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Abstract

All-Optical Networks with Sparse Wavelength Conversion
by Suresh Subramaniam

Chairperson of Supervisory Committee: Professor Arun Somani

Electrical Engineering

Wavelength conversion is considered a key capability for improving the efficiency
of wavelength-routed, wavelength-division-multiplexed (WDM) all-optical networks.
We consider networks with an arbitrary number of wavelength converters and de-
velop accurate analytical models of reasonable complexity for evaluating the blocking
performance under a variety of dynamic input traffic. We also consider the problem
of optimally placing a given number of wavelength converters on a path of a network
and develop a dynamic programming algorithm to solve it. This framework is used
to obtain the optimal converter placement in bus and ring topologies. Finally, we
consider the problem of wavelength assignment in fixed-routing networks with no

wavelength conversion and develop efficient heuristics.
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Chapter 1

INTRODUCTION

The evolution of bandwidth demand per user has taken many forms over the years.
To consider an example, the per user bandwidth demand for World Wide Web access
alone has increased eight-fold annually over the last few years [1]. Furthermore, appli-
cations such as medical image transfer, supercomputer visualization, and multimedia
teleconferencing require throughputs on the order of a few Gb/s per user and a few
Tb/s per network. It is projected that the number of gigabit applications will rise
sharply in the future [1]. [t has long been recognized that optical fiber with its almost
limitless bandwidth (about 25 THz or 200 nm in the 1.5x¢m band for single-mode op-
tical fiber) is the most suitable transmission medium for such information transfer
rates. Other characteristics of optical fiber such as the provision of almost complete
immunity from noise (bit error rates of 10~° are achievable) and tight packing den-
sity further enhance its attractiveness. Anticipating the potential benefits of optical
fiber, millions of miles of optical fiber have been installed by long-haul transmission
companies and regional telephone companies. With the development of important
optical access technologies, much of it is being used as point-to-point transmission
links today. These links typically operate at data rates of a few Mb/s and use simple
on-off keyed (OOK) intensity modulation of lasers and direct detection receivers [2].

Likewise, in computer networks, the current generation of optical networks use
optical fiber instead of conventional copper wires as the transmission medium (e.g.,

Distributed Queue Dual Bus (DQDB) and Fiber Distributed Data Interface (FDDI)



[

which have network throughputs = 100 Mb/s). These networks are also called electro-
optic networks [3] or multi-hop networks [4]. In these networks, information is trans-
mitted from one node to another via optical fiber, converted to electronic form and
processed, converted back to optical form, and transmitted to another node, until
the destination node is reached. Even though the use of optical fiber has enabled
higher transmission speeds and lower error rates than achievable using copper wires,
the speed of transmission is limited by the speed of electronics at the network nodes.
Because the total capacity in such networks is time-shared among many users, each
user has to have electronics that run at the aggregate speed of the network, rather
than at the speed of a user. However, the speed of electronic digital circuitry (= 5
Gb/s for GaAs) is such that Th/s networks cannot be realized. This constraint due
to electronics is the infamous “electronic bottleneck”™ [3].

All-optical networks (AONs) get around this bottleneck by limiting optoelectronic
conversion to the periphery of the network (the user nodes). While commercial opti-
cal technology is mature enough for the deployment of optical links, there are several
technological limitations that make an all-optical network conceptually very different
from an electronic network. For instance, the lack of optical memory and the ability
of optical technology to perform only primitive routing functions means that packet
switching as we know it cannot be performed by optical networks today. The chal-
lenge in optical networking over the years has been to develop clever architectural
solutions that hide the technology limitations while achieving the high bandwidths
that applications demand.

The bandwidth of optical fiber far exceeds any single user’s requirements. Sev-
eral multiple access schemes are available for partitioning the fiber bandwidth among
many users. Time Division Multiple Access (TDMA) and Code Division Multiple
Access (CDMA) require very high speed optical and /or electronic circuitry for trans-
mission and synchronization. Currently, the most popular way to effectively access

the fiber bandwidth is Wavelength Division Multiplexing (WDM) [3] in which the



available optical spectrum is partitioned into several channels, each corresponding to
a different wavelength (frequency). In such an access scheme, a channel is operated
at about a Gb/s, and is allocated to a single user or is shared by several users via
Time Division Multiplexing (TDM) or Sub-Carrier Multiplexing (SCM). The basic
devices that are necessary for this mode of access are tunable optical filters, tunable
transmitters, and optical amplifiers. While several hundred channels are theoreti-
cally possible with WDM, current optical technology limits the number of available
wavelength channels to a few tens, typically less than 30.

The first WDM networks that were studied are classified as broadcast-and-seiect
networks, in which the transmission from each network node is broadcast to all nodes.
The desired signal is then extracted from a combination of signals at different wave-
lengths at the receiver. A great amount of research has been performed in studying
broadcast-and-select networks using the wavelength-insensitive passive optical star
coupler [53].

Despite their simplicity, broadcast-and-select networks have two inherent draw-
backs. Firstly, the absence of wavelength selectivity within the network and the
broadcast nature of the network prevent the concurrent use of any wavelength by
more than one session. Secondly, since each signal is broadcast to all the network
nodes, there is a power splitting loss [2]. The simplicity of broadcast-and-select net-
works makes them a very attractive alternative to conventional electronic networks in
the local and metropolitan area settings. However, because of these deficiencies, they
are not suitable for the wide area, much like the way electronic broadcast networks
such as the Ethernet are limited to local-area-network (LAN) and metropolitan-area-
network (MAN) environments.

The development of optical devices that perform wavelength-sensitive routing has
given rise to the wavelength routing concept [6]. At present, switching high-speed
connections via wavelength routing is a promising concept for a wide-area-network

(WAN). Circuit-switched networks employing wavelength routing will be the focus of



study in this dissertation. In Chapter 2, we provide a brief introduction to wavelength
routing and the importance of wavelength conversion in wavelength-routing (also
called wavelength-routed) WDM networks, and discuss the organization of the rest

of the dissertation.



Chapter 2

WAVELENGTH ROUTING

2.1 Wavelength Routing

As mentioned in Chapter 1, wavelength routing uses wavelength sensitive devices
to route the optical signals in the network. Examples of such devices are grating
multiplexers and demultiplexers. Unlike in broadcast networks in which a wavelength
cannot be used by two or more concurrent sessions, wavelength reuse is achievable in
wavelength-routing networks. Wavelengths can be reused as long as no two sessions
that share the same link use the same wavelength at the same time. Wavelength
reuse is a critical characteristic that makes networks employing wavelength routing
very attractive in a WAN.

In a wavelength-routing network, the path of a signal is determined by the location
of the signal transmitter, the wavelength on which it is transmitted, and the state of
the network devices. An example of such a network is shown in Figure 2.1. There
are three sessions that are in progress, one from node 1 to node 4 using wavelength
A1, another from node 2 to node 3 using wavelength A;, and a third from node 1 to
node 3 on A, without any conflict in wavelength usage. Note that A; is used in two
sessions simultaneously while the third session could not use A; because of wavelength
conflict. Also note that a single wavelength is used along the entire path of a session.

A wavelength-routing network may be classified as configurable or fired depending
on the capability of the network devices. In a passive network, the path of a signal
is completely determined by its origin and the wavelength on which it is launched.

Routing occurs by tuning the transmitter/receiver to the appropriate channel and



Figure 2.1: A wavelength-routing network.

then transmitting the information. On the other hand, reconfigurable network devices
can be used for routing in a configurable network. Tunable transceivers are not

required for all-to-all connectivity in such networks.

2.2 Routing Node Architectures

In this section, we review some of the possible architectures for a wavelength-routing

node.

Passive Routing Node

Figure 2.2 [2] is an example of a passive routing node with three wavelengths per
fiber. The signals on different wavelengths arriving at an input port are first de-
multiplexed by a grating demultiplexer, routed, and then multiplexed back on to a
single fiber at the output. This architecture in which each input is connected to each

output on exactly one wavelength is called a latin router [7]. Routing is performed



by transmitting at different wavelengths.
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Figure 2.2: A passive wavelength-routing node.

Configurable Routing Node

The tuning requirements on transceivers and the number of wavelengths necessary
for a given connectivity can be reduced by making the routing node dynamically
reconfigurable [8, 9]. A possible architecture for such a routing node is given in
Figure 2.3 [10].

In this network, the wavelengths on each fiber are first demultiplexed and each
wavelength is connected to a photonic switch [11] dedicated to that wavelength. The
various wavelengths coming out of the switches are then multiplexed back on a single
fiber. In this architecture, F N x N optical space switches are used, where N is the
number of ports and F' is the number of wavelengths per fiber. This architecture
allows two sessions emanating from the node to be on the same wavelength as long as

they are on different output links. An architecture that greatly reduces the hardware
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Figure 2.3: A configurable wavelength-routing node.

is possible if this facility is not required [10]. In this thesis, we assume that the
network is configurable and also that each routing node has arrays of transmitters
and receivers (one transmitter/receiver per wavelength per I/O port) as shown in

Figure 2.3.

2.3 Wavelength Conversion

The discussion up to this point has assumed that a session uses the same wavelength
along its entire path. Wavelength reuse can be improved by relaxing this wavelength
continuity constraint as can be seen from the following example. Consider the network
of Figure 2.1 and suppose the session (1,4) uses A; but the session (2, 3) is established
on Az. Then, with the wavelength continuity constraint, session (1,3) will require a
third wavelength. Without the continuity constraint, session (1,3) can use A; and \,
on its two links as shown in Figure 2.4, thereby saving A3 for a future session. This

requires that node 2 have the capability to not only route the signal on A; on link



(1,2) to link (2,3), but also to convert its wavelength to A;. This capability is called

wavelength conversion or wavelength translation.

Figure 2.4: A wavelength-routing network with wavelength conversion.

A simple way to perform wavelength conversion is to convert the optical sig-
nal to electronic form and retransmit the information on another wavelength. This,
however, reintroduces the electronic bottleneck and is not desirable. All-optical wave-
length conversion techniques include (a) four-wave mixing in semiconductor optical
amplifiers (SOAs) [12], (b) cross-gain modulation in SOAs [13] and (c) cross-phase
modulation in SOAs [14].

Various architectures for wavelength-routing nodes with conversion capability are
presented in [15]. In a node with full wavelength conversion, shown in Figure 2.5,
any wavelength can be converted to any other wavelength since each wavelength on
each link has its own dedicated converter. Each converter is capable of converting an
arbitrary input wavelength to a fixed output wavelength. Note that the size of the

switch now is FFIN x F'N where F is the number of wavelengths and N is the number
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Figure 2.5: A routing node with full wavelength conversion.

A possibly more cost effective solution is to provide partial wavelength conversion
at each node. Two possible structures for partial wavelength conversion are the
following [15]: the share-per-node architecture of Figure 2.6 and the share-per-link
architecture of Figure 2.7.

In the share-per-node architecture, the limited number of wavelength converters
are collected in a single converter bank that can be accessed by all circuits passing
through that node. An extra photonic switch is required to switch the circuits using
the converter bank to their respective output links.

In the share-per-link architecture, there is a converter bank for each output link
and the converters in a single bank are shared only between all the circuits using
the corresponding output link. The amount of switching hardware is reduced in this
architecture at the expense of reduced converter utilization.

Having presented an introduction to wavelength routing and pointed out the role
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Figure 2.7: The share-per-link wavelength-convertible switch architecture.
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of wavelength conversion in wavelength-routing networks, we now present the contri-

butions and the outline of this dissertation.

2.4 Contributions and Outline of the Dissertation

The rest of the dissertation is organized as follows. All-optical wavelength conver-
sion technology is not a commercially feasible technology at present. An important
question that arises then is: How beneficial are wavelength converters in wavelength-
routing networks? We address this question in Chapter 3. The benefits of wave-
length conversion have been studied by assuming three types of traffic models: (a)
static traffic, where all the connection requests are known ahead of time and the
maximum supportable loads with zero, limited, and full wavelength conversion are
compared [16], (b) dynamic traffic, where requests arrive and depart in a fashion such
that the number of sessions on the most congested link does not exceed a certain con-
stant [17], and (c) statistical dynamic traffic, where connection requests arrive and
depart from the network in a random manner. We assume the third traffic model in
this dissertation as we believe that this is more appropriate for a future network whose
traffic cannot be predicted. Several performance models that estimate the benefits
of wavelength conversion under statistical dynamic traffic exist [18, 19, 20, 21, 22].
All of these models have assumed that either there are no wavelength converters in
the network or every node in the network is capable of full wavelength conversion.
Because wavelength converters are expensive devices, a more practical scenario is
one in which there is a limited number of wavelength converters in the network. We
present a general model for analyzing the blocking probability of networks with sparse
wavelength conversion, in which only a fraction of the network nodes is equipped with
full wavelength conversion capability. The model is quite accurate for Poisson traffic
even with sparsely connected topologies such as the ring for which other models do

not perform well. The model’s complexity is modest accounting for the fact that it
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considers link load correlation which cannot be ignored in sparse topologies. As we
will see in Chapter 3, the model can also be used to evaluate the performance of
networks with all nodes having the share-per-node architecture, discussed earlier in
this chapter. A related model to ours is the one presented in [23]. In that work,
the authors assume that a wavelength can be converted to one of only a subset of
wavelengths. However, that model is applicable only to dense topologies and does
not take the dynamics of the traffic fully into account. The effect of non-Poissonian
traffic is studied in Chapter 4 using a simpler version of the performance model in
Chapter 3 and a simple non-Poisson traffic model called the Bernoulli-Poisson-Pascal
(BPP) model.

We show in Chapter 3 that full wavelength conversion at all nodes may not be
necessary for obtaining a desired level of performance, depending on the topology,
number of wavelengths available, traffic, etc. A natural question then is the optimal
placement of a given number of converters in a network. We present in Chapter 5
a dynamic programming solution to obtain the placement of a given number of con-
verters along a path that minimizes the blocking probability. We also present exact
placement results for bus and ring topologies.

In Chapter 6, we consider networks with no wavelength conversion. Routing and
wavelength assignment (RWA), i.e., the selection of an appropriate path and wave-
length, for an arriving connection request is an important issue in circuit-switched
wavelength-routed networks. The wavelength assignment problem does not exist in
networks with full wavelength conversion at every node. Even with static traffic
with given routes, the problem of wavelength assignment to minimize the number of
wavelengths used is NP-complete [24]. For statistical dynamic traffic, it is impossi-
ble to specify an exact RWA policy that minimizes the blocking probability because
of the unpredictability of future traffic. Given the difficult nature of the problem,
one has to resort to heuristics to obtain good solutions. In Chapter 6, we consider

networks with fixed routing and focus on the wavelength assignment problem. We
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present a heuristic that outperforms other known wavelength assignment algorithms,

for Poisson traffic.

Conclusions and directions for future work are presented in Chapter 7.



Chapter 3

AN ANALYTICAL MODEL FOR SPARSE
WAVELENGTH CONVERSION: POISSON TRAFFIC

The focus of this chapter is the blocking performance of wavelength-routing net-
works under Poisson input traffic. There has been considerable interest in obtaining
the call blocking performance of wavelength-routing networks [18, 19, 21, 22, 23, 25].
The performance improvement with wavelength converters is of fundamental impor-
tance to quantify. This improvement depends on the topology of the network, the
traffic demand, and the number of available wavelengths, among other factors. As the
network becomes denser, one would expect the usefulness of converters to decrease,
since the paths get shorter. In the limiting case with a link between every node pair,
wavelength converters have no effect on the blocking performance, since all sessions
are one-hop sessions!. On the other hand, a sparsely connected network tends not to
mix calls well and thus causes a load correlation in successive links. This reduces the
usefulness of wavelength converters [18]. The benefits of conversion are thus largely
dependent on which of the above two effects dominates.

The analytical models proposed in the literature have considered networks in
which there are no converters and those in which all nodes have converters. All-
optical wavelength converters are being prototyped in research laboratories [26], and
are likely to remain costly devices. Therefore, a more practical situation is one in

which wavelength conversion capability is available in a relatively small fraction of

! This assumes that the direct link is always used in this case. If alternate path routing is allowed,

wavelength converters may still be of some benefit.
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nodes. Our model generalizes the previous models in that we consider networks which
have full wavelength conversion capability at an arbitrary fraction of the network
nodes. We call a network that does not have full conversion capability at every node
as one with sparse wavelength conversion.

The literature on the blocking analysis of networks with full or no wavelength
conversion points out the difficulty in accurate accounting of load correlation. In [22],
a model to compute the approximate blocking probability with Poisson traffic input is
presented. As pointed out in [22], that model is inappropriate for networks with sparse
topologies because it does not consider the correlation of wavelength use between
successive links of a path. In [18], a model that takes into account this dependence
is presented. However, it assumes that a wavelength is used on a link with a fixed
probability independently of the other wavelengths, and, therefore, is not numerically
accurate for Poisson traffic. A more accurate version of that model for Poisson traffic
was presented in [25]. Another model presented in [19] considers Poisson input traffic
and uses a Markov chain model with state-dependent arrival rates. It is very accurate,
but the computation of blocking probabilities is very intensive, and the analysis is
tractable only for networks with a few nodes.

In [27], we presented a model for sparse wavelength conversion that improves on
the model presented in [22] by considering link load correlation to a certain extent. In
this chapter, we describe a more accurate model for networks with sparse wavelength
conversion [28]. ‘

We consider circuit-switched networks. Call requests arrive at a node according to
a random point process and an optical circuit is established between the source and
destination for the (random) duration of the call. When all nodes have wavelength
converters, the situation is analogous to trunk switching in digital telephony [29] as
a call arriving on one trunk (wavelength) can be switched to any outgoing trunk, so
long as one is available. On the other hand, in a network without any wavelength

converting nodes, a call arriving at a certain wavelength on an input fiber has to be
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switched to an output fiber at the same wavelength. This requirement of wavelength
continuity increases the probability of call blocking; to honor a call request, it is
necessary that the same wavelength be free on all the links of the circuit.

In Section 3.1, we present a model for computing the blocking performance of net-
works without wavelength converters. The model takes into account the correlation
of wavelength use on successive links. Section 3.2 extends this model to incorporate
the effect of sparse wavelength conversion for an arbitrary topological connectivity.
We then study the blocking performance of ring and mesh-torus networks as exam-
ples of sparse topologies in Sections 3.3 and 3.4 respectively, and the hypercube as
an example of a dense topology in Section 3.5. We notice that there is a good match
between the analytical and simulation results even when the topologies are sparse.
The results of the study are counterintuitive and the effect of wavelength conversion
on the blocking performance of a given network topology cannot be predicted e prior:
without an accurate analysis.

Wavelength-routing is most likely to be used in wide-area-networks (WANs) where
a broadcast-and-select approach to switching ceases to be feasible [30]. The topology
of such a network typically evolves into an irregular physical topology with arbitrary
connection patterns. To model this practical situation, we consider random topologies
in Section 3.6. We evaluate the ensemble average of the blocking probability and study
the effects of connectivity and wavelength conversion. Our conclusions are presented

in Section 3.7.

3.1 An Analytical Model for Path Blocking Performance

In this section, we develop an analytical model that has modest computational re-
quirements and improves upon the previously proposed models of [18] and [22] by
considering real-time input traffic and by incorporating the correlation between the

wavelengths used on successive links of a multilink path. We first assume that there
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is no wavelength conversion. In Section 3.2, we include the effect of wavelength

conversion.

Model Assumptions

The following assumptions are used in our model:

(8]
.

. Call requests arrive at each node according to a Poisson process with rate A.

Each call is equally likely to be destined to any of the remaining nodes.

Call holding time is exponentially distributed with mean 1/yu; the offered load

per station® is p = A/p.

The path used by a call is chosen according to a prespecified criterion (e.g.,
random selection of a shortest path), and does not depend on the state of
the links that make up a path. The call is blocked if the chosen path cannot
accommodate it. Alternate path routing is not allowed. This assumption is used
to simplify the analysis. In practice, alternate routing will probably be used.

Analyses for networks employing alternate routing are presented in [19, 31, 32].

The number of wavelengths, F, is the same on all links. Each node is capable
of transmitting and receiving on any of the F’ wavelengths. Each call requires

a full wavelength on each link it traverses.

Wavelengths are assigned to a session randomly from the set of free wavelengths

on the associated path?3.

2 The words “node” and “station” are used interchangeably throughout this dissertation.

3 Other heuristic wavelength allocation strategies may provide better performance [32], but are

considerably more difficult to analyze.
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First, let us define a wavelength as “free” on a path if that wavelength is not
used on any of the links constituting the path. A wavelength is “busy” on a path
otherwise. The model in [22], called the independence model henceforth, assumes that
the link loads are independent and that the wavelengths used on a link are uniformly
distributed over the entire set of wavelengths, independently of all other links. These
two assumptions result in an overestimation of the blocking probability, as shown
in Section 3.3. The performance estimate is very crude (an inaccuracy of about two
orders of magnitude) for sparsely connected networks such as the ring, and gets better
with increasing connectivity. In this chapter, we propose a model that can be used

to estimate the performance reasonably accurately even for ring topologies.

Notation

We define the following steady-state probabilities that will be used in obtaining the

blocking probabilities.

o Q(wy) = Pr{w; wavelengths are free on a link}.

o S(yslzps) = Pr{ys; wavelengths are free on a link of a path | z,; wavelengths
are free on the previous link of the path}.

o Ulzlys, zps) = Pr{z, calls (wavelengths) continue to the current link from the
previous link of a path | z,; wavelengths are free on the previous link, and y;

wavelengths are free on the current link}.

o R(ngl|xss,ys,2.) = Pr{n; wavelengths are free on a two-hop path | z;; wave-
lengths are free on the first hop of the path, y; wavelengths are free on the
second hop, and z. calls continue from the first to the second hop}.

o TU(ny,ys) = Pr{ny wavelengths are free on an I-hop path and y; wavelengths

are free on hop [}.
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Figure 3.1: Calls arriving and leaving on a two-hop path.

e p; = Pr{an [-hop path is chosen for routing}.

The Conditional Free Wavelength Distribution

In addition to the assumptions stated in Section 3.1, we assume the following in the
analytical model. The load on link z of a path given the loads on links 1, 2, ...,
t — 1, depends only on the load on link ¢ — 1. We therefore call our analytical model
as the (Markovian) correlation model. This analysis differs from the one presented
in [27] which neglected link load correlation. We start by considering a two-hop path
and deriving the conditional free wavelength distribution on the path. In Section 3.1,
we extend the analysis to determine the blocking probability on a path of arbitrary
hop length. To model the correlation between the loads on the two links, we employ
a three-dimensional Markov chain as follows. Referring to Figure 3.1, let C; be the
number of calls that enter the path at node 0 and leave at node 1, let C. be the
number of calls that enter the path at node 0 and continue on to the second link, and
let C,, be the number of calls that enter the path at node 1. Therefore, the number
of calls that use the first link is C; + C. and the number of calls that use the second
link is C; + Chi.

Since the number of calls on a link cannot exceed the total number of available
wavelengths, F', we have C; + C. < F, and C. + C, < F. Suppose the arrival rate
of calls that enter at node 0 and leave at node 1 is )., and the arrival rate of calls

that enter at node 0 and continue on to node 2 is A.. Let the corresponding Erlang



Figure 3.2: The state-space of the three-dimensional Markov chain.

loads be denoted by p. = A./p and p. = A./p, where 1/u is the expected value of
the exponentially distributed call holding time. By the assumption of uniform traffic
distribution, the arrival rate of calls that enter the path at node 1 is the same as the
arrival rate of calls that leave the path at node 1. Cj, C., and C, can therefore be
characterized by a three-dimensional Markov chain, with the state space as shown in
Figure 3.2. Each state is represented by an integer triplet (¢, c.,¢q) (the circles in
Figure 3.2). A, and ). actually change with the state of this Markov chain because
of blocking on other links of the network. This situation is modeled in [19] for the
link-load independence case. Modeling it in our case would considerably complicate
the model (in particular, the steady-state probabilities of (3.1) are very hard to obtain
numerically), and we show later that the loss in accuracy due to our assumption of

constant A, and A. is not significant.



We can now determine the steady-state probability of state (c;, cc, ¢,) as [33],

m(Cl, Cey €n) = F,,_‘J‘F"jf" e 0<a+c<F, 0<c.+e<F  (31)

In the absence of wavelength converters, a call is blocked on a two-hop path if there
is no free wavelength on the path. Now we compute the free wavelength distribution
on a two-hop path. The conditional probability that n; wavelengths are free on a
two-hop path given z;; wavelengths are free on the first link, y; wavelengths are free
on the second link, and z. calls continue from the first link to the second link, is
obtained by simple enumeration as

247\ (Fzpg—2c
R(nslzss,ys 2e) = € )((p_yz’c Sn' )
vs

for min(zss,y5) = ny > max(0,z5r + ys + 2. — F), and is 0 otherwise. We have
assumed here that n; depends only on the numbers z;¢, yf, and z., and not on
how the system reached the state (zs, yy, 2.). Effectively, we have assumed that the
calls are arranged on the two links such that all wavelength configurations that are
possible when the system is in state (zs¢, yy, z.) are equiprobable. Modeling the exact
situation here is very difficult.

Recalling our notation in Section 3.1, the probabilities U(z.|ys, Zps), S(yslzas),
and Q(wy) can be derived using Figure 3.2 as follows:

U(chyf,-'l:pf) = P(Cc=zc I Cn+Cc=F‘y.faCl+Cc=F—$Pf)
T(F —Zps — 26,2, F —y5 — 2¢)
min(F"fpva"yl)

Z W(F — ZTpf — TeyTey F - Y — zc)

Te=0

b

S(yflzpf) = P(Cn+CC=F"yfICI'*‘Cc:F—sz)
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min(F-zp¢,F—~yy)
Z w(F —zp5 — z¢y2e, F — yg — )
J:::O
F-rP! F—z.

Z Z T(F —zpf — ey Tey Tn)

=0 za=0

and

Q(ws) = P(Ci+C.=F —wy)
F—wl F—-l'g

= Z: Z K(F-wf —zcvzcyzn)- (3.2)

Ze=0 za=0

Next, we use the conditional free wavelength distribution to obtain an expression
for the blocking probability (in the absence of wavelength conversion) on a path of

arbitrary hop-length.

Blocking on a Multihop Path

Consider an [-hop path. A call is blocked if there is no free wavelength on the path at
the time of call arrival. Suppose we know the joint probability, T-Y(zs, z,f), that
there are z; free wavelengths on an (I — 1)-hop path and z,5 (> z;s) wavelengths
are free on the last hop of that path. Because of our assumption that the load on
the /th hop is dependent only on the load on the ({ — 1)th hop, the probability of
blocking on the [-hop path can be computed using the results for a two-hop path
derived in Section 3.1. This is done by viewing the first [ — 1 hops as the first hop
and the Ith hop as the second hop of a two-hop path. To complete the recursion, we
need to determine the joint probability of ns free wavelengths on the I-hop path and
ys free wavelengths on the {th hop.
Using the chain rule of probability, we have

F min(F-zp,F-ys) zpf

T (ng,y5) = 3 >

zpr=0 Ze=0 zpr=0

R(nflzss, 2,y U (2ely sy Zog) S(elaps) TV (254, 2pg)- (3.3)

In writing the above, we have used the following facts:
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(i) the number of free wavelengths on the [-hop path is not dependent on the number
of free wavelengths on hop [ — 1 when the number of free wavelengths on the

path consisting of the first [ — 1 hops is given,

(i1) the number of calls that continue from the first to the second link of a two-hop
path depends only on the number of free wavelengths on each of the two hops,

and

(iit) the number of free wavelengths on the second link of a two-hop path is dependent
only on the number of free wavelengths on the first link.

The starting point of the recursion, T)(n;, ys), is zero when n; # y;, and is equal to
the probability of having n free wavelengths on a link, @Q(ny), given by (3.2), when
ny = yy.

The probability of blocking on an [-hop path is simply the probability of finding
no wavelength free on the [-hop path, and is therefore given by Z!f;:o T"W(0,ys). The
network-wide blocking probability in the absence of converters is then computed as

N-1 F
Po=3" % TU0,ys)p
=1 yy=0

for a network of N nodes.

Estimation of Parameters

The analysis in the last two sections can be used to compute the call blocking prob-
ability in a network without wavelength converters. This analysis assumes that the
hop-length distribution, p;, and the arrival rates of calls at a link that continue on to
the next link of a path and of those that do not, A. and A. respectively, are known.
The hop-length distribution is a function of the topology and the routing algorithm
and is easily determined for most regular topologies with shortest-path routing, as

seen in the following sections.
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Typically, the traffic in the network is specified in terms of the set of offered loads
between station pairs. The call arrival rates at links have to be estimated from the
arrival rates of calls to nodes. The complication in estimating the link arrival rates
is that the entire offered load is not carried by the network because of call blocking.
The probability of blocking is, in turn, dependent on the arrival rate to the links.
This leads to a system of coupled non-linear equations called the Erlang map [29].
While solving the Erlang map leads to a more accurate computation of blocking
probabilities, the effect of blocking probabilities on the carried load can be neglected,
especially when these probabilities are small. We take this approach to keep the
analysis simple.

When the blocking probabilities are small, the link arrival rates, A, and A., can
be computed as follows. Consider a network with /V nodes. Let the total arrival rate
of calls at a link be v (= A. + A;). The sum of arrival rates of calls at all links in
the network is yL, where L is the number of links in the network. Since a call uses
a path of expected length H = Y"¥7!Ip;, the sum of arrival rates at all links in the
network is also NAH where X is the call arrival rate at a node. Thus,

y=2 (34)

(For networks that are asymmetric, the arrival rates at all links may not be the same

even if the node arrival rates are the same. In such cases, v is the arrival rate averaged
over all the links in the network.)

Having obtained the total arrival rate per link, we now estimate the arrival rates

Ae and A.. A plausible estimate for the probability of a call leaving the network at a

given node* is 1/H. Now, consider an intermediate node of a path and define an ezit

link of this node as an outgoing link that does not return to the previous node of the

path. Suppose there are k exit links per node. We assume that if a call does not leave

4 The implicit assumption here is that the hop-length of a call is geometrically distributed with

mean F
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the network at the node, it chooses one of the k exit links arbitrarily®>. Therefore,
given a path and a link of the path, the arrival rate of calls that continue on to the
next link of the path can be estimated as

1-1/H

Ac=7 £

(3.5)

Calls that do not continue on to the next link of the path either leave the network or
continue on a different link from the given node. The arrival rate of such calls at the
given link is simply given as

Ae =7 — A (3.6)

It is worthwhile observing at this point that the correlation model we have just
presented subsumes the independence model that assumes that link loads are inde-
pendent. When A, is set to 0 and ). is set to vy, our model greatly simplifies and
reduces to the model presented in [22]. The model in [22] actually solves the Erlang
map and iteratively computes the blocking probabilities. We, however, ignore the
effect of reduced load due to blocking. Incorporating the effect in our model would
not be hard but would complicate the presentation of the model unnecessarily. The
independence model is shown to be inaccurate for sparse topologies in Section 3.3,

and, more importantly, the correlation model is shown to be quite accurate.

3.2 Sparse Wavelength Conversion

In the previous section, we assumed that wavelength converters are absent in the
network. Wavelength converters improve the blocking performance by allowing a
circuit to be established as long as some wavelength is available on each link of
the desired path. To enhance the blocking performance of the network, wavelength

converters are placed at some of the nodes. All the previous analyses in the literature

5 For irregular topologies where the number of exit links may be different for different nodes,

could be taken as the average number of exit links per node.



Figure 3.3: An [-hop path with nodes numbered s,1,2,...,{—1,d.

have considered networks without any converters or networks with converters at every
node. An interesting design alternative that has not been considered previously is one
in which wavelength conversion is available in a subset of network nodes to achieve a
balance between cost and performance.

We model a network with sparse wavelength conversion by assuming that a node
is capable of wavelength conversion with probability ¢ independently of the other
nodes. ¢ is called the conversion density of the network. The number of converter
nodes in an N-node network is thus binomially distributed with an average of V¢
converters, and the blocking performance we obtain is the ensemble average of the
blocking probability over this distribution. This probabilistic approach enables a
single parameter characterization of the wavelength conversion density and eliminates
the unpleasant task of evaluating the performance for each number and placement of
converters.

Note that we assume that a node can either convert any set of wavelengths to any
other, or cannot convert any wavelength. However, our analysis also applies to the
case of limited wavelength conversion per node discussed in [15]. In particular, we
predict the ensemble average blocking performance of the share-per-node architecture
of [15] where the number of conversions at each node is binomially distributed with
a mean of F'Dq, D being the number of links per node.

Consider an [-hop path in a network with conversion density ¢ and let the nodes
on the path be numbered s,1,2,...,1 —1,d, as shown in Figure 3.3.

Let the call blocking probability on the path be denoted by P,,(l)(q). We recursively
compute the call blocking probabilities on paths of different hop lengths. The idea
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behind the recursion is as follows. Suppose node i is the last converter on the l-hop
path. A call is not blocked on the path if (a) the call is not blocked on the first i
hops of the path, and (b) there is a wavelength that is free on the last [ — ¢ hops of
the path. These two events, however, are not independent because the probability
of blocking on the last [ —: hops depends on the number of free wavelengths on hop
(¢ + 1). This depends on the number of free wavelengths on hop ¢ which, in turn, is
dependent on whether the call is blocked on the first 7 hops or not. To analyze this

situation exactly, we introduce the following probabilities. Let

o VW(ns,yslws) =Pr{n; wavelengths are free on an l-hop path and y; wave-
lengths are free on hop ! | wy wavelengths free on the first hop of the path and

no converters along the path}.

o W(yslws) =Pr{y; wavelengths are free on hop ! of an l-hop path | w; wave-
lengths free on the first hop of the path and no converters along the path}.

° Pb(l)(q, ys) =Pr{a call is blocked on an /-hop path and y; wavelengths free on

hop {, when the conversion density is ¢}.

(3.3) can then be modified to give
. FZ Ty
vt )(nfv yrlwg) = z: Z Z R(nflsza Zey Y£) X

Zpy=0ze=0zxy,=0

U(zelys, zp5) S(yslzps) V"2 51, zprlwy ), 3.7)
for { =2,3,...,N — 1, where Z = min(F — z,¢, F — yy). For a one-hop path,

1, if ny =ys = wy,
V(ns,yslwy) = {

0, otherwise.

Furthermore, by summing over all possible values of ny in (3.7), we obtain

174
W(yslwp) = 3= VO(ng,yslwy).
n,=0



The range of the variable ny in the above equation is only up to y; because the
number of free wavelengths on an [-hop path without converters cannot be higher
than the number of free wavelengths on any hop, in particular, hop [.

On a one-hop path, a call is blocked if and only if there is no free wavelength on
the hop. Therefore,

Q(O)r if Yr = 09

0, otherwise,

PN (q,yf) = {

where Q(wy) is the probability that w; wavelengths are free on a link, as given
by (3.2).

For { > 2, the joint probability, P,,(l)(q, yf), can be computed recursively by con-
ditioning on the disjoint events that node 7 is the last converter on the given path of

l hops, t =1,2,...,l — 1. Thus,

Pb“)(q,yf) = P(Blocking and yy free on last hop | no converters in path)

-P(no converters in the path)
-1
+ Y P(Blocking and y; free on last hop | node 7 last converter)

j=P;(node ¢ last converter). (3.8)
When there are no converters, the joint probability of a call being blocked and
ys wavelengths being free on the last hop of an [-hop path is given by T()(0,y/)
(see (3.3)). The first term in (3.8) is thus T()(0,y)(1 — q)'~*. The joint probability,
Y)(i,q,yy), of a call being blocked and y; wavelengths being free on the last hop of
an [-hop path when node ¢ is the last converter is obtained as follows.

Y((z,q,y;) can be written as

Y()(¢,q,y5) = Pr{ys wavelengths free on hop [ | node i last converter } -
Pr{No blocking on first i and on last [ — ¢ hops and y; free wavelengths on hop ! |
node i last converter}.

The probability that y; wavelengths are free on hop ! is Q(ys) and is statistically
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independent of conversion density. Referring to Figure 3.3,

Pr{No blocking on first : and on last | — : hops and y; free wavelengths on hop ! |
node ¢ last converter} = 2,5:0 Zf,:o P(A)P(B)P(C)

where the events A, B, and C are as defined below.

A: Call is not blocked on the first : hops and ks wavelengths are free on hop :.

B: wy wavelengths are free on hop ¢ + 1 given ky wavelengths are free on hop :.

C: Call is oot blocked on the last [ —: hops and y; wavelengths are free on hop [
given that w; wavelengths are free on hop i+ 1 and there are no converters along the
(I —2)-hop path.

Now,

P(A) = Q(ks)— P q,k),
P(B) = S(wyglks), and
P(C) = W (ysws) — VN0, yslwy).

Substituting for P(A), P(B), and P(C), we can now write

Y(i,q,97) = Qys)—

F . F ) .
S (QUks) = PPN g, kr)) 32 S(wylky) (WOyshwys) — VE-(0,y5lwy)). (3.9)
ky=0 wy=0

The resulting Pb(')(q, ys) is given by

=1
Pq,y5) = TO0,y5)(1 — ¢) " + 3. Y (3,4, y5)q(1 — g)¢—*V. (3.10)

i=1
The network call blocking probability when the conversion density is ¢ is then given

by
N-1 F

Pl =Y 3 PP u5)mi-

=1 y!=0

Given a network topology, we first determine the hop-length distribution, p;, and
the number of exit links, k. Then, (3.4), (3.5), and (3.6) are used to obtain the call
arrival rates. The blocking performance can then be studied by using the analysis
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presented in Section 3.1 and this section. In the next four sections, we evaluate the
call blocking performance for the ring, the mesh-torus, the hypercube, and random

topologies.

3.3 Blocking in a Ring Network

In this section, we apply the above analysis to a unidirectional ring network. The
ring is the most sparsely connected network with a given number of nodes® and we
are interested in finding the effect of conversion density on such a network.

To verify the accuracy of the proposed analytical framework, we performed a
simulation study of the call blocking performance in ring networks of different sizes
using the stated assumptions in Section 3.1. Each data point in the simulations was
obtained using 10° call arrivals. We simulated the no-converter (¢ = 0) and full-
converter (¢ = 1) cases and obtained the blocking probability to compare with the
analytical results.

For an N-node unidirectional ring, the probability that an [-hop path is used
for routing a session is, py = TVL-T for 1 <1 < N-1, and k is 1. First, we plot
the call blocking probability against the load per station for a 100-node network
when the number of wavelengths per fiber are 5 and 20 in Figures 3.4(a) and 3.4(b),
respectively. Analytical and simulation results are plotted for the no converter case
(¢ = 0), and the full-converter case (¢ = 1). In both cases, the converter case curves
lie below the corresponding no-converter case curves. The reasonably close match
between the analytical and simulation results and the fact that the analytical results
follow the trend of the simulation results indicate that the model is adequate in
analytically predicting the performance in ring topologies. For comparison, we also

plot the analytical results when A = AH and A. = 0 (independence model). It is seen

§ A star network is equally sparse in terms of the number of links, but has a lower average hop-

length.
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that the independence model severely overestimates the blocking probability’. We
observe that wavelength converters are more useful when the number of wavelengths
per fiber is larger and the load is lower. This can be explained as follows. When
the number of wavelengths is larger, blocking occurs primarily not due to a lack of
resources (wavelengths) but due to the inability of the network to use those resources
efficiently in the absence of conversion. Thus, converters are more useful when the
number of wavelengths is larger. Under heavy loads, blocking occurs primarily due
to a lack of sufficient number of wavelengths and the presence of converters does not
have as much effect as at lighter loads.

Figure 3.5 shows how the analytically obtained blocking probability changes with
wavelength conversion density, g, for several values of F’ for a 20-node (solid lines) and
a 100-node (dashed lines) ring network when the network load is 2 Erlangs (a load of
0.1 per station for the 20-node network and a load of 0.02 per station for the 100-node
network). Two important observations can be made from these curves. Firstly, when
the network has more nodes and/or the number of wavelengths is higher, the blocking
probability drops fast initially with conversion density and then rapidly levels off at
a certain point. Secondly, the density at which the performance begins to level off
increases marginally as the number of wavelengths increases. In contrast, when the
network is smaller, the blocking probability decreases more gradually. In either case,
the decrease in blocking due to conversion density is almost insignificant (relative to
the performance improvement we will see later in a mesh-torus). This leads to the
observation that adding converters is not the solution to increasing the performance
in very sparse networks.

We have also simulated the performance of a ring network with a fixed number N¢q
of converters which are randomly placed over the ring. We do not show the results of

this experiment in order not to impair the clarity of Figure 3.5. These results indicate

" The blocking probabilities are somewhat overestimated in all the curves because of the slight

decrease in carried load due to blocking, which we have ignored.
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Figure 3.4: The blocking probability vs. the load per station for a 100-node ring network.
(3) F =5, and (b) F = 20.



that the ensemble average is a very good approximation for this scenario.

Finally, we plot in Figure 3.6 the number of stations that can be supported for a
blocking probability of 1073 against the conversion density, for different loads. When
the load per station is high (0.05 Erlangs), conversion density has very little effect on
the number of stations that can be supported. This is again due to the limitation of
the resources and not due to lack of efficient utilization of those resources. When the
load becomes lighter (0.01 Erlangs), wavelength conversion helps initially in increasing
the utilization but the performance begins to level off when the limit on resources is

approached.

10" -~ -

0.0 02 04 0.6 08 1.0

Figure 3.5: The blocking probability vs. the converter density for a ring network with a
total network load of 2 Erlangs. Solid lines: N = 20 and p = 0.1, Dashed lines: N =100
and p = 0.02.

3.4 Blocking in a Mesh-Torus Network

We next consider a bidirectional M x M mesh-torus network with N = M? nodes

such as shown in Figure 3.7. A mesh-torus network is more connected than a ring
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Figure 3.6: The converter density vs. the number of stations that can be supported for
a ring network. F =5, P, =1073.

but the average-hop length is still large. For simplicity in computing the hop-length
distribution, we consider only odd values of M. We assume static routing where the
route for a connection is randomly chosen from one of the many shortest path routes
available. With this routing scheme, from any node there are 4! nodes at distance {

ifl<i< M2;l, and 4(M — ) nodes at distance ! if &2:_1_ < | < M — 1. Therefore, we

have
4l M-1
M1 1 S [ =~ T
p=9q ¥ g : (3.11)
e M<lsM-,

and the average hop-length is ©(M). The number of exit links per node, &, is 3. The
blocking performance is then analyzed by using the results of Sections 3.1 and 3.2.
In Figure 3.8, we plot the simulation and analytical (independence and correlation
models) results for a 101 x 101 mesh-torus network with 5 wavelengths per fiber
for the no-converter (¢ = 0) and full-converter (¢ = 1) cases. The results of our

analytical model and the simulation results match very closely. Simulation results
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Figure 3.7: A 5 x 5 bidirectional mesh-torus network.

are reproduced from [22] with permission from the authors. Shortest path X — Y
routing is used in [22]. That routing algorithm yields the same distribution (3.11)
for path lengths as random shortest path routing does. The independence model
is less accurate than our model but not significantly so, indicating that the load
correlation between successive links is very high in sparse networks and decreases
as the network becomes more densely connected. We observe from the figure the
tremendous improvement in performance with wavelength conversion, unlike in the
case of the ring.

In Figures 3.9(a) and 3.9(b), we show the effect of conversion density on the
analytically obtained blocking probability for a 11 x 11 and a 101 x 101 bidirectional
mesh-torus network, respectively. As in the ring, we observe that conversion helps
more when there are more wavelengths per fiber (the blocking probability drops more
steeply with ¢ as the number of wavelengths increases). Furthermore, the advantages

of wavelength conversion are much higher in a larger network, and as the network size
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Figure 3.8: The blocking probability vs. the load per station for a 101 x 101 mesh-torus
network with 5 wavelengths per fiber.

increases, performance increases dramatically initially with conversion density. For
example, we observe from Figure 3.9(b) that, when F' = 5, the blocking probability
drops from 10~! to 1073 as the conversion density increases from 0 to about 0.2,
and then decreases more gradually. When F = 8, a decrease in blocking probability
of two orders of magnitude occurs as ¢ increases from 0 to about 0.1. This not
only suggests that having a converter at every node may be unnecessary to achieve
a certain performance but also that the proportion of converter nodes required is a
function of the size of the network and the number of wavelengths per fiber. However,
unlike in the ring, when there are a large number of wavelengths, the performance
does not level off sharply with increasing conversion density. This suggests that the
utilization of converters is affected more by the large hop-lengths in the mesh than
by the load correlation that dominates in the ring.

Figure 3.10 shows how the number of stations that can be supported increases

with the conversion density. At lighter loads, the advantages of conversion are much
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Figure 3.9: The blocking probability vs. conversion density for (a) a 11 x 11 mesh-torus
with p = 0.5, and (b) a 101 x 101 mesh-torus with p = 0.01.
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more significant than in the case of the ring. (Note that the square root of the number
of stations is plotted on the Y-axis.) This is due to the better mixing of traffic in a
mesh-torus although the paths are shorter than those in the ring,.
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Figure 3.10: The converter density vs. the square root of the number of stations that
can be supported for a bidirectional mesh-torus network. F' = 5, P, = 1073.

3.5 Blocking in a Hypercube Network

We next analyze a well-connected network, the binary hypercube (called hypercube
henceforth). An N(= 2")-node hypercube network has n outgoing links per node.
We assume that one of the shortest paths between the source and destination nodes
is chosen for routing a session. Using this routing scheme, we have

1 n

and the average hop-length is @(n). The number of exit links per node, &k = n — 1.
The blocking performance is then analyzed using the results of Sections 3.1 and 3.2.
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Figure 3.11: The blocking probability vs. the load per station for a hypercube network
when the number of wavelengths per fiber is 5. (a) N = 32, and (b) N = 1024.

Figures 3.11(a) and 3.11(b) show how the performance varies with the load per
station for a 32-node and a 1024-node hypercube, respectively. Again, the converter
case curves lie below the corresponding no-converter case curves. The analysis and
simulation results match very closely. Because of very low load correlation between
successive links, the independence model also predicts the performance accurately,
though not as well as the correlation model. Since hop-lengths are small in a hyper-
cube network, we do not expect converters to be very useful. The figures corroborate
this intuitive observation.

In Figure 3.12, we plot the blocking probability against the converter density for a
1024-node hypercube with a load of 0.1 Erlangs per station. The previous observation
of converters helping more when there are more wavelengths per fiber holds for the

hypercube as well. We also see that the performance improves dramatically with
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an increase in the number of wavelengths. This is a direct consequence of the fact
that the hypercube nodes have very high degrees, and therefore, the total number of

wavelengths in the network grows very rapidly with increasing wavelengths per link.

10"
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Figure 3.12: The blocking probability vs. the converter density for a 1024-node hypercube
network with a load of 0.1 Erlangs per station.

The results of the last three sections lead to the remarkable observation that the
usefulness of converters is a complex function of connectivity. On one hand, when
connectivity is low as in the ring, hop-lengths are large and converters are expected
to be more useful. On the other hand, the load correlation between successive links
is high and this tends to reduce the usefulness of converters [18]. This latter effect
dominates the hop-length effect in the ring. In the hypercube, the hop-lengths are
small. Therefore, even though the load correlation is negligible, converters do not offer
significant advantages. In the mesh network, the load correlation is fairly low while
hop-lengths are large enough so that converters improve performance dramatically.
The benefits of conversion are thus dependent on which of the two effects dominates

in a given topology and are difficult to predict a priori without a detailed analysis
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such as the one we have presented.

3.6 Blocking in Random Topologies

We studied the above networks to gain an understanding of how conversion density
affects the blocking performance under varying degrees of network connectivity. In
this section, we study the performance of a more likely topology for a WAN, namely
an irregular topology. It is very difficult to analytically predict the performance
of a given irregular topology with a particular placement of wavelength converters.
However, it is possible to analyze the (ensemble) average performance of all irregular
network topologies characterized by a given connectivity parameter with a converter
distribution characterized by another parameter.

We employ the following model for a random topology of N nodes. Each of
the possible N(N — 1) directional links exists in the network with probability TVL-I’
independently of all other links. Thus, each node has an average of b outgoing links.
This model does not ensure that the network is connected. However, the model lends
itself to easy analysis of the hop-length distribution and is used in our analysis.

We again assume that one of the shortest paths between the two end-nodes is
chosen arbitrarily for a connection. The hop-length distribution is easily obtained
for the regular topologies discussed but is extremely difficult to compute exactly for
a random network. Exact computation of the probabilities is trivial for one and
two hop paths but for longer paths, the complexity is exponential in the network
size [34]. Asymptotic expressions for the shortest-path distribution are given in [35].
In our analysis, a slight variation of an approximation given in [36] is used. The
approximation has been observed to be accurate for large values of N in simulations.

Given a node, let h; be the average number of nodes that are reached on the /th
hop from the given node, and let T'; be the average fraction of nodes (excluding the

given node) that can be reached in [ or fewer hops. The hop-length distribution is
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computed using the following set of recurrence relations, where p; = hi/(N ~1) is the

probability of an [-hop path:

b hiy
hi = (N—-1)(1—-Ti) [1 - (1 - ﬁ) }

hy
I = Fl_1+N—_i'

with b, = b, and ', = b/(N —1).
The average number of exit links per node can be shown to be

(=gt
L— (1= g)V-2°

We assume a value of b that is sufficiently high to keep the probability of an uncon-
nected network small. For N < 500, a value of b6 > 10 almost ensures connectivity.

We obtain the blocking performance using the analysis of Sections 3.1 and 3.2.
Figure 3.13 shows that wavelength converters do not affect the performance much in
a densely connected random network. A small increase in the number of wavelengths
per link causes a significant improvement in the blocking performance, as shown in
Figure 3.13. This is because of the large number of links in the network. Because of
the abundance of the number of available wavelengths in the network, the blocking
probability never levels off with increasing conversion density. However, the decrease
in blocking with increasing conversion density is only marginal because of the short
hop-lengths.

Figure 3.14 shows the dramatic improvement in performance with network con-
nectivity. In Figure 3.15, we have plotted the blocking probability against the load
per station for the no-converter and full-converter cases when the average out-degree
per node is 10.

Figure 3.16 shows how the maximum number of stations that can be supported so
that the blocking probability is below 10~2 varies with conversion density for different

loads. As before, when the loads are heavy, conversion does not help much. But when



the load is light, conversion is beneficial. However, the benefits of conversion are not
as great as in a less dense network such as the mesh.

The average amount of resources available per node is the average number of
wavelengths available per node. For the random network considered here, this is
equal to the product of the average number of links per node and the number of
available wavelengths per link. Figure 3.17 shows how the blocking performance
varies with the number of wavelengths per link while the network becomes less dense
so that the average amount of resources in the network is held constant. We see that,
when the network is fairly dense (6 > 10 for a 500-node network), it is always better

to have fewer links with more wavelengths per link.

10°
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Figure 3.13: The blocking probability vs. the converter density for a random network.
N =100,b6=10,p = L.
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Figure 3.14: The blocking probability vs. the average out-degree per node for a random
network. N =100,F =4,p=1.
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Figure 3.15: The blocking probability vs. the load per station for a random network.
N =100,F =4,b=10.
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Figure 3.16: The number of stations supported vs. the converter density for a random
network. F = 4,6 = 10.
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Figure 3.17: The blocking probability vs. the number of wavelengths per link for a random
network. N =500, F x b = 64.
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3.7 Conclusions

We have introduced the concept of sparse wavelength conversion in wavelength-
routed, all-optical, circuit-switched networks. To evaluate the blocking performance
of such networks, we have developed an analytical model of modest complexity. We
have shown the model to be accurate for a variety of network topologies by compar-
ing the analytical results with results from simulations. We applied this model to
analyze three regular network topologies with varying degrees of connectivity - ring,
mesh-torus, and hypercube.

An important conclusion of our study is that the usefulness of wavelength convert-
ers depends on the connectivity of the network in a manner that cannot be predicted
by intuition. When the connectivity is low such as in the ring, converters are not
very useful because of the high load correlation. This high correlation implies that the
expected number of links shared by any two sessions is large; conversion merely per-
mutes the wavelengths used by the sessions without greatly increasing the ability to
accommodate a new session. When the connectivity is high such as in the hypercube
or a densely connected random topology, converters are not very beneficial because
of small hop-lengths, despite low load correlation and significant traffic mixing. This
indicates that in a WAN with an irregular topology and a large number of links, the
number of wavelengths is much more important than wavelength conversion capabil-
ity. A mesh-torus network with a degree of connectivity between those of the ring
and the hypercube, remarkably, offers great advantages when wavelength converters
are present. This is because the link load correlation is almost negligible while the
hop-lengths are large compared to the more densely connected hypercube.

The performance improves rapidly as the conversion density increases from zero,
but the rate of improvement typically decreases with increasing conversion density.
The conversion density beyond which the performance improves only marginally de-

pends on the number of wavelengths and the network load. This suggests that placing
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a converter at every node is rarely necessary, if at all. In general, wavelength convert-
ers are more effective when the number of wavelengths is larger and when the load is
lower.

The results of this study point out the importance of a detailed analysis of a given
network topology in determining the number and placement of wavelength converters.
In the next chapter, we extend a simpler version of this model [22, 27] to the case of

non-Poisson traffic and study its impact on the benefits of wavelength conversion.



Chapter 4

AN ANALYTICAL MODEL FOR SPARSE WAVELENGTH
CONVERSION: NON-POISSON TRAFFIC

4.1 Introduction

In the previous chapter, we saw that wavelength conversion significantly improves
the blocking performance in moderately dense networks such as the mesh-torus and
does not have as significant an effect in sparse and very dense topologies such as the
ring and the hypercube. Furthermore, we saw that typically only a small fraction
of routing nodes need to be equipped with conversion capability. Those conclusions
were arrived at by assuming Poisson input traffic. However, the Poisson process may
not be representative of the input traffic in a wide area optical network [37].

The effect of wavelength conversion when the input traffic is non-Poisson needs
to be investigated in order to obtain the sensitivity of the conclusions to the Pois-
son assumption. In this chapter, we study the effect of dynamic non-Poisson traffic
on wavelength conversion by employing the Bernoulli-Poisson-Pascal model [29] and
extending the model in [22, 27]. We evaluate the blocking probability and obtain
the dependence of the blocking performance and the wavelength conversion gain on
network parameters such as conversion density and peakedness of the link traffic.

In Section 4.2, we review the framework for modeling non-Poisson traffic by con-
sidering a single link. Section 4.3 presents a summary of a previous model [22, 27]
that assumes link-load independence and extends it to the case of non-Poisson traffic.
Finally, we use this model to analyze the blocking performance of two networks, the

mesh-torus and the hypercube, in Section 4.4 and present some results. Conclusions
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are presented in Section 4.5.

4.2 The Single Link Model

We first review the necessary background to characterize non-Poisson traffic offered
to a single link.

Consider a single link with F' servers and assume that a superposition of several
traffic streams is offered to this link. We assume that the holding times of the arriving
calls are exponentially distributed and are independent of the arrival process.

Teletraffic models with arbitrary arrival processes are G/M/F/F queues, i.e.,
the arrival process is arbitrary, the service times are exponentially distributed, the
number of servers is F', and there is no waiting room. The nature of the traffic is
thus completely determined by the nature of the arrival process. Two types of arrival
processes have traditionally been studied in queueing theory literature. In the first
approach, the arrival process is such that the queue can be analyzed as a birth-death
process where the interarrival times are exponentially distributed, but dependent on
the state of the system (the number of busy servers). In the second approach, the
interarrival times are independent and identically distributed. These processes, called
renewal processes, are completely characterized by the distribution of the interarrival
times. Note that the Poisson process is a special case of both of the above types of
processes.

Traffic is often characterized by the busy circuit distribution induced by it in
an infinite trunk group [29, 38]. The busy circuit distribution for a general arrival
process is difficult to obtain. More importantly, the exact statistical description of
the interarrival process that will be realistic in future optical networks is very difficult
to ascertain. Instead of attempting to study the effect of specific non-Poisson traffic
types, we employ a moment-matching technique commonly used in teletraffic theory

to study overflow streams in telephone networks.
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Suppose that a few moments of the offered traffic (the busy circuit distribution) are
known. The moment-matching technique consists of choosing an equivalent process
that yields the same moments and whose distribution is easily obtained, and using
that equivalent process to obtain the busy circuit distribution [39, 40, 41, 42]. In
practice, the number of moments that are matched vary from two to four. The two
teletraffic models mentioned above are candidates for the equivalent process.

The earliest and most widely accepted moment-matching method uses two mo-
ments [39, 40] and is the Bernoulli-Poisson-Pascal (BPP) model. This method pro-
vides fairly accurate results and is attractive because of its simplicity and the ease
with which the model parameters can be obtained from the first two moments. For
a more detailed discussion on moment-matching techniques, the reader is referred

to [29].

4.2.1 Definitions and Notation

The following definitions about the input traffic will be used in this chapter. Consider
a single link with infinite servers with calls arriving at a Poisson rate A; when the
system is in state k and exponentially distributed service times with mean 1/u. Let
pr denote the probability that the infinite-server system is in state k£ in the steady

state.

e The offered load is the average number of busy servers, p, when the traffic is

offered to the link with infinite servers.

e Let o? denote the variance of the number of busy servers in the infinite-server
system. The peakedness of the input traffic, Z, is defined as the ratio of the
variance to the average number of busy servers in the infinite-server system,
i.e., Z = o?/p. Peakedness has been used as a measure of a traffic’s deviation

from Poissonian nature [40].
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o A traffic is called smooth, regular, or peaked depending on whether Z is less than,

equal to, or greater than 1, respectively. Note that a Poisson arrival process is

regular.

Now, consider the link with the number of servers limited to F. Let A denote

the Poisson rate of arrival of calls when the system is in state k.

o The carried load is the average number of busy servers, 1, when the input traffic

is offered to the F'-server system.

o The unconditional occupancy distribution is the set of probabilities, pg, that k
servers are busy in the F-server system at an arbitrary instant of time, in the

steady state.

o The arrival occupancy distribution is the set of probabilities, p}., that an arriving

call finds & servers busy in the F-server system, in the steady state.

e The call congestion, B = pf, is the probability that an arriving call finds the
F g

F-server system full, and therefore gets blocked.

When the arrival process is a non-Poisson process, the arrival occupancy distri-
bution is not the same as the unconditional occupancy distribution [29].

Peakedness is an indication of traffic burstiness. In a traffic with Z > 1, arrivals
tend to happen in clusters and tend to find the system more congested than does an
observer. Therefore, in order to carry the same amount of load with peaked traffic
as with Poisson traffic, the number of servers must be increased, sometimes signifi-
cantly [40]. The object of this chapter is to explore the impact of traffic peakedness

on the performance benefits due to wavelength conversion.
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Figure 4.1: The Markov chain for the Pascal model.

4.2.2 The BPP Model

In the following discussion, we present the BPP model of [39] and compute the arrival
occupancy distribution using the model.

The BPP model consists of replacing an arbitrary arrival process by another pro-
cess with the same first two moments (offered load and peakedness) for which the
arrival occupancy can be obtained analytically. The Bernoulli, Poisson, or Pascal
model is used when Z is less than, equal to, or greater than 1, respectively, as de-

scribed below.

The Pascal Model

Consider a single link with infinite servers where the interarrival times are expo-
nentially distributed and state-dependent. Let the call arrival rate at state z, AT =
a + (1 — a)B for some a > 0 and 0 < 8 < 1. The number of busy servers can be
represented by the Markov chain shown in Figure 4.1.
The stationary probabilities of the infinite server system are given by
=8 E )
pi=\1-~= - .
p) \u g
where @ = §(1 — B). This is the Pascal distribution with mean and variance

p = a

@
o? = -3 (4.1)

where we have set 4 = 1. Hence, Z = 1/(1 — 8) > 1, and the Pascal model can be
used to model a peaked arrival process with arbitrary offered load. Given p and Z,



the arrival process is modeled as the Markov process of Figure 4.1 with u =1, a = p,
and 3=1-1/Z.

We will show later how the arrival occupancy distribution is obtained when the
number of servers is restricted to F. We next proceed to the case with Z < 1 and

discuss how the standard binomial distribution can be used as a model.

The Bernoull: Model

Let a single link with infinite servers be offered traffic from a finite number of sources

n. Consider the Markov chain in Figure 4.2 for some A, u > 0.

An-d
Gy T 3
TS
Figure 4.2: The Markov chain for the Bernoulli model.

The stationary probabilities are given by

Pi= (n) (Aiy)i(xf—n)n_i

which is the Bernoulli (the binomial) distribution!. The mean and peakedness of the

offered traffic are given by

n
Adp

7
Z = ———. 4.2
Nt a (4.2)

Hence, this can be used as a model for smooth traffic. Given an offered load p and

a peakedness Z < 1, the arrival process is assumed to be the process of Figure 4.2

! Note that in [18], the arrival occupancy distribution in the finite-server system was modeled
as a binomial. Here, we are using a binomial to model the unconditional distribution in an

infinite-server system.
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with g =1, and
1-2
z

no= 1 (4.3)
Note that when n above is not an integer, the physical interpretation of n as the
number of sources fails to hold; nevertheless, the model has been found to yield
sufficiently accurate numerical results for congestion probabilities in telephony [39].

A limitation of the Bernoulli model when the number of servers is finite is that
the number of sources n must be at least equal to the number of servers F'. This
places a restriction on the range of Z; in particular, Z > 1 — p/F.

Having presented models to approximate smooth, regular, and peaked traffic,
we now proceed to derive the arrival occupancy distribution when these traffics are

presented to a link where the number of servers is limited to F. This distribution

will be used in analyzing the blocking performance in Section 4.3.

Arrival Occupancy Distribution

Suppose an arrival process is offered to a single link with F servers. We derive below
the arrival occupancy distribution for a general arrival process with state-dependent
exponential interarrival times. Let A; denote the arrival rate of calls when the system
is in state :. Let the departure rate in state : be g;. The BPP model further
assumes [39] that the unconditional occupancy distribution in the F-server system
is a truncated Pascal, Poisson, or binomial distribution. In order to achieve this, we
assume that \; = A7, ¢ =0,1,---, F - 1.

Let P;; denote the conditional probability that an arrival in steady state finds the
system in state ¢ given that the previous arrival found the system in state j. The
arrival occupancy distribution is the solution to the system of linear equations

F
pi=)_piPi, i=0,1,---,F. (4.4)

7=0
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We now determine Pj;. Given that the system was in state j when the previous call
arrived, the system is in state j + 1 immediately after that arrival (except when the
system was in state F' in which case the state is unchanged). The probability that
the next call finds the system in state ¢ is exactly the probability that j + 1 — ¢z calls
depart the system before the new arrival occurs.

Using the properties of the exponential distribution, we can write

rﬂﬁﬁzgﬂh 0<i<j<F-1,
b 1<i<F-1,j=i—1,
Fie = J Ml Priy, 0Si<F-1,j=F, (4.5)
e i=F, j=FF—1,
| 0, otherwise,

with the understanding that P_; g = 1.

After some manipulations involving (4.4) and (4.5), we obtain
r A, )
Pi = —DPi-1»y t= 1121"'F- (4'6)
Hi
ph can be determined from Y5, p! = 1. Note the difference between the arrival

occupancy distribution and the unconditional occupancy distribution which satisfies

i )
pi=""pi1, i=12,--F. (4.7)

T

[t is seen that for a Poisson arrival process the two distributions are the same.

It is important to observe that the unconditional occupancy probabilities are
independent of Ar whereas the arrival occupancy probabilities are not. When the
infinite-server system is truncated to an F'-server system, the carried load % can be
computed using the unconditional occupancy distribution as ¢ = Z,-F;o tp;. Moreover,

the carried load ¥ and offered load p are related by

¥ =p(1 - B) (4.8)
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where B is the probability that an arriving call finds all F’ servers busy. Since B = pF,
(4.6) and (4.8) define a relation between A and the unconditional occupancy distri-
bution. It can be shown using p = ¥, ip] that Ar = (X0 pI A} — S50 oi\i)/pF,

where A7 is the arrival rate at state z in the infinite-server system.

4.3 Network Blocking Analysis

In this section, we summarize the network model of [22, 27] and extend it to the case

of non-Poisson traffic using the model presented in Section 4.2.

4.3.1 Model assumptions

The following assumptions, similar to those in the previous chapter, are used in our

model.

1. Calls arrive at each node according to a random process and the offered load is

ps- Each call is equally likely to be destined to any of the remaining nodes.

o

Call holding times are exponentially distributed with unit mean.
3. A shortest-path is chosen randomly to route a call.
4. Each call requires a full wavelength on each link it traverses.

5. The number of wavelengths, F', is the same on all links. Each node is capable

of transmitting and receiving on any of the F' wavelengths.
6. A call is blocked if the chosen path is blocked.

7. Wavelengths are assigned to a session randomly from the set of free wavelengths

on the associated path.
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8. Link loads are statistically independent?.

4{.3.2 Networks without Conversion

Throughout this section, all events regarding the status of wavelengths refer to events
occurring when a call arrives. A wavelength is defined as “free” on a path if that
wavelength is not used on any of the links constituting the path. A wavelength is
“busy” on the path otherwise. First, consider the case of networks with no wavelength
conversion. Given the load per station ps, the load per link p can be computed using

the uniform traffic and shortest-path routing assumptions as
p= Np,F/L, (4.9)

where N is the number of nodes, H is the average path length and L is the number
of links in the network. The arrival occupancy distribution on a single link can be
computed using this value of p for various values of the link peakedness Z using the
analysis of Section 4.2. Note that the actual load carried by each link will be less
than p due to blocking (which in turn depends on p). As we observed in Chapter 3,
ignoring this feedback effect does not produce significantly different results when the
blocking probabilities are low (on the order of 1073), while considerably decreasing
the computation time.

To compute the blocking probabilities in networks without conversion, the dis-
tribution of free wavelengths is required. In a two-hop path, the probability that n
wavelengths are free on the path is obtained as [22, 27]

F F
t® =33 R(nli, j)pr_iPr_; (4.10)

=0 j=0

2 This assumption has been shown to yield accurate blocking probability estimates for Poisson

traffic for the topologies we study in this chapter [28].
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where R(nlz, ) is defined as
(2 C=)
R(nli, ) = 20, (4.11)
(%)
for max(0,i +j — F) < n < min(z, ) and is 0 otherwise.

The free wavelength distribution on an l-hop path can be obtained recursively
using the distribution for the two-hop path by considering the first { — 1 hops as the
first hop and hop ! as the second hop of a two-hop path. The probability of finding
n free wavelengths on an [-hop path is then written as

F F .
() =33 Rinli, )t Ve, (4.12)
=0 j=0
where p! is as obtained in Section 4.2. The probability of blocking on an [-hop path

is given by t((,l).

4.3.3 Networks with Conversion

We model networks with wavelength conversion by assuming that each node is capable
of converting any wavelength to any other with probability ¢, independently of the
other nodes, as in the previous chapter. This leads to a binomial distribution with
mean Nq on the number of converter nodes in the network. The blocking performance
we obtain is the ensemble average of the blocking probability over this distribution.

Consider an [-hop path and let the nodes on the path be numbered s,1,2,...,{—
l,d as shown in Figure 3.3. Let Pbi)(q) denote the probability of blocking on an
i-hop path. P,,(I)(q) is clearly p. P,,(l)(q) can be computed recursively in terms of the

blocking probabilities on paths of fewer hops and on paths with no converters as
Pig) = (1-q) "+

-1 . - .
21— (1= B@)(1 -t )a(1 - g)'~" . (4.13)

The first term is the probability that there are no converters in the intermediate

nodes along the given [-hop path times the probability of blocking in this case (which
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is tg)). The :th term in the series is the probability that node 7 is the last converter
in the given [-hop path times the probability of blocking in this case. The probability
that a call is not blocked in this case is the product of the probability that it is not
blocked on the i-hop path (which is 1 — P,,(i)(q)) and the probability that it is not
blocked on the last { — i hops given there are no wavelength converters on the last

! — 1 hops (whichis 1 — tgl_‘)). The network blocking probability is then computed as

N-1
P(q)= Y PP(g)m (4.14)
=1

where r; is the probability that an [-hop path is chosen to route an arriving call.
Given a network topology with an offered load per station of p,, we first determine
the hop-length distribution r;. The blocking performance for different values of link
trafic peakedness can then be studied by using the analysis presented in Section 4.2
and this section. In the next section, we evaluate the effect of link peakedness on call
blocking performance and wavelength conversion for two regular network topologies

that have different degrees of connectivity — the mesh-torus and the hypercube.

4.4 Performance Results

We study the effects of traffic peakedness on networks with sparse wavelength conver-
sion in two different ways. In the first approach, the blocking probability of a given
network is evaluated as a function of the peakedness and conversion density. In the
second approach, we define the conversion gain G, as the ratio of the offered load
that can be supported with a given value of conversion density q to the load that can
be supported without conversion, for a given blocking probability. The evaluation is
performed on two network topologies — an 11 x 11 mesh-torus and a 128-node binary
hypercube, both with 10 wavelengths per fiber. The mesh-torus has four outgoing
fibers per node and the hypercube has 7(= log, 128) outgoing fibers per node. The
routing is shortest-path routing where each of the possible paths is chosen with equal

probability.
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First, for the mesh network, we plot the blocking probability against the offered
load per station p, for link peakedness values of 1.0, 1.25, and 1.5 in Figure 4.3. Two
observations can made from these figures. One is that for a given value of peakedness,
the curves for no conversion and full conversion are essentially parallel indicating that
the full conversion gain is not a sensitive function of the blocking probability. More
importantly, as the peakedness increases, the supportable loads for a fixed blocking
probability rapidly decrease.

Note that while the link load is simply given by the sum of the node traffic loads
that are superposed on the link, the link peakedness depends on the exact proportions
of the node traffic that are superposed on the link. This results in an interesting
relationship between the peakedness of link traffic and that of node traffic.

Let p, and o? be the mean and variance of the offered traffic at each station.
Counsider an arbitrary link { and let s; be the fraction of the traffic originating at
node ¢ that flows through {. Then, the mean (p({)) and variance (c?({)) of the traffic
offered to link ! can be computed using simple properties of the expectation of a
random variable as

N
p(l) = gsﬂps (4.15)

N
o?(l) = Y [sa(l —sa)ps + (1 — sa)’c3]. (4.16)

=1
Using (4.16), the peakedness of traffic offered to link I, Z(!), is given in terms of the
peakedness of node traffic Z, as

Z() =1+ A()(Z, - 1),

where
Al) & sk 3«1
Zt-l 3:1
Given a topology and routing algorithm, the fractions {s;} have to be determined

to compute Z(!) and p(!) for each link {. Note from the definition of A(l) that it is
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no greater than 1, and therefore, link peakedness is never more than peakedness of
traffic offered to a node. Also note that A(!) is smaller when there is more traffic
mixing.

When the topology is 2 mesh-torus and the routing is random shortest-path rout-
ing, the fractions {s;} are the same for all links, and can be determined by counting
the number of shortest paths between two nodes that use a specific link. Fora 11 x 11
mesh-torus, A(l) turns out to be 0.080347 for all links {. Thus, the station peakedness
values that correspond to link peakedness values of 1,1.25, and 1.5 are, respectively,
1,4.11, and 7.22.

Next, we show the blocking probability as a function of the conversion density for
the mesh and the hypercube in Figures 4.4(a) and 4.4(b), respectively. As pointed out
earlier by several researchers [18, 22, 27, 28], the blocking probability decreases signif-
icantly with Poisson input traffic (Z = 1) when wavelength converters are employed.
From the figures, we observe that as the traffic becomes more peaked, the blocking
probabilities do not diminish as significantly as for Poisson traffic in either topology.
This suggests that peaked traffic decreases the performance gain with wavelength
conversion if it is measured as the decrease in blocking probability with wavelength
conversion.

The graphs can also be used to determine the amount of conversion needed for
a given traffic peakedness and blocking probability. For example, in the mesh with
Poisson input traffic, a conversion density of approximately 40% is sufficient for re-
alizing a blocking probability of 10~ whereas when the link peakedness increases to
1.25, close to 100% conversion is required. The blocking probability is plotted as a
function of link peakedness for different values of conversion density in the hypercube
with a load of p, = 1.0 per station in Figure 4.5. It is observed that the probability
of blocking increases dramatically as the link traffic becomes more peaked. The sit-
uation is similar in the mesh (not shown). This is because of the fact that an arrival

sees a much more congested system with peaked traffic due to its “bursty” nature.
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Figure 4.3: The blocking probability vs. the load per station for the mesh network with
no conversion and full conversion. (a) Z =1.0 (b) Z =1.25 (¢) Z = 1.5.
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Figure 4.4: The blocking probability vs. the conversion density with a load of 1.0 per
station for (a) the mesh, and (b) the hypercube.
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Finally, the conversion gain is plotted against link peakedness in Figure 4.6 for
different values of conversion density in the mesh network. The blocking probability
is maintained at 1073. The graphs show that the gain is fairly insensitive to link
peakedness up to a certain value (about 1.45 in this case) for any value of conversion
density. Beyond this point, the gain dramatically increases. However in the region of
large Z, the loads that can be supported with and without conversior are small (e.g.,
for Z = 1.55, the supportable station loads with no conversion and full conversion
are 0.015 and 0.297, respectively). Therefore even a modest increase in supportable
load with conversion translates to a huge conversion gain (which is a ratio). For the

hypercube (not shown here) the breakaway point occurs at a higher peakedness.

4.5 Conclusions

In this chapter, we have developed a methodology for studying the benefits of wave-
length converters for non-Poisson dynamic traffic. We used the Pascal model which
has been used by teletraffic engineers to characterize the non-Poisson nature of over-
flow traffic from a trunk. We derived the arrival occupancy distribution for this model
and utilized it to analyze the effect of traffic peakedness on wavelength conversion
benefits and call blocking performance.

For the two topologies considered, our models predict that for a fixed load, peaked-
ness dramatically increases the blocking probability, and wavelength conversion can
only mildly alleviate performance degradation. If the metric of interest is the re-
duction in blocking probability with wavelength conversion, then traffic peakedness
reduces the benefits of wavelength conversion (Figure 4.4). However, if the per-
formance metric is the increase in network throughput achievable with wavelength
conversion at a fixed blocking probability, peakedness does not affect the benefits of
wavelength conversion for a large range of peakedness values (Figure 4.6). In this case,

wavelength conversion assumes a more significant role at large peakedness values.
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Chapter 5

ON THE OPTIMAL PLACEMENT OF WAVELENGTH
CONVERTERS

5.1 Introduction

In Chapters 3 and 4, we evaluated the ensemble average blocking performance of
networks with a random number of wavelength converters randomly placed in the
network. In this chapter, we consider a closely related and more practical problem.
Given a network topology, a certain number of converters, and traffic statistics be-
tween the nodes, the problem of interest is the optimal placement of converters in
the network. To our knowledge, there does not exist any published work that ad-
dresses this problem. There are several approaches to this problem depending on the
optimality criterion and the traffic model.

In one approach, the maximum offered traffic (the number of sessions) A,q for
all node pairs (s,d) is given. Let M,y be the actual number of sessions established
between s and d. The problem is to determine the converter locations so that 3~, ; M.
is maximized subject to the wavelength continuity constraint on segments between
successive converters and the traffic demand constraint, i.e., Mgy < A,4. Note that
this problem contains the routing and wavelength assignment (RWA) problem as a
subproblem. The placement problem can be posed as an integer-linear programming
problem (see Appendix A) similar to the formulation given in [10}, which in fact is a
special case of the problem at hand. Previous work has shown that this special case
is an NP-complete problem for arbitrary topologies, and even for rings [24]. Note,

however, that in the case of a bus network, the converter placement problem is trivial
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in this formulation. This is because any set of sessions that can be accommodated with
full wavelength conversion (where every node has a wavelength converter) can also
be accommodated with no wavelength conversion. This follows from the properties
of an interval graph [43].

In this chapter, we assume a dynamic traffic model in which connections arrive
and depart from the network in a random manner and the goal is to place the given
number of converters in the network such that the network call blocking probability is
minimized. We present a dynamic programming solution for minimizing the blocking
probability on a path. This solution is then generalized to bus and ring networks.
Our solution to the problem can be used in conjunction with any performance model
for dynamic traffic. For arbitrary topologies, heuristics based on the approaches
presented here may need to be used.

There are several factors which affect the optimal solution to the converter place-
ment problem. Intuition would suggest that converters be placed at nodes which
process the highest amount of transit traffic. However, placing a converter at a node
that has a high transit traffic rate but does very little mixing (or switching) of traffic
may not be the optimal strategy. On the other hand, if the transit traffic rate at a
node is very low, then the optimal strategy may not place a converter at that node
even if it mixes a significant amount of traffic. Furthermore, the distances between
converters are likely to affect the optimal placement. As the distance between con-
verters increases, the blocking probability increases. Since the number of available
converters is limited, a judicious placement of converters that balances these and
other effects is necessary.

The rest of this chapter is organized as follows. In Section 5.2, we consider a
single path of length H and assume link load independence. The motivation for
studying the placement problem on a path is the following. Converter placement in
an arbitrary network is a hard problem in general and sub-optimal heuristics would

probably be required. In such a case, we envisage the placement process to proceed
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in multiple phases where at each phase a certain number of converters are placed
optimally on a path. Note, however, that because of the interaction between the
paths, the phases may need to be iterated over to obtain a satisfactory solution. It
may also be necessary to place converters on longer paths in the network to provide
quality of service guarantees.

In Section 5.2, we first consider uniform link loads on the path and show that
uniformly spaced converters minimize the blocking probability of an end-to-end call.
We also derive a recurrence relation for the blocking performance when the converters
are placed raadomly along the path. We then obtain an approximate expression for
the utilization gain achievable with uniform/optimal placement relative to random
placement and show that significant gains are achievable with a good placement
policy. Next, we relax the uniform link load assumption and obtain the optimal
solution via dynamic programming. In the last part of the section, we extend the
optimality criterion to take into account the average blocking probability (F;) over
all source-destination ((s,d)) pairs along the path.

In Section 5.3, we consider a bus network. The difference between this and the
path considered in Section 5.2 is that the traffic on the links is entirely due to the
traffic originating at the nodes of the bus network, whereas the link traffic in the
path is possibly due to merging traffic from other parts of the network. The low
connectivity of the bus network induces a strong correlation among link loads. This
is taken into account by modifying the performance model accordingly. The solution
in Section 5.3 can also be used to optimally place converters in a path of an arbitrary
network where link load independence is not justified. In Section 5.4, we extend the
dynamic programming solution for the path to obtain the optimal converter placement
for the ring topology.

The blocking performance model we use primarily in this chapter is the wave-

length independence model of [18] which we refer to as the binomial model because
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Figure 5.1: A path of length H.

the number of busy wavelengths on a link is assumed to be binomially distributed®.
However, as mentioned earlier, the solution technique is independent of the perfor-
mance model and we compare some of the results obtained with the binomial model

and the Poisson model of Chapter 3 in Section 5.5. Conclusions are presented in

Section 35.6.

5.2 Converter Placement in a Path

In this section, we consider a path of length H with negligible correlation between link
loads. We first assume uniform link loads and derive an approximate expression for
the utilization gain achievable by optimal converter placement relative to a random
placement of a given number of converters. We start by considering an end-to-end call
on a path of length H shown in Figure 5.1. Let the nodes along this path be numbered
0,1,..., H, and let the link loads per wavelength be p;, ¢ =0, ..., H—1. That is, the
probability that a given wavelength is occupied on link ¢ is p;, and the wavelength
occupancy events are assumed to be statistically independent of other wavelengths

on the same link and on other links. (This is the binomial model of [18].)

I Note that this model is different from the binomial model of Chapter 4 in which it is the steady-
state distribution of busy wavelengths on a link that is binomial as opposed to occupancy distri-

bution upon arrival.
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5.2.1 Uniform Link Loads

First suppose that p; = p, 1 = 0,1,... H —~ 1. The number of wavelengths on each
link is assumed to be F' and each link has a single fiber. The performance model we
use is obtained by assuming that each wavelength is used on a link with probability
p independently of the other wavelengths [18]2. The goal is to place K converters
among the H — 1 intermediate nodes of the path so that the blocking probability of
an end-to-end call (a call from node 0 to node H) is minimized.

Define a segment to be the set of links between two consecutive converter nodes.
Let [; be the hop-length of the ith segment, ¢ = 0,...,K (nodes 0 and H can
be assumed to contain dummy converters). Let Lx = (lo,#,...,lx-1,lx), where
YA, l; = H, be the vector denoting the hop-lengths of the K + 1 segments, called
the length vector henceforth. The success probability of the call in a subsegment® of
length [, denoted by f(!), is given by

fy=1-1-p"F (5.1)

where g =1 —p.
The success probability of the end-to-end call when the length vector is Lx is
denoted by S(Lk), and is given by

K
S(Lx) = [T £(L)-

=0

opt

Let the length vector in the optimal placement be Lx°, i.e.,

Sopt(H, K) = S(Lx™) = max S(L).
K

2 The average number of busy wavelengths on a link using this model is Fp, the same as would
be obtained by assuming Poisson traffic and ignoring the effects of blocking on carried load. This
model will serve our purpose here. More accurate numerical results for Poisson traffic could be
obtained by choosing the wavelength occupation probability as in [20]. The assumption of random
wavelength assignment to an arriving connection is implicit in this model.

3 Any set of consecutive links of a segment is called a subsegment.



72

where S, (H, K') denotes the success probability of an end-to-end call when K con-
verters are optimally placed along an H-hop path. Suppose (K + 1) divides H. We
show below that [’ = H/(K + 1), i =0,1,..., K, is the optimal length vector. To
prove this, we need to show that [TX, f(If*) = [f(-KH?)]K+l > S(Lx) for any fea-
sible Lx. Equivalently, we must show that In f(KLH) > k—lﬁzﬁo In f(l;) where the
[;’s are the elements of a feasible length vector. This follows from the lemma below
which shows that In f(/) is a concave function of the continuous variable [ € (0, H).
We remark here that the concavity of In f({) is sufficient but not necessary for the
optimality of uniform placement.

Lemma: In f(I) is a concave function of I € (0, H).

Proof: Let g(I) = In f(l). We have the second derivative

1" i 2
(1) = f (l)f(;l(-l-)[f U (5.2)
Evaluating f({), f'({), and f”(l) and substituting in (5.2), we obtain
o = PA=2)0pP(1 - F' = (1= §)7)
) '

Now notice that for every 0 < p < 1 and F > 1, (1 — p')f + Fp' is a non-decreasing

function of [ and is lower bounded by 1. Since the remaining factors are all positive,
g"(h) £ 0. n
The success probability of an end-to-end call under optimal placement is therefore

st ) = 1 (]

= [1 -(1- 5:\%)’11{“ (5.3)
It must be noted that this expression is exact only if (K +1)|H. When this is not the
case, the integral constraint on the segment lengths will make the expression in (5.3)
an upper bound on the actual success probability. In that case, the optimal strategy
is to place the converters as uniformly as possible, i.e., converters are placed so that
there are y = H —a(K +1) segments of length a +1 and K +1 —y segments of length

a where a = |#L5].
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Random Placement

We now derive a recurrence relation for the success probability of the end-to-end
call when the K converters are placed randomly on the path, i.e., each of the (HI: 1)
converter placement configurations is equally likely. Let us define S,(m, ) to be the
success probability of an end-to-end call when j converters are randomly placed along
a path of length m. Then, by conditioning on the position of the converter that is

placed at the lowest node index, we obtain the recursive relationship

m—j m—t—l)

Si(m,j) = Y. f(i)Si(m —i,5 —1) ("_‘) (54)

=1

(m—t—l

for 1 € j < m — 1. Obviously S.(m,0) = f(m). In (5.4), -(-,',,T,T is the probability
that the converter with lowest node index is placed at node ¢. In obtaining (5.4), we
used the fact that all (""‘) possible converter placement configurations, given that
node : is the lowest index node with a converter, are equiprobable.

An approximation to S,.(H, K) can be obtained by assuming that each of the H—1
intermediate nodes is a converter with probability ¢ = mdependently of the other
nodes, as we did in Chapters 3 and 4. As before, we Wlll refer to the parameter ¢
as the converter (or conversion) density of the network. Let this approximation be

denoted by S,(H, q). Then, a recursive relation for S,(m,q) is

Sulm,q) = (1=q)™ f(m) + 3 £(5)Salm—i,)q(1—q)"" (5.5)

=1

for 0 < ¢ <1, and S,(m,0) = f(m). S.(H,q) gives the ensemble average blocking
probability over a binomially distributed number of converters, with expected value
K = q(H — 1), randomly placed among the H —1 nodes. We will show that the
approximation is reasonable by comparing S.(H, K) and S,(H,q) later. Note that
Sa(m, q) is easier to compute than S,(m, ) given in (5.4), because (5.4) is a recursion
in the two variables m and j, while (5.5) is a recursion in one variable (m) only. We
will use this approximation to obtain an approximate expression for the utilization

gain, to be defined shortly.
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To see the benefits of optimal converter placement with respect to random place-
ment, we plot the end-to-end blocking probability (P,) as a function of p for H = 10
and F = 10 and K = 1,2 in Figure 5.2. (Unless otherwise specified, all numerical
results presented in this chapter are for H = 10 and F = 10.) We observe that the
performance with two converters randomly placed is poorer than the performance
with one converter optimally placed. Also notice that the performance difference
between optimal and random placements is slightly enhanced as K increases from 1

to 2.

0.00 0.10 020

Figure 5.2: P, vs. p for optimal/uniform (O) and random (R) placement with K =1
and 2 converters.

The performance effect of the number of converters can be seen more clearly in
Figure 5.3 where P, is plotted against K. Notice that conversion plays a significant
role in improving the blocking probability. This is of course due to link load inde-
pendence and the long path length, as predicted by previous models [18, 22] and our
model of Chapter 3. More importantly, it can be seen that there is a large improve-

ment in performance between random and optimal placement, reaching a maximum
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of more than 2 orders of magnitude at K = 4. Also plotted in Figure 5.3 is the per-
formance when a random number of converters (with mean K) are placed randomly
on the path. This is the model we assumed in the last two chapters because of the
difficulty in obtaining the performance with an exact number of converters placed in
a network of arbitrary topology. We observe that this performance approximates the
performance of random placement of a fixed number of converters reasonably well.
We will find that the ensemble average P, estimate is consistently higher than the
P, with an exact number of converters randomly placed. As expected, all curves
converge at K =0 and K = H — 1. Notice that the R, and O curves also converge
at K = H — 2. This is because random placement of H — 2 converters produces A
segments of length 1 and one segment of length 2. Since link loads are uniform, the
location of this 2-hop segment does not matter and the performance is exactly the
same as obtained by optimally placing H — 2 converters. The effect of the length of
the maximum segment on P, is worth mentioning here. Consider the O curve. The
length of the maximum segment under optimal (uniform) placement as K increases
from 0 to 9 are, respectively, 10,5,4,3,2,2,2,2,2,1. It can be seen from Figure 5.3
that there is a significant performance change when the maximum segment length
changes, and the performance improvement when the maximum segment length does
not change (from K = 4 to 8) is only marginal.

Another metric to study the importance of converter placement is the utilization
gain, G7, [18]. Let the target blocking probability P;, and the number of converters
K be given. Let p, be the maximum load per link per wavelength achievable for
the given P, with the converters optimally placed, and let p, be the maximum load
achievable with the converters randomly placed. Then the utilization gain is defined

as
Gr &f e
u pr

Also, let p, be the maximum load when a random number of converters (with an
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Figure 5.3: P, vs. K for optimal/uniform (O), random (R, ) placement of K converters,
and random placement of a random number of converters ( R;) with mean K, for uniform
link loads (p = 0.1).

average of ¢(H — 1) = K') converters are randomly placed, and define

Ga 9 Lo,
/3 pq
G7, and G? are plotted as functions of K in Figure 5.4. G, can be as high as 1.6 for

K = 4 and P, = 1073. These curves were obtained by numerically solving for p in (5.4)
and (5.5) to obtain a P that is within 1% of the given P;. An approximate closed-
form expression can be obtained for G for non-zero K (when K =0, Gl =G}, = 1)

by considering only the first term in (5.5) and writing
P{(H,K) ~ (1-q)"'F(H)
= (1-¢)f (1 - f(H))
= (1-g)"'(1-p")" (5.6)

where P}(H, K) is the blocking probability of an end-to-end call when a random

number of converters (with average K) are randomly placed among the H — 1 in-
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termediate nodes of an H-hop path, and P2(H) is the blocking probability of an
end-to-end call on the H-hop path with no wavelength converters. This is a good
approximation for ¢ = H/(K — 1) < 0.2 (small conversion densities). In any case,
P{(H,K) > (1 — q)¥~'(1 — p)F and an upper bound on p, for a given P, can be
obtained by inverting (5.6). We then have

1

A \*1”"
s 1‘[“(?-7@)}

o h \*
= Fm[l"((l—q)ﬂ-‘) ] >0

where the second inequality is almost an equality for moderately large* H and g small

so that (—1_—:)#3—_—,- is not close to 1.
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Figure 5.4: G* and G? vs. K for P, ~ 1073.

4 Note that the expression is valid only if H is not too large so that ﬁ'y:; < 1.
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Furthermore, by inverting (5.3), we have

po = 1—'1—(1—(1-P6)R'+—1)%] )

~ 1= _1_<I{I}-1)r]
e iKH“L—l)m[u(KL:_I)*} (5.8)

where the first approximation in (5.8) is valid for E’}-T << 1 and the second approxi-

mation is valid for iﬂﬂ- << 1.

From (5.7) and (5.8), we have

v

. (5.9)
i [~ (=)
where the approximation is valid for small F;, moderately large H (> 10), and small
5;‘—{’—1. G? is the utilization gain when K converters are optimally placed relative
to a random number of converters randomly placed, whereas G, is the gain when
K converters are optimally placed relative to a random placement of K converters.
However, closed-form expressions for G, are not possible and therefore we use the
above approximation to study the behavior of the utilization gain versus F' and H. As
can be seen from Figure 5.4, G is an overestimate of the gain G7,. Notice, however,
that what we have in (5.9) is a lower bound to G? and this bound approximates G7,
better for reasonably low values of q (< 0.2).

We plot the bound for G as a function of F for H = 5,10, and 20, and for
K = [0.2(H —1)] in Figure 5.5. Observe that the utilization bound increases with

F for all values of H. However, the rate of increase decreases as F' increases. Also
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notice that the bound increases with H for a given F'; this points out the importance
of optimal converter placement for large F’ and large H. Note that the bound becomes
less accurate as H increases so that a higher utilization gain than that depicted in

the graph would be expected for H = 20 than for H =5 and 10.
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Figure 5.5: The bound for GI vs. F for P, =107% and K = [0.2(H —1)].

5.2.2 Non-uniform Link Loads

We next consider the case when the link loads {p;} are not all equal. Clearly, the
optimal placement is, in general, non-uniform in this case. Before we provide an opti-
mal solution, we make a straightforward modification of (5.4) to obtain an expression

for random placement.

Random Placement

We change some of the earlier definitions as follows. Define the subpath from node
i to node j comprising links 7,7 + 1,...,j — 1 to be the chain [¢,5]. Let S.(z,7,k)
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denote the success probability of an end-to-end call in the chain [z, j] with k£ converters
randomly distributed among the j — 1 — i intermediate nodes. Then, a recurrence

relation for S,(z,j, k) can be obtained as

f(zvj)a k = 0,
So(2,j, k) =4 ik 31 5.10
450 h S,(i,I,O)S,.(I,j,k—l)(.f—:l)-, k=1,2,...,j - 1—i, (510
I=it1 (’ A )
where
-1
fa,)=1-01~ [l )" (5.11)

is the success probability in the subsegment® from node 7 to node j. Note that this
subsegment contains the links 7,7 +1,...,j — 1. The success probability of an end-
to-end call when K converters are randomly placed on the path is simply given by
S-(0, H,K).

Optimal Placement

When the link loads are not equal, there does not appear to be a closed-form expres-
sion for the segment lengths as in the uniform link load case. We obtain a solution
based on dynamic programming along the lines of [44] for this case. In [44], the
problem of placing erasure nodes in DQDB networks so that slot reuse is maximized
is considered, and optimal solutions based on dynamic programming are presented.
The nature of the objective function in our case is different from theirs; however,
their approach can be used to solve the problem at hand, as we will see below.

For any integer m, define a converter placement vector a = (a1, as,...,an) with
0 <a; <ajppq < H i=1,...,m~—1. The entries of a denote the placement of
converters among the nodes 1,2, ... H, i.e., a; is the location of the ith converter. The
reason for the inclusion of node H as a possible converter location will be apparent

below. Also define B(j,a) to be the probability that an end-to-end call is successful

5 According to our terminology here, a chain may contain converters while a segment does not.
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in chain [0,7] when a is the placement vector, and define the set of all converter

placement vectors with the mth converter at node j as
O(m,j)déf{ae Zt:0<a;<ag1<@m=j, i=1,...,m—2}

Then y(m, j) &of aenel(a.":‘cj) B(j,a) denotes the success probability in the chain [0, j] with

the first m — 1 converters optimally placed among nodes 1,...,7 — 1, and the mth
converter at node j. Let us also define

[(m,j,k) ¥ {a € O(m,j): am—1 = k}.

We can obtain v(m, j) using the following dynamic programming procedure.

y(m,j) = aerg(auﬂfJ)B(j,a)
=  max max__B(j,a)

m—l_(_isj—'l aer(mvlvi)

= B WS RS

max 86, a)] £, )

"y
m-1<i<j—1 |a€el(m,j,i)
= max y(m-Li)f(iJ) (5.12)

m-1<i<j-1

for2<m<K+1,m<j<H. Clearly 9(1,7) = f(0,7) for 1 <7 < H.

The above recurrence relation directly leads to a O(H?K) dynamic programming
algorithm for obtaining the optimal placement vector. The optimal placement vector
is the solution obtained when K + 1 converters are placed among nodes 1,2,..., H,
such that the (K +1)th converter is at node H, i.e., a°"* = arg maxaco(x+1,5) 3(H,a).
The resulting success probability is v(K + 1, H).

The end-to-end blocking probability is plotted against the converter position for
K =1 for two different link load patterns in Figure 5.6. The top curve is for uniform
link loads and p = 0.1, and the bottom curve is for linearly increasing link loads from
link O to link 9. We take pg = 0.05, ps = 0.1, and p; = p;—1 + ¢, 2 = 1,...,8, where
c = 2352 Intuitively the optimal converter location should shift to the right for the
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linear traffic pattern and this is indeed what is observed in the figure. However, it
cannot be determined a priori that the converter is optimally placed at node 6 for
this traffic pattern. From the figure, note that converter placement in a non-optimal
position would increase P, by a factor of 2 at least and the performance degradation

could be as high as two orders of magnitude.

10" r -
»—— Uniform fink loads
«——= Linear traffic pattem
K
10’ |
g
g 4 2
& 10°
10"
o 2 4 6 8 10
Converter position

Figure 5.6: P; vs. the converter position for K = 1 for uniform link loads (p = 0.1) and
for linearly increasing link loads (po = 0.05, p¢ = 0.1).

The performance of random (R), uniform (U), and optimal (O) placements are
compared for a linear link load traffic pattern in Figure 5.7. The uniform placement
performs quite poorly for a large number of converters. This is due to the fact that
converters are best placed towards the end of the path whereas the uniform placement
policy would place some towards the beginning of the path, where they are expected
to be less useful. The optimal placement results in dramatically better performance

than random placement.
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Figure 5.7: P, vs. K for random (R), uniform (U) and optimal (O) placements. Link
loads are linearly increasing with pg = 0.125, pg = 0.25.

5.2.3 Placement for Optimal Average Performance

Unti! this point, we have considered the placement problem from the point of view
of a connection request from node 0 to node H. However, when a path is part of a
large network, it may be of interest to minimize the average blocking probability over
all traffic using the path, rather than just the end-to-end traffic. We now modify the

solution above to take this into account. Random placement is considered first.

Random Placement

Let a(m, j, s, d) denote the probability that a call from s to d will be successful in the
chain [0, ] when m converters are placed in [1, j] with the mth converter at node j
and the other m — 1 converters randomly distributed in [1, j — 1]. Define §(7, a, s, d)
to be the probability that an (s,d) call succeeds in the chain [0, 7] when a is the



placement vector. Then,
a(m, j,s,d) = Eaee(m.j)a(jv a,s,d),

where E. denotes the expectation over z. Note that all a € ©(m, j) are equiprobable

with random converter placement. Then, similar to (5.10), we can write

k(0,7,s,d), m=1,
a(m, j,s,d) = =1 -1 5.13
( ’ ) Z a(m—l,i,s,d)h(i,j,s,d)—(’;%fg-, m=21~-'7j’ ( )
t=m-—1 m—1

where h(z,J,s,d) is the probability that an (s,d) call is successful in segment [z, j].
h(z,J,s,d) is given by
[ f(s,d), i<s<d<j,

f(&,5), s<i,d2y,

k(i j,s,d) =4 f(i,d), s<i,i+1<d<j—1, (5.14)
f(saj)» stSj_lvdZ]9
| L d<i, s27,

where f is as defined in (5.11). The average success probability considering all (s, d)
calls is then E(, gyo( K + 1, H, s, d).

Optimal Placement

The optimal placement vector a°®* that minimizes the average call blocking proba-

bility is given by

a’®t = arg min E(,vd)[l—a(Hyassvd)]

a€®(K+1,H)
= —-FE a1l —6(H,a,s,d)].
arg _max  ~Ea[l ~6(H,a,s,d)]

Note that the max and the E operators cannot be interchanged, and as a result, it

is not possible to obtain a recurrence relation such as the one in (5.12). However, an
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approximate solution to this problem can be obtained as follows. Instead of maxi-
mizing E(,q4)6(H,a,s,d), we will obtain the placement configuration that maximizes
Es4)né(H,a,s,d). Note that 1 — 6(H, a, s, d) is the probability that the (s,d) call
is blocked in the chain [0, H] when the placement vector is a. For reasonably low
blocking probabilities (< 10~2), because of the fact that Inz ~ z — 1 when z = 1,
E(s2)In6(H,a,s,d) is an excellent approximation for —E,4)(1 — 6(H, a, s,d)) which
is the original objective function to maximize.
Define ((j,a) to be
((j,a) & Eoqy In 6(j,a,3,d) (5-15)

Now if £(m, j) € aBax  ((j,a), then

ax _((j,a)

§(m, J)

max
m-1<i<j—1 ae[’(m WJi)

= max { max |[E.qIné(i,a,s,d) + Eqa In A, j,s,d)]}

m~1<i<j—1 ael(m,j,i)
= x| e G0+ Bealahtiien )]
= m_{ré%_l{[aergg}; R a)] + Es.0) In A3, J,s,d)}
= . max {&(m = 1,i) + Eoa In k(s j,5,d) } (5.16)

for2<m< K+1,m<j<H, and §(1,5) = Es.q)Inh(0,5,s,d) for 1 <j < H.
The optimal placement a°* is now given by arg maxaeco(x+1.6) E(K + 1, H) and
(5.16) defines a recurrence relation that can be solved via dynamic programming as
before. In Figure 5.8, we plot the average blocking probability for optimal and random
placements and the following traffic pattern. The load per wavelength between each
(s,d) pair, A;q = 0.01, d > s, so that the load per wavelength on link z, p; = 0.01(Z +
1)(H —%). In this traffic pattern, the link loads increase from link 0 linearly until link
4 and then decrease linearly from link 5 to link 9. We also plot the performance for
an end-to-end call in the figure for comparison. We observe that optimal placement

provides considerable improvement in average performance as well, relative to random
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placement. For instance, to achieve an average P, = 10~2, 3 converters suffice if placed

optimally while 7 converters would be required if placed randomly.

10° — v —

Figure 5.8: P, vs. K for random (R), and optimal (O) placements. H =10, F = 10.
pi = 0.01(H —i)(¢ + 1). Solid lines: End-to-end performance, Dashed lines: Average

performance.

5.3 Converter Placement in a Bus

In the previous section, we considered the problem of optimally placing a given num-
ber of converters on a path assuming that link loads are independent. In this section,
we show how that framework can be applied to a unidirectional bus network where
there is no interfering traffic [18] and the traffic in the network is solely due to the
traffic originating at the nodes of the bus. In such a scenario, the link load indepen-
dence assumption of the previous section is not appropriate. We show in this section
how our dynamic programming solutions are applicable even in the presence of link

load correlation.
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A key step in the derivation of the recurrence relation in (5.16) is the third equality
where we have assumed that the success probability of an (s, d) call in chain [0,3] is
independent of the success probability of the call in segment [z, j] when node i is
a converter. This assumption is still needed; that is, we continue to assume that
the success probabilities of a call in disjoint segments are statistically independent.
However, note that we do not need the independence assumption between the links of
the same segment. Since the fraction of the nodes with converters is typically small,
the most important effects of link load correlation will be taken into account in our
formulation. Furthermore, the effects of load correlation between two consecutive
links on a path separated by a converter are not as significant as when there is no
converter between the links. This is because, when there is no converter, it is not only
the dependence in the number of wavelengths on the two links that is significant, but
also the actual wavelengths used on those two links. Note that this latter dependence
is irrelevant if there is a converter between the two links.

The performance model we use here is the one proposed by Barry in [18, 20].
For completeness, we present the relevant details of Barry’s model here. The only
quantity of interest to us here is the probability of success f(z,7) in a subsegment
2, 7] since all other quantities are defined in terms of it.

Consider the bus in Figure 5.9 and let p,(¢) be the load per wavelength that
enters the network at node 7, pi(z) the load per wavelength that leaves the network
at node ¢ + 1, and p.(z) the load per wavelength that continues through node z + 1
and uses links ¢ and 7 + 1. Also, let us denote the load per wavelength on link z by
p(2) (= pn(2) + pc(i — 1)).

Since wavelengths are considered to be independent of each other in this model,
it suffices to look at a single wavelength, say w;. Then, P(z) o pi(z)/p(2) is defined
as the probability that a call on wavelength w; uses link : and leaves at node ¢ + 1.
Also, let P,(i) be the probability that a new call enters the network at node ¢ and
uses link ¢ on wavelength w, given that w; is not used by another call on link 7. p(7)
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pc(i) ————

Figure 5.9: A bus of length H.

is then given by [18]
p(i) =p(i — 1) [1 = B = 1) + A(i = 1) Pa(e)] + (1 — p(¢ — 1)) Pu(7)

and, therefore,
- pli) = pli = D[ = Pi(i — 1)]
B = G oD - BG - D)

The probability that at least one wavelength is available on all links of a subseg-

ment [, j] is now found as

f(¢,7) = 1—[1 —P(w, free on link z)
1-1
- TI P(w: free on link & | w; free on link k£ — 1)]¥

k=t+1 -
= 1-[1-(1-p@) T (1 - Pu(k))]F. (5.17)
k=i+1

Given the traffic matrix A = [\ 4] where Ay is the load per wavelength between
nodes s and d, pi(2), pn(2), pc(?), and p(z) are calculated in the following obvious way.

i H

s=0d=1+1
H

z /\s,i+l

s=0

H
pa(t) = Z Aid

d=i+1
p(z) = p(2) = m(2)-

pi(2)
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As before, (5.13) and (5.16) are used to evaluate the performance under random
and optimal placement, respectively. However, (5.17) is used instead of (5.11) for
computing the success probability in a subsegment, thus taking the link load corre-
lation in the bus topology into account.

We show P, as a function of K for a 10-node bus with F = 10 in Figure 5.10.
The link loads are kept constant at p = 0.4. One way of achieving this is by vary-
ing the station loads p.(Z) and assuming that a call arriving at a node can have
any downstream node as its destination with equal probability. Then, pn(0) = p,
and pa(i) = p — Tish H=tpn(i — 1), i = 1,2,....H — L, and X = eald) for j > i,
and 0 otherwise. Here, we observe that the performance improvement over random
placement due to optimal converter placement is not as high as in a path with inde-
pendent link loads. However, the improvement is significant considering the fact that
the performance does not improve considerably as the number of converters increases.
We have only considered one traffic pattern here and there may be other traffic pat-
terns producing uniform link loads which could cause a more significant performance
difference between optimal and random placements.

Notice further that uniform converter placement is no longer optimal even though
link loads are uniform, because of the link load correlation as well as the fact that we
have considered the optimal placement with respect to all traffic and not just end-
to-end traffic. P, vs. the converter position is plotted in Figure 5.11 for K =1, and
a uniform link load of p = 0.3. It is certainly not clear beforehand that the optimal
solution would place the converter at node 7. This is in fact surprising considering
the fact that node 7 is neither the node with the highest transit (continuing) traffic,
nor is the node mixing the highest amount of traffic (high p. and p;). p. and p. for
each node are plotted in Figure 5.12 for this traffic pattern®. For K = 2, the optimal

placements turn out to be at nodes 5 and 8, again seemingly unintuitive.

¢ By our previous definition, p. is the traffic that continues through node i + 1; however, in the

figure p. refers to the traffic continuing through the corresponding node number.
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Figure 5.10: P, vs. K for uniform link loads, p = 0.4. H =10, F = 10.
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Figure 5.11: P, vs. converter position for K = 1 and uniform link loads, p = 0.3.
H =10, F =10.
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Figure 5.12: Traffic vs. node number for uniform link loads, p = 0.3.

We remark here that this formulation can be applied to a double-bus network as
well. The only necessary change is that the objective function must now maximize
the average success probability over both buses together. The traffic model will have

to be applied to the two buses separately.

5.4 Converter Placement in a Ring

The ring is a popular optical network topology because of its simplicity [16, 22, 45].
In Chapter 3, we presented a performance model for determining the benefits of wave-
length conversion in ring networks with uniform Poisson traffic. In this section, we
present a dynamic programming solution for optimal converter placement in a ring
topology. As in the bus, the optimality criterion is the average blocking probabil-
ity. We will mainly be interested in the results obtained using the binomial model
here, i.e., we continue to assume that all wavelengths are used on a link with the

same probability and wavelength events are independent of each other. However, the
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correlation between wavelength usage events on consecutive links will be taken into
account as in the previous section.

Consider a unidirectional ring network with H nodes, numbered from 0 to H — 1,
where the link from node ¢ to node (i + 1) mod H is labeled as link . The optimal
placement for the ring is obtained by using the fact that if a converter is placed at
a node, say ¢, then because of the assumed independence of the success probability
of a call in disjoint segments, the ring can be logically broken at node i to create
two nodes ¢’ and " and creating a bus of length H (see Figure 5.13). Let the left
end-node of the resulting bus be ¢ and the right end-node ¢”. The traffic matrix A
for the ring is modified to form a traffic matrix A’ for the bus as follows.

/\I

st/

, = M,y = Ay if chain [s,d] contains node 7 as an intermediate node in the ring

and A, = A,q otherwise.

(a)
i i+ H-1 0 i-1 i

(b)

Figure 5.13: (a) The ring logically broken at node i where a converter is assumed to be
placed. (b) The resulting bus after relabeling (corresponding old labels are shown below
the nodes).

Given an H-node ring and K converters, the average success probabilities can
be obtained by conditioning on the lowest indexed node : having a converter, : =
0,1,...,H — K. The ring is then broken at node i as described above and the

optimal placement of K — 1 converters on the logical bus given ¢ is the lowest indexed
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node with a converter is obtained as in the previous section. The optimal placement
over the ring is the placement that maximizes the success probability over all z, and
the performance with random placement is the performance averaged over all 7. This
is stated formally below.

Suppose for ease of notation that the nodes and links of the bus derived from the
ring are relabeled so that node 7’ is node 0, node " is node H, and the link out of the
relabeled node ¢ is link z. Note that there are no converters that are placed in nodes
H — i through H —1 of the bus since node ¢ was assumed to be the lowest numbered
node in the ring with a converter. The ring broken at node ¢, and the corresponding
bus after relabeling are shown in Figure 5.13(a) and 5.13(b), respectively. The original
labels of the ring are shown below the nodes in Figure 5.13(b).

5.4.1 Random Placement

To obtain the performance with random placement, define
.\ def .
n(m,]) = Eaee(m.j)C(Jv a)

where ((j,a) is as defined in (5.15), to be the average over all (s,d) calls of the
logarithm of the success probability in [0,j] when m — 1 converters are randomly

placed in nodes 1,2,...,7 — 1, and the mth converter is placed at node j of the

relabeled bus. Let
T(K,H,t) = {a € O(K,H) : ag1 < t}

denote the set of placement vectors which place converter K at node H and converter
K —1 at a node whose index is no more than t.

Then, under random converter placement, we have

—P, = EiEserkHH-1-0C(H,a)
= EiFaer(kaH-1-)E(s0)In6(H, a,s,d)
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iLg

H—-1-i (k-1
E; { Z —(E;i—:z-)i)-Eaee(K_l'k)E(,'d) {In 6(k,a,s,d)+Inh(k,H,s, d)}}
k=K-1\ g1

-1—t k=1
- E {H (K‘z) [k(K —1,k) + Eoq lo h(E, H, s’d)]}

e (%)

o (il [re ()
= H) {k—g (H—-l—) [IC(K )+ E(sd)lnh(k H S, d)]}
K =K-1 \ K-
1 JHE (k-1
(i’—-) {h‘?.l ( K 2) [s(K = 1,k) + Ea) In h(k, H,s d)]} (5.18)

where x(m, j) is obtained, similar to « in (5.13), to be

E(,'d) Inh(O,j,s,d), m = 1,
w(m,j) =9 =t ()

> T

f=m=-1 (m-l)

In Step (a) of (5.18), (:7_12) / (HK”:‘) is the probability that the (K — 1)th converter

{s(m —1,0) + Epalnk(l,j,s,d)}, m=2,...].

is placed at node k given that K — 1 converters are placed randomly among nodes
1,2,...,H—1—1. In Step (b), (HAT_II"i) / (g) is the probability that the node with the
lowest index in the ring that has a converter is node ¢, given that K converters are
placed randomly. We also have used the definitions of {, £, and A in (5.18). Note that
we did not employ the logarithm approximation in computing the performance for
random placement in Section 5.2. In the ring, however, because the traffic through a

node is split into two streams, the logarithm approximation is necessary in Step (a)

of (5.18).

5.4.2 Optimal Placement
Along similar lines, the optimal placement vector is obtained as

aOPC — ax
arg ms aeT(K,H H—1- )C( a).

Now,

((H,a)

max max
i a€Y(K,H.H-1-i)
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max K-x&g%-i—l aee[?tg'fl,k){E("d) Iné(k,a,s,d) +Inh(k, H,s,d)}
= max max {E(K - l’ k) +E(s,d)lnh'(k7 H,S,d)}

i K-1<k<H—-i-1
and &(m,j) is given by (5.16). This provides the required solution via dynamic

programming as before.

5.4.3 Results

We consider a 10-node ring network with FF = 10. Figure 5.14 shows P, plotted
against K for optimal/uniform and random placement of converters when the link
loads are uniform (as are loads between any (s, d) pair, s # d) with p = 0.4. Again,
due to the considerable load correlation, the performance improvement of optimal
placement over random placement is only marginal compared to the gains achievable

in a path where there is insignificant load correlation.
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Figure 5.14: P, vs. K for uniform link loads, p =0.4. H =10, F =10.

However, optimal placement could assume importance when the traffic is not

uniform. For instance, if all traffic were local traffic (from a node to its neighbor) but
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for some traffic that goes from node 0 to node H — 1, then the situation is similar to
the one in the path with no load correlation. In that case, we observed that optimal
placement can provide a significant boost in end-to-end blocking performance (see

Figure 5.3). Note that converters do not affect the blocking performance of local
calls.

5.5 The Effect of Traffic Model on Converter Placement

In this section, we discuss the effects of the traffic model used in obtaining the blocking
probabilities for random and optimal placements. As mentioned earlier, our dynamic
programming solution techniques do not assime a specific traffic model even though
the results we have presented thus far are for the binomial model.

The effect of the traffic model appears in our solutions in the form of the proba-
bility f(z, ), the success probability of a call in segment [z, j]. In the binomial model,
this probability was given by (5.11) and (5.17) when link loads are independent and
strongly correlated, respectively. This probability can also be obtained via the models
presented in [22] and Chapter 3 for Poisson traffic, when link loads are independent
and correlated, respectively. Note that those models were presented for uniform link
loads; when the link loads are non-uniform, the two-hop model presented therein will
need to be applied to every pair of consecutive links in the network. We omit the
details here and present only a comparison of a sampling of the results obtained using
those models and the binomial model we have used so far in this chapter. We proved
in Section 5.2 that in a path with uniform link loads and the link load independence
assumption, uniform placement is the optimal placement for the end-to-end traffic.
This was achieved by showing that the function f(!) in (5.1) was a concave function
of . When the traffic model is Poisson, it appears difficult to prove the concavity
still holds, but the function appears to be concave for a wide range of the parameters

p, F, and .
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In Figure 5.15, we plot end-to-end P, against K for a path with H =10, F =10,
and the load per wavelength per fiber, p = 0.1, with link load independence and
the Poisson traffic model. Comparing this with Figure 5.3, we see that the numerical
values of P, are higher for the Poisson model”, but the conclusions regarding converter
placement are the same. For example, the performance difference between optimal
and random placement increases with K until it reaches a maximum at K = 4, and

then starts decreasing, in both cases.
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Figure 5.15: P, of an end-to-end call vs. K for a 10-hop path with optimal/uniform (0).
random (R, ) placement of K converters, and random placement of a random number of
converters (R,) with mean K. Poisson traffic model.

This is also evident from Figure 5.16 where P, is plotted against the converter
position for uniform link loads and a linear link load traffic pattern when K = 1.

Contrast this with Figure 5.6 and observe that the relative performance over the

7 This is due to the fact that the busy wavelength distribution on a link offered Poisson traffic has
a heavier tail than the binomial distribution for the same load (when loads are low enough so that

effects of blocking on carried load can be ignored).
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position of the converter is the same irrespective of the traffic model. This result,
as well as related numerical experimentation, suggests that the optimal placement is
largely insensitive to the actual traffic model.

However, the binomial and the Poisson model do not always produce the same
optimal placement. We have been able to find some cases where the two models pro-

duce different placements, but these tend to happen when the blocking probabilities
are high (> 0.1).

»»—x Uniform link loads

10° |

Figure 5.16: P, vs. the converter position for K = 1 for uniform link loads (p = 0.1)
and for linearly increasing link loads (po = 0.05, pg = 0.1). Poisson traffic model.

5.6 Conclusions

In this chapter, we considered the problem of optimally placing a given number
of converters in a path that is part of a dense network, in bus topologies, and in
ring topologies. We first showed that uniformly spaced converters produce optimal

performance for an end-to-end call on a path when the link loads are uncorrelated
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and uniform. When the link loads are non-uniform or when other calls are considered,
we provided solutions based on dynamic programming for the optimal placement of
converters. Expressions for blocking probability when the converters are randomly
placed were also derived.

The results indicate that optimal converter placement is an important problem,
especially when there is negligible correlation between link loads. Our solutions are
applicable to a variety of traffic models, even though most of the results presented
here were for the binomial model.

In Section 5.5, we mentioned that the optimal placement is largely insensitive to
the traffic model, but does depend on it at high blocking probabilities. We remark
here that the optimal placement is not only somewhat dependent on the traffic model
but also on the actual load when a given traffic pattern is scaled. That is, the
optimal placements may change as the load is scaled up with the same traffic pattern.
However, the changes do not appear to be arbitrary and there seem to be well-
defined regions where the optimal placement configurations remain the same. This
phenomenon needs further investigation.

Finally, the problem of optimally placing converters in an arbitrary topology is still
an open problem and effective heuristics, possibly based on our solutions presented

here, will be required.



Chapter 6

DYNAMIC WAVELENGTH ASSIGNMENT IN
FIXED-ROUTING NETWORKS

6.1 Introduction

In the previous chapters, we presented performance models for wavelength-routed
networks with sparse wavelength conversion, and optimal solutions for the converter
placement problem. In this chapter, we consider networks with no wavelength con-
version. Eliminating wavelength conversion significantly reduces the cost of the
wavelength-routing switch; however it may lead to reduced network efficiency be-
cause the same wavelength must be available on each link of a route for a call to be
established. For example, there may be a route which has a wavelength available on
each of its links but they may not be the same wavelength, thereby causing the call
to be rejected.

A good routing and wavelength assignment (RWA) algorithm is critically impor-
tant to increasing the efficiency of such networks. The RWA algorithm is responsible
for selecting a suitable route and wavelength among the many possible choices for
establishing the call. After the algorithm has made its choice, the transmitting lasers
and receivers at various nodes are tuned to the appropriate wavelengths, and the
switches are set to switch the selected wavelength along the selected route. Commu-
nication can then begin. Note that if unlimited wavelength conversion is available,
wavelength assignment is a trivial problem although a good routing algorithm is still
needed.

The RWA problem has been extensively studied in several ways. Models for
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obtaining the network blocking performance with and without wavelength conversion
under dynamic Poisson traffic traffic have been proposed in [18, 19, 20, 21, 22, 27].
The models predict the blocking probability when the random wavelength assignment
algorithm is used!. Lower bounds on the blocking probability in networks with and
without conversion are derived in [10]. Several RWA algorithms that differ in the
traffic assumptions and the performance metric used have also been proposed. The
traffic assumptions generally fall into one of two categories: (a) static traffic, wherein
a set of call requests is given and routes and wavelengths have to be assigned to calls
such that some metric is optimized [24, 46, 47], and (b) dynamic traffic, wherein calls
arrive to and depart from the network one by one in a random manner [21, 22, 32,
45, 48, 49]. The performance metric in this latter case is typically the call blocking
probability.

In this chapter too, we consider a wavelength-routing network operating in circuit-
switched mode under dynamic traffic. To study the importance of wavelength assign-
ment in the RWA algorithm, we focus on it and assume that the routes for the calls
are fixed. We propose a new wavelength assignment algorithm called the Max_Sum
(MX) algorithm. In Section 6.2, we define the problem and present the algorithm. A
very simple implementation of the algorithm for the unidirectional ring topology and
a more general implementation for arbitrary topologies is given in Section 6.3. In Sec-
tion 6.4, we extend the analytical model of [22, 27] to multi-fiber networks. Simulation
results of the performance of our algorithm are compared with those of previously
proposed algorithms on two topologies with different network connectivities — a ring
and a mesh-torus, in Section 6.5. The results show that our algorithm often performs
better (and no worse) for the example networks we consider. The results also show
that the analytical model is accurate enough to make qualitative predictions about

network performance under random wavelength assignment. Finally, we present our

! Analytical results for “smart” wavelength assignment algorithms are hard to obtain.
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conclusions in Section 6.6.
The work to be presented in this chapter was done jointly with Dr. Richard Barry
of MIT Lincoln Laboratory. He conceived the original idea of the Max_Sum algorithm

for single-fiber rings, and developed the simulation programs for performance study

of the ring.

6.2 The Problem and the MY Algorithm

Assume that the network is in a certain state, i.e., a set of calls is already established
and wavelengths are assigned to those calls. Suppose a new call request arrives.
The problem is to assign a wavelength to the call without rearranging the already
established calls so that the call blocking probability is minimized. It is extremely
hard to obtain an exact solution to this problem even if the traffic statistics are
accurately known [24, 32, 50]. Heuristic solutions are therefore necessary. We restrict
ourselves in this chapter to the study of algorithms that admit a call if a wavelength
is available, i.e., algorithms that do not perform admission control.

All existing algorithms assign wavelengths based on the current state of the net-
work. Our algorithm differs from those algorithms in that we also consider the state of
the network after the new call has been established. Our algorithm tries to choose the
wavelength that leaves the network in a “good” state for future calls. The goodness
of a state is measured by a new concept called the value of the network. The value
of the network is an important single-valued metric that the network operator can
use for planning. This is an added advantage of our algorithm over other proposed
algorithms which do not provide a good metric of the network state for the operator.

Our algorithm is based on using path capacities to calculate the network value.
In particular, each path of the network has a path capacity which is defined to be the
number of calls that can be established on that path. Note that the path capacities

change over time and depend upon the current network state. The network state
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changes when a call is established and the next state depends on the particular
wavelength that was assigned to the call. The value of the network is a function of
the path capacities. Our algorithm assigns wavelengths to calls such that the next

state value is maximized. We formalize this below.

6.2.1 The Algorithm

Suppose the network is in an arbitrary state 1 and there is a new desired call along
path p*. The goal is to make a wavelength choice for the call so that the network
is in a good state after the call is established. This can be posed as the problem of
maximizing a function V(a) of the resulting state a after call establishment. The
maximization is done over all possible resulting states. In our algorithm, we restrict
V to be functions of path capacities (formally defined below), i.e., V(a) = ¢([C(e, p) :
p € P]) where P is the set of all possible paths, and C(a,p) is the path capacity of
p in state a.

Path capacities are defined in terms of links capacities. The link capacity of link [
on wavelength f, c(¥,[, f) is defined as the number of fibers on which f is available
(unused) on link [. The capacity of path p on wavelength f, C'(¢, p, f) is then defined
as the number of fibers on which f is available on the most congested link along the

path, i.e.,
C'(%,p, f) & min (9,1, f)

leL(p)

where L(p) is the set of links comprising path p. The path capacity is

F
C(v,p) & }Z C'(4,p, f)
=1

where F is the maximum number of wavelengths available on a fiber in an empty

network.
Let Q(v,p") be the set of all possible wavelengths that are available to establish
the call, and let ¥’(f) be the next state of the network if wavelength f is assigned to
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the call. Qur algorithm chooses the wavelength f* such that:

fr=arg max V(4'(f)).

feQ(v.p*)
Each function V gives a different algorithm. Some possible functions that can be

used are:

1. V(a) = X,ep C(a, p), called the Max_Sum (M) algorithm,

2. V(a) = Xpep w(p)C(e, p), called the Max_Weighted Sum (MWZX) algorithm,

and
3. V(¥,a) = minyep C(a, p), called the Max_Min algorithm.

In this chapter, we only present the MY algorithm and its performance results.
In the next section, we discuss the M X algorithm in more detail and present a simple
implementation of the algorithm for a widely used optical network topology, the ring,
and a more general implementation that is applicable to arbitrary mesh topologies.
As we will see, the algorithm outperforms previously proposed algorithms in many

cases.

6.3 Implementing the MY, Algorithm

As mentioned earlier, the MY algorithm chooses f to maximize 3_,cp C(¥'(f), p)- It
turns out to be easier to compute a cost function (= X ,cp(C(%,p) — C(¥'(f),p)))
and minimize the cost than to compute }",ep C(¥'(f),p) and maximize it. We do it
below for an important optical network topology — the unidirectional ring. Note that
the difference in path capacity between the current state and the new state is either
0 or 1 for any path. Informally stated, the MY algorithm chooses that wavelength

that minimizes the number of paths whose capacities decrease by 1.
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6.3.1 The Unidirectional Ring Network

Consider a unidirectional ring network and assume that a call arrives. We assume
that a call from a node to itself may arrive, but the implementation can be easily
modified if this were not the case. Assume that the links of the ring are oriented
in the clockwise direction and are numbered 1,2,--- N, in the clockwise direction.
Without loss of generality, let the call request use links 1 through n, and let p denote
the corresponding path. For each wavelength f € Q(#,p), a cost function x(p, f)
that counts the number of paths whose capacities are decreased by 1 is computed
and the wavelength f* that minimizes the function is chosen to route the call. Let
u(f,¥) be the number of fibers in the network on which wavelength f is used. Before
we give the cost function, let us develop some more notation.

Define k; % min{c(¥, 1, f), (¥, 2, f),---, (.4, f)}, and g; < min{c(®,n, f),
c(.n—1,f),---,c(p,n—t+1,f)} for i = 1,2,---,n. In other words, k; is the
number of fibers on which f is available on the most congested link on f of the first
i links of path p, and g; is the number of fibers on which f is available on the most
congested link on f of the last z links of the path.

Let ") be the left gap from link 1 until a link with capacity less than k; is
encountered and, similarly, let h§” be the right gap from link n until a link with
capacity less than g; is encountered. Formally stated, let L; = {{ : n+1 <[ <
N, c(¢,,fy<k}landlet R, = {r:n+1<r <N, c(¢,r, f) < g:}. If L; = ¢,
Y = N —i; otherwise, h{) = N — maxL;. If Ri = ¢, h{") = N — n; otherwise,

R =minR; —n—1.
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The cost function x(p, f) for wavelength f can now be written as follows:

3

N?, n =N,
N? — (N =n)(N —n+1)/2, n < N, u(, f) =0,
X(pr f) = WmWVonon) | ostet) L SN0 4 RP), < N, AD =AY = N —n,

=1

RORG) + 22 3 (1) + A{T), n<N; A0 R # N —n.

\ =1

Similar formulas can be obtained for bidirectional ring networks too. The worst-

case time complexity of the MY algorithm with this implementation is O(N F).

6.3.2 Arbitrary Topologies

We now discuss an implementation of the MY algorithm in arbitrary mesh networks
with fixed routing. Suppose we are given an arbitrary mesh network represented by a
graph G = (V, E) where V is the set of nodes and E is the set of links (each consisting
of many fibers). Let a set of fixed paths P between node-pairs also be given. We
generate a conflict graph G'(V', E’) where each p’ € V' corresponds to a path p € P
and an undirected edge (p’,q’) € E’ iff the paths p and ¢ € P share a common link.
Suppose a call is to be established on path p. For each wavelength, a cost function
x(p, f) that counts the number of paths whose capacities are decreased by one in the

new state is computed as follows. First, define
M(r) € {l € L(r) : (&, 1, f) S (b, m, ) Ym € L(r)}

to be the set of links of path r which have the minimum capacity on wavelength f.

Recall that L(r) is the set of links on path r. Now, let us define
B, ¥ {r': (¢,r') € E', M(r) N L(p) # ¢}

to be the set of those paths that have a minimum capacity link lying on p. We can

now write x(p, f) = |Rp| as the cost of using wavelength f.
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Though the cost function defined above is for the MY algorithm, it can be triv-
ially modified for other algorithms such as MWY and Max_Min. The worst-case
time complexity of the algorithms using the conflict graph framework is O(|P|N F’)
assuming the conflict graph is generated offline.

The implementation on arbitrary topologies can be easily extended to consider
adaptive routing on a set of k fixed alternate paths. The conflict graph is generated
offline by considering all the k paths for each node-pair. The algorithm assigns a
cost function y(p;, f) for each of the k paths py,p2,-- -,k as above. The wavelength
and route that minimize the cost function over all wavelengths and & paths are then
chosen to establish the call. We next present an extension to multi-fiber networks of
a performance model [22, 27] for single-fiber networks with and without wavelength

conversion using random wavelength assignment.

6.4 An Analytical Blocking Model for Dense Multi-fiber Networks

Analytical models predicting the blocking probability (P;) of single-fiber networks
with random wavelength assignment under Poisson traffic have been presented in [18,
19, 20, 22] and in Chapter 3. The only model for multi-fiber networks was presented
in [21, 25]. Let d be the number of fibers per link (link dilation degree) and let F’
be the number of wavelengths per fiber. The model of [21, 25] makes the follow-
ing incorrect prediction: For fixed F, P, without conversion remains constant as d
increases and the load is equal to the value that would give a constant P, with con-
version. As simulations show in the next section, P, without conversion approaches
P, with conversion rapidly as d increases in a mesh-torus network with Poisson traf-
fic. We now present a straightforward extension of the model presented in [22] and
Chapter 3 to reasonably dense multi-fiber networks in which link-load independence
can be assumed. This model makes correct predictions in the above scenario and

is numerically accurate enough to let qualitative conclusions to be drawn about the
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benefits of conversion in multi-fiber networks.
Assuming uniform Poisson traffic, the offered load per link p can be determined
given the load per wavelength per fiber 6 as
§FdH
=T
where H is the average hop length and L is the number of links in the network.
We ignore the effect of the reduced link load due to blocking in computing P, as in
Chapters 3 and 4. Let a wavelength be free on a link if it is available on one of the
fibers on the link. The steady-state probability that y wavelengths are free on a link

given m calls are active on the link can be written as

(E)f ((m ~ (F ~ y)d), . d)
(=) '

Here, f(r,s,d) is the number of ways of distributing r balls (one in each slot) into s

(6.1)

S(ylm) =

sets of d slots each such that no set has balls in all d slots. Suppose j = [5]. f(r,s,d)
is given by

0, r>(d-1)s, r <0,

sd ;o—
f(r,s,d) = (,), _ J=0,
J
(s:i) - Z (‘:) f(r —d,s —i,d), otherwise.
=1
The link busy wavelength distribution p{ can be obtained from (6.1) by using an
M/M|Fd|Fd queueing model to compute the probability that m calls are active on
a link. We thus have

LS s shm)e (6.2)

Zl:ﬂ i m=0
(6.2) together with (4.10)-(4.14) of Sections 4.3.2 and 4.3.3 can be used to obtain the

Py =

blocking performance of a multi-fiber network topology. We apply this model to the
mesh-torus network in the next section and observe that the model yields reasonably

accurate results.
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6.5 Results

We now present results comparing the performance of the MY algorithm with that of
other proposed heuristics. The comparison is done by extensive simulations assuming
uniform Poisson traffic. We assume that the link dilation degree d is the same for all
links and the number of wavelengths on all fibers is F'.

Suppose a call on path p needs to be assigned a wavelength and the network is
in state . The heuristics that we simulated are: (1) FF - the First-Fit heuristic
that assigns the available wavelength with lowest index [22, 32, 50], (2) MU - the
Most-Used heuristic that assigns the wavelength that is used on the most number
of fibers in the network [32, 50, 51, 52], (3) MP - the Min-Product heuristic that
chooses the wavelength to minseq(yp) [Lerp){d — c(¥, 1, )} [21], (4) LL - the Least
Loaded heuristic that chooses f such that minerp) (¥, {, f) is maximum [48], (5) R -
the Random wavelength assignment heuristic where one of the available wavelengths
is chosen randomly, and (6) MS - the MY heuristic2. We also obtain the blocking
performance of the network with wavelength conversion (WC). For MP, LL, and MS,
ties between wavelengths are broken by picking the MU wavelength among those.
This gave better results than using FF as the tie-breaker. For single-fiber networks,
MP and LL reduce to the MU heuristic (tie-breaker).

In Figures 6.1(a) and 6.1(b), we plot the performance of the various algorithms
against F for d = 1 and d = 10, respectively, for a unidirectional ring network. We
see that in a single-fiber ring network, our algorithm performs similar to MU. Since
the conflict graph of a ring network has diameter 2, the MY algorithm chooses the
MU wavelength with high probability when d = 1. When d = 10, our algorithm
outperforms LL, the best algorithm previously proposed, sometimes by an order of

magnitude. This trend in performance continues to hold as d increases to a few tens

2 Performance results of the algorithm in [45] for blocking networks have not been published. We

do not simulate the algorithm because it is applicable only for specific values of F'.
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but the difference in performance between the heuristics and WC gradually diminishes
as d increases to very high values (> 100).

Number of wavelengths per fiber

(a) (8)

Figure 6.1: P, vs. F for the different algorithms in a 20-node unidirectional ring (a)
d =1, load/f/d =1 Erlang (b) d = 10, load/f/d = 1.6 Erlangs.

We next plot P, against F' ford = 1 and d = 3 for a 5 x 5 bidirectional mesh-
torus network in Figure 6.2. Shortest-path deterministic X-Y routing [22] is assumed.
In this case, our algorithm performs somewhat better than MU even when d = 1.
The difference is however small. The performance improvement that we obtained in
the ring network with increasing d is not seen here as d begins to increase. In fact,
as d assumes even modest values (such as 10), the performance of all the heuristics
(including R) are close to WC, suggesting that the choice of heuristic and wavelength
conversion are not very important in a multi-fiber mesh-torus network. This is in
contrast to single-fiber mesh-torus networks for which it has been shown in Chapter 3

and [22] that R performs poorly when compared to WC.
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Figure 6.2: P, vs. F for the different algorithms in a 5 x 5 bidirectional mesh-torus (a)
d =1, load/f/d = 25 Erlangs (b) d = 3, load/f/d = 31 Erlangs.
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In order to study the effect of dilation degree on the performance of the various
heuristics, we now plot the blocking performance against d for a fixed value of F.
First, define the blocking probability loss (L,) of a heuristic H as the ratio of F;
using H to P, with WC for a given load.

L, is plotted against d for the various heuristics by adjusting the load so that
P,(WC) ~ 10~* for a mesh-torus in Figure 6.3. The loss quickly approaches 1 for all
the heuristics including R. The R model predicts this behavior to an approximation.
At the moment, we do not have an explanation for why the model overestimates
for d = 1 and underestimates for d > 1. The point here is that for the multi-fiber

mesh-torus, random wavelength assignment is almost as good as WC.

100 r— —r

o——o R (Analysis)
»—— R (Simulation)
——— FF

~———— MU

—— Ll

Biocking probability loss

Figure 6.3: L, vs. d for a 5 x 5 mesh-torus. P,(WC) = 0.0001, F' = 10.

On the other hand, as shown in Figure 6.4, the behavior of L, is completely

different in the case of the ring®. L, increases with d initially and then decreases

3 Note that L, could go below 1 since a heuristic may admit more short-path calls and block a few
longer-path calls that may be admitted by WC, thereby decreasing the overall Py of the heuristic.
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very gradually for R, FF, and MU. The same is true for the other heuristics except
that the increase in L, is much lower (note the log scale) and the subsequent drop
is sharper, implying that smart heuristics really pay off in multi-fiber rings with

moderate dilation degrees.

100 — T - 1000 : T -

Blocking probabikty ioss
Blocking probability loss

Figure 6.4: L, vs. d for a 20-node ring. P,(WC) =~ 0.0001 (a) F = 10 (b) F' = 60.

In single-fiber networks, it was shown in [18, 22] and Chapter 3 that wavelength
conversion is more useful in the mesh-torus (high L, for random wavelength assign-
ment) than in the ring. We see here that the situation in multi-fiber networks is quite
the opposite. The decrease in L, with d in the mesh-torus is somewhat intuitive. The

behavior of L, in the multi-fiber ring is very surprising and merits further attention.
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6.6 Conclusions

In this chapter, we presented a new centralized dynamic wavelength assignment algo-
rithm for wavelength-routed WDM networks. We also presented simple implementa-
tions of our algorithm for ring networks and for arbitrary topologies. The algorithm
performs better than previously proposed algorithms in all studied cases, and the
performance improvement is significant in rings with moderately large dilation de-
grees (5 — 40). Our algorithm’s performance is better because it considers the state
of the whole network after wavelength assignment and not just the path of the call.
Alternate routing remains to be implemented and the performance needs to be stud-
ied. Some of the other algorithms that we have proposed may be more appropriate
in certain situations, e.g., MW E with weights equal to path loads may be better for
non-uniform traffic. We also extended our analytical performance model [27] to the
case of multi-fiber networks and showed that the model is accurate enough to make
qualitative predictions for reasonably dense topologies. From our studies, we also

conclude that dilation affects the performance in rings and mesh-tori in very different

ways.



Chapter 7

CONCLUSIONS AND FUTURE WORK

The primary focus of this dissertation was the impact of wavelength conversion on
the performance of wavelength-routed WDM networks. WDM networks employing
wavelength routing is currently the most attractive option for a wide-area backbone
network built on a national or international scale. Wavelength conversion has been
recognized as a key capability for improving the network performance.

All-optical wavelength converters remain expensive, hard-to-design devices and
a thorough understanding of their benefits is necessary for the design of future all-
optical networks. In Chapter 3, we proposed the concept of sparse wavelength con-
version. Networks with sparse wavelength conversion do not necessarily have wave-
length conversion capability at every node. We developed analytical models for Pois-
son traffic to evaluate the blocking performance of such networks employing random
wavelength assignment. Our analytical model captures the important effects of load
correlation without increasing the computational complexity dramatically. To avoid
the tedious task of computing the blocking probabilities for every possible placement
of a given number converters in a network, we obtained the ensemble average perfor-
mance of the network over all possible numbers of converters with a given expected
value and all possible placements. This allowed a single parameter characterization
of networks with sparse wavelength conversion. The results suggest that wavelength
conversion does not reduce the blocking probabilities significantly in very sparsely
connected networks such as the ring and very densely connected networks such as the
hypercube, while yielding significant performance benefits in moderately connected

networks such as the mesh-torus for uniform Poisson traffic. Furthermore, our results
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indicate that typically a small conversion density (fraction of network nodes with
conversion capability) may be enough to boost the performance to a certain required
level.

The exact nature of traffic that future optical networks are expected to carry is
not known. In Chapter 4, we attempted to study the sensitivity of the conclusions
reached in Chapter 3 to the assumption of Poisson input traffic. We employed a simple
model called the Bernoulli-Poisson-Pascal model to study the effect of the second
moment of an input traffic (peakedness) on the benefits of wavelength conversion. The
results of that chapter indicate that peakedness dramatically (and negatively) affects
the blocking probabilities in both networks with and without conversion. However,
networks with wavelength conversion are affected more. On the other hand, the
increase in load achievable with wavelength conversion at a fixed blocking performance
is not affected by traffic peakedness over a large range of peakedness values.

The concept of sparse wavelength conversion naturally gives rise to the problem
of optimally placing a given number of wavelength converters in a network. We
addressed this problem in Chapter 5 and provided optimal solutions to minimize
the blocking probability in a path of a network, bus topologies, and ring topologies.
We showed that optimal converter placement is an important issue that results in
significant blocking performance improvement, especially when link load correlation
is insignificant. The results obtained using our dynamic programming-based solutions
indicate that it is hard to estimate optimal placements ¢ priori. We also studied
the effect of the blocking performance model on the optimal placement decision. It
appears that the decisions are largely insensitive to the performance model; however,
there were instances in which the placements obtained using two different performance
models were different.

In Chapter 6, we considered networks without wavelength conversion. We assumed
that the routes of calls were fixed and developed an efficient heuristic called the

Max_Sum algorithm for assigning wavelengths to dynamically arriving connection
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requests. Qur algorithm was observed to perform better than other existing heuristics
for Poisson traffic using extensive simulations. The performance improvement with
the Max_Sum algorithm is considerable in ring networks with a moderate number of
fibers per link (5 — 40) and a large number of wavelengths (> 20). In a mesh-torus
network, we observed that the wavelength assignment algorithm is not very crucial
to improving the performance when the number of fibers per link is high (> 10).

The research reported in this dissertation can be extended in several different
ways. The model we presented in Chapter 3 assumed that alternate routing was
not allowed. However, practical networks almost always employ alternate routing
and models for wavelength conversion with alternate routing need to be developed.
Furthermore, models for wavelength assignment algorithms other than random are
required to study the benefits of wavelength conversion in a more practical scenario.
There has been some work addressing these two aspects recently in the literature, but
there is no reported work yet on the impact of sparse wavelength conversion under
alternate routing and other wavelength assignment algorithms. Another possible
direction that could be pursued is the performance of networks whose nodes have
a limited number of transceivers. We assumed in our models that any connection
can be established as long as there is a wavelength available on the fibers along the
connection’s path.

The evaluation of blocking performance is only one measure of analyzing the
benefits of wavelength conversion. Other approaches such as capacity planning could
be used. The recent literature does report some work in this area for networks with
sparse wavelength conversion, but more is required for a clearer understanding.

We used a simple model to study the effect of traffic peakedness on wavelength
conversion benefits. Possible future work could include other models and the effect
of higher moments of traffic.

Converter placement in arbitrary topologies remains an open problem. In light

of the difficult nature of the problem, a heuristic approach to place converters would
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appear to be necessary. Effective heuristics, possibly based on solutions we have
presented, should be developed and the importance of near-optimal placement in
arbitrary topologies should be studied.

The wavelength assignment algorithm presented in Chapter 6 could be extended
to assign wavelengths to a set of static requests in an attempt to minimize the num-
ber of wavelengths used. A possible way of ordering the requests for wavelength
assignment is to assign wavelengths for the longest-hop calls first. Some of the other
algorithms suggested in Chapter 6 such as Max_Min and Max_Weighted_Sum may be
more appropriate in certain situations and results obtained using those algorithms
could be interesting. We have evaluated the performance of our algorithm only on
rings and mesh-tori. Performance in other topologies remains to be studied.

Optical networks are expected to play an important role in the future information
infrastructure, such as the next generation Internet architecture. It is hoped that
this dissertation has addressed some issues that might be useful in the design of such
networks. Qur development of accurate performance models and of the notion of

sparse wavelength conversion may be beneficial in this context.
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Appendix A

AN ILP FOR CONVERTER PLACEMENT

This appendix provides an integer-linear programming formulation for a version
of the converter placement problem with static traffic. For convenience, let P denote
the number of paths (or (s,d) pairs) and A; denote the number of sessions to be
established on path z. In our formulation here, we assume the routing to be given.
An alternative formulation in which the routing is not given can be obtained in a
similar manner. Let NV denote the number of nodes in the network, L the number of
links, and F the number of wavelengths per fiber. The number of fibers per link is
assumed to be 1. Let M; denote the number of sessions that are actually established
on path i for any converter placement and wavelength assignment (WA) algorithm.

Let B = (b;;) denote the path-link incidence matrix, i.e.,

; { 1, iflink 5 is on path z,
i =

0, otherwise.

Let D = (d;j) denote the link-node incidence matrix, i.e.,

dij = ]
o, otherwise.

{ 1, if link ¢ is incident to node j,

The allocation of converters and the corresponding WA algorithm consistent with
that placement can then be described by an N-vector A = (a;) and a P x L x F

matrix C = (¢;jx), where

{ 1, if a converter is placed at node ¢,
a; =

0, otherwise,
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denotes the converter location vector, and

1, if wavelength k is assigned to link j on path ¢,
Cijk =
! 0, otherwise,

represents the allocation of wavelengths to links on paths.

Then, the optimal converter placement and the corresponding RWA algorithm for

the deterministic case can be obtained by solving the following ILP.

Maximize the carried traffic 3°F ; M; subject to the following constraints.

1.

M; > 0, integer,1 =1,..., N,

.0<a; L1, integer,z=1,...,N,

. Cijk 20, integer,: =1,...,P, j=1,...,L, k=1,...,F,

P

. Z cijk <1 Vjy,k (a wavelength k£ can be used on a link j at most once),

=1

F

M; < Z Cijk, Vt,j (the number of connections on a path is < the number of
k=1

wavelengths assigned on any link of the path),

M; < X; (traffic demands),

F
Z cijk < b;j  Vi,j (a wavelength can be assigned to a link j on path 7 only if
k=1
link j is used on path ?),

Cijk — Citk + (1 — @n)djndinbijby < 1 V1,3, k,l,n (if link j is incident to node n
and link [ is incident to node n, and if there is no converter at node n, and if

both links j and [ lie on the same path i, then wavelength k should be assigned

to both j and [ or to neither of them), and

. YN a; < K (constraint on the number of converters).

i=l1 —_
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