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To know the properties of a particle or a wave, one should measure how its energy changes

with its momentum. The relation between them is called the dispersion relation, which

encodes essential information of the kinetics. In a magnet, the wave motion of atomic spins

serves as an elementary excitation, called a spin wave, and behaves like a fictitious particle.

Although the dispersion relation of spin waves governs many of the magnetic properties,

observation of their entire dispersion is one of the challenges today. Spin waves whose

dispersion is dominated by magnetostatic interaction are called pure-magnetostatic waves,

which are still missing despite of their practical importance. Here, we report observation of

the band dispersion relation of pure-magnetostatic waves by developing a table-top

all-optical spectroscopy named spin-wave tomography. The result unmasks characteristics of

pure-magnetostatic waves. We also demonstrate time-resolved measurements, which reveal

coherent energy transfer between spin waves and lattice vibrations.
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S
pin waves (SWs) can be classified into the following three
classes: exchange, dipole-exchange and pure-magnetostatic
spin waves1–4. Exchange SWs refer to a type of spin

waves in which the dispersion relations are dominated by
exchange interaction; neutron scattering has been used to
measure their dispersion relations5. Dipole-exchange SWs refer
to a type of spin waves affected both by exchange interaction
and magnetostatic dipole interaction; Brillouin light scattering
holds an unchallenged position in their observation6–8. The
third type is pure-magnetostatic SWs whose dispersion is
explained without exchange interaction1–4. Spin waves in the
magnetostatic regime are characterized by complicated and
anisotropic dispersion relations; for instance, their slope may
even become negative for the so-called backward volume
magnetostatic waves. Although they are currently employed in
spintronics and micromagnetics9–13, a dispersion spectroscopy of
pure-magnetostatic waves is still missing; to observe the
dispersion requires a new concept in spin-wave spectroscopy.

The most traditional principle of spectroscopy is diffraction
caused by periodic structures, such as a grating or a crystal
lattice14. Many methods of neutron and optical scattering
spectroscopy, including Brillouin light scattering, are based on
this mechanism5–8,10,13.

Another powerful principle of spectroscopy is the Fourier
transform (FT) method, which has recently become more
attractive because of advances in optical- and data-processing
technologies as demonstrated by phonon-polariton spectro-
scopy15–18. In the FT method, all possible waves are excited at
once, and power spectra are obtained by calculating the FT of the
excited waveform. Such methods have been introduced in some
fields including FT infrared spectroscopy (FTIR)17 and NMR
spectroscopy15, and rapidly turned into versatile tools spread all
over the world.

In the following, we present spin-wave FT spectroscopy which
can reconstruct the dispersion curves of spin waves: we name it
spin-wave tomography (SWaT). An ultrashort light pulse is
focused on a very small surface area of a magnet to excite spin
waves11,19–25. When the pulse duration and the excitation area
are infinitesimally small, the pulse consists of all temporal and
spatial wave components according to the Fourier theorem. Then,
spin waves of all wave vectors can be created simultaneously and
propagate radially from the excitation point. The created spin
waves are detected using a magneto-optical imaging technique26

(see Methods section for details). By Fourier transforming the
observed propagating waveform with respect to time and spatial
coordinates, power spectra of the spin-wave propagation are
obtained as a function of the frequency f and the wavenumber
vector k. The spin-wave dispersion relations are then read from
the spectra (Supplementary Note 1). The lateral sample size
should be larger than the spin-wave decay length to avoid
extrinsic standing-wave formation caused by reflection of the
spin waves at the sample edges. This method gives access to the
spin-wave dispersion with wavelengths typically larger than a
micrometre. This is the principle of the SWaT developed here. To
obtain the spectra, clear Faraday rotation signals with high spatial
resolution are indispensable. Thanks to a recently developed
technique to acquire absolute Faraday rotation angles as a
function of time and position26, we report here the dispersion
structures of pure-magnetostatic spin waves observed with SWaT.

Results
SWaT measurements. Figure 1 illustrates our experimental
setup. A 100 fs-duration intense laser pump pulse was focused
to a small round area (7 mm2) of a 4.0 mm-thick LuIG (001) film
(see Methods section for details). The pump pulse excites spin

waves by photo-magnetic effects, predominantly photo-induced
demagnetization11,19,22 and magnetoelasticity24,27–29 (see below).
The temporal evolution of the excited magnetization texture was
obtained from the polarization rotation angle of the probe beam,
which represents the local magnetization component along the
light propagation via the optical Faraday effect26,30. To acquire
temporal evolution data, the time delay t between the pump and
the probe pulses was scanned. By Fourier transforming the
temporal and spatial dependence of the Faraday rotation angle,
we obtained power spectra of the Faraday rotation: SWaT power
spectra, which reflect the k-dependent dynamical magnetic
susceptibility31 (Supplementary Note 1).

Figure 2a shows a spectrum for a non-magnetic Gd3Ga5O12

(GGG) crystal that does not carry spin waves obtained by the
above SWaT method as a function of the wavenumber k along the
[100] direction and the frequency f. We confirm that no signals
appear in the spectrum for this non-magnetic medium, and then
move on to measurements on magnetic materials.

In Fig. 2b, we show a SWaT spectrum obtained for a
ferrimagnetic LuIG (001) film with a magnetic field (H) applied
in the [100] direction. Here, k is set along the [100] direction
(f¼ 0�, where f is defined in Fig. 2c). In Fig. 2b, importantly,
clear signals (orange colour) appear around 0.5 GHz-2.0 GHz that
are labelled as magnetostatic volume wave (MV) (Fig. 2d,e). The
signals shift towards higher frequencies almost proportional to
the external magnetic field H. This proves that the signals are
caused by magnetic excitations.

Notable is that the spectra in Fig. 2b disclose a dispersion curve
with negative slope; the signal frequency f decreases with
increasing k, which is a distinct feature of backward volume
magnetostatic modes that are expected to be prominent near
k¼ 0. The experimental signal (orange colour in Fig. 2b) is
well reproduced by an analytical expression for backward volume
magnetostatic modes4 (dashed white curve in Fig. 2b). This is
evidence for the observation of pure-magnetostatic spin-wave
dispersion curves (Supplementary Movie 1). Higher-order
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Figure 1 | Schematic illustration of spin wave tomography. Spin-wave

tomography (SWaT) is based on the observation of the propagation

dynamics of spin waves with the pump-and-probe magneto-optical imaging

method. Various modes of spin waves are excited simultaneously by the

illumination of the pump laser pulse in magnetic materials. The propagation

dynamics of the spin waves are measured through the Faraday effect on the

probe pulse (yF), which is proportional to the magnetization along the

direction normal to the sample surface (mz). The images of yF are obtained

by analyzing the transmission images (Ia) observed at various angles of the

analyzer (a)26. The spin-wave dispersion relations are reconstructed by

Fourier transforming the propagating waveform of the spin waves.
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standing spin waves are less visible in the transmission Faraday
experiments due to their oscillations along the thickness
direction4.

In all the spectra measured for LuIG, we observed
low-frequency signals, labelled as transverse acoustic (TA)
phonon and longitudinal acoustic (LA) phonon in Fig. 2b, each
of which exhibits a linear k dependence (f p k). The TA (LA)
signal is assigned to transverse (longitudinal) acoustic phonon
dispersion, since its slope, v¼ 3.0 km s� 1 (6.2 km s� 1), is
consistent with the transverse (longitudinal) sound velocity32.
This means that low-frequency lattice vibrations are coupled to
magnetization oscillations, and the present method is sufficiently
sensitive to pick them up.

Angular dependence of SWaT. In Fig. 3a, we show the k-
direction dependence of the obtained SWaT spectra for LuIG
(Supplementary Movie 1). With changing the direction of k, the
dispersion drastically changes, again consistent with magneto-
static spin wave theory4. The slope of the MV dispersion changes
from negative to positive when the angle (f) between
k and M (Fig. 2c) is around 30�. This is caused by the uniaxial
magnetocrystalline anisotropy along the surface normal; the
experimental results are well reproduced by a theoretical
calculation4 including this uniaxial anisotropy, shown as the
white dashed curves in Fig. 3a. The dispersion signal labelled as
DE in Fig. 3a can be assigned to a spin wave called a
magnetostatic Damon-Eshbach mode4. The dispersion curves of
MV and DE show negative and positive slopes, respectively,
consistent with microwave absorption data33. For comparison, in
Fig. 3b, we show numerically calculated power spectra of the
pure-magnetostatic spin waves for the k directions in Fig. 3a; the
temporal evolution of the out-of-plane magnetization distribution

generated by a sudden change in the magnetization at the origin
was calculated by solving the Landau–Lifshitz–Gilbert equation34.
The parameters are the same as those used for the fits in Fig. 3a.
The measured dispersion curves are well reproduced by the
calculations for all k directions. This demonstrates again that the
observed dispersion signals pertain to pure-magnetostatic spin
waves, and that SWaT works properly and is powerful enough to
directly map them.

Time-resolved SWaT. Finally, we present time-resolved spectra
that provide information about the spin-wave excitation
mechanism and the role of phonons. Time-resolved SWaT
spectra were obtained by clipping out data over a time interval,
Dt, centred around a time, tc, using a Gaussian window function
and performing the SWaT analysis for the clipped data
(Supplementary Note 2). Here, we set Dt as 2.8 ns corresponding
to the frequency resolution of B0.4 GHz.

We observed significant difference in the time evolution of
the spectral intensity under the external magnetic fields of
560 Oe (Fig. 4a) and 40 Oe (Fig. 4b,c). This is attributed to the
difference in the dominant spin-wave excitation mechanisms: the
photo-induced demagnetization or the magnetoelastic coupling.
Figure 4a shows time-resolved SWaT spectra for LuIG under
the magnetic field of 560 Oe (see also Supplementary Movie 1).
The spin wave branches are already recognizable in the spectra
at tc¼ 2 ns. At this magnetic field, the spin waves appear to
be excited mainly by the photo-induced demagnetization
process11,19,22; the spin wave spectral intensity is unchanged
when the pump pulse polarization is changed among clockwise,
anticlockwise and linear, excluding the possibility of the inverse
Faraday effect21,29,35,36 or photo-induced magnetic anisotropy23

as excitation mechanisms. The demagnetizing field is changed by
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Figure 2 | SWaT spectra as a function of external magnetic fields. (a) A SWaT spectrum obtained for a paramagnetic GGG substrate without

spontaneous magnetization. (b) SWaT spectra for the LuIG sample with wavenumber k parallel to the magnetization M, which was aligned along the [100]

axis by an in-plane magnetic field H. We observe three different dispersion curves, which are schematically shown in (d). TA, LA and MV represent the

transverse acoustic phonon, the longitudinal acoustic phonon and the magnetostatic volume mode branches, respectively. The white dashed curves are

calculated by a magnetostatic spin wave theory4 with the following parameters: saturation magnetization 4pMs¼ 780 G, cubic anisotropy

Kc¼ 2.3� 103 erg cm� 3 and uniaxial magnetic anisotropy Ku¼ � 1.2� 104 erg cm� 3. (c) A schematic of the experimental configuration. f is defined as

the angle between k of spin waves and the orientation of M. (d) A schematic of the three branches observed in (b). (e) A three-dimensional contour

plot (at the intensity of 0.7 in the scale shown in (a) of the SWaT intensity representing spin waves (red) and phonons (blue). The direction of M is

indicated by the green arrow.
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the laser light in the pumped area, and the resulting impulse can
contribute to the spin-wave emission11,19,22. At H¼ 40 Oe, on the
other hand, the spectral intensity at kB0.8� 104 rad cm� 1 and
k B 1.5� 104 rad cm� 1 in the spectra gradually increases over

time (Fig. 4b). This implies an energy transfer from phonons
(LA and TA) to spin waves via the crossing points of their
dispersion curves. At these points, the spin waves can be excited
directly by phonons via magnetoelastic coupling (Supplementary
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Figure 4 | Time-resolved SWaT spectra. (a,b) Time-resolved SWaT spectra with k parallel to M under in-plane magnetic fields of 560 Oe (a) and 40 Oe
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dimensional contour plot (at the intensity of 0.97 in the scale shown in Fig. 2a) of the SWaT intensity obtained under the in-plane magnetic field of 40 Oe.

The data shown in (b) was extracted along the cross-section shown as the yellow plane. (d) Temporal evolution of the time-resolved SWaT spectra

obtained along the dashed white line in (b). The data was obtained by applying a time-window with the width of 1.0 ns. (e) A result of numerical

calculations of the time-resolved SWaT spectra shown in (d).
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Note 3), known as magnetoelastic waves, although phonons are
less visible in the Faraday rotation. The difference in the
dominant excitation mechanisms in Fig. 4a,b is due to the
strong magnetic field dependence in the magnetoelastic waves, of
which the intensity significantly reduces with increasing the
external field (Supplementary Note 4). Consequently, spin waves
are dominantly generated by the photo-induced demagnetization
at 560 Oe, while the magnetoelastic coupling is the dominant
mechanism at 40 Oe.

Figure 4d shows the temporal evolution of the SWaT spectral
intensity along the dashed line in Fig. 4b for 10 ns. Interestingly, a
streak pattern appears below the dispersion-crossing frequency
of B0.7 GHz. This streak is attributed to the beat pattern
between spin-wave and phonon modes, which interfere near
the intersection point while satisfying momentum and energy
conservation (Supplementary Note 3). In fact, a numerical
calculation shown in Fig. 4e, in which the Landau–Lifshitz–
Gilbert equation is solved combined with the magnetoelastic
coupling to transverse acoustic phonons, well reproduces the
observed streak pattern.

Discussion
Finally, let us discuss the advantages of SWaT. As we
demonstrated, SWaT can be employed as a new technique for
the dispersion spectroscopy of pure-magnetostatic waves. The
SWaT is a non-contact and non-destructive spectroscopy for
magnetic excitation and phonons that can be applied even to
minute and thin samples. SWaT measurements can also be made
under various environments, such as strong electric fields, strong
magnetic fields, varying temperature and high pressure. As a
result of this versatility, SWaT might find potential applications
in the evaluation of the spin-wave dispersion not only in
magnetic materials, but also in, for instance, topological
insulators and magnetic films attached on superconductors. The
obtained dispersion of spin waves would form the basis for the
development of spintronics and magnonics devices. Moreover,
time-resolved measurements of SWaT may be utilized for the
real-time imaging of interaction between fundamental excitations
in solids, like electronic quasiparticles, phonons and spin waves.

Methods
Sample. We used a 4.0 mm-thick film of Bi-doped iron garnet Lu2.3Bi0.7Fe4.2-
Ga0.8O12 (LuIG) grown on a Gd3Ga5O12 (001) substrate, which is a well-established
material for magneto-optical imaging37,38. The saturation magnetization of the
sample (4pMs) was measured to be 780 G using a vibrating sample magnetometer.
The magneto-optical properties of LuIG films were reported in refs 37,38. At the
wavelength of the probe pulse (630 nm), the sample shows a large Faraday rotation
angle of 5.2 degrees and a high transmissivity of 41%. All the measurements were
performed at room temperature.

Ultrafast time-resolved magneto-optical imaging. Propagation dynamics of the
optically-excited spin waves were observed using an ultrafast time-resolved
magneto-optical imaging system with sub-picosecond time resolution,
sub-micrometre spatial resolution and millidegree resolution in the light
polarization rotation angle26. This system, schematically represented in Fig. 1, is
based on an all-optical two-colour pump-probe technique for the time-resolved
measurements in combination with a rotation analyser method to obtain
magneto-optical images. As a light source, we used a 100 fs amplified laser system
with the center wavelength of 800 nm and a repetition frequency of 1 kHz. The
output of the laser was divided into two beams: the pump and the probe beams.
The beam with the original wavelength (800 nm) was used for the pump. The probe
wavelength was tuned with an optical parametric amplifier to 630 nm. The pump
pulse was circularly polarized and focused to a small round area (7 mm2) on the
sample surface. The probe beam illuminated the sample with a focus size of
B1 mm. The probe fluence (0.2 mJ cm� 2) was much weaker than the pump
fluence (1.2 J cm� 2). To measure the photo-induced change in the magnetization
distribution, we measured light polarization images of the transmitted probe beam
using the rotation analyzer method, composed of an analyzer (a Glan-Taylor
prism) and a CCD (charge-coupled device) camera. The analyzer angle (a) was
controlled with a motorized rotation stage. For the measurements, we scan a from

� 10 degrees to 10 degrees, and the CCD camera measures the light intensity
images of the transmitted probe beam as a function of a, which we denote as I(a).
Furthermore, I(a) is given by I(a)¼ Itsin2 (yF� a)þ Ib, where It, yF and Ib

represent the transmitted light intensity, the Faraday rotation angle and the
background signal, respectively. By fitting the obtained I(a) data with this equation,
we obtained three images of It, yF and Ib simultaneously. The quantity yF reflect the
magnetic properties of the sample. SWaT spectra were obtained by performing
spatial and temporal FT of the yF data set. A Hanning window was employed for
the FT along the time axis to reduce noise.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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