
 Open access  Journal Article  DOI:10.1109/JSTQE.2018.2836985

All-Optical Reservoir Computing on a Photonic Chip Using Silicon-Based Ring
Resonators — Source link 

Florian Denis-le Coarer, Marc Sciamanna, Andrew Katumba, Matthias Freiberger ...+3 more authors

Institutions: University of Lorraine, Ghent University

Published on: 15 May 2018 - IEEE Journal of Selected Topics in Quantum Electronics (Institute of Electrical and
Electronics Engineers (IEEE))

Topics: Reservoir computing, Silicon photonics and Optical ring resonators

Related papers:

 Experimental demonstration of reservoir computing on a silicon photonics chip

 Deep learning with coherent nanophotonic circuits

 Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication

 Optoelectronic reservoir computing.

 Information processing using a single dynamical node as complex system

Share this paper:    

View more about this paper here: https://typeset.io/papers/all-optical-reservoir-computing-on-a-photonic-chip-using-
4zhnjlaeot

https://typeset.io/
https://www.doi.org/10.1109/JSTQE.2018.2836985
https://typeset.io/papers/all-optical-reservoir-computing-on-a-photonic-chip-using-4zhnjlaeot
https://typeset.io/authors/florian-denis-le-coarer-3zmi7zk0qb
https://typeset.io/authors/marc-sciamanna-wmxdan8rhx
https://typeset.io/authors/andrew-katumba-36hcth5f5e
https://typeset.io/authors/matthias-freiberger-3nvdasazm2
https://typeset.io/institutions/university-of-lorraine-wzc63y7x
https://typeset.io/institutions/ghent-university-14limu0t
https://typeset.io/journals/ieee-journal-of-selected-topics-in-quantum-electronics-tddf07b2
https://typeset.io/topics/reservoir-computing-1x05cck3
https://typeset.io/topics/silicon-photonics-24ueyudm
https://typeset.io/topics/optical-ring-resonators-gd9kwzii
https://typeset.io/papers/experimental-demonstration-of-reservoir-computing-on-a-1ktqh6c40f
https://typeset.io/papers/deep-learning-with-coherent-nanophotonic-circuits-rxf8y57odg
https://typeset.io/papers/harnessing-nonlinearity-predicting-chaotic-systems-and-2h0kiy9kvu
https://typeset.io/papers/optoelectronic-reservoir-computing-2rppsl75a6
https://typeset.io/papers/information-processing-using-a-single-dynamical-node-as-1k13xr5xm0
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/all-optical-reservoir-computing-on-a-photonic-chip-using-4zhnjlaeot
https://twitter.com/intent/tweet?text=All-Optical%20Reservoir%20Computing%20on%20a%20Photonic%20Chip%20Using%20Silicon-Based%20Ring%20Resonators&url=https://typeset.io/papers/all-optical-reservoir-computing-on-a-photonic-chip-using-4zhnjlaeot
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/all-optical-reservoir-computing-on-a-photonic-chip-using-4zhnjlaeot
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/all-optical-reservoir-computing-on-a-photonic-chip-using-4zhnjlaeot
https://typeset.io/papers/all-optical-reservoir-computing-on-a-photonic-chip-using-4zhnjlaeot


All-Optical Reservoir Computing on a Photonic Chip

Using Silicon-Based Ring Resonators
Florian Denis-Le Coarer , Marc Sciamanna, Andrew Katumba , Matthias Freiberger , Joni Dambre ,

Peter Bienstman , and Damien Rontani

Abstract—We present in our work numerical results on the per-
formance of a 4 × 4 swirl-topology photonic reservoir integrated
on a silicon chip. Nonlinear microring resonators are used as nodes.
We analyze the performance of such a reservoir on a classical non-
linear Boolean task (the delayed XOR task) for: various designs of
the reservoir in terms of lengths of the waveguides between con-
secutive nodes, and various injection parameters (injected power
and optical detuning). From this analysis, we find that this kind
of reservoir can perform–for a large variety of parameters–the de-
layed XOR task at 20 Gb/s with bit error rates lower than 10−3

and an averaged injection power lower than 2.5 mW.

Index Terms—Reservoir computing, silicon photonics, ring
resonators.

I. INTRODUCTION

T
HE development of machine learning solutions in the phys-

ical layer appears as a promising approach to address the

new

 

challenges

 

brought

 

by

 

the

 

increasing

 

amount

 

of

 

data

 

to

 

pro-

 

cess

 

[1].

 

Compared

 

to

 

existing

 

software-based

 

solutions,

 

dedi-

 

cated

 

hardware

 

platforms

 

allow

 

to

 

process

 

data

 

at

 

higher

 

speed

 

and

 

better

 

energy

 

efficiency

 

[2],

 

even

 

enabling

 

real-time

 

compu-

 

tation

 

[3].

 

Amongst

 

the

 

existing

 

machine-learning

 

approaches,

 

reservoir

 

computing

 

-

 

a

 

supervised

 

learning

 

technique

 

that

 

ap-

 

peared

 

a

 

decade

 

ago

 

-

 

has

 

focused

 

a

 

lot

 

of

 

attention

 

[4]–[6].

 

This

 

is

 

mainly

 

due

 

to

 

its

 

relatively

 

straightforward

 

implementation,

 

both

 

in

 

software

 

and

 

hardware,

 

and

 

a

 

simple

 

training

 

proce-

 

dure. As a result, this concept has displayed state-of-the-art

performance on various hardware platforms [7]–[9], including

photonics ([10] and references therein).

Photonics reservoir computing (PRC) is a candidate technol-

ogy that has attracted lots of attention in the last few years [11]–

[24], due to its ability to perform typical tasks of artificial

neural-networks: emulation of simple boolean operations [23],

pattern generation [24], chaotic time series prediction [17], or

bit-sequences recognition [20]. Multiple photonic implemen-

tations have been proposed and they include a single nonlin-

ear node with delayed feedback such as optoelectronic oscilla-

tors [11] and laser diode with optical feedback [12]; coupled

photonic crystal cavities [24], integrated photonic reservoirs us-

ing passive nodes made of delay lines and splitters [22], [23],

networks of semiconductor optical amplifiers [19], or networks

of InGaAsP/InP-based ring resonators [20].

In this work, we propose a novel photonics architecture

of reservoir computing integrated on a silicon chip, using

Silicon-on-Insulator (SOI) microring (MR) resonators as non-

linear nodes. This integrated element exhibits rich nonlinear

dynamical behaviors [25]–[31]. SOI microrings resonators are

mostly used as optical filters [32], but can also be integrated

in more complex architectures and perform other types of all-

optical information processing such as boolean functions [33],

thresholding [34], pulse restoration [35], or ASK-to-PSK

conversion [36].

We build here a 4 × 4 swirl reservoir topology using SOI mi-

croring resonators as nodes. We perform an in-depth numerical

analysis of the performance of such a reservoir and investi-

gate the impact of new degrees of freedom, namely the injected

power, the optical detuning, and possible resonance mismatches

between the microring resonators. The performance of the reser-

voir architecture is based on the typical delayed XOR task by

quantifying the bit-error rate (BER). We compare the perfor-

mance of our reservoir with those of a similar topology, but

using linear nodes made of waveguides, splitters, and combin-

ers [22], [23]. We demonstrate that our architecture can reach

BER level comparable to those of the passive reservoir (<10−3)

at data rate of 20 Gb/s, and over a wide range of design param-

eters. Furthermore, the power consumption required to reach

this level of performance using Return-to-Zero (RZ) input sig-

nal is only 2.4 mW (0.15 mW per node), which is in the same

order of magnitude than the power used in the previous design,

where Non-Return-to-Zero (NRZ) input signals were necessary

to perform at best.
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Fig. 1. Illustration the 4 × 4 swirl topology of the photonics reservoir under
investigation. Each node is a nonlinear microring resonator. Nodes are linked
by waveguides with typical losses of 3.0 dB/cm.

This work is organised as follows. We first describe the theo-

retical reservoir model used in our numerical simulation, and the

physical model of a SOI nonlinear microring resonator, which

is the building block of the reservoir. Then after that, from an

analysis of the stability of a nonlinear ring resonator, we study

the optimum parameters of injection (power injected in each

node, and optical detuning) for the reservoir in order to get the

best performance. Then we present the simulated performance

of the new reservoir architecture studied in this work. Finally, a

last section is devoted to discussions and conclusions.

II. RESERVOIR MODEL

The photonic reservoir is a 16-node (4 × 4) swirl reservoir

in which each node is a nonlinear microring resonator (see [25],

[26] and the following section). The swirl topology - intro-

duced in [22] and [23] - allows sufficient mixing of the input

signals while satisfying to the planarity constraint of an inte-

grated implementation and minimizing the power losses in the

structure at each combiner. The connections between neighbour-

ing nodes are ensured by long waveguides, which introduce a

non-negligible inter-delay due to the finite-time propagation of

optical signals. We depict in Fig. 1 a schematic of the integrated

photonic reservoir studied in this work.

The reservoir model is given by (1)–(2):

x[k + 1] = f (x[k],Wresx[k] + Win (u[k + 1] + ubias)) ,
(1)

yout [k] = Woutxdetector [k]. (2)

Equation (1) is the reservoir state update equation, where x is

the state of the reservoir; f is a nonlinear vector field to account

for the nonlinear behaviour of the reservoir nodes and u is the

input signal to the reservoir. ubias is a bias signal applied to the

nodes of the reservoir, that can be non-zero in the case of NRZ

signals, or - as in our case - zero for RZ signals. Wres is the

interconnection matrix, that represents the connections between

the nodes of the reservoir, and taking into account splitting

ratios, losses, and random phase shifts uniformly distributed on

[−π, π]. Finally, Win is the input matrix, representing the input

weight on each node. In our architecture, we inject the same

power modulation in all the active nodes with random phase

shifts, hence Win is a 16 × 16 diagonal matrix with random

elements sampled from a uniform distribution over the interval

[−π, π].

Fig. 2. Illustration of a SOI microring resonator as a nonlineaer node of the
reservoir. The node is a two-ports photonics component integrated on silicon.

Equation (2) gives the output yout of the reservoir. xdetector

are the states of the reservoir after the detectors, and Wout is

the readout matrix comprising the output weights that need to

be determined through training by a ridge regression.

The detector used in our simulations is the same as the one

used in previous work [23] and its model is based on the Alpha-

las UPD-15-IR2-FC photodetector. This takes into account the

bandwidth limitation of the detector (modelled by a low-pass

filter with a 3 dB cutoff), the response-time limitations, the re-

sponsivity, and various noise contributions, including shot noise

and thermal noise. The total noise σ2
n is given by (3):

σ2
n = 2qB (〈I〉 + 〈Id〉) +

4kB TB

RL
, (3)

where B is the bandwidth (B = 25 GHz), 〈I〉 and 〈Id〉 are

respectively the mean value of the photocurrent and the dark

current (〈Id〉 = 0.1 nA), q is the elementary particle charge,

kB is Boltzmann’s constant, T is the temperature (in K), and

RL is the load impedance (RL = 50 Ω). The mean value

of the photocurrent is calculated from 〈I〉 = r · NEP ·
√

B
and the values given in the datasheet of the photodetector:

the responsivity r = 0.5 A/W, and the noise equivalent power

(NEP = 10−15 W/
√

Hz).

III. SINGLE NODE OF THE RESERVOIR

A. Nonlinear Microring Resonator

We present in this section the detailed model of a nonlin-

ear microring resonator, used as one of the building blocks of

our reservoir architecture, and shown in Fig. 2. The theoretical

framework we use is based on the well-established coupled-

mode theory (CMT). The model described in our work has al-

ready been proposed and was able to correctly describe for the

SOI microrings a wide range of dynamical behaviors observed

experimentally [25], [26].

The input/output relation is given in (4), in which sin is the

input signal (with Pin = |sin |2 the input power), sout the output

signal (with Pout = |sout |2 the output power), φc the phase

propagation in the bus waveguide, κ the coupling between the

bus waveguide and the microring, and a the complex amplitude

of the optical mode in the cavity (with |a|2 the energy in

the cavity).

sout = ejφc sin + κa. (4)

The state variables of the SOI nonlinear microring resonator

within the CMT-framework are: a the complex amplitude of



C

the optical mode, ∆T the mode-averaged temperature differ-

ence between the circular waveguide of the microring and its

surroundings, and N the number of free carriers. These vari-

ables account for the physical effects taking place in a nonlinear

microring resonator: specifically, (i) the two-photon absorption

(TPA), which generates free carriers; (ii) the free carrier absorp-

tion (FCA) (i.e.) absorption of light by the free carriers; (iii) the

free carrier dispersion (FCD) and (iv) losses.

The nonlinear dynamical equations controlling the temporal

evolution of the three state variables are given in (5)–(7), with

typical time scales τa ≈ 21 ps, τth = 65 ns, and τf c = 5.3 ns.

da

dt
=

[

j (ωr + δωnl − ω) − γloss

2

]

a + κsin , (5)

d∆T

dt
= −∆T

τth
+

Γthγabs |a|2
ρSicp,S iVth

, (6)

dN

dt
= − N

τf c
+

ΓF C AβSic
2 |a|4

2�ωV 2
F C An2

g

, (7)

where ω = 2πc/λ and ωr = 2πc/λr with λr = 1552.770 nm

are the frequency of the input light and the resonance frequency

of the ring, respectively. The relaxation times for the temper-

ature variations and the free carriers are respectively given by

τth and τf c . TPA in silicon is governed by the constant βSi .

nSi , cp,S i , and ρSi , which are the refractive index, the thermal

capacity, and the density of the bulk silicon, respectively. We

neglect dispersion, thus the group index ng is equal to nSi .

We also define the effective volumes and confinements for each

nonlinear effect: VF C A , ΓF C A , VT P A , and ΓT P A .

Losses also play an important role, as they introduce coupling

between the three state variables. The total loss γloss results

from the sum of absorption losses γabs , coupling losses into the

waveguide γcoup (with κ = j
√

γcoupejφc ), and radiation losses

γrad . The absorption losses in the ring are due to linear surface

absorption, TPA, and FCA, as presented in (8):

γabs = γabs,lin + ΓT P A
βSic

2 |a|2
n2

gVT P A
+ ΓF C A

σSic

ng
N, (8)

where γabs,lin is the linear absorption constant, and σSi is the

absorption cross section of FCA in silicon. In the case of a

critically coupled ring, we also have γcoup = γabs,lin + γrad .

Finally, we give in (9) the expression of the nonlinear detuning

δωnl , that is caused by the thermo-optic effect and FCD, while

the Kerr-effect is here neglected:

δωnl = −ωr

ng

(

dnSi

dT
∆T +

dnSi

dN
N

)

. (9)

As for any optical injection study, the two parameters of

interest are the input power Pin = |sin |2 , and the wavelength

difference between the injected light and the resonance wave-

length of the nonlinear microring resonator, that is the optical

detuning δλ = λ − λr . For the other parameters of the model,

we use the typical numerical values listed in Table I [25], [26].

These values will be later used in all our numerical simulations.

TABLE I
PARAMETERS VALUES USED IN THE SIMULATIONS OF THE MICRORING

MODEL, ADAPTED FROM [25] AND [26]

IV. OPERATING POINT OF THE RESERVOIR

It is necessary to choose an operating point of the reservoir to

achieve a good level of performance to solve complex tasks. It

was demonstrated that an adequate operating point for a reser-

voir is a fixed point, close to instabilities in order to maximize

the complexity of the transient to the steady-state [37]. We make

the simple assumption that the reservoir will be in a steady state

if a single node of the reservoir is on a fixed point. This is a

reasonable assumption because of the weak linear optical cou-

pling due to the losses induced by the waveguides (3 dB/cm),

the splitters (3 dB for each splitter), and the combiners (3 dB

for each combiner).

Hence, we first simulate a single, uncoupled, nonlinear mi-

croring resonator subjected to steps of optical power between

Pin0
= 0 mW and several maximum values Pin1

. The simu-

lations are performed as follow: we integrate the CMT-model

of the nonlinear microring resonator (see [25] and [26] for the

equations and the parameters values) over 2.5 µs with a power

step from Pin0
= 0 mW to the value of Pin1

at t = 100 ns. We use

an Euler integration method with a 1.0 ps integration time step,

and a 10.0 ps sampling time. These simulations are performed

using the Caphe software environment [38].

We then extract from the time series the consecutive extrema

for each value of the maximum input power, after deleting the

transients. We plot the extrema for each value of the maximum

input power at different values of the optical detuning, and obtain

the bifurcation diagrams shown in Fig. 3(a)–(c), for respectively

(a) δλ = 0 pm, (b) δλ = −50 pm, and (c) δλ = 50 pm.

Fig. 3(a) shows the output power of a microring resonator

with an optical detuning δλ = 0 pm, which is a fixed point for

Pin1
< 0.52 mW, and a self-pulsation (SP) for Pin1

> 0.54 mW.

For an optical detuning δλ = −50 pm (see Fig. 3(b)), the output

power is always a fixed point for Pin1
< 2.0 mW. Finally, we see

in Fig. 3(c) that, for an optical detuning δλ = 50 pm, the output

power is stationary for Pin1
< 0.38 mW, and a self-pulsating for

Pin1
> 0.40 mW.



Fig. 3. (a)–(c) Bifurcation diagrams of a single nonlinear microring resonator.
The bifurcation parameter is the injected power Pin (in mW), and we give
the diagrams for various values of the optical detuning. (a) δλ = 0 pm, (b)
δλ = −50 pm, and (c) δλ = 50 pm. (d) Stability map of a nonlinear microring
resonator in the (δλ, Pin ) plane. Figure adapted from [25] and [26], using
continuation techniques.

From these bifurcation diagrams, we identify an operating

point for the reservoir in terms of power amplitude modula-

tion, for each value of the optical detuning. For δλ = 0 pm,

we choose Pin1
= 0.5 mW (close to the SP bifurcation point).

For δλ = −50 pm, any value of the injected power is possi-

ble, but we also choose Pin1
= 0.5 mW to guarantee low levels

of energy consumption. Finally, for δλ = 50 pm, we choose

Pin1
= 0.3 mW.

Finally, in Fig. 3(d), we present a theoretically obtained sta-

bility map of a nonlinear microring resonator. This shows the

ring’s dynamical behavior in the optical detuning/injected power

plane, and for a given set of injection parameters. We find three

different regions associated to stable fixed points, self-pulsing,

and bistability when two different states can be reached de-

pending of the initial conditions. Each region is delimited by

bifurcation points: two saddle-node and a supercritical Hopf bi-

furcation for the bistable and self-pulsing region, respectively.

Note that this map was originally presented in a normalized

parameter plane [25], [26], but we have recomputed it with

continuation techniques and reformatted it with respect to our

parameters of interest.

With Fig. 3(d), it is possible to extract the information of

Fig. 3(a)–(c) for any optical detuning; thus finding the value

of injected power for which the microring is on a fixed point

close to self-pulsing. This allows to set an optimal operating

parameter conditions for the reservoir.

V. NUMERICAL SIMULATIONS: METHODS & PERFORMANCE

A. Simulation Methods

We obtain the reservoir states through the simulation, using

the Caphe photonic circuit simulator [38], of the 4 × 4 (16

nodes) swirl reservoir, described by (1) and (2), using nonlinear

microring resonators as nodes.

The performance of the reservoir is measured on the delayed

XOR task, as defined in (10). The current output bit y[n] for this

task is the Boolean XOR operation between the current input

bit x[n] with the bit that is ndelay bits in the past x[n − ndelay ].
This task is considered as the most difficult two-bits binary

delayed task, due to the nonlinear separability in machine

learning terms [23]. In our simulations, we always assume

ndelay = 1.

y[n] = x[n] ⊕ x[n − ndelay ]. (10)

The bit stream fed into the reservoir consists of 20 000 ran-

domly chosen bits. The training of the linear readouts is per-

formed using regularized ridge regression on 16 000 bits, using

the scikit-learn library [39]. The testing is done on the 4 000

remaining bits, for a regularization parameter chosen using the

best case from a five-fold cross-validation. We report the error

rates on the test data, hence the minimum measurable error rate

is 2.5 × 10−4 . Multiple-input simulations are performed with

the same bit stream injected simultaneously with the same in-

put power weights on all 16-nodes. For the readout layer, we

also use the discrete states xdetector of all 16-nodes to perform

the training and the testing of the reservoir. We use in all our

performance simulations a sampling rate of 160 Gb/s.

In this work, we investigate the optimal design of the reservoir

in terms of interconnection lengths, for a fixed data rate. Hence,

we will plot the reservoir performance as a function of the

reservoir inter-delay, that is the time the light needs to travel in

the waveguide from one node to the next. The length L of the bus

waveguide between two consecutive nodes can then be obtained

through (11), where nSi = 3.476 is the refractive index of the

bulk silicon, and tdelay is the reservoir inter-delay.

L =
c × tdelay

nSi
. (11)

The section is organised as follows: we present the perfor-

mance of the 16-nodes reservoir when focusing alternatively on

the influence of the bit rate, the optical detuning and the power

modulation.

B. Performance: Influence of the Bit Rate

The reservoir performance is plotted in Fig. 4. We focus on

the influence of the data rate, and give the performance as a

function of the reservoir inter-delay at 10 Gb/s (black dots),

15 Gb/s (red squares), 20 Gb/s (blue triangles), and 30 Gb/s

(green diamonds), respectively. In order to compare with pre-

vious work, we give in Fig. 4(a) the performance of the fully

passive reservoir of [22] and [23], and in Fig. 4(b) the perfor-

mance of the reservoir using nonlinear microring resonators as

nodes (called MR-reservoir for clarity purposes).

In the case of the passive reservoir (Fig. 4(a)), the bit stream

is fed on all nodes through a power modulation from Pin0
=

0.1 mW and Pin1
= 0.2 mW. In the MR-reservoir (Fig. 4(b)),

we fix the optical detuning at δλ = 50.0 pm, and we modulate

the injected power between Pin0
= 0.0 mW and Pin1

= 0.3 mW,

according to the optimal injection parameter conditions deter-

mined previously. In this reservoir, all microrings have the same

resonance frequency, and we have used the photodetector model

previously described.

The results presented in this figure suggest that the reservoir

with nonlinear microrings as nodes can perform the typical

delayed XOR task with error rates about 2.5 × 10−4 (lowest

achievable value with the number of bit used in testing) for



Fig. 4. Error rate - for the XOR task - as a function of the reservoir inter-
delay for various bit rates: 10 Gb/s (black dots), 15 Gb/s (red squares), 20 Gb/s
(blue triangles), and 30 Gb/s (green diamonds). Comparison between (a) the
passive reservoir of [22] and [23], and (b) the dynamically active reservoir. (a)
We modulate the injected power between Pin0

= 0.1 mW and Pin1 = 0.2 mW.
(b) The optical detuning is δλ = 50.0 pm, and we modulate the injected power
between Pin0 = 0.0 mW and Pin1 = 0.3 mW. The minimum acceptable error

rate is 2.5 × 10−4 .

Fig. 5. (a) Time series of four different nodes of the reservoir for the following
injection conditions (black line): an optical detuning δλ = 50.0 pm, a power
modulation between Pin0 = 0.0 mW and Pin1 = 0.3 mW at 20 Gb/s, and an
inter-delay tinterdelay = 18.75 ps. (b) Desired output (green curve), trained
output of the reservoir (blue curve), and decision threshold (red line) for the
same injection parameters. These parameters correspond to an optimal value of
the error rate of Fig. 4.

various values of the inter-delay at high bit rates. We also see

that the range of inter-delay values, where the reservoir performs

at its best, is slightly greater for lower bit rates. This is similar

to the passive reservoir (Fig. 4), but our architecture can achieve

lower error rates. We notice also a reduced range of inter-delay

values for the best performance compared to a passive reservoir.

This is most likely due to the internal time scale of the optical

mode τa ≈ 20 ps in the microring resonator model. This time

scale is close to the optimal value of inter-delay in term of

reservoir performance.

We present also in Fig. 5(a) normalized time series generated

by four nodes of the reservoir, along with the input power in

each node. These time series are obtained for the simulation

Fig. 6. Error rate - for the XOR task - as a function of the reservoir inter-delay
for various values of the optical detuning at 20 Gb/s. The power modulation
is chosen so that a microring alone is in a stationary state, but close to the
instabilities, with Pin0 = 0.0 mW. δλ = −50 pm and Pin1 = 0.5 mW (red
squares), δλ = 0.0 pm and Pin1 = 0.5 mW (blue triangles), δλ = 50 pm and
Pin1 = 0.3 mW (black dots), and δλ = 100 pm and Pin1 = 0.5 mW (green
diamonds). In (a), the microrings are all identical, and in (b), each microring
has a different value of the resonance frequency. The minimum acceptable error
rate is 2.5 × 10−4 .

of the MR-reservoir for an optical detuning δλ = 50.0 pm,

a power modulation comprised between Pin0
= 0.0 mW and

Pin1
= 0.3 mW, and an inter-delay tinterdelay = 18.75 ps. This

injection point corresponds to a optimal of the error rate in

Fig. 4(b). Finally, in Fig. 5(b), we show the output of the trained

reservoir for the same injection parameters as in Fig. 5(a). The

green curve is the desired output, the blue curve is the output of

the trained reservoir, and the red line is the decision threshold.

For both Fig. 4(a) and (b), the time is normalized so that one

bit is equal to one unit of time.

C. Performance: Influence of the Optical Detuning

In this part, we focus on the influence of the optical de-

tuning on the MR-reservoir performance. Fig. 6(a) gives the

performance of the reservoir as a function of the inter-delay

for four different values of the optical detuning: δλ = −50 pm

(red squares), δλ = 0.0 pm (blue triangles), δλ = 50 pm (black

dots), and δλ = 100 pm (green diamonds). The RZ power

modulation is chosen so that a microring alone is in a stationary

state, but close to a bifurcation point. Referring to Fig. 3(a)–(c),

the high value of the power modulation is Pin1
= 0.3 mW for

δλ = 50 pm, and Pin1
= 0.5 mW for δλ = 0 pm, δλ = 100 pm,

and δλ = −50 pm.

In this figure, we have considered that the microrings are

strictly the same, meaning that all 16 nonlinear microring res-

onators have the same resonance frequency. For more realistic

simulations, we give in Fig. 6(b) - and for the same input condi-

tions - the performance of the MR-reservoir when the resonance

frequencies of the microrings are different. The resonance fre-

quencies of the 16 microring resonators follow a Gaussian dis-

tribution centred on respectively δλ ∈ {−50, 0.0, 50, 100} pm,

with a 10 pm standard deviation, that is a rather pessimistic

value with regard to the current technology.



Fig. 7. Error rate - for the XOR task - as a function of the optical detuning for
a power modulation between Pin0 = 0.0 mW and Pin1 = 0.5 mW, an inter-
delay of 18.75 ps, and a bitrate 20 Gb/s. Error bars are given for seven series of
simulations. The minimum acceptable error rate is 2.5 × 10−4 .

Fig. 6 shows that the reservoir performs better when the

value of the optical frequency of the injected light is detuned

with respect to the resonance frequency of the nonlinear node

(typically in our study δλ ∈ {−50, 50, 100} pm), than when

the light is injected at the resonance frequency of the micror-

ing resonator (i.e. δλ = 0 pm). Note that the performance is

similar for those three different values of the optical detuning

(δλ ∈ {−50, 50, 100} pm). Intuitively, this can be understood

by the filtering properties of microrings: they absorb more opti-

cal power if the frequency of the injected light is close to their

resonance. As a result, the wave-mixing between the nodes in

the network is reduced, thus impeding the reservoir computer

performance. Fig. 6(b) shows a good robustness of the reser-

voir with regards to heterogeneities in the frequency resonance

between the nodes, providing that the detuning of the injected

light is larger than the standard deviation of the heterogeneities

in resonance.

In order to corroborate the results of Fig. 6, we plot in

Fig. 7 the performance of the reservoir as a function of the

optical detuning. More specifically, we have set the inter-delay

(18.75 ps), the power modulation between Pin0
= 0.0 mW and

Pin1
= 0.5 mW, and we have followed the horizontal dashed

line of Fig. 3(d). This value of inter-delay corresponds to the

best choice in terms of interconnection length, as it ensures rel-

atively small connection waveguides, while the mismatches in

the frequency resonance of the rings does not affect the perfor-

mance of the reservoir (see Fig. 6(b)). Similarly to Fig. 6(b),

we have introduced mismatches in the resonance frequency be-

tween the rings. We realize seven experiments for each optical

detuning; the results are averaged and we give the error bars.

Fig. 7 unveils a better level of performance when the fre-

quency of the injected light is far from the frequency resonance

of the nonlinear microring resonators. We see also that the per-

formance are better for negative values of the frequency detun-

ing. This can be understood by looking at the stability map of

Fig. 3(d), and the horizontal dashed line that we have followed.

For positive values of the optical detuning from 0 pm and 75 pm,

a nonlinear microring resonator is self-pulsing for an injected

power of 0.5 mW, thus meaning the reservoir is not on a steady

state and consequently reducing its performance.

D. Performance: Influence of the Injection Power

In this section, we focus on the power budget considera-

tions. More specifically, we fix the optical detuning between

Fig. 8. Error rate - for the XOR task - as a function of the high value of
the power modulation for an optical detuning δλ = 50 pm, an inter-delay of
18.75 ps, and a bitrate 20 Gb/s. The low value of the power modulation is
Pin0 = 0.0 mW. Error bars are given for seven series of simulations. The

minimum acceptable error rate is 2.5 × 10−4 .

the injected light and the resonance frequency of the rings

(δλ = 50 pm), we fix again the interconnection delay at 18.75 ps,

and we plot the performance of the reservoir for various values

of the power modulation. This is always a return-to-zero (RZ)

modulation, and we plot the error rate as a function of the high

value of the power modulation, following the vertical dashed

line of Fig. 3(d). Note that we have also introduced mismatches

in the resonance frequency between the rings, similarly to pre-

vious studies. We give the average and the error bars for seven

series of simulations.

Fig. 8 shows that values of the injected power lower than

10−4 W result in a degradation of the performance, due to a

reduction of total power on each node and wave-mixing be-

tween the nodes through losses in the other integrated elements

(waveguides, splitters, combiners). We also see that the perfor-

mance of the reservoir are low for high values of the modulation

(Pin1
> 10−3 W), due to the fact that each node is self-pulsing

for these injection parameters (see stability map, Fig. 3(d)).

Finally, the optimal operating condition at this particular op-

tical detuning is when the high value of the power modula-

tion leads a single microring resonator to be in a steady state,

but close to instabilities. However, we find a very good per-

formance obtained for the high value of the power modulation

Pin1
= 0.5 × 10−3 W, where a single microring resonator alone

is self-pulsing.

In the previous sections, we have perform most of our

simulations at δλ = 50 pm, with a power modulation from

Pin0
= 0.0 W to Pin1

= 0.3 mW, which is in the interval of

best performance at this particular detuning. Hence the total

power budget is very low. Indeed the chip is only powered by

the optical power using the same bit stream input on each node,

thus the averaged power needed for the reservoir to perform is

Nnodes × 0.5 × (Pin1
− Pin0

) = 2.4 mW (with Nnodes = 16,

the number of nodes in the reservoir). Moreover, unlike the

purely passive reservoir, where a bias power was necessary to

perform optimally, the MR-reservoir has the best performance

when there is no power bias, thus reducing the mean power

consumption.

VI. CONCLUSION

To conclude, we have suggested a novel integrated reservoir

architecture using microring resonators as nonlinear nodes, that

can perform at state-of-the-art level of performance on a nonlin-



ear Boolean task for various operating parameter conditions. We

also have connected the performance of the reservoir computer

with the nonlinear properties of the nodes stability with respect

to injected power and frequency detuning between the injected

light and the resonance of the rings.

More specifically, we have studied the influence of the data

rate, and shown that the intrinsic presence of three distinct time

scales in the model of the nonlinear nodes leads to the need to

carefully design the reservoir in terms of the length of the inter-

connections between the nodes. We have also investigated the

influence of two critical operational parameters in the network

dynamics: (i) the injected power and (ii) the optical detuning. We

have found that a large variety of operating conditions can lead

to optimal performance of the reservoir on the typical delayed

XOR task, when some important conditions are fulfilled. First,

each node should be in a steady state, close to instabilities. This

condition, along with a stability map of a single node, allows

us to choose the operating condition of the complete reservoir

parameters for optimal performance. We have also found a good

robustness when we introduce heterogeneities in the properties

of the nonlinear nodes, for example in the frequency resonance

between the ring resonators.

We have demonstrated that this integrated reservoir can per-

form very well on a typical boolean task, with very low power

consumption. Considering the RZ power modulation between

Pin0
= 0.0 mW and Pin1

= 0.3 mW with the same bit stream

input on each node, the power budget is very good, and could

be further improved in future work by reducing the number of

injected nodes, for instance by injecting the data only on the

four central nodes, as suggested in previous work by some of

the authors [23]. Moreover, from an experimental point of view,

it is simpler to inject the data on fewer nodes, as it reduces the

routing density on the chip.

Contrary to the passive reservoir of [22], [23] in which the

nonlinearity is in the readout ((i.e.) the detector), we have inte-

grated nonlinear elements (the microring resonators) in the re-

currence of the network. This work shows that the performance

on this particular task in terms of BER and power consumption

are very similar with the previous design. This is mainly due to

the losses limiting the mixing in both architectures with or with-

out embedded nonlinear elements. A different internal architec-

ture with better losses management would probably enhance

our performance in presence of microring resonators. The cur-

rent results motivate further investigations on the performance

of this kind of structure, especially by studying the performance

on other tasks such as time series generation, chaos prediction,

or nonlinear channel equalization to see if the nonlinearities in

the recurrence of the network have a good impact on the perfor-

mance of the reservoir for these complex tasks [10]. This opens

new research venues aiming at integrated, high-speed, energy-

efficient, all-optical data processing for telecom applications.
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