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 Deep learning is one of the fastest-growing machine learning 

methods (1), and it uses multi-layered artificial neural net-

works implemented in a computer to digitally learn data rep-

resentation and abstraction, and perform advanced tasks, 

comparable to or even superior than the performance of hu-

man experts. Recent examples where deep learning has made 

major advances in machine learning include medical image 

analysis (2), speech recognition (3), language translation (4), 

image classification (5), among others (1, 6). Beyond some of 

these mainstream applications, deep learning methods are 

also being used for solving inverse imaging problems (7–13). 

We introduce an all-optical deep learning framework, 

where the neural network is physically formed by multiple 

layers of diffractive surfaces that work in collaboration to op-

tically perform an arbitrary function that the network can 

statistically learn. While the inference/prediction of the phys-

ical network is all-optical, the learning part that leads to its 

design is done through a computer. We term this framework 

as Diffractive Deep Neural Network (D2NN) and demonstrate 

its inference capabilities through both simulations and exper-

iments. Our D2NN can be physically created by using several 

transmissive and/or reflective layers (14), where each point 

on a given layer either transmits or reflects the incoming 

wave, representing an artificial neuron that is connected to 

other neurons of the following layers through optical diffrac-

tion (Fig. 1A). Following Huygens’ Principle, our terminology 

is based on each point on a given layer acting as a secondary 

source of a wave, the amplitude and phase of which are de-

termined by the product of the input wave and the complex-

valued transmission or reflection coefficient at that point; see 

(14) for an analysis of the waves within a D2NN. Therefore, 

an artificial neuron in a D2NN is connected to other neurons 

of the following layer through a secondary wave that is mod-

ulated in amplitude and phase by both the input interference 

pattern created by the earlier layers and the local transmis-

sion/reflection coefficient at that point. As an analogy to 

standard deep neural networks (Fig. 1D), one can consider 

the transmission/reflection coefficient of each point/neuron 

as a multiplicative “bias” term, which is a learnable network 

parameter that is iteratively adjusted during the training pro-

cess of the diffractive network, using an error back-propaga-

tion method. After this numerical training phase, the D2NN 

design is fixed and the transmission/reflection coefficients of 

the neurons of all the layers are determined. This D2NN de-

sign, once physically fabricated using e.g., 3D-printing, li-

thography, etc., can then perform, at the speed of light, the 

specific task that it is trained for, using only optical diffrac-

tion and passive optical components/layers that do not need 

power, creating an efficient and fast way of implementing 

machine learning tasks. 

In general, phase and amplitude of each neuron can be a 

learnable parameter, providing a complex-valued modulation 

at each layer, which improves the inference performance of 

the diffractive network (fig. S1) (14). For coherent transmis-

sive networks with phase-only modulation, each layer can be 

approximated as a thin optical element (Fig. 1). Through deep 

learning, the phase values of the neurons of each layer of the 

diffractive network are iteratively adjusted (trained) to 
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perform a specific function by feeding training data at the 

input layer and then computing the network’s output 

through optical diffraction. Based on the calculated error 

with respect to the target output, determined by the desired 

function, the network structure and its neuron phase values 

are optimized using an error back-propagation algorithm, 

which is based on the stochastic gradient descent approach 

used in conventional deep learning (14). 

To demonstrate the performance of D2NN framework, we 

first trained it as a digit classifier to perform automated clas-

sification of handwritten digits, from zero to nine (Figs. 1B 

and 2A). For this task, phase-only transmission masks were 

designed by training a 5-layer D2NN with 55,000 images 

(5,000 validation images) from MNIST (Modified National 

Institute of Standards and Technology) handwritten digit da-

tabase (15). Input digits were encoded into the amplitude of 

the input field to the D2NN, and the diffractive network was 

trained to map input digits into ten detector regions, one for 

each digit. The classification criterion was to find the detec-

tor that has the maximum optical signal and this was also 

used as a loss function during the network training (14). 

After its training, the design of the D2NN digit classifier 

was numerically tested using 10,000 images from MNIST test 

dataset (which were not used as part of the training or vali-

dation image sets) and achieved a classification accuracy of 

91.75% (Fig. 3C and fig. S1). In addition to the classification 

performance of the diffractive network, Fig. 3C also reports 

the energy distribution observed at the network output plane 

for the same 10,000 test digits, the results of which clearly 

demonstrate that the diffractive network learned to focus the 

input energy of each handwritten digit into the correct (i.e., 

the target) detector region that it was trained for. As reported 

in figs. S1 and S2, by using complex-valued modulation and 

increasing the number of layers, neurons and connections in 

the diffractive network, our classification accuracy can be fur-

ther improved; for example, figure S2 demonstrates a Lego-

like physical transfer learning behavior for D2NN framework, 

where the inference performance of an already existing D2NN 

can be further improved by adding new diffractive layers to 

it or in some cases by peeling off (i.e., discarding) some of the 

existing layers, where the new layers to be added are trained 

for improved inference (coming from the entire diffractive 

network: old and new layers). Using a patch of 2 layers added 

to an existing and fixed D2NN design (N = 5), we improved 

our MNIST classification accuracy to 93.39% (fig. S2) (14); the 

state-of-the-art convolutional neural network performance 

has been reported as 99.60%-99.77% (16–18). More discussion 

on reconfiguring D2NN designs is provided in (14). 

Following these numerical results, we 3D-printed our 5-

layer D2NN design (Fig. 2A), with each layer having an area 

of 8 × 8 cm, followed by ten detector regions defined at the 

output plane of the diffractive network (Figs. 1B and 3A), and 

tested its inference performance using continuous wave illu-

mination at 0.4 THz (Figs. 2, C and D). Phase values of each 

layer’s neurons were physically encoded using the relative 

thickness of each 3D-printed neuron. Numerical testing of 

this 5-layer D2NN design achieved a classification accuracy of 

91.75% over ~10,000 test images (Fig. 3C), and to quantify the 

match between these numerical testing results and our ex-

periments, we 3D-printed 50 handwritten digits i.e., 5 differ-

ent inputs per digit, selected among the same 91.75% of the 

test images that numerical testing was successful. For each 

input object that is uniformly illuminated with the THz 

source, we imaged the output plane of the D2NN to map the 

intensity distribution for each detector region that is as-

signed to a digit. The results (Fig. 3B) demonstrate the suc-

cess of the 3D-printed diffractive neural network and its 

inference capability: the average intensity distribution at the 

output plane of the network for each input digit clearly re-

veals that the 3D-printed D2NN was able to focus the input 

energy of the beam and achieve a maximum signal at the cor-

responding detector region that was assigned for that digit. 

Despite 3D-printing errors, possible alignment issues and 

other experimental error sources in our set-up (see (14)), the 

match between the experimental and numerical testing of 

our 5-layer D2NN design was found to be 88% (Fig. 3B). This 

relatively small reduction in the performance of the experi-

mental network compared to our numerical testing is espe-

cially more pronounced for the digit “0” since it is 

challenging to 3D-print the large void region at the center of 

the digit; similar printing challenges were also observed for 

other digits that have void regions, e.g., “6”, “8”, “9” (Fig. 3B). 

Next, we tested the classification performance of D2NN 

framework with a more complicated image dataset, i.e., the 

Fashion MNIST (19), which includes ten classes, each repre-

senting a fashion product (t-shirts, trousers, pullovers, 

dresses, coats, sandals, shirts, sneakers, bags, and ankle 

boots; see fig. S3 for sample images). In general, for a coher-

ently illuminated D2NN we can use the amplitude and/or 

phase channels of the input plane to represent data to be clas-

sified. In our digit classification results reported earlier, in-

put objects were encoded using the amplitude channel, and 

to demonstrate the utility of the phase channel of the net-

work input, we encoded each input image corresponding to 

a fashion product as a phase-only object modulation (14). Our 

D2NN inference results (as a function of the number of layers, 

neurons and connections) for classification of fashion prod-

ucts are summarized in figs. S4 and S5. To provide an exam-

ple of its performance, a phase-only and a complex-valued 

modulation D2NN with N = 5 diffractive layers (sharing the 

same physical network dimensions as the digit classification 

D2NN shown in Fig. 2A) reached an accuracy of 81.13% and 

86.33%, respectively (fig. S4). By increasing the number of 

diffractive layers to N = 10 and the total number of neurons 
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to 0.4 million, our classification accuracy increased to 86.60% 

(fig. S5). For convolutional neural net based standard deep 

learning, the state-of-the-art performance for Fashion MNIST 

classification accuracy has been reported as 96.7%, using ~8.9 

million learnable parameters and ~2.5 million neurons (20). 

To experimentally demonstrate the performance of fash-

ion product classification using a physical D2NN, we 3D-

printed our phase-only 5-layer design and 50 fashion prod-

ucts used as test objects (i.e., 5 per class) based on the same 

procedures employed for digit classification diffractive net-

work (Figs. 2A and 3), except that each input object infor-

mation was encoded in the phase channel. Our results are 

summarized in Fig. 4, revealing a 90% match between the 

experimental and numerical testing of our 5-layer D2NN de-

sign, with 5 errors out of 50 fashion products. Compared to 

digit classification (6 errors out of 50 digits, Fig. 3), here we 

got a slightly better match between the experimental and nu-

merical testing results (despite the more challenging nature 

of Fashion MNIST dataset), which might be related to the fact 

that we used the phase channel to encode input image infor-

mation for fashion products, which does not suffer from the 

challenges associated with 3D-printing of void regions, such 

as in digits “0”, “6”, “8”, and “9” (Fig. 3). 

Next, we tested the performance of a phase-only D2NN, 

composed of five 3D-printed transmission layers (Fig. 2B), 

which was trained using ImageNet database (21) to create a 

unit-magnification image of the input optical field amplitude 

at its output plane (~9 × 9 cm), i.e., the output image has the 

same physical size as the input object (14). As illustrated in 

fig. S6, A and C, the trained network initially connects every 

single amplitude point at the input plane to various neurons 

and features of the following layers, which then focus the 

light back to a point at the output (i.e., image) plane, which 

is, as expected, quite different than the case of free-space dif-

fraction (i.e., without the presence of the diffractive network), 

illustrated in fig. S6, B and D. 

After its training and blind testing, numerically proving 

the imaging capability of the network as shown in figs. S6 

and S7, next we 3D-printed this designed D2NN. Using the 

same experimental set-up shown in Fig. 2, C and D, we im-

aged the output plane of the 3D-printed D2NN for various in-

put objects that were uniformly illuminated by continuous 

wave radiation at 0.4 THz. Fig. S8 summarizes our experi-

mental results achieved with this 3D-printed D2NN, which 

successfully projected unit-magnification images of the input 

patterns at the output plane of the network, learning the 

function of an imaging lens, or a physical auto-encoder. To 

evaluate the point spread function of this D2NN, we imaged 

pinholes with different diameters (1 mm, 2 mm and 3 mm), 

which resulted in output images, each with a full-width-at-

half-maximum (FWHM) of 1.5 mm, 1.4 mm and 2.5 mm, re-

spectively (fig. S8B). Our results also revealed that the printed 

network can resolve a line-width of 1.8 mm at 0.4 THz (cor-

responding to a wavelength of 0.75 mm in air), which is 

slightly worse in resolution compared to the numerical test-

ing of our D2NN design, where the network could resolve a 

line-width of ~1.2 mm (fig. S7C). This experimental degrada-

tion in the performance of the diffractive network can be due 

to e.g., 3D-printing errors, potential misalignments and ab-

sorption related losses in the 3D-printed network (also see 

(14)). 

Optical implementation of learning in artificial neural 

networks is promising due to the parallel computing capabil-

ity and power efficiency of optical systems (22–24). Com-

pared to previous opto-electronics based learning approaches 

(22, 25–27), the D2NN framework provides a unique all-opti-

cal deep learning engine that efficiently operates at the speed 

of light using passive components and optical diffraction. An 

important advantage of D2NNs is that they can be easily 

scaled up using various high-throughput and large-area 3D 

fabrication methods (e.g., soft-lithography, additive manufac-

turing) and wide-field optical components and detection sys-

tems, to cost-effectively reach tens to hundreds of millions of 

neurons and hundreds of billions of connections in a scalable 

and power-efficient manner. For example, integration of 

D2NNs with lensfree on-chip imaging systems (28, 29) could 

provide extreme parallelism within a cost-effective and port-

able platform. Such large-scale D2NNs might be transforma-

tive for various applications, including image analysis, 

feature detection, object classification, and might also enable 

new microscope or camera designs that can perform unique 

imaging tasks using D2NNs. To achieve these, a monolithic 

D2NN design that combines all the layers of the network as 

part of a 3D fabrication method would be desirable. Among 

other techniques, laser lithography based on two-photon 

polymerization (30) can provide a desired solution for creat-

ing such monolithic D2NNs. 
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Fig. 1. Diffractive Deep Neural Networks (D2NN). (A) D2NN comprises multiple transmissive (or reflective) layers, 

where each point on a given layer acts as a neuron, with a complex-valued transmission (or reflection) coefficient. 

These transmission/reflection coefficients of each layer can be trained using deep learning to perform a function 

between the input and output planes of the network. After this learning phase, the D2NN design is fixed, and once it 

is fabricated or 3D-printed, it performs the learned function at the speed of light. We trained and experimentally 

implemented different types of D2NNs: (B) classifier (for handwritten digits and fashion products) and (C) imaging 

lens. (D) A comparison between D2NN and a conventional neural network is presented (also see (14)). Based on 

coherent waves, D2NN operates on complex-valued inputs, with multiplicative bias terms. Weights in a D2NN are 

based on free-space diffraction and determine the coherent interference of the secondary waves that are phase 

and/or amplitude modulated by the previous layers. “ο” refers to a Hadamard product operation. Electronic neural 

network refers to the conventional neural network virtually implemented in computer. 
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Fig. 2. Experimental testing of 3D-printed D2NNs. (A and B) After the training phase, the final designs of five 

different layers (L1, L2,…, L5) of the handwritten digit classifier, fashion product classifier, and the imaging lens D2NNs 

are shown. To the right of the network layers, a picture of the corresponding 3D-printed D2NN is shown. A schematic 

(C) and a picture (D) of the experimental THz setup are shown. An amplifier/multiplier chain was used to generate 

continuous wave radiation at 0.4 THz and a mixer/amplifier/multiplier chain was used for the detection at the output 

plane of the network.  
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Fig. 3. Handwritten digit classifier D2NN. (A) A 3D-printed D2NN successfully classifies handwritten input digits (0, 

1, …,9) based on 10 different detector regions at the output plane of the network, each corresponding to one digit. As 

an example, the output image of the 3D-printed D2NN for a handwritten input of “5” is demonstrated, where the red 

dotted squares represent the trained detector regions for each digit. Other examples of our experimental results are 

also shown in fig. S9. (B) shows the confusion matrix and the energy distribution percentage for our experimental 

results, using 50 different handwritten digits that were 3D-printed (i.e., 5 for each digit) selected among the images 

that numerical testing was successful. (C) is the same as (B), except it summarizes our numerical testing results for 

10,000 different handwritten digits (~1,000 for each digit), achieving a classification accuracy of 91.75% using a 5-

layer design. Our classification accuracy increased to 93.39% by increasing the number of diffractive layers to 7 

using a patch of 2 additional diffractive layers to an existing and fixed D2NN (fig. S2). 
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Fig. 4. Fashion product classifier D2NN. (A) As an example, the output image of the 3D-printed D2NN for a sandal 

input (Fashion MNIST class #5) is demonstrated, where the red dotted squares represent the trained detector 

regions for each fashion product. Other examples of our experimental results are also shown in fig. S10. (B) shows 

the confusion matrix and the energy distribution percentage for our experimental results, using 50 different fashion 

products that were 3D-printed (i.e., 5 per class) selected among the images that numerical testing was successful. 

(C) is the same as (B), except it summarizes our numerical testing results for 10,000 different fashion products 

(~1,000 per class), achieving a classification accuracy of 81.13% using a 5-layer design. By increasing the number of 

diffractive layers to 10, our classification accuracy increased to 86.60% (fig. S5). 
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