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All Optical Switching With a Single Quantum Dot
Strongly Coupled to a Photonic Crystal Cavity

Arka Majumdar, Michal Bajcsy, Dirk Englund, and Jelena Vučković

Abstract—We theoretically analyze the optical nonlinearity
present at very low optical power in a system consisting of a
quantum dot strongly coupled to a cavity, and show that this sys-
tem can be used for ultralow power and high-speed all-optical
switching. We also present numerical simulation results showing
both the detailed temporal behavior of such switch and the time-
integrated energy transmission through the cavity. We use two
different approaches—a quantum optical one and a semiclassical
one—to describe the system’s behavior, and observe reasonable
agreement between the outcomes of numerical simulations based
on these two approaches.

Index Terms—All-optical switch, photonic crystal cavity, quan-
tum dot (QD).

I. INTRODUCTION

O
PTICAL nonlinearity observable with low power light is
a necessary requirement for efficient all-optical switch-

ing. Though cavities can be used to enhance the bulk optical
nonlinearity of a material, the enhancement is often not suffi-
cient for operation of a practical device. In recent years, several
experiments have demonstrated optical nonlinearities at single
photon, showing potential for implementation of ultralow power
and high-speed all-optical gates and switches for classical in-
formation processing [1]–[4]. In particular, solid-state systems
consisting of a single quantum dot (QD) strongly coupled to
a nanocavity [2] are considered a highly promising candidate
for such applications. The advantages of these systems include
their small footprint and compatibility with standard nanofab-
rication procedures, in addition to an optical nonlinearity that
is, in the ideal limit, observable with a single photon. Several
experiments in recent years focused on probing of this optical
nonlinearity and proposed its application for all-optical switch-
ing [5], [6]. In this paper, we provide a complete quantum optical
description and a numerical simulation of the behavior of such
all-optical switch. We also introduce a less computationally in-
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tensive semiclassical description, and find reasonable agreement
between these two approaches.

II. QUANTUM OPTICAL ANALYSIS

In this section, we provide a detailed quantum optical treat-
ment of a strongly coupled QD-cavity system. The analysis is
relevant for any single-mode cavity, and does not involve any
typical characteristics of the photonic crystal. The Hamiltonian
H describing the dynamics of the coupled system is given by

H = h̄ωdσ
†σ + h̄ωca

†a + h̄g(a + a†)(σ + σ†) (1)

where ωc and ωd are, respectively, the resonance frequencies
of the cavity and the QD, a is the annihilation operator for
the cavity mode, σ is the lowering operator for the QD and is
denoted as σ = |g〉〈e| with |e〉 and |g〉 being the excited and the
ground state of the QD, respectively, g is the coherent interaction
strength between the QD and the cavity and is equal to the half
of the vacuum Rabi splitting. This Hamiltonian can be solved to
find the eigenenergies of the system. With a detuning δ between
the QD and the cavity, the eigenenergies of the system are

E± = h̄(n + 1)ωc + h̄
δ

2
± h̄

2

√

4g2(n + 1) + δ2 . (2)

At zero detuning δ, the eigenenergies become h̄ωc ± h̄g
√

n + 1,
where n is the number of excitations (photons) in the system.
Generally, the system is probed with very weak laser, and hence,
only the lower manifolds are populated. Considering only the
first manifold (n = 0), the eigenenergies of the coupled system
are h̄ωc ± h̄g, whereas the eigenenergy the empty cavity is at
h̄ωc .

When this system is coherently driven by a laser with fre-
quency ωl and power P and incident onto the cavity, the overall
Hamiltonian becomes

Hd = H + h̄E
√

κ(aeiω l t + a†e−iω l t) (3)

where E =
√

P
2 h̄ω c

.

The interaction term g(a + a†)(σ + σ†) in the Hamiltonian
can be simplified to g(a†σ + aσ†) by neglecting the terms a†σ†

and aσ by rotating wave approximation (valid when the actual
energies of the system, i.e., h̄ωc and h̄ωa , are much greater than
the coupling strength h̄g). This approximation holds well in the
optical system considered here, where the optical frequencies
are ∼100 THz, whereas the coupling strength is ∼GHz. In a
frame rotating at the driving laser frequency ωl , the Hamiltonian
can then be written as (see the Appendix)

H = h̄∆ca
†a + h̄∆dσ

†σ + h̄g(a†σ + aσ†) + h̄E
√

κ(a + a†)
(4)

with ∆c = ωl − ωc and ∆d = ωl − ωd .

1077-260X/$31.00 © 2012 IEEE
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Fig. 1. DC transmission characteristics of the all-optical switch made of a
strongly coupled QD-cavity system. The system is on resonance (ωc = ωd )
and ∆ = ∆c = ∆d . (a) Transmission spectra for four different cases. An empty
cavity shows a single Lorentzian peak. A strongly coupled QD-cavity system
shows two peaks in the transmission, corresponding to the polaritons. The dip
reduces both due to the pure QD dephasing, and at high laser power. The change
in the dip at different driving laser power is due to the QD saturation. The units of√

κE/2π are in gigahertz. (b) Transmission on resonance with an empty cavity,
i.e., at ∆c = 0 (normalized by the empty cavity transmission) as a function
of the driving laser strength. For all the simulations, we assume a pure QD
dephasing rate γd /2π = 1 GHz.

So far, we did not consider any loss in the system. There are
two main mechanisms of loss, namely the cavity decay (with a
field decay rate of κ, generally characterized by quality factor
of the cavity Q = ωc/2κ) and the dipole spontaneous emission
(with a decay rate of γ). One way to incorporate the effects of
these losses is through the stochastic wave function approach
[7] by simply replacing ωc → ωc − iκ and ωd → ωd − iγ. The
resulting frequencies corresponding to the eigenstates of such
lossy system can be written as

ω± =
ωc + ωd

2
− i

κ + γ

2
±

√

g2 +
1

4
(δ − i(κ − γ))2 . (5)

In a strongly coupled QD-cavity system, g > (κ − γ)/2 and the
empty cavity resonance splits into two resonances correspond-
ing to two eigenstates of the coupled system, also known as po-
laritons. As a result, the transmission of a laser resonant to the
empty cavity resonance decreases significantly when the cavity
contains a single strongly coupled QD [see Fig. 1(a)]. How-
ever, the QD is a two-level quantum emitter and saturates with
increasing power of the driving laser [see Fig. 1(b)]. This nonlin-
ear saturation behavior is used to perform all-optical switching
by the strongly coupled QD-cavity system.

The dynamics of the lossy system can be fully described using
the master equation [8]

dρ

dt
= −i[H, ρ] + 2κL[a] + 2γL[σ] (6)

where ρ is the density matrix of the coupled QD/cavity system.
L[D] is the Lindbald operator corresponding to a collapse oper-

ator D. This is used to model the incoherent decays and is given
by

L[D] = DρD† − 1

2
D†Dρ − 1

2
ρD†D. (7)

The master equation is solved using numerical integration rou-
tines provided in quantum optics toolbox [9]. For all the sim-
ulation reported here, we used parameters observed in systems
based on self-assembled QDs embedded in a photonic crys-
tal nanocavity [5]: cavity field decay rate κ/2π = 20 GHz, the
coherent QD-cavity interaction strength g/2π = 20 GHz, and
dipole decay rate γ/2π = 1 GHz.

III. SEMICLASSICAL APPROXIMATION

While the approach based on the quantum optical master
equation describes the behavior of the QD-cavity system pre-
cisely, the resulting numerical simulations are time consuming
and require large amount of computational resources. Here, we
show that, even though the switching happens at a single photon
level, a semiclassical description (where we ignore the quanti-
zation of the field) describes the operation of the system quite
well. Using the relation

d〈D〉
dt

= Tr

[

D
dρ

dt

]

(8)

for any operator D, the mean-field dynamical equations for the
coupled system are found to be (with the temporal profile E(t)
for the driving laser)

d〈a〉
dt

= −κ〈a〉 − ig〈σ〉 − i
√

κE(t) (9)

d〈σ〉
dt

= −γ〈σ〉 − ig〈aσz 〉 (10)

d〈σz 〉
dt

= −2γ(〈σz 〉 + 1) + 2ig(〈a†σ〉 + 〈aσ†〉) (11)

where σz = |e〉〈e| − |g〉〈g|. Solving this set of equations, we
need to find the dynamics of the higher order moments, namely
〈aσz 〉. In the low-excitation regime, the system stays only in
the lowest manifolds and we can approximate 〈σz 〉 = −1 and
replace 〈aσz 〉 = −〈a〉. This neglects the nonlinear nature of
the QD, but matches the actual output quantitatively in the low
power limit. To make the set of equations (9)–(11) a closed one,
we assume 〈aσz 〉 = 〈a〉〈σz 〉 and 〈a†σ〉 = 〈a†〉〈σ〉. By making
this approximation, we neglect the coherence of the system
while analyzing the mean-field dynamical equations.

IV. STATIC TRANSMISSION

The switching characteristic of the all-optical switch is first
calculated using a continuous wave (CW) driving laser. The
cavity output ∝ 〈a†a〉 (normalized by an empty cavity trans-
mission) is calculated as a function of the laser power. Fig. 1
shows the nonlinear transmission characteristic of the coupled
QD-cavity system. This can be thought of as the dc behavior of
the switch. Fig. 1(a) shows the cavity transmission as a func-
tion of the laser frequency, for a resonant dot-cavity system
(i.e., ∆c = ∆d = ∆). The split resonance is a signature of the
coupling between the QD and the cavity. We find that the dip
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Fig. 2. Comparison between two methods: quantum optical and semiclassical.
The integrated cavity transmission is plotted as a function of the delay between
two pulses. The two methods match quite well at large time delay. However, they
differ at the smaller time delay, as the two pulses arrive simultaneously and the
total driving power is large. The parameters for simulation is g/2π = 20 GHz,
κ/2π = 20 GHz, and γ/2π = 1 GHz. The pulse width is 40 ps, and the strength
of the driving field is

√
κEo /2π = 1 GHz. For the simulation, we assume there

is no pure QD dephasing.

between the polaritons (induced by the strongly coupled QD) is
reduced when the incident laser power increases. This is caused
by saturation of the QD.

An important aspect of the solid-state quantum emitter is
pure QD dephasing, caused by the constant interaction of the
quantum emitter with the phonons in the surrounding crystal
lattice [10]. This pure QD dephasing destroys the coherence of
the system without affecting the population. This can be mod-
eled by adding another Lindblad term in the master equation,
2γdL(σ†σ). The pure QD dephasing reduces the dip in the trans-
mission spectrum of the coupled QD-cavity system. Fig. 1(b)
plots the transmission of a resonant laser through the QD-cavity
system with and without pure dephasing as a function of the
incident laser power. For both cases, the transmission of the
system increases with increasing laser power due to saturation
of the QD. However, we observe increased transmission of the
laser at low power when pure dephasing is included.

V. DYNAMIC SWITCHING

For any switch, the speed of switching is a very important
quantity. To estimate the switching speed, we numerically cal-
culate the dynamics of the coupled dot-cavity system. The cou-
pled system is driven by two pulses, and the total transmission
through the cavity is measured. When the two pulses are delayed
by a large amount, they are transmitted through the QD-cavity
system separately and we expect a constant transmission as a
function of delay. However, when the pulses come closer in time,
they start overlapping, and due to nonlinearity of the system, a
larger transmission is expected. This can be modeled by a driving
term E(t) = Ec(t) + Es(t), where the subscripts c and s denote
control and signal, respectively. For the simulations reported in
this paper, we assume Gaussian envelope for both the control
and the signal pulses, with a form of Ec,s(t) = Eo × pc,s(t) and

pc,s(t) = exp(− (t−tc , s )2

2σ 2 )), where tc,s denote the times of max-
imum amplitude for the control and the signal. Fig. 2 shows the
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Fig. 3. (a) ON–OFF ratio (as defined in the text) under CW driving, as a
function of g and κ. (b) ON–OFF ratio as a function of the ratio g/κ for
different κ. An increase in on–off ratio is observed with increase in both g and
κ. For this simulation, E/2π = 0.1 GHz.

integrated cavity transmission as a function of delay between
two pulses. This is the type of signal observed in the recently
published experiments [5], [6], in which a low-speed detector
was used. The two curves were obtained using the quantum
optical and semiclassical approaches. As expected, the semi-
classical approach is much less computationally extensive. At
large delay, the two methods agree quite well, as the power of
the pulses is small. However, at smaller delay, when the two
pulses start to overlap, the total driving power increases, and
the two methods start differing. An interesting feature in the
integrated transmission of the switch is the dip that appears for
small delays between the two pulses. We will explain its origin
in the next paragraphs.

Next, we analyze the performance of the system as a function
of the QD-cavity interaction strength g and cavity decay rate κ.
In absence of any control, only signal (with a driving strength
E) interacts with the coupled system. However, in presence of
a control, the total driving strength becomes 2E , assuming the
control and the signal are of same strength. We define the on–
off ratio of the switch as T (2E)/4T (E), where T (E) is the
cavity transmission at a driving laser strength of E . If the system
is completely linear, the factor T (2E)/4T (E) will always be
1. Fig. 3(a) shows the on–off ratio as a function of g and κ,
maintaining the same cavity transmission for different κ. We
note that the on–off ratio is not a strong function of g or κ.
Fig. 3(b) shows the on–off ratio as a function of the ratio g/κ for
several different values of κ. We observe that, increasing both g
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Fig. 4. Cavity transmission as a function of time (horizontal axis) when two
pulses interact with the coupled QD-cavity system, for different delays between
two pulses (vertical axis). We present both results obtained by (a) full quan-
tum optical calculation and (b) semiclassically. The pulse length is 40 ps and√

κEo /2π = 1 GHz. For this weak excitation limit, the two approaches yield
nearly identical results. At small delay between the two pulses, the pulses over-
lap, and they behave as a single pulse. At larger delay, two pulses do not meet,
and propagate independently of each other. For each input pulse, we obtain two
output pulses due to Rabi oscillation. At intermediate delay, there is a destructive
interference between the two pulses causing reduced transmission. The parame-
ters for simulation are g/2π = 20 GHz; κ/2π = 20 GHz and γ/2π = 1 GHz.
Pure QD dephasing is neglected.

and κ improves the on–off ratio. This is because with increasing
g, the separation between the two polaritons increases, which
reduces the transmission of single pulses resonant with the bare
cavity. On the other hand, increasing κ reduces the power needed
to saturate the QD, which again causes the on—off ratio to
increase.

Fig. 4(a) shows the temporal cavity output when two pulses
interact with the coupled system, for different delays between
the pulses for pulse duration of 40 ps. For each input pulse,
we observe two pulses at the output, as can be seen from the
temporal cavity output at large delay. This is a signature of Rabi
oscillation between the QD and the cavity in time domain, as
analyzed in [11]. We note that the semiclassical solution shown
in Fig. 4(b) matches quite well with the quantum optical solution
plotted in Fig. 4(a). This is expected as the simulations are
performed at a low laser power. The two methods start differing
at higher power, as explained in detail in [11]. This can also
be seen at small time delay between two pulses, as explained
previously.

Fig. 5(a) shows the integrated cavity transmission as a func-
tion of the delay between the two pulses for several pulse lengths.
As expected, the highest cavity transmission is observed, when
the two pulses arrive simultaneously (delay = 0). This is due
to the saturation of the QD, which gives rise to the nonlinear
behavior of the switch. When the two pulses are delayed rel-
ative to each other, the transmission of the system decreases.
Numerical simulations also reveal an interesting effect of a lo-
cal minimum in transmission that happens at a finite nonzero
time delay. We explain this as a result of a destructive interfer-
ence between the two pulses at a finite delay. We observe this
effect more clearly in the temporal cavity output in Fig. 4(a).
When the two pulses are temporally very close, they overlap and
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Fig. 5. Switching performance for different pulse durations. (a) Total cavity
transmission integrated over time as a function of the delay between two pulses.
Pulses with different pulse durations are considered in different curve. All
the plots are normalized by the transmission at zero time delay. An increased
transmission is observed at zero time delay. The minimum transmission at
a nonzero time delay is due to a destructive interference between two pulses
caused by the Rabi oscillation. (b) Effect of pure QD dephasing. With increasing
QD dephasing, Rabi oscillations are suppressed, the destructive interference
becomes ineffective, and the minimum transmission increases with pure QD
dephasing rates. For this, a pulse width of 40 ps is assumed. (c) ON–OFF ratio
(defined as the ratio of time-integrated cavity transmission between zero delay
and large delay) as a function of the pulse duration. Increasing on–off ratio
with increasing pulse duration is due to reduced bandwidth of the pulses. (d)
Ratio between maximum and minimum transmission as a function of the pulse
duration. The solid lines in (c) and (d) are just guides to the eye.

behave almost like a single pulse. At large delay between two
pulses, the two pulses are independent of each other and we see
four peaks, corresponding to two output pulses from each input
pulse due to Rabi oscillation. When the delay between the two
pulses matches the period of the Rabi oscillation, the second
peak from the first input pulse destructively interferes with the
first peak from the second input pulse. As a result, we observe
only two peaks and the integrated transmission displays a local
minimum [see Fig. 5(a)]. This is also supported by the fact that
the width of the dip depends on the pulse duration. Increas-
ing pure QD dephasing reduces the coherence in the system,
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and causes this local minimum in the integrated transmission to
eventually vanish [see Fig. 5(b)].

Next, we study the dependence of the switching performance
on pulse duration. Fig. 5(c) shows the on–off ratio [defined as the
ratio of the time-integrated cavity transmission at zero and large
time delay, i.e., the ratio of the values in the curves in Fig. 5(a)
at delay= 0 and as delay tends to infinity)] as a function of the
pulse length. We observe an increase in the on–off ratio with in-
creasing pulse length. This is caused by the spectral bandwidth
of the short pulses exceeding the width of the dip induced by the
QD [see Fig. 1(a)], which results in increased transmission of
single pulses. Finally, in Fig. 5(d), we examine the ratio between
the maximum and minimum transmission through the coupled
QD-cavity system as a function of the pulse length [practically,
we plot the ratio between the maximum and minimum values
of the plots in Fig. 5(a)]. The initial increase in the ratio with an
increase in the pulse length can be ascribed to reduction in the
pulse bandwidth. However, as the pulse length keeps increas-
ing, complete destructive interference and cancellation of the
middle peaks (see Fig. 4) cannot be achieved, which leads to
a decrease in the plotted values. We note that, in this switch,
we do not have a control-to-output isolation (i.e., the control
goes to the output, and one cannot distinguish the control and
signal), as generally required in a practical switch [12]. This can
be achieved, if one has access to both the polarizations of the
QD, and thus distinguishes the signal and the control by polar-
ization. One can also use different frequencies for control and
signal to separate them [13], although that might pose additional
problem of cascading such switches in a network. Nevertheless,
our simulation clearly shows the presence of an optical non-
linearity almost at a single photon level (i.e., at the level of a
single photon in the cavity-per-cavity photon lifetime), which
can be exploited to make an optical switch. As a result of im-
perfect in-coupling efficiency in our system, this corresponds to
more than one photon outside the cavity. The coupling efficiency
could be improved employing, e.g., waveguide-coupled cavity
system instead of a free-space coupling to a cavity. Although in
this paper we mostly analyzed switching when the signal and
control are resonant to the empty cavity (i.e., the dip induced by
the QD), the switching behavior is present even when they are
resonant to the polaritons. Being resonant to the polaritons will
also increase the coupling efficiency of the signal and control to
the coupled QD-cavity system.

VI. CONCLUSION

We numerically analyzed the performance of the optical non-
linearity present in a strongly coupled QD-cavity system. This
system can be used to perform high-speed all-optical switching
at very low optical power, almost at a single photon level. A
full quantum optical approach and a semiclassical approach are
used to numerically simulate the operation of this system. These
two approaches agree reasonably well and allow us to study in
detail the temporal behavior of the switch. With current system
parameters that are studied in this paper, optical switching with
pulses that are several tens of picosecond in length is possible,
which implies switch operation at the speed of several tens of
gigahertz.

APPENDIX

ROTATING FRAME

When we switch to a frame rotating with a frequency ωo , the

new Hamiltonian Hrot becomes

Hrot = T †HT + i
∂T †

∂t
T (12)

where T is given by

T = e−iωo ta†ae−iωo tσ †σ . (13)

The new Hamiltonian Hrot becomes

T †(ωca
†a)T = ωca

†a (14)

T †(ωaσ†σ)T = ωaσ†σ (15)

i
∂T †

∂t
T = −ωo(a

†a + σ†σ) (16)

T †(a)T = e−iωo ta (17)

T †(a†)T = eiωo ta† (18)

T †(σ)T = e−iωo tσ (19)

T †(σ†)T = eiωo tσ† (20)

Hrot = h̄(ωc − ωo)a
†a + h̄(ωa − ωo)σ

†σ

+ h̄g(a†σ + aσ†) + h̄
√

κE(aei(ω l −ωo )t

+ a†e−i(ω l −ωo )t). (21)

Using ωl = ωo , the Hamiltonian in rotating frame becomes

H = h̄∆ca
†a + h̄∆aσ†σ + h̄g(a†σ + aσ†) + h̄

√
κE(a + a†).

(22)
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