized optical signals I′ are defined as I
maxfIg ´T , where

I is the vector of the detected optical signals for each class

detector and T is a constant parameter that induces a virtual

contrast, helping to increase the efficacy of training.

Alternatively, the all-optical classification design achieved

using a diffractive network can be cast as a coherent image

projection problem by defining a ground-truth spatial

intensity profile at the output plane for each data class and an

associated loss function that acts over the synthesized optical

signals at the output plane. Accordingly, the MSE loss

function used in Fig. 6 computes the difference between a

ground-truth-intensity profile, Icg ðx; yÞ, devised for class c and

the intensity of the complex wave field at the output plane,

i.e., uKþ1 x; yð Þj j
2
. We defined Icgðx; yÞ as

Icgðx; yÞ ¼
1 if x2Dc

x and y2Dc
y

0 otherwise




ð16Þ

where Dc
x and Dc

y represent the sensitive/active area of the

class detector corresponding to class c. The related MSE

loss function, Lmse, can then be defined as

Lmse ¼

Z Z

uKþ1 x; yð Þ
�
�

�
�
2
�Icg x; yð Þ

�
�
�

�
�
�

2

dxdy ð17Þ

All network models used in this work were trained

using Python (v3.6.5) and TensorFlow (v1.15.0, Google

Inc.). We selected the Adam50 optimizer during the

training of all the models, and its parameters were taken

as the default values used in TensorFlow and kept iden-

tical in each model. The learning rate of the diffractive

optical networks was set to 0.001.
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