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Abstract

Spatially-engineered diffractive surfaces have emerged as a powerful framework to control light-matter interactions for

statistical inference and the design of task-specific optical components. Here, we report the design of diffractive

surfaces to all-optically perform arbitrary complex-valued linear transformations between an input (Ni) and output (No),

where Ni and No represent the number of pixels at the input and output fields-of-view (FOVs), respectively. First, we

consider a single diffractive surface and use a matrix pseudoinverse-based method to determine the complex-valued

transmission coefficients of the diffractive features/neurons to all-optically perform a desired/target linear

transformation. In addition to this data-free design approach, we also consider a deep learning-based design method

to optimize the transmission coefficients of diffractive surfaces by using examples of input/output fields corresponding

to the target transformation. We compared the all-optical transformation errors and diffraction efficiencies achieved

using data-free designs as well as data-driven (deep learning-based) diffractive designs to all-optically perform (i)

arbitrarily-chosen complex-valued transformations including unitary, nonunitary, and noninvertible transforms, (ii) 2D

discrete Fourier transformation, (iii) arbitrary 2D permutation operations, and (iv) high-pass filtered coherent imaging.

Our analyses reveal that if the total number (N) of spatially-engineered diffractive features/neurons is ≥Ni × No, both

design methods succeed in all-optical implementation of the target transformation, achieving negligible error.

However, compared to data-free designs, deep learning-based diffractive designs are found to achieve significantly

larger diffraction efficiencies for a given N and their all-optical transformations are more accurate for N < Ni × No. These

conclusions are generally applicable to various optical processors that employ spatially-engineered diffractive surfaces.

Introduction

It is well-known that optical waves can be utilized for the

processing of spatial and/or temporal information1–6. Using

optical waves to process information is appealing since

computation can be performed at the speed of light, with

high parallelization and throughput, also providing potential

power advantages. For this broad goal, various optical

computing architectures have been demonstrated in the

literature7–21. With the recent advances in photonic material

engineering, e.g., metamaterials, metasurfaces, and plas-

monics, the utilization of advanced diffractive materials that

can precisely shape optical wavefronts through light-matter

interaction has become feasible22–27. For example, optical

processors formed through spatially-engineered diffractive

surfaces have been shown to achieve both statistical infer-

ence and deterministic tasks, such as image classification,

single-pixel machine vision, and spatially-controlled wave-

length division multiplexing, among others28–37.

Since scalar optical wave propagation in free space and

light transmission through diffractive surfaces constitute

linear phenomena, the light transmission from an input

field-of-view (FOV) to an output FOV that is engineered

through diffractive surfaces can be formulated using linear

algebra35. As a result, together with the free space dif-

fraction, the light transmittance patterns of diffractive

surfaces (forming an optical network) collectively define a

certain complex-valued all-optical linear transformation

between the input and output FOVs. In this paper, we
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focus on designing these spatial patterns and diffractive

surfaces that can all-optically compute a desired, target

transformation. We demonstrate that an arbitrary

complex-valued linear transformation between an input

and output FOV can be realized using spatially-engineered

diffractive surfaces, where each feature (neuron) of a dif-

fractive layer modulates the amplitude and/or phase of the

optical wave field. In generating the needed diffractive

surfaces to all-optically achieve a given target transforma-

tion, we use both a matrix pseudoinverse-based design that

is data-free as well as a data-driven, deep learning-based

design method. In our analysis, we compared the approx-

imation capabilities of diffractive surfaces for performing

various all-optical linear transformations as a function of

the total number of diffractive neurons, number of dif-

fractive layers, and the area of the input/output FOVs. For

these comparisons, we used as our target transformations

arbitrarily generated complex-valued unitary, nonunitary

and noninvertible transforms, 2D Fourier transform, 2D

random permutation operation as well as high-pass filtered

coherent imaging operations.

Our results reveal that when the total number of engi-

neered/optimized diffractive neurons of a material design

exceeds Ni ×No, both the data-free and data-driven dif-

fractive designs successfully approximate the target linear

transformation with negligible error; here, Ni and No refer

to the number of diffraction-limited, independent spots/

pixels located within the area of the input and output FOVs,

respectively. This means, to all-optically perform an arbi-

trary complex-valued linear transformation between larger

input and/or larger output FOVs, larger area diffractive

layers with more neurons or a larger number of diffractive

layers need to be utilized. Our analyses further reveal that

deep learning-based data driven diffractive designs (that

learn a target linear transformation through examples of

input/output fields) overall achieve much better diffraction

efficiency at the output FOV. All in all, our analysis con-

firms that for a given diffractive layer size, with a certain

number of diffractive features per layer (like a building

block of a diffractive network), the creation of deeper dif-

fractive networks with one layer following another, can

improve both the transformation error and the diffraction

efficiency of the resulting all-optical transformation.

Our results and conclusions can be broadly applied to any

part of the electromagnetic spectrum to design all-optical

processors using spatially-engineered diffractive surfaces to

perform an arbitrary complex-valued linear transformation.

Results

Formulation of all-optical transformations using diffractive

surfaces

Let i and o be the column vectors that include the

samples of the 2D complex-valued input and output

FOVs, respectively, as shown in Fig. 1a. Here we assume

that the optical wave field can be represented using the

scalar field formulation38–40. i and o are generated by,

first, sampling the 2D input and output FOVs, and then

vectorizing the resulting 2D matrices in a column-major

order. Following our earlier notation, Ni and No repre-

sent the number of diffraction-limited spots/pixels on

the input and output FOVs, respectively, which also

define the lengths of the vectors i and o. In our simu-

lations, we assume that the sampling period along both

the horizontal and vertical directions is λ/2, where λ is

the wavelength of the monochromatic scalar optical

field. With this selection in our model, we include all the

propagating modes that are transmitted through the

diffractive layer(s).

To implement the wave propagation between parallel

planes in free space, we generate a matrix, Hd, where

d is the axial distance between two planes (e.g., d ≥ λ).

Since this matrix represents a convolution operation

where the 2D impulse response originates from the

Rayleigh-Sommerfeld diffraction formulation3, it is a

Toeplitz matrix41. We generate this matrix using the

Fourier relation in the discrete domain as

Hd ¼ W
�1
DW ¼ W

H
DW ð1Þ

where W and W
−1 are the 2D discrete Fourier transform

(DFT) and inverse discrete Fourier transform (IDFT)

matrices, respectively, and the superscript H represents

the matrix Hermitian operation. We choose the scaling

constant appropriately such that the unitarity of

the DFT operation is preserved, i.e., W−1
=W

H 41. The

matrix, D, represents the transfer function of free space

propagation in the 2D Fourier domain and it includes

nonzero elements only along its main diagonal entries.

These entries are the samples of the function, ejkzd , for

0 � kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x þ k2y

� �r
� k, where kx, ky ∈ [−k, k).

Here k= 2π/λ is the wavenumber of the monochromatic

optical field and (kx, ky) pair represents the 2D spatial

frequency variables along x and y directions, respec-

tively3. To ignore the evanescent modes, we choose the

diagonal entries of D that correspond to the kz values for

k2 � k2x þ k2y as zero; since d ≥ λ, this is an appropriate

selection. In our model, we choose the 2D discrete

wave propagation square window size,
ffiffiffiffiffiffi
Nd

p
´

ffiffiffiffiffiffi
Nd

p
,

large enough (e.g., Nd= 1442) such that the physical

wave propagation between the input plane, diffractive

layers and the output plane is simulated accurately42.

Also, since Hd represents a convolution in 2D space, the

entries of W, W−1, and D follow the same vectorization

procedure applied to the input and output FOVs. As a

result, the sizes of all these matrices become Nd ×Nd.
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Since the diffractive surfaces are modeled as thin

elements, the light transmission through surfaces can

be formulated as a pointwise multiplication operation,

where the output optical field of a layer equals to its

input optical field multiplied by the complex-valued

transmission function, t(x, y), of the diffractive layer.

Hence, in matrix formulation, this is represented by a

diagonal matrix T, where the diagonal entries are the

vectorized samples of t(x, y). Hence the size of T

becomes NL ×NL, where NL is the total number of dif-

fractive features (referred to as neurons) on the

corresponding layer.

We also assume that the forward propagating optical

fields are zero outside of the input FOV and outside of

the transmissive parts of each diffractive surface, so that

we solely analyze the modes that are propagating

through the transmissive diffractive layers. This is not a

restrictive assumption as it can be simply satisfied by

introducing light blocking, opaque materials around the

input FOV and the diffractive layers. Furthermore,

although the wave field is not zero outside of the output

FOV, we only formulate the optical wave propagation

between the input and output FOVs since the complex-

valued transformation (A) that we would like to

approximate is defined between i and o. As a result of

these, we delete the appropriate rows and columns of

Hd, which are generated based on Eq. 1. We denote the

resulting matrix as H 0
d .
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Fig. 1 Diffractive all-optical transformation results for an arbitrary complex-valued unitary transform. a Schematic of a K-layer diffractive

network, that all-optically performs a linear transformation between the input and output fields-of-views that have Ni and No pixels, respectively. The

all-optical transformation matrix due to the diffractive layer(s) is given by A′. b. The magnitude and phase of the ground truth (target) input-output

transformation matrix, which is an arbitrarily generated complex-valued unitary transform, i.e., RH1R1 ¼ R1R
H
1 ¼ I. c All-optical transformation errors

(see Eq. 5). The x-axis of the figure shows the total number of neurons (N) in a K-layered diffractive network, where each diffractive layer includes N/K

neurons. Therefore, for each point on the x-axis, the comparison among different diffractive designs (colored curves) is fair as each diffractive design

has the same total number of neurons available. The simulation data points are shown with dots and the space between the dots are linearly

interpolated. d Cosine similarity between the vectorized form of the target transformation matrix in (b) and the resulting all-optical transforms (see

Eq. 16). e Output MSE between the ground-truth output fields and the estimated output fields by the diffractive network (see Eq. 18). f The diffraction

efficiency of the designed diffractive networks (see Eq. 19)
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Based on these definitions, the relationship between the

input and output FOVs for a diffractive network that has

K diffractive layers can be written as

o
0 ¼ H

0
dKþ1

TKH
0
dK

� � �T2H
0
d2
T1H

0
d1
i ¼ A

0
i ð2Þ

as shown in Fig. 1a. Here d1 is the axial distance

between the input FOV and the first diffractive layer,

dK+1 is the axial distance between the Kth layer and the

output FOV, and dl for l ∈ {2, 3,⋯, K} is the axial

distance between the (l − 1)th and lth diffractive layers

(see Fig. 1a). Also, Tl for l ∈ {1, 2, ⋯, K} is the complex-

valued light transmission matrix of the lth layer. The

size of H 0
d1

is NL1 ´Ni, the size of H 0
dKþ1

is No ´NLK and

the size of H 0
dl
is NLl ´NLl�1

for l ∈ {2, 3, ⋯, K}, where NLl

is the number of diffractive neurons at the lth diffractive

layer. Note that, in our notation in Eq. 2, we define o′ as

the calculated output by the diffractive system, whereas

o refers to the ground truth/target output in response

to i. The matrix A′ in Eq. 2, that is formed by successive

diffractive layers/surfaces, represents the all-optical

transformation performed by the diffractive network

from the input FOV to the output FOV. Note that this

formalism does not aim to optimize the diffractive

system in order to implement only one given pair of

input-output complex fields; instead it aims to all-

optically approximate an arbitrary complex-valued

linear transformation, A.

Matrix pseudoinverse-based synthesis of an arbitrary

complex-valued linear transformation using a single

diffractive surface (K= 1)

In this section, we focus on data-free design of a single

diffractive layer (K= 1), in order to determine the diag-

onal entries of T1 such that the resulting transformation

matrix, A′ which is given by Eq. 2, approximates the

transformation matrix A. To accomplish this, we first

vectorize A′ in a column-major order and write it as35

vec A
0ð Þ ¼ a

0 ¼ vec H
0
d2
T1H

0
d1

� �

¼ H
0T
d1
�H

0
d2

� �
vec T1ð Þ

ð3Þ

where ⊗ and the superscript T represent the Kronecker

product and the matrix transpose operator, respectively.

Since the elements of vec(T1) are nonzero only for the

diagonal elements of T1, Eq. 3 can be further simplified as

a
0 ¼ H

0
t1 ð4Þ

where t1[l]= T1[l,l] and H
0
:; l½ � ¼ H

0T
d1

:; l½ � �H
0
d2
:; l½ � for

l 2 1; 2; � � � ;NL1f g, and [:, l] represents the lth column of

the associated matrix in our notation. Here the matrix H′

has size NiNo ´NL1 and is a full-rank matrix with rank

D ¼ min NiNo;NL1ð Þ for d1 ≠ d2. If d1= d2, the maximum

rank reduces to Ni(Ni+ 1)/2 when Ni=No
35. We assume

that d1 ≠ d2 and denote the maximum achievable rank as

Dmax, which is equal to NiNo.

Based on Eq. 4, the computation of the neuron trans-

mission values of the diffractive layer that approximates

a given complex-valued transformation matrix A can be

reduced to an L2-norm minimization problem, where

the approximation error which is subject to the mini-

mization is41

jja�ma
0jj2 ¼ jja�mH

0
t1jj2 ¼ jja�H

0
t̂1jj2

¼ jja� ba0jj2

¼ 1
NiNo

PNiNo

l¼1

a l½ � �ma
0 l½ �j j2

¼ 1
NiNo

PNiNo

l¼1

a l½ � � ba0 l½ �j j2

ð5Þ

where a is the vectorized form of the target transforma-

tion matrix A, i.e., vec(A)= a. We included a scalar,

normalization coefficient (m) in Eq. 5 so that the

resulting difference term does not get affected by a

diffraction-efficiency related scaling mismatch between

A and A′; also note that we assume a passive diffractive

layer without any optical gain, i.e., |t1[l]| ≤ 1 for all l 2
1; 2; � � � ; NL1f g. As a result of this, we also introduced in

Eq. 5, mt1 ¼ t̂1.

Throughout the paper, we use kA� Â
0k2and ka� â

0k2
interchangeably both referring to Eq. 5 and define them as

the all-optical transformation error. We also refer to a, a′ and

â
0 as the target transformation (ground truth), estimate

transformation and normalized estimate transformation

vectors, respectively.
If NL1 >NiNo, the number of equations in Eq. 4 becomes

less than the number of unknowns and the matrix-vector

equation corresponds to an underdetermined system. If

NL1 <NiNo, on the other hand, the equation system

becomes an overdetermined system. In the critical case,

where NL1 ¼ NiNo, H′ becomes a full-rank square matrix,

hence, is an invertible matrix. There are various numerical

methods for solving the formulated matrix-vector equa-

tion and minimizing the transformation error given in

Eq. 541. In this paper, we adopt the pseudoinverse-based

method among other numerical methods in computing

the neuron transmission values in finding the estimate

transformation A′ for all the cases, i.e., NL1 >NiNo,

NL1 <NiNo and NL1 ¼ NiNo. For this, we compute the

neuron values from a given target transformation as

t̂1 ¼ H
0y
a ð6Þ

where H′
† is the pseudoinverse of H′. This pseudoinverse

operation is performed using the singular value
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decomposition (SVD) as

H
0y ¼ VΣ

�1
U

H ð7Þ

where U and V are orthonormal matrices and Σ is a

diagonal matrix that contains the singular values of H 0. U,

V, and Σ form the H
0 matrix as

H
0 ¼ UΣV

H ð8Þ

To prevent the occurrence of excessively large numbers

that might cause numerical artifacts, we take very small

singular values as zero during the computation of ∑−1. After

computing t̂1, the normalization constant (m) and the

physically realizable neuron values can be calculated as:

m ¼ maxl t̂1

�� ��� �
and t1 ¼ t̂1=m ð9Þ

In summary, the vector t1 that includes the transmit-

tance values of the diffractive layer is computed from a

given, target transformation vector, a, using Eqs. 6 and 9,

and then the resulting estimate transformation vector, a′,

is computed using Eq. 4. Finally, A′, is obtained from a′ by

reversing the vectorization operation.

Deep learning-based synthesis of an arbitrary complex-

valued linear transformation using diffractive surfaces (K ≥ 1)

Different from the numerical pseudoinverse-based design

method described in the previous section, which is data-

free in its computational steps, deep learning-based design

of diffractive layers utilize a training dataset containing

examples of input/output fields corresponding to a target

transformation A. In a K-layered diffractive network, our

optical forward model implements Eq. 2, where the diag-

onal entries of each Tl matrix for l∈ {1, 2, ⋯, K} become

the arguments subject to the optimization. At each itera-

tion of deep learning-based optimization during the error-

back-propagation algorithm, the complex-valued neuron

values are updated to minimize the following normalized

mean-squared-error loss function:

~os � ~o
0
s;c

���
���
2

¼ 1

No

XNo

l¼1

σsos l½ � � σ
0
s;co

0
s;c l½ �

���
���
2

ð10Þ

where

os ¼ Ais and o
0
s;c ¼ A

0
cis ð11Þ

refer to the ground truth and the estimated output field by

the diffractive network, respectively, for the sth input field

in the training dataset, is. The subscript c indicates the

current state of the all-optical transformation at a given

iteration of the training that is determined by the current

transmittance values of the diffractive layers. The constant

σs normalizes the energy of the ground truth field at the

output FOV and can be written as

σs ¼
XNo

l¼1

os l½ �j j2
 !�1

2

ð12Þ

Also, the complex valued σ
0
s;c is calculated to minimize

Eq. 10. It can be computed by taking the derivative of

k~os � ~o
0
s;ck

2 with respect to σ
0�
s;c, which is the complex

conjugate of σ
0
s;c, and then equating the resulting

expression to zero43, which yields:

σ
0
s;c ¼

PNo

l¼1 σsos l½ �o0�s;c l½ �
PNo

l¼1 o0s;c l½ �
���

���
2 ð13Þ

Other details of this deep learning-based, data-driven

design of diffractive layers are presented in the section

“Image datasets and diffractive network training para-

meters“. After the training is over, which is a one-time

effort, the estimate transformation matrix and the cor-

responding vectorized form, A′ and vec(A′)= a′, are

computed using the optimized neuron transmission

values in Eq. 2. After computing a′, we also compute the

normalization constant, m, which minimizes ‖a − ma′‖
2,

resulting in:

m ¼
PNiNo

l¼1 a l½ �a0� l½ �
PNiNo

l¼1 a0 l½ �j j2
ð14Þ

In summary, an optical network that includes K dif-

fractive surfaces can be optimized using deep learning

through training examples of input/output fields that

correspond to a target transformation, A. Starting with

the next section, we will analyze and compare the

resulting all-optical transformations that can be achieved

using data-driven (deep learning-based) as well as data-

free designs that we introduced.

Comparison of all-optical transformations performed

through diffractive surfaces designed by matrix

pseudoinversion vs. deep learning

In this section we present a quantitative comparison of

the pseudoinverse- and deep learning-based methods in

synthesizing various all-optical linear transformations

between the input and output FOVs using diffractive

surfaces. In our analysis, we took the total number of

pixels in both the input and output FOVs as Ni=No=

64 (i.e., 8 × 8) and the size of each Hd matrix was 1442 ×

1442 with Nd= 1442. The linear transformations that we

used as our comparison testbeds are (i) arbitrarily gen-

erated complex-valued unitary transforms, (ii) arbitrarily

generated complex-valued nonunitary and invertible
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transforms, (iii) arbitrarily generated complex-valued

noninvertible transforms, (iv) the 2D discrete Fourier

transform, (v) a permutation matrix-based transforma-

tion, and (vi) a high-pass filtered coherent imaging

operation. The details of the diffractive network config-

urations, training image datasets, training parameters,

computation of error metrics and the generation of

ground truth transformation matrices are presented in

“Materials and methods” section. Next, we present

the performance comparisons for different all-optical

transformations.

Arbitrary complex-valued unitary and nonunitary transforms

In Figs. 1–3 and Supplementary Figs. S1–S3, we present

the results for two different arbitrarily selected complex-

valued unitary transforms that are approximated using

diffractive surface designs with different number of dif-

fractive layers, K, and different number of neurons,

N ¼PK
k¼1 NLk . Similarly, Figs. 4–6 and Supplementary

Figs. S4–S6 report two different nonunitary, arbitrarily

selected complex-valued linear transforms performed

through diffractive surface designs. To cover different

types of transformations, Figs. 4–6 and Supplementary

Figs. S4–S6 report an invertible nonunitary and a non-

invertible (hence, nonunitary) transformation, respec-

tively. The magnitude and phase values of these target

transformations (A) are also shown in Figs. 1b, 4b, and

Supplementary Figs. S1b and S4b.

To compare the performance of all-optical transfor-

mations that can be achieved by different diffractive

designs, Fig. 1c, Supplementary Fig. S1c, Fig. 4c, and

Supplementary Fig. S4c report the resulting transforma-

tion errors for the above-described testbeds (A matrices)

as a function of N and K. It can be seen that, in all of the

diffractive designs reported in these figures, there is a

monotonic decrease in the transformation error as the

total number of neurons in the network increases. In data-

free, matrix pseudoinverse-based designs (K= 1), the

transformation error curves reach a baseline, approaching

~0 starting at N= 642. This empirically-found turning

point of the transformation error at N= 642 also coin-

cides with the limit of the information processing capacity

of the diffractive network dictated by Dmax=NiNo=

642 35. Beyond this point, i.e., for N > 642, the all-optical

transformation errors of data-free diffractive designs

remain negligible for these complex-valued unitary as well

as nonunitary transformations defined in Fig. 1b, Sup-

plementary Fig. S1b, Fig. 4b, and Supplementary Fig. S4b.

On the other hand, for data-driven, deep learning-based

diffractive designs, one of the key observations is that, as

the number of diffractive layers (K), increases, the all-

optical transformation error decreases for the same N.

Stated differently, deep learning-based, data-driven dif-

fractive designs prefer to distribute/divide the total

number of neurons (N) into different, successive layers as

opposed having all the N neurons at a single, large dif-

fractive layer; the latter, deep learning-designed K= 1,

exhibits much worse all-optical transformation error

compared to e.g., K= 4 diffractive layers despite the fact

that both of these designs have the same number of

trainable neurons (N). Furthermore, as illustrated in

Fig. 1, Supplementary Fig. S1, Fig. 4, and Supplementary

Fig. S4, deep learning-based diffractive designs with K= 4

layers match the transformation error performance of

data-free designs based on matrix pseudoinversion and

also exhibit negligible transformation error for N ≥ 642=

NiNo. However, when N < 642 the deep learning-based

diffractive designs with K= 4 layers achieve smaller

transformation errors compared to data-free diffractive

designs that have the same number of neurons. Similar

conclusions can be made in Fig. 1e, Supplementary Fig.

S1e, Fig. 4e, and Supplementary Fig. S4e, by comparing

the mean-squared-error (MSE) values calculated at the

output FOV using test images (input fields). For N ≥ 642

=NiNo the deep learning-based diffractive designs (K= 4)

along with the data-free diffractive designs achieve output

MSE values that approach ~0, similar to the all-optical

transformation errors that approach ~0 in Fig. 1c, Sup-

plementary Fig. S4c, Fig. 4c, and Supplementary Fig. S7c.

However for designs that have smaller number of neu-

rons, i.e., N <NiNo, the deep learning-based diffractive

designs with K= 4 achieve much better MSE at the out-

put FOV compared to data-free diffractive designs that

have same number of neurons (N).

In addition to these, one of the most significant differ-

ences between the pseudoinverse-based data-free dif-

fractive designs and deep learning-based counterparts is

observed in the optical diffraction efficiencies calculated

at the output FOV; see Fig. 1f, 4f, and Supplementary Figs.

1f and Supplementary Fig. S4f. Even though the trans-

formation errors (or the output MSE values) of the two

design approaches remain the same (~0) for N ≥ 642=

NiNo, the diffraction efficiencies of the all-optical trans-

formations learned using deep learning significantly out-

perform the diffraction efficiencies achieved using

data-free, matrix pseudoinverse-based designs as shown

in Fig. 1f, Supplementary Fig. S1f, Fig. 4f and Supple-

mentary Fig. S4f.

On top of transformation error, output MSE and dif-

fraction efficiency metrics, Fig. 1d, Supplementary Fig.

S1d, Fig. 4d, and Supplementary Fig. S4d also report the

cosine similarity (see “Materials and methods” section)

between the estimated all-optical transforms and the

ground truth (target) transforms. These cosine similarity

curves show the same trend and support the same con-

clusions as with the transformation error curves reported

earlier; this is not surprising as the transformation error

and cosine similarity metrics are analytically related to
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each other as detailed in the section “Computation

of all-optical transformation performance metrics”. For

N ≥ 642=NiNo, the cosine similarity approaches 1,

matching the target transformations using both the data-

free (K= 1) and deep learning-based (K= 4) diffractive

designs as shown in Fig. 1d, Supplementary Fig. S1d,

Fig. 4d and Supplementary Fig. S4d.

To further shed light on the performance of these dif-

ferent diffractive designs, the estimated transformations

and their differences (in phase and amplitude) from the

target matrices (A) are shown in Figs. 2, 5, and Supple-

mentary Figs. S2 and S5 for different diffractive para-

meters. Similarly, examples of complex-valued input-

output fields for different diffractive designs are compared

in Figs. 3, 6 and Supplementary Figs. S3, S6 against the

ground truth output fields (calculated using the target

transformations), along with the resulting phase and

amplitude errors at the output FOV. From these figures, it

can be seen that both data-free (K= 1) and deep learning-

based (K= 4) diffractive designs with the same total

number of neurons can all-optically generate the desired

transformation and output field patterns with negligible

error when N ≥ 642=NiNo. For N <NiNo, on the other

hand, the output field amplitude and phase profiles using

deep learning-based diffractive designs show much better

match to the ground truth output field profiles when

compared to data-free, matrix pseudoinverse-based dif-

fractive designs (see e.g., Figs. 3, 6).

In this subsection, we presented diffractive designs that

successfully approximated arbitrary complex-valued

transformations, where the individual elements of tar-

get A matrices (shown in Fig. 1b, Supplementary Fig.

S1b, Fig. 4b, and Supplementary Fig. S4b) were randomly

and independently generated as described in Section 4.4.

Our results confirm that, for a given total number of

diffractive features/neurons (N) available, building dee-

per diffractive networks where these neurons are dis-

tributed across multiple, successive layers, one following

the other, can significantly improve the transformation

error, output field accuracy and the diffraction efficiency

of the whole system to all-optically implement an arbi-

trary, complex-valued target transformation between an

input and output FOV. Starting with the following sub-

section, we focus on some task-specific all-optical

transformations, which are frequently used in various

optics and photonics applications.

2D discrete Fourier transform

Here we show that the 2D Fourier transform operation

can be performed using diffractive designs such that the

complex field at output FOV reflects the 2D discrete

Fourier transform of the input field. Compared to lens-

based standard Fourier transform operations, diffractive

surface-based solutions are not based on the paraxial

approximation and offer a much more compact set-up

(with a significantly smaller axial distance, e.g., <50λ,

between the input-output planes) and do not suffer from

aberrations, which is especially important for larger input/

output FOVs.

The associated transform matrix (A) corresponding to

2D discrete Fourier transform, all-optical transformation

error, cosine similarity of the resulting all-optical trans-

forms with respect the ground truth, the output MSE and

the diffraction efficiency are shown in Fig. 7. For all these

curves and metrics, our earlier conclusions made in the

section “Arbitrary complex-valued unitary and nonunitary

transforms” are also applicable. Data-free (K= 1) and

deep learning-based (K= 4) diffractive designs achieve

accurate results at the output FOV for N ≥NiNo= 642,

where the transformation error and the output MSE both

approach to ~0 while the cosine similarity reaches ~1, as

desired. In terms of the diffraction efficiency at the output

FOV, similar to our earlier observations in the previous

section, deep learning-based diffractive designs offer

major advantages over data-free diffractive designs. Fur-

ther advantages of deep learning-based diffractive designs

over their data-free counterparts include significantly

improved output MSE and reduced transformation error

for N <NiNo, confirming our earlier conclusions made in

the section “Arbitrary complex-valued unitary and non-

unitary transforms”.

To further show the success of the diffractive designs in

approximating the 2D discrete Fourier transformation, in

Fig. 8 we report the estimated transformations and their

differences (in phase and amplitude) from the target 2D

discrete Fourier transformation matrix for different dif-

fractive designs. Furthermore, in Fig. 9, examples of

complex-valued input-output fields for different dif-

fractive designs are compared against the ground truth

output fields (calculated using the 2D discrete Fourier

transformation), along with the resulting phase and

amplitude errors at the output FOV, all of which illustrate

the success of the presented diffractive designs.

Permutation matrix-based transform

For a given randomly generated permutation matrix (P),

the task of the diffractive design is to all-optically obtain

the permuted version of the input complex-field at the

output FOV. Although the target ground truth matrix (P)

for this case is real-valued and relatively simpler com-

pared to that of e.g., the 2D Fourier transform matrix, an

all-optical permutation operation that preserves the phase

and amplitude of each point is still rather unconventional

and challenging to realize using standard optical compo-

nents. To demonstrate this capability, we randomly

selected a permutation matrix as shown in Fig. 10b and

designed various diffractive surfaces to all-optically per-

form this target permutation operation at the output FOV.
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Fig. 2 Diffractive all-optical transformations and their differences from the ground truth, target transformation (A) presented in Fig. 1b.
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π

indicates the wrapped phase difference between the ground truth and the normalized all-optical transformation
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The performances of these data-free and data-driven,

deep learning-based diffractive designs are compared in

Fig. 10c–f. The success of the diffractive all-optical

transformations, matching the target permutation opera-

tion is demonstrated when N ≥NiNo, revealing the same

conclusions discussed earlier for the other transformation

matrices that were tested. For example, deep learning-

based diffractive designs (K= 4) with N ≥NiNo neurons

were successful in performing the randomly selected

permutation operation all-optically, and achieved a

transformation error and output MSE of ~0, together with

a cosine similarity of ~1 (see Fig. 10). Estimated trans-

forms and sample output patterns, together with their

differences with respect to the corresponding ground

truths are also reported in Figs. 11 and 12, respectively,

further demonstrating the success of the presented dif-

fractive designs.

High-pass filtered coherent imaging

In this sub-section, we present diffractive designs that

perform high-pass filtered coherent imaging, as shown in

Supplementary Fig. S7. This high-pass filtering transfor-

mation is based on the Laplacian operator described in

Section 4.4. Similar to the 2D discrete Fourier transform

operation demonstrated earlier, diffractive surface-based

solutions to high-pass filtered coherent imaging are not
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based on a low numerical aperture assumption or the

paraxial approximation, and provide an axially compact

implementation with a significantly smaller distance

between the input-output planes (e.g., <50λ); furthermore,

these diffractive designs can handle large input/output

FOVs without suffering from aberrations.

Our results reported in Supplementary Fig. S7 also

exhibit a similar performance to the previously discussed

all-optical transformations, indicating that the

pseudoinverse-based diffractive designs and the deep

learning-based designs are successful in their all-optical

approximation of the target transformation, reaching a

transformation error and output MSE of ~0 for N ≥NiNo.

Same as in other transformations that we explored, deep

learning-based designs offer significant advantages com-

pared to their data-free counterparts in the diffraction

efficiency that is achieved at the output FOV. The esti-

mated sample transformations and their differences from

the ground truth transformation are shown in Supple-

mentary Fig. S8. Furthermore, as can be seen from the

estimated output images and their differences with

respect to the corresponding ground truth images (shown

in Supplementary Fig. S9), the diffractive designs can

accurately perform high-pass filtered coherent imaging

for N ≥NiNo, and for N <NiNo deep learning-based dif-

fractive designs exhibit better accuracy in approximating

the target output field, which are in agreement with our

former observations in earlier sections.
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Fig. 4 Diffractive all-optical transformation results for an arbitrary complex-valued nonunitary and invertible transform. a Schematic of a

K-layer diffractive network, that all-optically performs a linear transformation between the input and output fields-of-views that have Ni and No pixels,

respectively. The all-optical transformation matrix due to the diffractive layer(s) is given by A′. b. The magnitude and phase of the ground truth

(target) input-output transformation matrix, which is an arbitrarily generated complex-valued nonunitary and invertible transform. c All-optical

transformation errors (see Eq. 5). The x-axis of the figure shows the total number of neurons (N) in a K-layered diffractive network, where each

diffractive layer includes N/K neurons. Therefore, for each point on the x-axis, the comparison among different diffractive designs (colored curves) is

fair as each diffractive design has the same total number of neurons available. The simulation data points are shown with dots and the space

between the dots are linearly interpolated. d Cosine similarity between the vectorized form of the target transformation matrix in (b) and the

resulting all-optical transforms (see Eq. 16). e Output MSE between the ground-truth output fields and the estimated output fields by the diffractive

network (see Eq. 18). f The diffraction efficiency of the designed diffractive networks (see Eq. 19)

Kulce et al. Light: Science & Applications          (2021) 10:196 Page 10 of 21



0.22

0.15

0.07

0

0.16

0.07

–0.01

–0.1

0.24

0.16

0.08

0

0.05

0.02

–0.01

–0.04

0.25

0.17

0.08

0

0.03

0.01

–0.01

–0.03

N
u

m
e

ri
c

a
l 

in
v

e
rs

io
n

 s
o

lu
ti

o
n

 (
K

 =
 1

)
D

e
e

p
 l

e
a

rn
in

g
 s

o
lu

ti
o

n
 (

K
 =

 1
)

D
e

e
p

 l
e

a
rn

in
g

 s
o

lu
ti

o
n

 (
K

 =
 2

)
D

e
e
p

 l
e
a
rn

in
g

 s
o

lu
ti

o
n

 (
K

 =
 4

)

0.22

0.15

0.07

0

0.09

0.03

–0.03

–0.09

��

�/3

–�/3

–�

�

2�/3

�/3

0

�

�/3

–�/3

–�

�

2�/3

�/3

0

�

2�/3

�/3

0

�

�/3

–�/3

–�

0.16

0.11

0.05

0

0.21

0.11

0.02

–0.08

0.17

0.11

0.06

0

0.2

0.1

0.01

–0.09

0.17

0.12

0.06

0

0.2

0.1

–0.01

–0.11

�

�/3

–�/3

–�

�

2�/3

�/3

0

�

�/3

–�/3

–�

�

2�/3

�/3

0

�

�/3

–�/3

–�

�

2�/3

�/3

0

0.22

0.15

0.17

0

0.17

0.15

–0.02

–0.1

0.25

0.17

0.08

0

0.16

0.08

–0.01

–0.09

0.24

0.16

0.08

0

0.16

0.07

–0.02

–0.11

�

�/3

–�/3

–�

�

2�/3

�/3

0

�

�/3

–�/3

–�

�

2�/3

�/3

0

�

�/3

–�/3

–�

�

2�/3

�/3

0

0.26

0.17

0.09

0

0.04

0.01

–0.01

–0.04

0.24

0.16

0.08

0

0.02

0

–0.01

–0.03

�

�/3

–�/3

–�

�

2�/3

�/3

0

�

�/3

–�/3

–�

�

2�/3

�/3

0

�

�/3

–�/3

–�

�

2�/3

�/3

0

∠A'

〈

⎮∠A — ∠A'⎮�

〈

∠A'

〈

⎮∠A — ∠A'⎮�

〈

∠A'

〈

⎮∠A — ∠A'⎮�

〈

∠A'

〈

⎮∠A — ∠A'⎮�

〈

∠A'

〈

⎮∠A — ∠A'⎮�

〈

∠A'

〈

⎮∠A — ∠A'⎮�

〈

∠A'

〈

⎮∠A — ∠A'⎮�

〈

∠A'

〈

⎮∠A — ∠A'⎮�

〈

∠A'

〈

⎮∠A — ∠A'⎮�

〈

∠A'

〈

⎮∠A — ∠A'⎮�

〈

∠A'

〈

⎮∠A — ∠A'⎮�

〈

∠A'

〈

⎮∠A — ∠A'⎮�

〈
N

L1
 = 48 × 48

⎮A'⎮

〈

⎮A⎮ — ⎮A'⎮

〈 N
L1

 = 64 × 64

⎮A'⎮

〈

⎮A⎮ — ⎮A'⎮

〈 N
L1

 = 80 × 80

⎮A'⎮

〈

⎮A⎮ — ⎮A'⎮
〈

N
L1

 = 48 × 48

⎮A'⎮

〈

⎮A⎮ — ⎮A'⎮

〈 N
L1

 = 64 × 64 N
L1

 = 80 × 80

⎮A'⎮

〈

⎮A'⎮

〈

⎮A⎮ — ⎮A'⎮
〈

⎮A⎮ — ⎮A'⎮

〈

⎮A⎮ — ⎮A'⎮

〈

N
L1

 = N
L2

 = 60 × 60N
L1

 = N
L2

 = 46 × 46N
L1

 = N
L2

 = 32 × 32

⎮A'⎮

〈

⎮A'⎮

〈

⎮A'⎮

〈

⎮A⎮ — ⎮A'⎮

〈

⎮A⎮ — ⎮A'⎮

〈

⎮A⎮ — ⎮A'⎮

〈

N
L1

 = N
L2

 = N
L3

 = N
L4

 = 40 × 40N
L1

 = N
L2

 = N
L3

 = N
L4

 = 32 × 32N
L1

 = N
L2

 = N
L3

 = N
L4

 = 24 × 24

⎮A'⎮

〈

⎮A⎮ — ⎮A'⎮

〈

⎮A'⎮

〈

⎮A'⎮

〈

⎮A⎮ — ⎮A'⎮

〈

Fig. 5 Diffractive all-optical transformations and their differences from the ground truth, target transformation (A) presented in Fig. 4b.
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π

indicates the wrapped phase difference between the ground truth and the normalized all-optical transformation
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Discussion

Through our results and analysis, we showed that it is

possible to synthesize an arbitrary complex-valued linear

transformation all-optically using diffractive surfaces. We

covered a wide range of target transformations, starting

from rather general cases, e.g. arbitrarily generated uni-

tary, nonunitary (invertible) and noninvertible transforms,

also extending to more specific transformations such as

the 2D Fourier transform, 2D permutation operation as

well as high-pass filtered coherent imaging operation. In

all the linear transformations that we presented in this

paper, the diffractive networks realized the desired

transforms with negligible error when the total number of

neurons reached N ≥NiNo. It is also important to note

that the all-optical transformation accuracy of the deep

learning-based diffractive designs improves as the number

of diffractive layers is increased, e.g., from K= 1, 2 to K=

4. Despite sharing the same number of total neurons in

each case (i.e., N ¼PK
k¼1 NLk ), deep learning-based dif-

fractive designs prefer to distribute these N trainable

diffractive features/neurons into multiple layers, favoring

deeper diffractive designs overall.

In addition to the all-optical transformation error,

cosine similarity, and output MSE metrics, the output

diffraction efficiency is another very important metric as it

determines the signal-to-noise ratio of the resulting all-

optical transformation. When we compare the diffraction

efficiencies of different networks, we observe that the
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Fig. 6 Sample input–output images for the ground truth transformation presented in Fig. 4b and the optical outputs by the diffractive

designs with N= 482 and N= 802. The magnitude and phase of the normalized output fields and the differences of these quantities with respect

to the ground truth are shown. ffo� ffbo′
�� ��

π
indicates wrapped phase difference between the groundtruth and the normalized output field
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data-free, matrix pseudoinverse-based designs perform

the worst among all the configurations that we have

explored (see Fig. 1f, 4f, 7f, 10f, and Supplementary Figs.

S1f, S4f, S7f). This is majorly caused by the larger mag-

nitudes of the transmittance values of the neurons that are

located close to the edges of the diffractive layer, when

compared to the neurons at the center of the same layer.

Since these “edge” neurons are further away from the

input FOV, their larger transmission magnitudes (|t|)

compensate for the significantly weaker optical power that

falls onto these edge neurons from the input FOV. Since

we are considering here passive diffractive layers only, the

magnitude of the transmittance value of an optical neuron

cannot be larger than one (i.e., |t| ≤ 1), and therefore as

the edge neurons in a data-free design start to get more

transmissive to make up for the weaker input signals at

their locations, the transmissivity of the central neurons of

the diffractive layer become lower, balancing off their

relative powers at the output FOV to be able to perform

an arbitrary linear transformation. This is at heart of

the poor diffraction efficiency that is observed with data-

free, matrix pseudoinverse-based designs. In fact, the

same understanding can also intuitively explain why deep

learning-based diffractive designs prefer to distribute

their trainable diffractive neurons into multiple layers.

By dividing their total trainable neuron budget (N) into

0.016

a

c

e f

d

b

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0.03

0.025

0.02

0.015

0.005

0.01

0

0

T
ra

n
s
fo

rm
a
ti
o
n
 e

rr
o
r:

  
⎢⎢A

 –
 A

'  
⎢⎢2

 

1.2

1

0.8

0.6

0.4

0.2

0

C
o
s
in

e
 s

im
ila

ri
ty

: 
 U

(A
, 
A

')

O
u
tp

u
t 

m
e
a
n
-s

q
u
a
re

d
 e

rr
o
r

E
[ ⎢

⎢o
 –

 o
'  ⎢

⎢2
] 

~
~

0

–5

–10

–15

–20

–25

–30

O
u
tp

u
t 
m

e
a
n
 d

if
fr

a
c
ti
o
n
 e

ff
ic

ie
n
c
y

lo
g

1
0
(E

[ ⎢
⎢o

'  
⎢⎢2

 /
⎢⎢i

⎢⎢2
])

8
2

16
2

24
2

32
2

40
2

48
2

56
2

64
2

72
2

80
2

88
2

96
2

Number of neurons ( N = ∑K
 � =1  NL�

)

8
2

16
2

24
2

32
2

40
2

48
2

56
2

64
2

72
2

80
2

88
2

96
2

Number of neurons ( N = ∑K
 � =1  NL�

)

8
2

16
2

24
2

32
2

40
2

48
2

56
2

64
2

72
2

80
2

88
2

96
2

Number of neurons ( N = ∑K
 � =1  NL�

)

8
2

16
2

24
2

32
2

40
2

48
2

56
2

64
2

72
2

80
2

88
2

96
2

Number of neurons ( N = ∑K
 � =1  NL�

)

Input FOV: i

(Ni pixels)

Output FOV: o

(No pixels)

d2

LK

L2

K-la
yer d

iff
ra

ctiv
e n

etw
ork

(N L1
 =

 N L2
 =

 ..
. =

 N LK
 =

 N
/K

)

L1 dK+1

d1

⎢⎢A ⎢ = ⎢F ⎢ ∠A = ∠F

2D DFT, F [p, q] = e
(pn + qm)

2π
–j

Ni Ni

Numerical inversion solution

(K = 1, NL1 = N )

Deep learning solution

(K = 1, NL1 = N )

Deep learning solution

(K = 4, NL1 = NL2  = NL3 = NL4 = N/4) Deep learning solution

(K = 2, NL1 = NL2 = N/2)

Dmax = NiNo
Dmax = NiNo

Dmax = NiNo
Dmax = NiNo

Numerical inversion solution

(K = 1, NL1 = N )

Deep learning solution

(K = 1, NL1 = N )

Deep learning solution

(K = 4, NL1 = NL2  = NL3 = NL4 = N/4 )

Deep learning solution

(K = 2, NL1 = NL2 = N/2)

Numerical inversion solution

(K = 1, NL1 = N )

Deep learning solution

(K = 4, NL1 = NL2  = NL3 = NL4 = N/4 )
Deep learning solution

(K = 2, NL1 = NL2 = N/2)

Deep learning solution

(K = 1, NL1 = N )

Numerical inversion solution

(K = 1, NL1 = N )

Deep learning solution

(K = 4, NL1 = NL2  = NL3 = NL4 = N/4)

Deep learning solution

(K = 2, NL1 = NL2 = N/2)

Deep learning solution

(K = 1, NL1 = N )

0.125

�/3

–�/3

–�

�

Fig. 7 Diffractive all-optical transformation results for the 2D discrete Fourier transform. a Schematic of a K-layer diffractive network, that all-

optically performs a linear transformation between the input and output fields-of-views that have Ni and No pixels, respectively. The all-optical

transformation matrix due to the diffractive layer(s) is given by A′. b. The magnitude and phase of the ground truth (target) input-output

transformation matrix, which is the 2D Fourier transform matrix. c All-optical transformation errors (see Eq. 5). The x-axis of the figure shows the total

number of neurons (N) in a K-layered diffractive network, where each diffractive layer includes N/K neurons. Therefore, for each point on the x-axis,

the comparison among different diffractive designs (colored curves) is fair as each diffractive design has the same total number of neurons

available. The simulation data points are shown with dots and the space between the dots are linearly interpolated. d Cosine similarity between the

vectorized form of the target transformation matrix in (b) and the resulting all-optical transforms (see Eq. 16). e Output MSE between the ground-

truth output fields and the estimated output fields by the diffractive network (see Eq. 18). f The diffraction efficiency of the designed diffractive

networks (see Eq. 19)
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multiple layers, deeper diffractive designs (e.g., K= 4)

avoid using neurons that are laterally further away from

the center. This way, the synthesis of an arbitrary all-

optical transformation can be achieved much more

efficiently, without the need to weaken the transmissivity

of the central neurons of a given layer. Stated differently,

deep learning-based diffractive designs utilize a given

neuron budget more effectively and can efficiently
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Fig. 8 Diffractive all-optical transformations and their differences from the ground truth, target transformation (A) presented in Fig. 7b.
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perform an arbitrary complex-valued transformation

between an input and output FOV.

In fact, deep learning-based, data-driven diffractive

designs can be made even more photon efficient by

restricting each diffractive layer to be a phase-only element

(i.e., |t|= 1 for all the neurons) during the iterative

learning process of a target complex-valued transforma-

tion. To demonstrate this capability with increased dif-

fraction efficiency, we also designed diffractive networks

with phase-only layers. The all-optical transformation

performance metrics of these phase-only diffractive

designs are summarized in Supplementary Figs. S10–S13,

corresponding to the same arbitrarily selected unitary

transform (Fig. 1), nonunitary but invertible transform

(Fig. 4), the 2D Fourier transform (Fig. 7) and the ran-

domly selected permutation operation (Fig. 10), respec-

tively. These results indicate that much better output

diffraction efficiencies can be achieved using phase-only

diffractive networks, with some trade-off in the all-optical

transformation performance. The relative increase in the

transformation errors and the output MSE values that we

observed in phase-only diffractive networks is caused by

the reduced degrees of freedom in the diffractive design

since |t|= 1 for all the neurons. Regardless, by increasing

the total number of neurons (N > NiNo), the phase-only

diffractive designs approach the all-optical transformation

performance of their complex-valued counterparts

designed by deep learning, while also providing a much
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Fig. 9 Sample input–output images for the ground truth transformation presented in Fig. 7b and the optical outputs by the diffractive
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better diffraction efficiency at the output FOV (see Sup-

plementary Figs. S10–S13). Note also that, while the

phase-only diffractive layers are individually lossless,

the forward propagating optical fields still experience

some power loss due to the opaque regions that are

assumed to surround the diffractive surfaces (which is a

design constraint as detailed in the section “Formulation of

all-optical transformations using diffractive surfaces”). In

addition to these losses, the field energy that lies outside of

the output FOV is also considered a loss from the per-

spective of the target transformation, which is defined

between the input and output FOVs.

In order to further increase the output diffraction effi-

ciency of our designs, we adopted an additional strategy

that includes a diffraction efficiency-related penalty term

in the loss function (detailed in the section “Penalty term

for improved diffraction efficiency”). Performance quan-

tification of these diffraction efficient designs that have

different loss function parameters is shown in Supple-

mentary Fig. S14 for a unitary transform; the same figure

also includes the comparison between the complex-

valued and phase-only modulation schemes that do not

have a diffraction efficiency-related penalty term in their

loss functions. The analyses shown in Supplementary Fig.

S14 indicate that the output diffraction efficiency of the

network can be significantly improved and maintained

almost constant among different designs with different

numbers of neurons by the introduction of the diffraction
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Fig. 10 Diffractive all-optical transformation results for a permutation operation. a Schematic of a K-layer diffractive network, that all-optically

performs a linear transformation between the input and output fields-of-views that have Ni and No pixels, respectively. The all-optical transformation

matrix due to the diffractive layer(s) is given by A′. b. Real and binary-valued ground truth (target) input-output transformation matrix, corresponding

to a permutation operation. c All-optical transformation errors (see Eq. 5). The x-axis of the figure shows the total number of neurons (N) in a

K-layered diffractive network, where each diffractive layer includes N/K neurons. Therefore, for each point on the x-axis, the comparison among

different diffractive designs (colored curves) is fair as each diffractive design has the same total number of neurons available. The simulation data

points are shown with dots and the space between the dots are linearly interpolated. d Cosine similarity between the vectorized form of the target

transformation matrix in (b) and the resulting all-optical transforms (see Eq. 16). e Output MSE between the ground-truth output fields and the

estimated output fields by the diffractive network (see Eq. 18). f The diffraction efficiency of the designed diffractive networks (see Eq. 19)
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efficiency-related penalty term during the training.

Moreover, the transformation error, cosine similarity and

MSE performance of the complex-valued modulation

scheme that has no diffraction efficiency term can be

approximately matched through this new training strategy

that includes an additional loss term dedicated to improve

diffraction efficiency.

We also compared our results to a data-based itera-

tive projection method, which can be considered

as an extension of the Gerchberg-Saxton algorithm for
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Fig. 11 Diffractive all-optical transformations and their differences from the ground truth, target transformation (A) presented in Fig. 10b
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to the ground truth are shown
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multi-layer settings44. Using this iterative projection

method44, we trained phase-only transmittance values of

the diffractive layers in order to approximate the first

unitary transform presented in Fig. 1 by feeding them with

the corresponding ground truth input/output fields.

Then, we computed the associated transformation

error and the other performance metrics through the

projection-based optimized neuron values. We report

the results of this comparison in Supplementary Fig. S15.

The transformation error, cosine similarity measure, and

MSE results indicate that as the number of diffractive

layers increases, the deep learning-based all-optical solu-

tions become much more accurate in their approximation

compared to the performance of iterative projection-

based diffractive designs.

We also report the convergence analysis of our deep

learning-based designs in Supplementary Fig. S16. The

simulations for this convergence analysis were carried out

for K= 4 using both the complex-valued and phase-only

modulation layers when N= 482, 642, or 802. The MSE

curves in Supplementary Fig. S16 show a monotonic

decrease as the number of epochs increases during the

training. On the other hand, although the general trends

of the transformation error and the cosine similarity

metrics are almost monotonic, they show some local

variations between consecutive training epochs, as shown

in Supplementary Figs. S16a, b. This behavior is expected

since the diffractive network does not directly minimize

the transformation error during its training; in fact, it

minimizes the output MSE as given by Eq. 10. In addition

to these, we observe that the diffractive network design

converges after a few epochs, where the training in the

subsequent epochs serves for the purpose of fine tuning of

the network’s approximation performance.

In our analysis reported so far, there are some prac-

tical factors that are not taken into account as part of

our forward optical model, which might degrade the

performance of diffractive networks: (1) material

absorption, (2) surface reflections, and (3) fabrication

imperfections. By using materials with low loss and

appropriately selected 3D fabrication methods, these

effects can be made negligible compared with the optical

power of the forward propagating modes within the

diffractive network. Alternatively, one can also include

such absorption- and reflection-related effects as well as

mechanical misalignments (or fabrication imperfec-

tions) as part of the forward model of the optical system,

which can be better taken into account during the deep

learning-based optimization of the diffractive layers.

Importantly, previous experimental studies28,29,32,34

reported on various diffractive network applications

indicate that the impact of fabrication errors, reflection

and absorption-based losses are indeed small and do not

create a significant discrepancy between the predictions

of the numerical forward models and the corresponding

experimental measurements.

Finally, we should emphasize that for diffractive

networks that have more than one layer, the trans-

mittance values of the neurons of different layers

appear in a coupled, multiplicative nature within the

corresponding matrix-vector formulation of the all-

optical transformation between the input and output

FOVs35. Hence, a one-step, matrix pseudoinverse-

based design strategy cannot be applied for multi-

layered diffractive networks in finding all the neuron

transmittance values. Moreover, for diffractive designs

with a large N, the sizes of the matrices that need to

undergo the pseudoinverse operation grow exponen-

tially, which drastically increases the computational

load and may prevent performing matrix pseudoinverse

computations due to limited computer memory and

computation time. This also emphasizes another

important advantage of the deep learning-based design

methods which can handle much larger number of

diffractive neurons to be optimized for a given target

transformation, thanks to the efficient error back-

propagation algorithms and computational tools that

are available. Similarly, if Ni and No are increased as the

sizes of the input and output FOVs are enlarged, the

total number of diffractive neurons needed to suc-

cessfully approximate a given complex-valued linear

transformation will accordingly increase to D=NiNo,

which indicates the critical number of total diffractive

features (marked with the vertical dashed lines in our

performance metrics related figures).

Materials and methods

Diffractive network configurations

In our numerical simulations, the chosen input and

output FOV sizes are both 8 × 8 pixels. Hence, the

target linear transforms, i.e., A matrices, have a size of

No ×Ni= 64 × 64. For a diffractive design that has a

single diffractive surface (K= 1), the chosen axial dis-

tances are d1= λ and d2= 4λ. For the networks that

have two diffractive surfaces (K= 2), the chosen axial

distances are d1= λ and d2= d3= 4λ. Finally, for the

4-layered diffractive network (K= 4), the axial distances

are chosen as d1= λ and d2= d3= d4= 4λ. These axial

distances can be arbitrarily changed without changing

the conclusions of our analysis; they were chosen large

enough to neglect the near-field interactions between

successive diffractive layers, and small enough to per-

form optical simulations with a computationally fea-

sible wave propagation window size. We chose our 2D

wave propagation window as
ffiffiffiffiffiffi
Nd

p
´

ffiffiffiffiffiffi
Nd

p
¼ 144 ´ 144,

which ends up with a size of 1442 × 1442 for Hd

matrices, resulting in ~430 Million entries in each

Hd matrix.
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Image datasets and diffractive network training

parameters

To obtain the diffractive surface patterns that collec-

tively approximate the target transformation using deep

learning-based training, we generated a complex-valued

input-output image dataset for each target A. To cover a

wide range of spatial patterns, each input image in the

dataset has a different sparsity ratio with randomly chosen

pixel values. We also included rotated versions of each

training image. We can summarize our input image

dataset as

4P þ 8P þ 16P þ 32P þ 48P þ 64Pð Þ ´ 4R ´ S ð15Þ

where S refers to the number of images for each sub-

category of the training image set defined by kP for k∈ {4,

8, 16, 32, 48, 64}, which indicates a training image where

k pixels out of Ni pixels are chosen to be nonzero (with all

the rest of the pixels being zero). Hence, k indicates the fill

factor for a given image, as shown in Supplementary Fig.

S17. We choose S= 15,000 for the training and S= 7500

for the test image sets. Also, 4R in Eq. 15 indicates the

four different image rotations of a given training image,

where the rotation angles are determined as 0°, 90°, 180°,

and 270°. For example, 16P in Eq. 15 indicates that

randomly chosen 16 pixels out of 64 pixels of an image are

nonzero and the remaining 48 pixels are zero. Following

this formalism, we generated a total of 360K images for

the training dataset and 180K for the test image dataset.

Moreover, if a pixel in an image was chosen as nonzero, it

took an independent random value from the set
32
255

; 33
255

; � � � ; 254
255

; 255
255

	 

. Here the lower bound was chosen

so that the “on” pixels can be well-separated from the

zero-valued “off” pixels.

In this paper, we used the same input (i) image dataset

for all the transformation matrices (A) that we utilized as

our testbed. However, since the chosen linear transforms

are different, the ground truth output fields are also dif-

ferent in each case, and were calculated based on o=Ai.

Sample images from the input fields can be seen in Sup-

plementary Fig. S17.

As discussed in the section “Deep learning-based

synthesis of an arbitrary complex-valued linear trans-

formation using diffractive surfaces (K ≥ 1)“, our for-

ward model implements Eq. 2 and the DFT operations

are performed using the fast Fourier transform algo-

rithm42. In our deep learning models, we chose the loss

function as shown in Eq. 10. All the networks were

trained using Python (v3.6.5) and TensorFlow (v1.15.0,

Google Inc.), where the Adam optimizer was selected

during the training. The learning rate, batch size and the

number of training epochs were set to be 0.01, 8 and 50,

respectively.

Computation of all-optical transformation performance

metrics

As our all-optical transformation performance metrics,

we used (i) the transformation error, (ii) the cosine

similarity between the ground truth and the estimate

transformation matrices, (iii) normalized output MSE and

(iv) the mean output diffraction efficiency.

The first metric, the transformation error, is defined in

Eq. 5, which was used for both pseudoinverse-based dif-

fractive designs and deep learning-based designs. The

second chosen metric is the cosine similarity between two

complex-valued matrices, which is defined as

U a; â0ð Þ ¼ a;â0h ij jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNiNo

l¼1
a l½ �j j2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNiNo

l¼1
â
0 l½ �j j2

q

¼ a
H
â
0j j

ffiffiffiffiffiffiffi
ak k2

p ffiffiffiffiffiffiffiffiffiffi
â
0k k2

q
ð16Þ

We use the notation U A; Â
0� �

interchangeably with

U a; â0ð Þ, both referring to Eq. 16. Note that, even though

the transformation error and cosine similarity metrics that

are given by Eqs. 5 and 16, respectively, are related to each

other, they end up with different quantities. The relation-

ship between these two metrics can be revealed by

rewriting Eq. 5 as

a� â
0�� ��2¼ a� â

0ð ÞH a� â
0ð Þ ¼ ak k2þ â

0�� ��2�2Re a
H
â
0	 


ð17Þ

where Re{∙} operator extracts the real part of its input. As

a result, apart from the vector normalization constants,

‖a‖
2 and â

0�� ��2, Eqs. 16 and 17 deal with the magnitude

and real part of the inner product a
H
â
0ð Þ, respectively.

For the third metric, the normalized MSE calculated at

the output FOV, we used the following equation:

E ~o� ~o
0k k2

h i
¼ 1

STNo

PST

s¼1

PNo

l¼1

~os l½ � � ~o
0
s l½ �

�� ��2

¼ 1

STNo

XST

s¼1

XNo

l¼1

σsos l½ � � σ
0
so

0
s l½ �

�� ��2

ð18Þ

where E[∙] is the expectation operator and ST is the total

number of the image samples in the test dataset. The

vectors os=Ais and o
0
s ¼ A

0
is represent the ground truth

and the estimated output fields (at the output FOV),

respectively, for the sth input image sample in the dataset,

is. The normalization constant, σs is given by Eq. 12, and

σ
0
s, can be computed from Eq. 13, by replacing σ

0
s and o

0
s

by σ
0
s;c and o

0
s;c, respectively.

Finally, we chose the mean diffraction efficiency of the

diffractive system as our last performance metric, which
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is computed as

E
o0k k2

ik k2

" #

¼ 1

ST

XST

s¼1

PNo

l¼1 o
0
s l½ �

�� ��2
PNi

l¼1 is l½ �j j2
ð19Þ

Generation of ground truth transformation matrices

To create the unitary transformations, as presented in

Fig. 1b and Supplementary Fig. S1b, we first generated a

complex-valued Givens rotation matrix, which is

defined for a predetermined i,j ∈ {1, 2, ⋯, Ni} and i ≠ j

pair as

Rij n;m½ � ¼

1; if n ¼ m; n≠ i and n≠ j

ejθ1 cos θ3; if n ¼ m ¼ i

e�jθ1 cos θ3; if n ¼ m ¼ j

ejθ2 sin θ3; if n ¼ i andm ¼ j

�e�jθ2 sin θ3; if n ¼ j andm ¼ i

0; otherwise

8
>>>>>>>><

>>>>>>>>:

ð20Þ

where θ1, θ2, θ3∈ [0, 2π) are randomly generated phase

values. Then a unitary matrix was computed as

R ¼
YT

t¼1

Rit jt ð21Þ

where (it, jt) pair is randomly chosen for each t. We used

T= 105 in our simulations. As a result, for each t in Eq. 21,

(it, jt) and (θ1, θ2, θ3) were chosen randomly. It is

straightforward to show that the resulting R matrix in

Eq. 21 is a unitary matrix.

To compute the nonunitary but invertible matrices,

we first generated two unitary matrices RU and RV, as

described by Eqs. 20 and 21, and then a diagonal matrix

X. The diagonal elements of X takes uniformly, inde-

pendently and identically generated random real values

in the range [0.3, 1], where the lower limit is determined

to be large enough to prevent numerical instabilities and

the upper limit is determined to prevent amplification of

the orthonormal components of RU and RV. Then, the

nonunitary but invertible matrix is generated as RUXR
H
V ,

which is in the form of the SVD of the resulting matrix.

It is straightforward to show that the resulting matrix is

invertible. However, to make sure that it is nonunitary,

we numerically compute its Hermitian and its inverse

separately, and confirm that they are not equal. Simi-

larly, to compute the noninvertible transformation

matrix, as shown in e.g., Supplementary Fig. S4b, we

equated the randomly chosen half of the diagonal ele-

ments of X to zero and randomly chose the remaining

half to be in the interval [0.3, 1]. Following this,

we computed the noninvertible matrix as RUXR
H
V , by

re-computing new unitary matrices RU and RV, which

end up to be completely different from the RU and RV

matrices that were computed for the nonunitary and

invertible transform.

The 2D DFT operation for the square input aperture

located at the center of the input plane was defined by

o2D p; q½ � ¼ 1ffiffiffiffiffi
Ni

p
X
ffiffiffi
Ni

p
2 �1

n¼�
ffiffiffi
Ni

p
2

X
ffiffiffi
Ni

p
2 �1

m¼�
ffiffiffi
Ni

p
2

i2D n;m½ �e�j 2πffiffiffi
Ni

p pnþqmð Þ

ð22Þ
where i2D and o2D represent the 2D fields on the input

and output FOVs, respectively, and n; m; p; q 2
�
ffiffiffiffi
Ni

p

2
; �

ffiffiffiffi
Ni

p

2
þ 1; � � � ;

ffiffiffiffi
Ni

p

2
� 1

n o
. Here we assume that

the square-shaped input and output FOVs have the

same area and number of pixels, i.e., Ni=No. Moreover,

since we assume that the input and output FOVs are

located at the center of their associated planes, the

space and frequency indices start from �
ffiffiffiffiffi
Ni

p
=2.

Therefore, the A matrix associated with the 2D

centered DFT, which is shown in Fig. 7b, performs

the transform given in Eq. 22.

The permutation (P) operation performs a one-to-one

mapping of the complex-value of each pixel on the

input FOV onto a different location on the output FOV.

Hence the randomly selected transformation matrix

(A= P) associated with the permutation operation has

only one nonzero element along each row, whose value

equals to 1, as shown in Fig. 10b.

Finally, the transformation matrix corresponding to the

high-pass filtering operation, as shown in Supplementary

Fig. S7b, is generated from the Laplacian high-pass filter

whose 2D convolution kernel is

1 4 1

4 �20 4

1 4 1

2

64

3

75 ð23Þ

After generating the 2D matrix by applying the appro-

priate vectorization operation, we also normalize the

resulting matrix with its largest singular value, to prevent

the amplification of the orthonormal components.

Penalty term for improved diffraction efficiency

To increase the diffraction efficiency at the output FOV

of a diffractive network design, we used the following

modified loss function:

L ¼ cMLM þ cDLD ð24Þ

where LM is the MSE loss term which is given in Eq. 10

and LD is the additional loss term that penalizes poor
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diffraction efficiency:

LD ¼ e�αX ð25Þ

where X is the diffraction efficiency term which is given by

Eq. 19. In Eqs. 24 and 25, cM, cD and α are the user-defined

weights. In earlier designs where the diffraction efficiency

has not been penalized or taken into account during the

training phase, cM and cD were taken as 1 and 0, respectively.
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