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Abstract Due to ever increasing throughput demands
the lookup in conventional IP routers based on longest

prefix matching is becoming a bottleneck. Additionally,
the scalability of current routing protocols is limited by
the size of the routing tables. Geometric greedy routing

is an alternative to IP routing which replaces longest

prefix matching with a simple calculation employing

only local information for packet forwarding. For the

first time, in this paper we propose a novel and truly all-

optical geometric greedy router based on optical logic

gates and optical flip-flops. The circuit of the router is

constructed through the interconnection of SOAs and

directional couplers. The successful functionality of the

proposed router is verified through simulation. The cir-

cuit enables high data rate throughput.

Keywords All-optical router · SOA gate arrays ·

geometric greedy routing

1 Introduction

Internet traffic keeps growing and higher performance,

capacity and forwarding rates are required in order to

meet the ever increasing future demands. In addition,

the growth of the size of the routing tables restricts

the scalability of the current IP-based routing proto-
cols. There are more than 600K Forwarding Informa-
tion Base (FIB) entries in current Boarder Gateway

Protocol (BGP) router reported in [9]. Geometric greedy

routing has been proposed as an alternative to IP rout-

ing to solve the routing tables scalability issue.
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B. Example of local minimumA. Example of greedy forwarding

Fig. 1 (A) Example of greedy routing in Euclidean space
(B) Example of local minimum

In geometric routing a coordinate is assigned to each

node in the network. An obvious option is to attach
GPS coordinates to the routers in a network [10]. Net-
work nodes knowing the coordinates of their neighbors

could forward the incoming packets to the neighbors

which are closer to the packets destination. Following

this distance-decreasing policy, the packet can eventu-

ally reach the destination. As in every step, the packet

is forwarded to the neighbor with maximum decrease

in the distance, the scheme is referred to as greedy

routing/forwarding. The same idea has been used in

[3] however, virtual coordinates are assigned instead. In

this scheme, forwarding is only based on local informa-

tion and thus it is significantly more memory-efficient

compared to IP routing. Figure 1A depicts an example
of greedy forwarding based on Euclidean coordinates.
Starting from node ‘d’ towards ‘a’, first the Euclidean
distance between the neighbors of ‘d’ and ‘a’ is calcu-

lated. Node ‘c’ is closer to ‘a’ compared to ‘e’. Therefore,

‘c’ is selected as the next hop. The same calculation is

performed in nodes ‘c’ and ‘b’ until node ‘a’ is reached.

In geometric routing address lookup, as in IP rout-

ing, is replaced with distance calculation. This distance

calculation is performed only for a node’s neighbors and

thus is limited. As IP lookups at wire speed become
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more difficult at higher bit rates, using geometric rout-

ing will potentially increase the routers speed and thus

the throughput which is a significant requirement in the

future Internet.

Our contribution. Due to the advances in optical

technology, optical components are known to have an

excellent potential to be included in high capacity rout-

ing systems. Therefore, in this paper, we propose an ef-
ficient and scalable all-optical geometric greedy router
employing the coordinates derived from a spanning tree

of the network. The router is constructed through in-

terconnection of optical logic gates and flip-flops com-

posed of Semiconductor Optical Amplifiers (SOA) and

directional couplers. Using SOA gate arrays results in

a scalable approach in terms of manufacturing.

It is worth mentioning that the performance of the

tree-based greedy geometric routing scheme has been

already evaluated in terms of routing quality and con-

vergence behavior in case of network dynamics in our

previous works [17,18]. The goal of this paper is to il-

lustrate that a scalable all-optical greedy router can be

implemented which enables high data rate throughput.

We have implemented XOR, AND, OR gates, multi-

plexer, two types of flip-flops and more complex compo-

nents such as counter and comparator to construct the

proposed greedy forwarder. All of these components are

validated through simulation and the successful func-

tionality of the designed router is demonstrated. To the
best of our knowledge, no research has been conducted
so far investigating such a design. It is expected that
with the advances in the photonic integration research,

this router can be integrated in a single platform, which

brings down the cost and the power consumption.
The rest of the paper is organized as follows. Sec-

tion 2 gives an overview on existing work related to

i) geometric routing and ii) all-optical designs. Section

3 explains the tree-based greedy routing for which the

optical greedy forwarder is designed. The implementa-

tion of the designed router is explained in Section 4.

The functionality of the proposed circuit is validated

through simulation in Section 5. Section 6 discusses fu-

ture plans. Finally, Section 7 concludes the paper.

2 Related work

A known issue in greedy routing is that packets may
get stuck in a local minimum. This means that there
is no neighbor closer to the destination than the cur-

rent node. In Figure 1B node ‘S’ is an example of a lo-

cal minimum. Greedy embeddings, as proposed in [13]

avoid this situation by ensuring that coordinates are

mapped to network nodes in such a way that for ev-

ery node there is always a neighbor which decreases

the distance towards any destination. There are sev-

eral works which propose greedy embeddings in differ-
ent metric spaces such as hyperbolic plane [11,1] and
multidimensional Euclidean spaces [2,23]. Some works

have proposed greedy embeddings based on one or sev-

eral spanning trees of the network [11,20,6]. Most of

the schemes based on multiple trees achieve good rout-

ing performance [6–8] at the cost of increased overall

overhead and complexity.

Being a recent paradigm, most of the proposed schemes

are theoretical works which may be too complex to be

used in practice. In order to bridge the gap between ge-

ometric routing in theory and its applicability in prac-

tice, we propose a hardware design of a greedy for-

warder based on a simple greedy embedding. In [17,

18], we investigated this embedding which is based on

a single spanning tree. Despite its simplicity, good per-

formance in terms of routing quality and convergence

behavior was achieved. As optical technology has an

excellent potential to be used in high capacity rout-

ing systems, we design the proposed greedy forwarder

based on all-optical components. In our previous works
[16,15] part of this forwarder, excluding the compound
components (i.e., optical counter and comparator), was
demonstrated. However, the complete design and the

successful operation of the whole system are presented

in this paper.
There exist several optical packet and burst switch-

ing technologies in the literature [24]. In [12] optical-

label swapping technique (OLS) was considered. This

work processed the label of a packet in electrical domain

while the payload was forwarded through each node

without optical-electrical-optical conversion. In other

works such as [5,19] the label was also processed in the

optical domain. In [14], the first all-optical label swap-

ping router was proposed which performed switching

and forwarding functionalities in the optical layer. In

their design, the SOA-based MachZehnder Interferom-

eter (SOA-MZI) blocks were used to construct the logic

gates and flip-flops which leads to a flexible and scalable

approach in terms of manufacturing. In [4] an all-optical

switch architecture for Ethernet based on SOA and di-

rectional couplers was proposed which provides com-

munication with and without IP. In their approach, the

network is abstracted to a binary tree. This is achieved

by adding virtual nodes so that every node can be char-

acterized as a binary node. Having binary nodes is bene-

ficial because the forwarding plane is simplified through

enabling binary routing and source routing. However,
this approach differs from our proposed tree-based ge-
ometric greedy routing in the sense that the routing is
only on the tree and thus shortcut links1 are not used.

1 Links which are not in the spanning tree of the network.
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Fig. 2 (A) Tree-based greedy embedding. (B) Greedy forwarding based on tree coordinates

Such an approach leads to high stretch2 and potential

bandwidth bottleneck at the root of the tree. The lat-

ter refers to the forwarding of the packets towards the

root to reach the intended destination. Up to now, none

of the existing works have focused on the design of an
all-optical greedy forwarder.

3 Greedy Tree-based geometric Routing (GTR)

In [17], we investigated GTR which is a geometric rout-

ing scheme based on a simple but powerful greedy em-

bedding. GTR consists of two components: i) tree-based

greedy embedding and ii) greedy forwarding. The for-

mer is responsible for constructing a spanning tree and

deriving network nodes coordinates. These coordinates
are then used by the latter to forward the packets to-
wards the destinations.

In this section, we detail the tree-based greedy em-

bedding and related greedy forwarding. In Section 4,
we assume that the embedding has already taken place
and nodes are aware of their neighbors coordinates. We
then describe the design of different optical components

required for the forwarding component of GTR.

Tree-based greedy embedding. In [17] we pro-

posed a simple greedy embedding based on a spanning

tree of the network. This scheme reduces the overall

complexity and computational overhead. Based on our

investigations, this simplification does not penalize the

resulting performance. The steps for calculating nodes

coordinates based on this embedding scheme are illus-
trated in Figure 2A: i) A rooted spanning tree of the
network is generated. ii) Each node numbers its chil-
dren from 1 to d (d is the number of children). iii) The

root node sets its Coordinate Set (CS) to zero (0,...,0)
and every node can calculate the CS of its children by
putting the number assigned to each child in place of

the first zero coordinate in its own CS. The number of
coordinates in the CSs is determined by the depth of
the tree.

Greedy forwarding based on Coordinate Sets

(CS). Once the CSs are calculated, each node, knowing

2 Stretch is defined as deviation from the shortest path
length.

the CSs of its neighbors, forwards an incoming packet

to the neighbor which maximally decreases the distance

towards the packet destination. In this context, we use

tree-distance as metric which is the hop count on the

tree between the nodes: i) first the closest common an-

cestor to both nodes is found, ii) then the hop counts

of each node to the common ancestor is counted, iii)

the sum of these two hop counts determines the tree-

distance between them. Given the CSs of two nodes, the

largest common prefix of the two CSs determines the CS

of the closest common ancestor. In each CS, the num-

ber of non-zero coordinates after the common prefix

determines the hop count of that node to the common

ancestor. The sum of the hop counts determines the

tree-distance. In case of no common prefix (e.g. nodes

(1,1,1) and (2,1,1) in Figure 1A), the common ancestor

is the root node (0,0,0) and all the non-zero coordinates

of each CS are counted.

Note that in the greedy routing based on the derived

CSs the shortcut links are also used which is different

from the tree routing3. The spanning tree is only used

to guarantee a distance decreasing path towards the

destination.

Figure 2B illustrates an example of greedy forward-

ing from S=(3,1,0) to D=(2,1,0) based on the deduced

CSs. In node S, the tree-distances (td) are as follows:

td((3,0,0),(2,1,0))=3, td((2,1,1),(2,1,0))=1. Therefore,

(2,1,1) is selected as the next hop. The path generated

by the greedy forwarding is depicted by arrows. This

path is much more efficient than tree-routing ((3, 1, 0) →

(3, 0, 0) → (0, 0, 0) → (2, 0, 0) → (2, 1, 0)).

4 All-optical tree-based greedy router

4.1 General architecture of the optical greedy router

A greedy router consists of two main components: i)

tree-distance calculator and ii) comparator. The for-

mer calculates the tree-distance between the CS of a

neighbor and the CS of the destination of an incoming

packet. The latter selects the neighbor with minimum
tree-distance as the next hop.

3 Tree routing refers to a routing when only the tree edges
are used.
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Fig. 3 General architecture of optical greedy router

Figure 3 depicts the architecture of the proposed
all-optical greedy router with n ports. For the sake

of clarity, the architecture corresponding to one input

port is illustrated which can be simply extended for

more ports. As we see in the figure, there exists a tree-

distance calculator corresponding to each port. Once

the tree-distances are calculated one comparator is re-
quired to select the next hop.

Upon arrival of a packet in the router, the CS of

the destination is extracted from the packet (similar
to label extraction in [14]), as shown in Figure 3. The
extracted optical CS is then fed to All-optical Tree-
distance Calculators. The calculated distance between

each neighbor and the destination is then fed to the

All-optical Comparator. Note that the neighbors’ CSs

(N1,...,Nn) are stored in the router and are the inputs of

the tree-distance calculators. The comparator produces
a high intensity signal at a certain wavelength at the
output corresponding to the neighbor with minimum

distance. This signal drives a wavelength converter. The

packet is then converted to the signal’s wavelength and

is sent through an arrayed-waveguide grating (AWG).

Therefore, the wavelength of the packet determines the

outgoing port on which the packet leaves the node.

Optical data processing requires the existence of an

all-optical synchronization stage at the input of the

node. This synchronization is required to control/power-

up subsequent node subsystems. [14] proposed mecha-

nisms for this synchronization. In the absence of such

self-synchronization modules, local signal generation or

synchronization of incoming packets with local optical

oscillators are required. We do not focus on the design

of this module and assume the existence of a synchro-
nization mechanism (Packet Clock Recovery block in
Figure 3 refers to such module). The captured packet
clock signal is then fed to the tree-distance calculator

blocks (see Figure 3).

For the sake of directed focus on the all-optical func-

tionalities related to greedy forwarding, the implemen-

tation and simulation validations are restricted to the

tree-distance calculator and next hop selector (i.e., the

All-optical Tree-distance Calculator and All-optical Com-

parator blocks in Figure 3). In order to support other

functionalities required in a router (e.g., destination co-

ordinate extraction from the packet, packet-clock re-

covery and tunable wavelength conversion as shown in

Figure 3) we rely on existing approaches e.g., [14].

4.2 All-optical tree-distance calculator

Figure 4 depicts the proposed circuit for the tree-distance

calculator. The inputs of the this block are i) CS of the
destination (D), ii) CS of a neighbor (N) and iii) the
clock signal (clock). In this figure, the values at differ-

ent stages of the architecture are marked for sample

CSs including 3 coordinates each composed of 2 bits.

Given two CSs, this circuit identifies the first un-

common coordinate and starts counting the non-zero

coordinates in both CSs. As we see, the circuit is com-

posed of all-optical gates (XOR, AND, OR), multi-

plexer, flip-flop and a counter. As the final value is set

in the flip-flops of the counter, a parallel to serial cir-

cuit is required because the all-optical comparator (see

Figure 3) receives serial input signals.

The inputs of the circuit (N and D) are serial bits
which are fed to an XOR gate to identify the first un-

common bits in the two CSs. The output of the XOR
is fed to an OR gate together with a feedback from a
flip-flop. This leads to a signal which is set to ‘1’ from

the moment the first uncommon bit is identified and

remains ‘1’ up to the last bit of the CS. This signal

determines when the counting of non-zero coordinates

should begin. As the non-zero coordinates in both CSs

should be counted, this signal is replicated through a

multiplexer and a fiber delay element. The duration of

the fiber delay is equal to the length of a CS (bits). We

generate the same signal twice and thus the length of

the output signal of the multiplexer is twice the length

of a CS. With such signal we can count the hop counts

of the two CSs consecutively.
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Fig. 4 Architecture of all-optical tree-distance calculator for one port/neighbor. In the provided CSs, the first coordinate is
depicted at right and is the first to be fed into the circuitry.

As the coordinates should be counted in each CS

and not the bits, we use a pattern which determines
the last bit of each coordinate in a CS with a ‘1’. Feed-
ing this pattern and the output of the multiplexer to

an AND gate, we get a signal which is ‘1’ only at the

last bit of the coordinates in a CS and only if the first

uncommon bit in the CSs is identified. If we apply this

signal to the enable pin of a counter, all the coordinates

of the two CSs from the location of the first uncommon

coordinate are counted up to the end of the CSs. Now

we need to make sure that only non-zero coordinates
are counted. The design of this part is dependent on
the number of bits in a coordinate.

In the lower part of the circuit, the two CSs are ap-

plied to the inputs of an OR gate consecutively (DN).
As we see, one of the inputs is applied to the OR gate
through a fiber delay. The duration of this delay ele-

ment is equal to one bit. In Figure 4, we assumed that
each coordinate of a CS consists of two bits. If there is at
least one bit equal to ‘1’ in each coordinate, the output
of the AOOR2 would be ‘1’ in the location of the last

bit of that coordinate. For CSs with K-bit coordinates,

the AOOR2 and the input fiber delay are replaced with
K-1 single-bit fiber delays and one K-way OR gate (or

(K-1) 2-input OR gates).

Feeding the output of AOAND1 and AOOR2 to an

AND gate results in a signal which is ‘1’ at the last

bit of each non-zero coordinate in a CS and if only the

first uncommon coordinate in the two CSs is detected.

Applying this signal to the enable pin of a counter leads

to counting the hop count of both CSs to their closest

common ancestor which is equal to the tree-distance

between them.

4.2.1 All-optical components for counting preparation

circuit

In this section, the architecture of all-optical compo-

nents used in the design of the tree-distance calculator

are described. These components are all-optical AND,

OR, XOR gates, multiplexer and flip-flop. As shown in

Figure 4 these components are used to prepare a sig-

nal to enable the counting of coordinates in each CS.

Therefore we refer to them as components required for

‘counting preparation circuit’.

The design of the proposed all-optical components

make use of the differentiated phase shift and gain of-
fered by the SOAs when fed with different power lev-

els. SOA is an optical amplifier based on a semicon-
ductor gain medium. The differentiated phase shift of
the SOAs can be utilized to form SOA-based Mach-

Zehnder interferometer (SOA-MZI) circuit which acts

as a cross and bar state switch. The differentiated gain

of the SOAs can be utilized to selectively amplify the

signals, which form the basis of the gates like OR gate.

A directional coupler has different phase shifts de-

pending on whether to choose a cross or bar output. The

cross output of a directional coupler differs in phase by

180 degrees whereas bar output does not differ in phase

with the input. In a SOA-MZI configuration, the com-

bination of couplers is chosen in such a way that even

when the SOAs are fed with the identical inputs and
offer the same phase and gain, the two inputs going
through the different branches of the MZI combine fi-
nally with either a phase change of π or 0, leading to

destructive and constructive interference. So the whole
SOA-MZI circuit acts as a cross and bar switch.

In all the designs in this paper, the splits are done

by means of directional couplers. However, in some fig-
ures the couplers are not depicted for the sake of sim-
plicity. Figure 5A depicts a multiplexer. The selected

area with the dashed line illustrates a SOA-MZI con-

figuration. Depending on which of the inputs is required

to be at the output, the inputs to the SOA-MZI con-

figuration and the phase shift in the SOAs are tuned.

Feeding the select signal directly to the lower arm of

the SOA-MZI configuration causes the difference in the

inputs of the SOAs which leads to having in2 in the

output of the SOA-MZI if select is ‘1’. In other case,
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Fig. 5 Architecture of all-optical components. SOA-MZI functions as a cross-bar switch.

i.e. select=‘0’, with proper tuning of the phase shift in

the SOAs the in1 appears in the output. An XOR gate

is shown in Figure 5B. Similar to the multiplexer, the

design of this gate is also based on a SOA-MZI con-

figuration (selected with dashed line). The two inputs

of the XOR gate are fed to the arms of the SOA-MZI

block. In case both inputs are ‘1’, because of the phase

shifts through the directional couplers, the output sig-

nal is destructive and thus ‘0’ and it would be ‘1’ only if

one of the inputs is ‘1’. The next circuit is an OR gate

which is based on two inverters (selected areas). We de-

signed a D flip-flop which is level-triggered and uses a

SOA-MZI configuration (selected on top in Figure 5D).

The phase shifts through the directional couplers are

in such a way that the inputs to the two SOAs are not

equal and therefore the output cannot be destructive

if clock (clk) signal is ’1’ which causes that the input

(D) appears at the output. In the absence of a pulse in

clk, the selected area in the bottom of the circuit func-

tions as a feedback loop to maintain the output without

any change. The final circuit represents an AND gate

(Figure 5E). The functionality is emulated through 2

inverters which are selected with dashed lines (similar

to OR gate). The output would be ‘1’ only if the NOT

of in2 is ‘0’ and in1 is equal to ‘1’. Note that unlike
other designs, the two inputs of the AND gate should
be at different wavelengths.

In Figure 4, we demonstrated the need for a pattern

(input of AOAND1) to determine the last bit of each co-
ordinate in a CS and a control signal (for the AOMUX)

to duplicate the output of the AOFF. In order to gen-

erate different patterns/control signals, we can exploit

the output of the clock recovery block (Figure 3). Rely-

ing on this output, a set/reset pulse at the beginning of

a packet is generated which can be used together with

delay lines and directional couplers to generate different

patterns/signals.

4.2.2 All-optical components for counting circuit

We implemented an all-optical counter based on the de-

sign in [22]. However, we changed this design to be able

to use our implemented components such as AND gate.

We extended this design with an additional AND gate

in the input of the circuit to provide an enable pin in

addition to a clock signal for the counter to control the

counting. The extended counter counts up only if there

is a clock pulse and the enable signal is ‘1’. The design

of this counter is based on S-R flip-flops. Figure 6A

illustrates the circuit for a 2-bit counter and the imple-

mented S-R flip-flop is depicted in Figure 6B. Note that

the inputs of the AND gates and the S and R inputs
of the flip-flops should be at two different wavelengths.
Therefore a wavelength converter is required at the in-
put of the first stage to ensure the proper wavelength

for other components. The design of such a converter is

explained later.

As we see in Figure 6A the counter consists of two
identical stages (except the wavelength converter in the

first stage). Each stage includes an S-R flip-flop, an
AND gate, directional couplers and fiber delay elements.
There are 3 ports in each stage: i) input pulse, ii) out-
put (out-i) and output carry signal (carry-i). Note that

the carry1 from the first stage is the input of the sec-
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ond stage. The outputs of the two flip-flops (out1 out2)

are the outputs of the counter. At the beginning both
flip-flops are at state ‘0’. When the input of first stage
is ‘1’, it cannot pass the AOAND1 because out1 is still
‘0’. Therefore, only the ’S’ input of the AOFF1 is ‘1’

which causes the flip-flop to change state to ‘1’. Upon

arrival of the second pulse in the input of the counter,

the ’S’ input of the AOFF1 again receives the pulse and

thus AOFF1 remains at state ‘1’, however this time,
the ‘R’ input of the AOFF1 will also receive the pulse
but with a delay. So AOFF1 is set to ‘0’. The output

of AOAND1 is fed to the ‘S’ input of AOFF2 which

sets it to ‘1’. With the third pulse in the input, the

AOFF1 is set to ’1’ but it does not pass the AOAND1

and AOFF2 remains at state ’1’ as well. Finally when

the fourth pulse arrives, the output of AOAND1 is ‘1’

and the ‘R’ input of AOFF1 receives it later than ‘S’

therefore, the AOFF1 changes its state to ‘0’. Similarly

the AOFF2 is set to ‘0’. This circuit can simply be ex-

tended by replicating each stage and feeding the carry

out signal to the next stage as the input pulse.

The S-R flip-flop is composed of 2 SOAs operat-
ing at two different wavelengths, namely λ1 and λ2. A

pulse injected to ‘Set’ input will saturate SOA2, sup-

press Ring2, and then set the flip-flop to ‘1’. Similarly,

a pulse injected to ‘Reset’ input saturates SOA1 and

sets the flip-flop to ‘0’.

We need a parallel to serial circuit because the in-

puts of the all-optical comparator should be serial. Fig-

ure 6C depicts such a circuit for two bits. In this circuit,

N1 and N2 are the outputs of the all-optical counter,
out1 and out2 respectively. Feeding these two bits through
a fiber delay element and a coupler to an AND gate to-

gether with a pattern as shown, we can have N1 and

N2 consecutively.

4.3 All-optical comparator

We designed a 2-input all-optical comparator. Its func-

tionality is different from typical comparators as it works

similar to a selector. Therefore, the existing designs

could not be used in the proposed greedy forwarder.

Given two values (in serial) as input, the smaller value

is selected by emitting a high intensity signal in the cor-

responding output. We explain the design in 3 different

blocks.

The first block of the comparator, shown in Figure

7A, has two input (A and B) and two output ports (E

and F). This block works in such a way that the out-

puts, E and F, are ‘0’ if the inputs are the same (both
‘1’ or ‘0’) and only if one input is ‘1’ the corresponding
output will be ‘1’ as well. Note that it is not possible

that both outputs are ‘1’ at the same time. As we see

in this figure, the circuit works only if the two inputs

are at two different wavelengths (λ1 and λ2). Assuming
that the inputs (A and B) are given by two tree-distance

calculators with the same circuit, working at the same
wavelength, we need a wavelength converter at the in-
put of the comparator to make sure that the two inputs

have different wavelength (see Figure 7). The design of

such a converter is depicted in Figure 7B. In this design,

it is better to select the third wavelength λ3 between

the other two (λ1 < λ3 < λ2).

The final block of the comparator is illustrated in

Figure 7C. The goal of this design is to have a similar

functionality as an S-R flip-flop but with the capability

of having 3 states instead of 2 (i.e. states corresponding

to two sets and one reset). As shown in the figure, this

modified S-R flip-flop has 2 set inputs (E and F) and

1 reset input. out1 and out2 present the output of the

comparator. It is composed of 3 SOAs, operating at dif-

ferent wavelength, λ1, λ2 and λR (λ1 < λR < λ2). The

operation of this flip-flop is as follows: if E is set to ‘1’,

this state can build up in the outer ring (Ring2) due to

the amplification in SOA2 and the allowed wavelength

(λ1) by the bandpass filter and thus, out2 will be set to

‘1’ and the flip-flop is in state ‘1’ via E. Note that the
other bandpass filters are set in such a way (λR − λ2

and λ1 − λR) that this state cannot build up in the in-
ner ring (Ring1). Similarly out1 is set to ‘1’ if input F
is ‘1’ (this state builds up in the inner ring i.e., Ring1).
Note that E and F cannot be ‘1’ at the same time. This

is guaranteed by the first block of the comparator ex-
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plained earlier. Thus out1 and out2 are not ‘1’ at the

same time either.

A pulse injected to the reset input of the flip-flop
saturates SOA1 and SOA2, suppresses both Ring1 and

Ring2, and sets the flip-flop to ‘0’ (i.e. out1=out2=‘0’).

5 Experimental results

The operation of the proposed circuits, namely tree-
distance calculator and the comparator is verified through

simulation using the commercially available simulation

tool VPI. In this simulation, the example depicted in

Figure 2B is considered. As explained earlier, in order

to greedy forward the packets from S to D, in node

S=(3,1,0), the tree-distance between every neighbor,

namely (3,0,0) and (2,1,1), and D=(2,1,0) is calculated

and the neighbor with minimum distance is selected i.e.,

(2,1,1). We have simulated this scenario (only in node

S) and the expected values at different stages of the

proposed design are depicted in Figure 8. As there are

two neighbors/ports in node S, we need two blocks of

tree-distance calculator, one for each port. The outputs

of these two blocks are fed to the proposed all-optical

comparator and the output of the comparator corre-
spondent to the port with smaller distance rises to ‘1’
when this value is detected. In the simulation results,
we report the outputs of different stages of the circuit.

In this simulation, we consider wavelength sources

with a center frequency of 193.12 THz (λ1), 201.12 THz

(λ2) and 197.12 THz (λ3). In tree-distance calculator

(see Figure 4), we assume DN sources at λ1 and all

others at λ2. In components where 3 wavelengths are

needed the third source is assumed at λ3 i.e., λ3 in

the wavelength converter and λR in the comparator are

equal to 197.12 THz. The continuous wave (CW) light

sources within different components are chosen appro-

priately. The clock signal has a data rate of 20 Gbps.

All the individual all-optical components including

logical gates, multiplexer, flip-flops, counter and com-

parator are tested with a data rate of 10 Gbps. In order

to emulate the delay elements of the design, a simple

fiber-based delay element is used. The fiber length in-

duces a delay equal to the duration of a data bit.

The first reported values correspond to an inter-

mediate stage which is the input to the enable pin of

the counter (‘counting preparation circuit’). Figure 9

presents simulation input values for both tree-distance

calculators (N1, D1, N2 and D2) and the output of the

preparation circuits, namely en1 and en2. Feeding en1
and en2 to the enable pin of the corresponding coun-
ters, the tree-distances of 3 and 1 should be counted

respectively. These values which are fed to the in1 and

in2 of the comparator (see Figure 8) are reported in

Figure 10. Note that the simulation time in Figure 10

starts at 1.2 ns. This is because all the bits of the two

CSs should pass the counter (serially) to have the cor-

rect value of the tree-distance. We report the values of

another intermediate stage which are E and F values in

the comparator block (see Figure 7C). Finally the out-

puts of the comparator are reported in Figure 10 which

is a high signal in out2 i.e., the output correspondent

to the input with the smaller value.

In this simulation, the rise/fall time of the output
signal is less than 10 picoseconds. This indicates that

the proposed design is capable of functioning appropri-

ately in higher data rates than the simulated one (i.e.,

10 Gbps).



All-optical Tree-based Greedy Router Using Optical Logic Gates and Optical Flip-Flops 9

All-optical tree-distance calculator
AOCOMPARATOR

0

1

Tree-distance

calculator

(preparation)

00,00,11

00,10,01

N1

D1
AOCOUNTERen1

00,10,10,00,00,10 Parallel

to serial

1

1
11

Tree-distance

calculator

(preparation)

10,10,01

00,10,01

N2

D2
AOCOUNTERen2

00,00,00,10,00,00 Parallel

to serial

1

0
01

All-optical tree-distance calculator

in1

in2

out1

out2

Fig. 8 Scenario used for experimental validation

5.1 Power consumption analysis

As explained earlier, all the all-optical components are
based on SOAs and directional couplers. Since cou-
plers are passive components, SOAs dominate the to-

tal power consumption of the proposed optical greedy

router. Required number of SOAs in different compo-

nents are reported in Table 1.

The proposed design scales with the degree of the

nodes in the network. Assuming a node has degree ‘m’,

‘m’ tree-distance calculators and one m-way compara-

tor are required to find the minimum value among the

‘m’ calculated distances. An alternative to an m-way

comparator is to use ‘m-1’ 2-input comparators. Al-

though cascading 2-input comparators may require ad-

ditional components, we assume that these comparators

can be connected directly. Based on this assumption, we

analyze the required number of SOAs in the proposed

design for a port in the router considering the Internet

topology. Based on the number of the SOAs, we roughly

estimate the power consumption of the proposed design.

The Internet is composed of almost 60K Autonomous

Systems (AS) in the core. In the AS-level graph, the

maximum degree of an AS is approximately 3K. These

ASes are reached through several Internet exchange

points (IXP) world-wide. Since there are roughly 70

IXPs in different areas, each IXP has almost 40-50 (3K/70)

neighbors. According to these numbers, we consider 40-
50 peers in the AS border routers. In the proposed
scheme, each coordinate in the CS should be large enough
to enable numbering of all the peers of an AS. Based

on the above explanation, 6 bits are sufficient for each

coordinate.

There is a segment in the tree-distance calculator

design which is dependent on the number of bits in a

coordinate. In Figure 4, the number of OR gates for de-

tection of non-zero coordinates equals to the number of

bits-1. Therefore, 5 OR gates are required in this seg-

ment. We consider a 5-bit counter for each tree-distance
calculator as the maximum tree-distance between two
nodes is less than 32. The latter refers to considering
maximum depth of 16 for the spanning tree of the net-

work. Each level of an all-optical counter consists of an

AND and a S-R flip flop, thus in total 4 SOAs are re-

quired for each level. Looking at the design in Figure

6A, extra components such as a wavelength converter

and an AND gate at the first level are needed as well.

Considering all these extra components, a 5-bit counter
requires 28 SOAs in total. In the greedy router, we con-
sider 64 tree-distance calculators and thus 63 2-input
comparators for each port are required. Based on the

numbers reported in Table 1 and the assumptions made,

the required number of SOAs for the proposed circuit

for one port in the greedy router is 3897. Assuming the

power consumption of 100mW for each SOA, the total

power consumption of the proposed circuit is 389.7W.

This value is independent of the data rate. Note that

this power estimation was based on the discrete design

of the components and applying the photonic integra-
tion technology will significantly improve the energy-
efficiency of the router. Having this in mind, the es-

timated power consumption of the proposed circuit is

comparable with the 40Gbps slot card with power con-

sumption of 394W (based on Juniper T-series router

[21]). Although this is not a precise power estimation,

it gives an insight on the energy-efficiency of the pro-

posed design.

6 Discussion and future work

In this paper, we designed and implemented several all-

optical components required in the main blocks of a

greedy forwarder, namely tree-distance calculator and
comparator/selector. The simulation results confirmed
the feasibility of the design for a sample input. However,

in the design of the optical comparator, two inputs were

considered. Knowing that the proposed design scales

with the degree of the nodes, the comparator should

be capable of selecting among more than two inputs. A

solution is to use (N − 1) 2-input comparators to se-
lect among N inputs. However, in order to cascade the

2-input comparators, extra components such as multi-

plexers, AND gates, etc. are required between differ-

ent stages. Cascading multiple blocks (specially blocks

with complex designs such as the proposed comparator)

leads to long delays which results in low data rates. A
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Fig. 9 Inputs of tree-distance calculator and input of enable pin in the counter
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All-optical component Number of SOAs

AND 2
OR 2
XOR 2

Multiplexer 2
D-Flip flop 3

Wavelength converter 2
5-bit counter 28

2-input comparator 5

Table 1 Required number of SOAs in all-optical components

future work includes designing an efficient circuit sup-

porting selection among N values.

Regarding power consumption, the photonic inte-

gration technology is one way to improve the energy-

efficiency of the proposed circuit. Additionally, sharing

the proposed circuit among the ports of a greedy router

is an alternate solution to reduce the total power con-

sumption. These are interesting future research direc-

tions which require further investigation.

7 Conclusion

In this paper, for the first time, a novel scalable and

truly all-optical tree-based greedy forwarder was de-

signed. The successful operation of this design was demon-

strated through simulation. The proposed greedy for-

warder is more memory-efficient than conventional lookup-

based IP routers and it scales with degree of nodes in

the network. In the proposed design multiple all-optical

components such as logic gates (XOR, AND, OR), mul-

tiplexer, flip-flops and more complex modules such as

counter and comparator were constructed through in-

terconnection of SOAs and directional couplers. SOA-

MZI configuration as a basic block of several compo-

nents was useful in order to achieve a scalable approach

in terms of manufacturing. These components were im-

plemented in simulation for a sample scenario with 6-bit

inputs. The experimental results verified the feasibility

of the design for data rate of 10 Gbps. The low rise/fall

time of the simulation output indicates the capability of

the proposed design in functioning in higher data rates.
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