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All-optical modulation via nonlinear cascading in type II second-harmonic
generation

G. Assanto,a) Z. Wang, D. J. Hagan, and E. W. VanStryland
Center for Research and Education in Optics and Lasers, University of Central Florida, Orlando,
Florida 32826

~Received 1 May 1995; accepted for publication 4 August 1995!

Utilizing a type II interaction for second-harmonic generation in a crystal of potassium titanyl
phosphate, we experimentally demonstrate the all-optical action of a light modulator with both
signal and output at the same optical wavelength. This modulator is controlled by the intensity of the
injected signal, a characteristic that makes it a suitable candidate for all-optical transistor action and
ultrafast analog processing in transparent networks for telecommunications. ©1995 American
Institute of Physics.

All-optical effects constitute an active area of interest
which is beginning to expand into the research and develop-
ment community. Transparent networks and all-optical real-
time reconfigurable systems have become common concepts
in those areas of investigation dealing with ultrafast
telecommunications.1 Recently, a new spur of activities in
nonlinear optics for all-optical applications has been pro-
moted by the novel, although physically well understood,
concept of large phase shifts via cascading of second-order
nonlinear effects,2,3 partly because of the mature technology
available in second-order materials in comparison to third-
order systems. The cascading nonlinearity, however, is not
only being investigated as a potentially more suitable mecha-
nism for producing phase shifts in all those configurations
for which the optical Kerr effect used to be considered the
optimum candidate,4,5 but it is revealing its peculiar poten-
tials in other areas, such as new solitarylike solutions in
space and time6–8 and analog processing. For the latter, vari-
ous all-optical modulator schemes have been proposed which
rely on the coherent nature of cascading nonlinear
interactions.9–12 One of them, utilizing a weak phase-
modulated second-harmonic seed signal to produce large
throughput changes in the fundamental frequency pump in a
potassium titanyl phosphate~KTP! crystal, has been recently
reported by us.13

In this letter we report, to the best of our knowledge, the
first experimental demonstration of a KTP all-optical transis-
tor which, in contrast to the schemes previously investigated,
does not rely on a specific phase relationship between signal
and pump and, moreover, is capable of producing an ampli-
fied signal at the same optical frequency as the input.

The present scheme for all-optical modulation if based
on type II second-harmonic generation~SHG!, in the case of
unbalanced input components along the spatial directions
corresponding to the allowed propagation eigensolutions in
an anisotropic crystal.12 The equations governing the three-
wave interaction for type II SHG are the classical set describ-
ing parametric generation:

i
dAj~v,j!

dj
5A32 j* ~v,j!,B~2v,j!1kjAj~v,j!,

~1!

i
dB~2v,j!

dj
5A1~v,j!A2~v,j!1kBB~2v,j!,

j51,2,

with Aj and B slowly varying field amplitudes

~in W1/2 m21), kj5b j (v)/xAP, kB5bB(2v)/xAP, j
5zxAP, P the total input power, and x
'4p/ldeff

(2)A1/2ce0n
3 the effective nonlinear coefficient.

These equations, however, encompass a richer phenom-
enology when the initial conditions on the fundamental fre-
quency~FF! waves are nonidentical, i.e., when one of the
input components is larger~weaker! than the other one.12,14

Under these circumstances, the well-known sech2(xz) solu-
tion for the transmission of the FF wave is replaced by a
solution where energy is periodically exchanged between FF
and second harmonic~SH!. This is illustrated in Fig. 1,
where a small imbalance between the FF inputs results in-

a!Visiting from the Department of Electronic Engineering, Terza University
of Rome, Via Eudossiana 18, 00184 Rome, Italy. Electronic mail:
assanto@diewshp1.ing.uniroma1.it

FIG. 1. Total normalized fundamental intensityh(z)5(uA1(z)u2

1uA2(z)u2)/(uA1(0)u21uA2(0)u2) vs distancez/L at phase matching forr
5uA2(0)u2/uA1(0)u251 ~solid line! and r50.9 ~short dashed!. In the latter
case the long-dashed line represents the weaker (uA2(z)u2) component. Total
input excitation wasL2x2P525 atv, and the calculation was carried out
using plane waves and cw fields.
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complete switching of energy from SH to FF waves. While
the caser51 ~balanced FF inputs! corresponds to the stan-
dard type II SHG case~the standard configuration employed
in KTP frequency doublers!, a large transmission change is
introduced forr close~but not equal! to 1. Such occurrence
is more rapid withr and with better high/low contrast the
smaller the wave vector mismatchDb5bB(2v)2b1(v)
2b2(v) characterizing the interaction.12 Moreover, this
throughput variation, as also indicated by Hutchingset al.15

in the framework of frequency nondegenerate interactions, is
insensitive to the phase offset of either FF input components,
lending itself to all-optical transistor action with true~rela-
tive! intensity control.

For the experimental demonstration of this all-optical
modulation scheme, we utilized a 2-mm-thick flux-grown
KTP crystal. The crystal was mounted in an three-axis go-
niometric stage and placed at the waist of a focused Gaussian
beam from a 1.064mmQ-switch mode-locked Nd:YAG laser
producing single, switched-out 26 ps pulses~FWHM! at a
rep-rate of 10 Hz. The laser beam was linearly polarized and
a l/2 waveplate allowed the angular shift of the FF input

field at the entrance of the crystal, so as to control the pro-
jection of the input onto the two orthogonal polarization di-
rections involved in a type II interaction. First, the crystal
and the electric field were aligned in order to maximize
SHG, with an angle of 45° at the input facet. This resulted in
a substantial depletion of the fundamental. We verified that a
waveplate rotation of622.5° about this position resulted in a
negligible amount of second harmonic, even at the largest
power available from the laser source. Then, after placing an
imaging system~53! and a 100mm pinhole at the output of
the crystal in order to reduce~or eliminate! the effects of
spatial averaging, we measured the total throughput versus
waveplate rotation. Such rotation corresponds to a variation
in the ratio between the FF inputs. Figures 2~a! and 2~b!
show the predicted and experimental results, for an input
beam waist (1/e2) of 80 mm and an estimated FF intensity
of 32 GW/cm2. The effective nonlinearity was takendeff

(2)

53.1 pm/V,16 and for the simulation we assumed that a
certain phase mismatch was achieved over a pulse Gaussian
in time but planar in space. The latter assumption is accept-
able in view of the imaging geometry adopted for the mea-

FIG. 2. Fundamental throughputh5(uA1(L)u21uA2(L)u2)/(uA1(0)u2

1uA2(0)u2) vs angle of polarization at the entrance facet of the crystal. 45°
corresponds to balanced excitation, i.e., standard type II SHG.~a! Numerical
calculation including time averaging over a Gaussian pulse and for various
wave vector mismatches;~b! experimental results with 26 ps pulses.

FIG. 3. Fundamental throughputh vs total FF input fluence for a fixed ratio
r>0.98 between the FF components inz50. ~a!Numerical simulation for
DbL50, 0.05p, 0.1p, and time integration;~b! experimental results. A
normalized excitationL2x2P530 corresponds to an intensity of 32 GW/
cm2.
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surement. The FF transmittance was normalized to its linear
value, and no corrections were introduced for angular or tem-
poral walk-off due to crystal birefringence. The results ex-
hibit an abrupt switching feature about 45°, with a transmis-
sion contrast of almost 7:1 for a21° change in input angle
~0.5° waveplate rotation!, i.e., a 1.7% variation in the size of
each FF input component. This corresponds to a throughput
modulation Dh>~0.5–0.075! over 1° rotation ~>42.5%/
degree! or an equivalent ~small signal! amplification
D(uA1(z5L)u21uA2(z5L)u2)/2D(uA2(0)u2)[14 dB. The
slight asymmetry visible in Fig. 2~b! is attributable to the
alignment, but the overall comparison between our simple
model and the experimental results is quite satisfactory for a
mismatchDbL between 0.05 and 0.1p. Similar results are
obtained using two separate input beams.17 The measurement
of an actual small signal amplification, distinguishing the
‘‘pump’’ from the ‘‘signal’’ input, is under way and will be
presented elsewhere.

In order to verify the validity of the model, a different
set of data was collected varying the input excitation to the
crystal, setting the FF component ratio~or, equivalently, the
waveplate angle! to a value corresponding to a transmittance
of '0.3 in Fig. 2~b!. Figures 3~a! and 3~b! show the numeri-
cal and experimental results which, also in this case, are in
good agreement in the same estimated range of wave vector
mismatches.

In summary, we have experimentally demonstrated a
frequency-degenerate second-order nonlinear all-optical tran-
sistor, based on a type II SHG interaction in a KTP crystal.
This result, not yet optimized, is particularly relevant in the
framework of all-optical analog signal processes where an
FF signal coherent with the pump may not be available, and
indicates the feasibility of other schemes based on an inher-
ently ultrafast cascaded nonlinearity. Even though the inten-
sities employed were relatively high, a substantially lower
power budget will be required when employing materials
with higher ‘‘d(2), ’ ’such as the organic crystal MMONS,18

and/or guided-wave geometries.4,5An order of magnitude in-

crease in nonlinearity and/or interaction length would indeed
allow for two/four orders of magnitude reduction in power,
with further reductions possible when using smaller cross
sections and/or shorter pulses.
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He is also grateful to Professor G. Stegeman~CREOL-UCF!
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supported by the National Science Foundation grant ECS
No. 9320398.
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