All-or-Nothing Transform and Remotely Keyed
Encryption Protocols

Sang Uk Shin, Weon Shin, and Kyung Hyune Rhee

Department of Computer Science, PuKyong National University,
599-1, Daeyeon-dong, Nam-gu, Pusan, 608-737, Korea
{shnsu,redcomet ,khrhee }@woongbi.pknu.ac.kr
http://unicorn.pknu.ac.kr/"{soshin, redcomet and khrhee}

Abstract. We propose two new Remotely Keyed Encryption protocols;
a length-increasing RKE and a length-preserving RKE. The proposed
protocols have smaller computations than the existing schemes and pro-
vide sufficient security. In proposed protocols, we use the cryptographic
transform with all-or-nothing properties proposed by Rivest as encryp-
tion operation in the host. By using all-or-nothing transform(AONT),
RKE can be more dependent on the entire input and all encryption op-
eration can be implemented only by using hash functions in the host.
Moreover, we provide a length-preserving RKE protocol requires only
one interaction between the host and the card.

1 Introduction

No cryptographic protocol is stronger than the mechanism protecting its secret
keys. However, many computer and communication systems do not have a safe
place which can store secret keys and perform the cryptographic computations.
Especially,computers connected to the network such as Internet may be partly
controlled by an adversary. Therefore, it is nature to consider adding an external,
special-purpose device such as a smart card. Since such devices have one purpose
and communicate via a limited set of functions, they can be made much more
secure than general-purpose host machines. However, it is not practical to rely
on such devices to perform all sensitive cryptographic operations. Such devices
have limited bandwidth, memory, and processor speed.

A Remotely Keyed Encryption(RKE) focuses the fact that many high-band
width applications need symmetric-key encryption schemes that store long -lived
keys in low-bandwidth smart-cards. A RKE can do bulk encryption/decryption
for high-bandwidth applications in a way that takes advantage of both the su-
perior power of the host and the superior security of the smart-card. A RKE
consists of two protocols, one for encryption and one for decryption. Given an
[-bit input, either to encrypt or to decrypt, a protocol runs; the host sends a
challenge value to the card depending on the input, and the card replies a re-
sponse value depending on the challenge value and the key. During the run of
a protocol, every challenge value may depend on the input and the previous re-
sponse values, and the response values may depend on the key and the previous
challenge values.

H. Imai, Y. Zheng (Eds.): PKC 2000, LNCS 1751, pp. 178-195, 2000.
© Springer-Verlag Berlin Heidelberg 2000

All-or-Nothing Transform and Remotely Keyed Encryption Protocols 179

In this paper, we propose two new remotely keyed encryption protocols; a
length-increasing RKE and a length-preserving RKE. The proposed protocols
have smaller computations than the existing schemes and provide sufficient se-
curity. And in proposed protocols, we use the cryptographic transform with
all-or-nothing properties proposed by Rivest[10] as encryption operation in the
host. As All-Or-Nothing Transform(AONT) with all-or-nothing properties, we
use an improved version of the AON hashing-3 proposed by Shin, et al[l1]. The
improved AON hashing-3(TAON hashing) provides better security without addi-
tional computation overhead. By using the AONT, RKE can be more dependent
on the entire input and all encryption operation can be implemented only by
using hash functions in the host. Also, we suggest a solution for an open problem
suggested by Blaze, Feigenbaum and Naor[4][5]:

Is there a secure, length-preserving RKE that requires only one round of
interaction?

The proposed length-preserving RKE requires only one interaction between the
host and the card.

The remainder of this paper is organized as follows. In section 2, we describe
AONT and propose an improved AON hashing. In section 3, we describe the
definition and security requirements of RKE. And in section 4, we propose two
new secure RKE protocols, a secure length-increasing RKE and a secure length-
preserving RKE. Finally, we have conclusions in section 5.

2 All-or-Nothing Transform

In 1997, Rivest proposed an all-or-nothing encryption, a new encryption mode
for block ciphers[10]. This mode has the property that one must decrypt the
entire ciphertext before one can determine even one message block. This means
that brute-force searches against all-or-nothing encryption are slowed down by
a factor equal to the number of blocks in the ciphertext.

Rivest proposed the all-or-nothing transform which is referred to ”package
transform”, as follows[10]:

(1) Let the input message be mq, ma, ..., ms.

(2) Choose at random a key K for the package transform block cipher.

(3) Compute the output sequence m’, ms, ..., ml, for s = s+ 1 as follows:
e m,=m;®E(K,i) fori=1,2,3,...,s.
o Let

my =K®h; ®...0 hs,

where
hi = E(Ko,m, ®1) for i=1,2,...,s,

where Ky is a fixed, publicly-known encryption key.

180 Sang Uk Shin et al.

The block cipher for the package transform does not use a secret key, and
needs not be the same as the block cipher for encrypting the pseudo-message. We
assume that the key space for the package transform block cipher is sufficiently
large that brute-force searching for a key is infeasible. It is easy to see that the
package transform is invertible:

sz;/@}M@---@hm

m; =m, ® E(K,i) for i=1,2,...,s.

If any block of pseudo-message sequence is unknown, the K can not be computed,
and so it is infeasible to compute any message block.

An all-or-nothing transform is merely a pre-processing step, and so it can
be used with already-existing encryption software and device, without changing
the encryption algorithm. The legitimate communicants pay a penalty of ap-
proximately a factor of three in the time it takes them to encrypt or decrypt in
all-or-nothing mode, compared to an ordinary separable encryption mode. How-
ever, an adversary attempting a brute-force attack pays a penalty of a factor of
t, where t is the number of blocks in the ciphertext.

As an application of AONT, Shin, et al proposed hash functions and its appli-
cation to the MAC(Message Authentication Code) with all-or-nothing properties
in 1999[11]. The proposed AON hashings used the existing hash functions with-
out changing their algorithm and were secure against the existing known attacks.
Also they can be easily applied to the MAC which can provide both the authen-
tication and the confidentiality for message by using only hash functions. Now
we describe shortly the proposed AON hashing-3 which operates as following.
For details of the algorithm, see [11]:

A. Sender

(1) Splitting an input message X into s blocks of n-bit each : Y = (X1, Xo,
LX),

(2) Generating a random key K of n-bit.

(3) Compute a pseudo-message Y by all-or-nothing transform.

Yo=1V, Xo=0,
Vi=X; ®hy, \(K®(Xi—1]]i)), i=1,2,...,s.
(4) Compute the last pseudo-message block, Yy 11 (n-bit length).
MD = hi, V1| [[Ysl[hrv (K3))
Y1 = K @ {MD}.
(5) Send (Y||harp(Ysi1)).
B. Receiver

(1) Receive (Y||2).

All-or-Nothing Transform and Remotely Keyed Encryption Protocols 181

(2) Splitting the pseudo-message Y into s+ 1 blocks of n-bit each, Y7, Ya, ..., Y
and Y.
(3) Recover the random key K.
MD' = i, (| ... Vel (K,))

K=Ys41®{MD'}.
(4) Check if Z = hMD’(}/s-ﬁ-l)-
(5) Recover the original message.

Yo=1V, X0 =0,

Xi = Y; S th_l(K ® (Xz_1||7,)) 5 1= 1,2, <.y S

We propose an improved AON hashing(TAON hashing) which provides better
security without additional computation overhead. TAON hashing operates as
following:

A. Sender

(1) Compute K = hry(X).
(2) Splitting an input message X into s blocks of n-bit each : YV = (X1, Xo,
o Xs).
(3) Compute a pseudo-message Y by all-or-nothing transform.
Yo=1V, Xo=K,

Yi=X:® thq(Yzle(K@Z)) ;=128

(4) Compute the last pseudo-message block, Yy i1 (n-bit length).
MD = hg,(Y1|| ... ||Ys||hrv (K, @ (s + 1)),
Vi1 = K @ MD.
(5) Send (Y||harp(Yss1))-
B. Receiver
(1) Receive (Y]Z).
(2) Splitting the pseudo-message Y into s+1 blocks of n-bit each, Y1,Ys, ..., Yii1.
(3) Recover K.
MD" = hg, Wl [Vllhry (Kp @ (s +1)))
K=Y, &MD.
(4) Check if Z = hMD’(}/;+1)~
(5) Recover the original message.
Yo=1V, Xo=K,
Xi=Yidhx, ,Yia||(K®i), i=1,2,...,s.

182 Sang Uk Shin et al.

(6) Check if K = h[v(Xl .. XS)

In TAON hashing, each pseudo-message block depends on the entire original
message since K is a hash value of the entire original message, and it is generated
as k-bit random number in AON hashing-3. Thus, TAON hashing does not require
an additional computation.

To find a collision pair, in AON hashing-3, an adversary has to find the
collision pair of the pseudo-message and then search the random key K mapping
the input message pair to collision pseudo-message. However, IAON hashing
imposes stronger restriction to find a collision pair since K is a hash value of the
original input message. That is, an attacker has to find a collision pair of the
pseudo-message and then check whether the modified input message is mapped
to the collision pair of the pseudo-message using the hash value of the modified
input message. At the worst case, AON hashing-3 requires 2"/2** operations but
TAON hashing requires 2"/2*7 operations to find a collision pair(/ is a length
of the input message).

TAON hashing can be easily applied to the MAC (Message Authentication
Code). In this case, it is possible to provide both the authentication and con-
fidentiality for message. For this MAC application, two communication parties
between sender and receiver have to securely keep publicly-known random con-
stant K. This MAC construction may be considered as the variant of HMAC
proposed by Bellare, et al[l] such like that

HM ACy(x) = h(k © opad, h(k & ipad, x))

where k is a secret information which held by two parties.

Thus AON-MAC has the same security as that of HMAC. Furthermore, an
attacker who does not know a random constant K, cannot find the K that is
needed to recover the entire original message. To find a K, an attacker has to
find the K, such that

MD = hye, (V| [Vel lhry (5 @ (s 4+ 1)) |

The best known attack for this scheme is the divide-and-conquer attack proposed
by Preneel and van Oorschot[9]. Also, to decrypt only one block of message, an
attacker who does not know the K has to solve the following:

Xi=Yi®hx, ,(Yi1|[(K ©1))

To solve it, he must guess hx, ,(Yi—1][(K @ 1)) or find K and X;_;.

We can improve the security by adding some overhead to the above schemes.
We can encrypt the last pseudo-message block and message digest pair (Yii1,
harp(Ysy1)) using the block cipher with the secret key Kg, and send it to the
recipient. This scheme can provide the confidentiality of message by encrypting
only some blocks without encrypting the entire message. It is specially useful if
the cipher is a public key cryptosystem, such as RSA or ElGamal. In this scheme,
we can use RSA to securely encrypt message longer than the key size without

All-or-Nothing Transform and Remotely Keyed Encryption Protocols 183

need for a symmetric cipher. An additional encryption overhead is 2n bits. If we
use SHA-1 as a building block, the length of the encrypting block becomes a size
of total of 360 bits. Therefore, the performance degradation can be negligible
in this case. However an attacker must find the Kg and K, for decrypting the
entire message.

TAON-MAC is similar to the concept of ”Scramble All, Encrypt Small” pro-
posed by Jakobsson, et al[6].

H(x)=ht | i] A(x))
H(xy=Hy [Hy |-l H

/1 ideal hash function t
n:size of message I::D

[:size of the hash function h (z
E/

Fig. 1. Scramble All, Encrypt Small

In TAON-MAC, the process that transforms the original message into the
pseudo-message is considered as the scrambling process in [6]. We compare both
schemes in view point of computational amounts. Assuming a 160,000 bits mes-
sage is processed, the Jakobsson’s scheme requires 1001 computations of a hash
function. That is, about 313,313 computations of a compression function of a
hash function. However, IAON-MAC requires about 1,627 computations of a
compression function. Thus, TAON-MAC has less computations than the Jakob-
sson’s scheme.

3 Remotely Keyed Encryption Protocols

A remotely keyed encryption was first proposed by Blaze[3]. Blaze focuses the
fact that many high-bandwidth applications need symmetric-key encryption
schemes that store long-lived keys in low-bandwidth smart-cards. A RKE can
do bulk encryption/decryption for high-bandwidth applications in a way that
takes advantage of both the superior power of the host and the superior security
of the smart-card. A RKE consists of two protocols, one for encryption and one
for decryption. Given an [-bit input, either to encrypt or to decrypt, a protocol
runs: the host sends a challenge value to the card depending on the input, and

184 Sang Uk Shin et al.

the card replies a response value depending on the challenge value and the key.
During the run of a protocol, every challenge value may depend on the input
and the previous response values, and the response values may depend on the
key and the previous challenge values.

3.1 Related Work

Blaze was the first to use the term "remotely keyed encryption” and proposed
a specific scheme[3]. It is based on the idea of letting the host send the card one
block which depends on the whole message. This block would be encrypted with
the smart card secret key, and would also serve as a seed for the creation of a
temporary secret key that will be used by the host in order to encrypt the rest of
the message. However, in 1997 Lucks pointed that Blaze’s scheme had problems
in that allowed an adversary to forge a new valid plaintext/ciphertext pair after
several interactions with the card[7]. Lucks suggested an alternative method[7]
but was attacked by Blaze, Feigenbaum and Naor who further demonstrated the
subtleties of this problem[1][5]. They showed that the encryption key used for
the largest part of the message is deterministically derived from the two first
blocks of the message, hence an adversary who takes control of the host will
be able to decrypt a large set of messages with only one query. They derived a
careful formal model and a scheme based on pseudorandom functions. In 1999,
Lucks further extended their security model and proposed a faster one[3]. And
Jakobsson, et al proposed ” Scramble All, Encrypt Small” notion[6]. It scrambles
the message in a publicly available method and then deprives an adversary of
the ability to invert the scrambling by letting the smart card encrypt just a small
part of the scrambled message.

3.2 Security Requirements
Lucks proposed that a RKE should have three properties[3]:

(i) Forgery security : If the adversary has controlled the host for m interactions,
then it cannot produce m + 1 plaintext/ciphertext pairs.
(ii) Inversion security : Access to encryption should not imply the ability to
decrypt and vice verse.
(iii) Pseudorandomness : The encryption function should behave randomly, for
someone neither having access to the card, not knowing the secret key.

Requirements (i) and (ii) restrict the abilities of an adversary with access to
the smart card. Requirement (iii) is only valid for outside adversaries, having
no access to the card. If an adversary could compute forgeries or run inversion
attacks, she could easily distinguish the encryption function from a random one.

Recently, Blaze, Feigenbaum and Naor found a better formalism to define the
pseudorandomness of RKEs[1][5]. Their idea is based on the adversary gaining
direct access to the card for a certain amount of time, making m interaction with
the card. For the adversary having lost direct access to the card, the encryption
function should behave randomly. An attacker is divided into two phases:

All-or-Nothing Transform and Remotely Keyed Encryption Protocols 185

(i) The host phase : During the host phase, an attacker A may have a total of
m interactions with the card. He may send any message to the card during
one of these interaction and may deviate from the protocol. However, since
m is an upper bound on the total number of interactions, A obtains at
most m plaintexts and m ciphertexts during the host phase. After these m
interactions with the card, A loses control of the host.

The distinguishing phase : An attacker chooses plaintexts or ciphertexts and
asks for their encryptions or decryptions. The answer to these queries are
either chosen randomly, or by honestly encrypting or decrypting according
to the RKE. An adversary’s task is to distinguish between the random case
and honest encryption.

(ii

~—

If, during the distinguishing phase, an adversary A queries the oracle about
any of the m plaintexts and m ciphertexts that he obtained during the host
phase, her task would be quite easy. Thus, in the distinguishing phase, it needs
to filter texts that appeared in the host phase before. To do this, BFN introduced
an " arbiter” algorithm B. The purpose of the arbiter B is to make sure that A
does not ask during the distinguishing phase any of the queries that it asked
during the host phase.

According to Lucks and BFN, the formal definitions of a RKE can be given
as follows[4][5][8].

Definition 1 (length-preserving RKE). A length-preserving RKE is a pair
of protocols, one for encryption and one for decryption, to be executed by a
host and a card. The length of a ciphertext must be the same as that of the
corresponding plaintext. Let B be an algorithm, the "arbiter algorithm”, which
1s initialized with a transcript of the communication between the host and the
card during the host phase. During the host phase, an attacker A may play the
role of the host in a total of qy interactions with the card. During this phase, A
may send any message to the card and does not necessarily follow the encryption
or decryption protocol. During the distinguishing phase, A choose up to qq texts
T as queries and asks for the corresponding encryptions or decryptions. W.l.o.g.,
we prohibit A to ask equivalent queries, i.e., to ask twice for the encryption of T,
to ask twice for the decryption of T, or ask once for the encryption of a T and
some time before or after this for the decryption of the corresponding ciphertext.
Before the distinguishing phase starts, a switch S is randomly set either to 0 or
to 1. If the arbiter B acts, A’s query s answered according to the RKE. If B
does mot act on, the answers are generated depending on S. Consider A asking
for the encryption or decryption of a text T € {0,1}° with 8 > b. If S = 0,
the response is evaluated according to the RKE. If S = 1, the response is a
random value in {0,1}°. After the distinguishing phase, A’s task is to guess S.
The difference between the probability that A accepts on a continuation of the
RKE and the probability that A accepts on a switch to a random function pair
must be negligible.

Length-increasing RKEs would be easier to construct than length-preserving
RKEs. However, we can require additional security properties of length-in-

186 Sang Uk Shin et al.

creasing RKEs that are not achievable in the length-preserving case. In the
length-increasing case, each plaintext may correspond to multiple ciphertexts
because the ciphertext space is bigger than the plaintext space. For a length-
increasing RKE, BFN introduced the concept of a ”random, self-validating black
box”[5]. Given that an arbiter is filtering based on a transcript of the host phase
communication, after the host phase, the adversary cannot tell whether he is
interacting with real protocols or with a "random, self-validating black box.” A
"random, self-validating black box” contains an encryption box and a decryp-
tion box. On any input of the appropriate plaintext length, the encryption box
outputs a random string of the appropriate ciphertext length. The decryption
box outputs ”invalid” on all inputs, except those that were previously output
by the encryption box, and on those it outputs the input string on which the
encryption box gave this output.

Definition 2 (length-increasing RKE). A length-increasing RKE is a pair
of protocols, one for encryption and one for decryption, to be executed by a
host and a card. The length of a ciphertext is greater than the length of the
corresponding plaintext. If its input is a ciphertext that has previously been output
by the encryption protocol, the decryption protocol outputs the corresponding
plaintezt; otherwise, it may output “invalid”. The RKE is secure if there is
a polynomial-time arbiter B that can enforce the following restriction on any
adversary A: During the host phase, an attacker A may play the role of the host
in a total of qpn interactions with the card. During this phase, A may send any
message to the card and does not necessarily follow the encryption or decryption
protocol. Between the host phase and the distinguishing phase, a choice is made
between continuing to use the RKE or switching to a random, self-validating black
box. B gets as input the transcript of the host phase communication between the
host and the card. During the distinguishing phase, A choose up to qq texts T
as queries and asks for the corresponding encryptions or decryptions. Before the
distinguishing phase starts, a switch S is randomly set either to 0 or to 1. If
the arbiter B acts, A’s query s answered according to the RKE. If B does not
act on, the answers are generated depending on S. Consider A asking for the
encryption or decryption of a text T € {0,1}8 with 3 > b. If S = 0, the response
1s evaluated according to the RKE. If S = 1, the response is evaluated according
to a random, self-validating black box. The difference between the probability that
A accepts on a continuation of the RKE and the probability that A accepts on a
switch to a random, self-validating black box must be negligible.

4 New Secure Remotely Keyed Encryption Schemes

4.1 Building blocks

In this section, we describe the building blocks that we use for new secure re-
motely keyed encryption(SRKE) schemes. As will be proven below, our schemes
are secure if their building blocks are secure. The following is a description of
the building blocks.

All-or-Nothing Transform and Remotely Keyed Encryption Protocols 187

X and Y denote the plaintext and the ciphertext, respectively. Usually, both
are given in blocks and hence are denoted X = (X1,...,X,,) and ¥V =
(Y1,...,Y,) where each of X; and Y; is in {0, 1}°.

E and D denote the encryption and decryption functions of a block cipher.
Ei(X;) denotes the encryption of plaintext block X; with encryption key k,
ie., B, Dy : {0,1}% — {0,1}° and Dy (Ex(X;)) = X;. The required security
property is that it should be a strong pseudorandom permutation. For k # &/,
the permutations Fj and Fj are independent.

F :{0,1}* — {0,1}* is a pseudorandom function. It may or may not be
identical to the encryption function F of the block cipher. In situation that
never require the function to be inverted, we use Fy rather than F,. Similarly,
two random functions Fj and Fj depending on independently chosen keys
k and k' are independent.

G denotes the encryption of an n-block plaintext (X7,...,X,,) using en-
cryption key K. The corresponding decryption function is denoted Gr. The
security requirement for G is that if K is chosen uniformly at random, then
Gk (Xy,...,X,) is pseudorandom for any (X1,...,X,,). A possible example
of Gk is to apply a pseudorandom generator to K and Xor the resulting
sequence with (X71,...,X,). Another example is to use Fx with some sort
of chaining, e.g., CBC[2].

h:{0,1}* — {0,1}" is a collision-resistant hash function.

For the analysis, we assume the used building blocks(such as block ciphers) to
behave like their ideal counterparts(such as random permutations).

4.2 A Secure, Length-Increasing RKE

Using the above building blocks, we first propose a secure, length-increasing
RKE(LI_.SRKE) protocol. The private key stored in the smart card is denoted
k1, ko and k3. The encryption protocol works as follows:

LI_SRKE encryption protocol : input X = (Xq,...,X)); output ¢, Yy, Y =
(Ylv ceey }/})

(1)
(2)
(3)
(4)
()
(6)
(7

)

Host : md; — h(X1,...,Xi), Ko — md;
Host : YV «— Gk, (X)

Host : md, — h(Y)

Host — Card : Ky, md,

Card : Yy «— Ek1 (Ko D sz (mdo))

Card : ¢ « sz (mdo) D Fkg (Ko)

Card — Host : Yy, ¢

The decryption protocol works as follows:
LI_SRKE decryption protocol : input ¢,Yy,Y = (Y1,...,Y)); output X =
(X4,...,X;) or 7invalid”

(1)
(2)

Host : md, < h(Y)
Host — Card : t, Y, md,

188 Sang Uk Shin et al.

3) Card : Ko «+ Dk1 (Yo) D sz (mdo)

4) Card : if t # Fy, (md,) ® F, (Ko) then Ky « "invalid”
5) Card — Host : K

6) Host : If Ky = "invalid” then output ”invalid”

else X «— G, (V) if Ko=h(X) then output X

A~~~

LI_SRKE_card k,

; ey

LI SRKE_host

Fig. 2. LI.SRKE encryption protocol

As required by Definition 4, the arbiter B does not filter queries of (X1, ..., X))
during the distinguishing phase. If no switch was made between phases it just
sends them to the encryption protocol and to a random, self-validating black box
if a switch was made. On the queries of (Y1,...,Y]), B computes h(Y1,...,Y])
and checks whether (h(Y7,...,Y]),Yy,t) occurs in the transcript of the host
phase. If it does, then B sends the query to the decryption protocol, regardless
of whether a switch was made between phases. If it doesn’t, then B sends it
either to the decryption protocol or to the random, self-validating black box,
depending on whether a switch was made.

We analyze the security of LI.SRKE based on the analysis of BFN’s length-
increasing RKE scheme[5] as following:

Theorem 1. LI SRKFE is a secure, length-increasing RKE protocol.

Proof. The definition of the cryptographic building blocks F, F' and G imply
that any sequence of encryptions is indistinguishable from a random one. Con-
sider the case of decryption queries. Suppose that a query (Y1,...,Y;) does not
corrspond to an encryption query (Xi, ..., X)) that occurred earlier in the distin-
guishing phase and (md, = h(Y1,...,Y]), Yy, t) did not appear in the host phase.
A random, self-validating black box will answer such a query by saying ”invalid.”
The real protocol will also answer ”invalid” if ¢ # F,(md,) ® Fy, (Kg) (Ko =
Dy, (Yo)® Fr,(md,)), but it will produce a decryption if t = Fy, (md,)& F, (Ko).

All-or-Nothing Transform and Remotely Keyed Encryption Protocols 189

Thus an attacker can tell whether a switch was made between phases only if it
can find (¢,Yy,Y (= Y1,...,Y])) such that

t = Fy,(md,) ® Fi, (D, (Yo) @ Fi,(md,))

The collision resistance of h implies that the adversary cannot find (Y1, ...,Y])
(Y{,...,Y/) such that h(Y1,...,Y;) = h(Y{,...,Y/). Therefore, an attacker
has to find collision pairs (Yp, h(Y1,...,Y7)) # (Y, h(Y{,...,Y])) such that

Fk2(h(1/i7ayl)) @Fk:s(Dkl(Yb) @sz(h’(Yh"'?Yz)))
= Fk2(h(5/1/7"'a1/l/)) @Fk3(Dk1(Y0/) ®Fk2(h(1/1/7"'ayl/)))

Suppose that Fj, and Fj, are truly random functions. Then all the values
Fy, (h(Y1,...,Y))) and Fy,(Dy, (Yo) @ Fi,(R(Y1,...,Y7))) are random values.
Thus, the probability that (Yy, h(Y1,...,Y])) # (Yy, h(Y{,...,Y])) but

Fk2(h(1/i7ayl)) @Fk:s(Dkl(Yb) @sz(h’(Yh"'?Yz)))
= Fk2(h(5/1/7"'a1/l/)) @Fk3(Dk1(Y0/) ®Fk2(h(1/1/7"'ayl/)))

is 1/2%. There are (qs + q4)? possible pairs. Therefore, with the probability of

2
%, the adversary can distinguish between a random, self-validating black

box and the original encryption algorithm. ®

The implementation of the function G

A function G which is used in the host of LI_.SRKE algorithm has to satisfy
the pseudorandomness. Possible realization of G are a pseudorandom generator
and a block cipher with some sort of chaining. As an alternative scheme, we pro-
pose a IAON_G function which is a modified version of TAON hashing described
in section 2. TAON_G works as follows:
TAON_G encryption : input X = (X1,...,X;); output Y = (¥1,...,Y))

Ky =h(X)
Xo = Ko, Yy = h(Kp)
for 1=1...1

Ki=hg, ,(Yie1||(Ki-1 @ 1))
Hy = hx, ,(Yi1|[(K; ©1))
Y, =X, 0H, ® K,

TAON_G decryption : input Ko,Y = (Y1,...,Y)); output X = (Xq,..., X))

Xo= Ky, Yo = h(Ko)

for i=1...1
Ki = hg,_, (Yia||(Kio1 @ 1))
Hy = hx, , (Yio1]|(K; @ 1))
Xi=Y,0H ®K;

TAON_G is a modified version of AONT using hash functions, which trans-
forms the original input message into the pseudo-message. An attacker who does

190 Sang Uk Shin et al.

Hy=h, LI K@Dy K =h (LK, D)

Fig. 3. TAON_G encryption process

not know Ky cannot compute K; and Hy. Thus he cannot recover X;. This func-
tion is considered as a pseduorandom generator using hash functions. Since hash
functions have pseudoranomness, K is considered as pseudorandom value, and
H, and K; are also pseudorandom values, respectively. Therefore TAON_G has
pseudorandomness stated by BFN. Also by using TAON_G, the output of the
proposed RKE becomes more dependent on the entire input message and all
encryption operation on the host can be implemented only by using the hash
function.

We compare the proposed LI_.SRKE with BFN’s length-increasing RKE[5].
BFN’s length-increasing RKE operates as Fig. 4.

kl
e 'k :
— bt

- o]]

Fig. 4. BFN’s length-increasing RKE

On the part of the host, the proposed scheme requires one more computation of
a hash function but it is considered as the computation of a random number S

All-or-Nothing Transform and Remotely Keyed Encryption Protocols 191

in BFN’s scheme. The communication between the host and the card is exactly
the same for both protocols. Inside the card, LI.SRKE needs three evaluations
of cryptographic functions(such as E and F'). In contrast to this, BFN’s scheme
needs four evaluations of cryptographic functions. In the case of BFN’s scheme,
to decrypt the ciphertext without interactions with the card, an attacker has to
compute S = Dy, (Yp). However, LI.SRKE requires the computation of Ky =
Dy, (Yo)® Fy,, (md,). Moreover, since LI_SRKE uses TAON_G with all-or-nothing
properties, LI.SRKE is more dependent on the input message and more secure
against key search attacks such as brute-force attack.

4.3 A Secure, Length-Preserving RKE

In this section, we propose a secure, length-preserving RKE(LP_SRKE) protocol.
The private key stored in the smart card is denoted k1, k2 and k3. The encryption
protocol works as follows:

LP_SRKE encryption protocol : input X = (Xi,...,X;); output ¥ =
(Y1,...,Y)

ost : KOHXl@h(XQ,...,Xl)

ost : (Ya,....Y)) «— Gg,(X2,..., X))
ost : t «— h(Ys,...,Y))

ost — Card : Ko, t

Card : Y] « By, (Ko (&) Fk3(t)) (5] Fk2(t)
Card — Host : Y

H
H
H
H

The decryption protocol works as follows:
LP_SRKE decryption protocol: input Y= (Y3,...,Y;); output X=(Xy,...,X))

(1) Host : ¢t «+ h(Y3,...,Y))

(2) Host — Card : Y3, t

(3) Card : Ko — Dkl (Yl S>) sz (t)) S>) Fk3 (t)

(4) Card — Host : K)

(5) Host : (XQ, ‘e ,Xl) — GKO(YQ,. . ,}/l)

(6) Host : X1 — KO D h(XQ, ce ;Xl)

We uses the JAON_G function as the LI.SRKE protocol. We analyze the
security of LP_SRKE based on the security analysis of BFN’s length-preserving
RKE[][5] and Lucks’s ARKE(Accelerated RKE)[3]. By X*, Y%, K}, !, we denote
the challenge and response values of the i-th protocol execution. The protocol
can either be executed in the host phase indicated by i € {1,...,qn}, or in the
distinguishing phase indicated by i € {¢r, + 1,...,¢}.

Theorem 2. LP_SRKFE is a secure, length-preserving RKFE protocol.

Proof. For the proof, we first define the arbiter algorithm B, and then we bound
the advantage of the adversary. The arbiter algorithm B operates as follows:

192 Sang Uk Shin et al.

LP SRKE Muster

Ko

i
1E]

L

Pany
E

K

&l
A,H
N?v

Lo

LP SRKE Silave

X"@i

iL

H
]

Xz---l

Fig. 5. LP_SRKE encryption protocol

The arbiter algorithm B

For i € {1,...,qn}, B compiles a list L; of all the pairs (K¢,t%) and
another list Lo of all (Y{,#7). These can be deduced from the transcript.
If an attacker A asks for the encryption of a plaintext X7 with j €
{an +1,...,q} in the distinguishing phase, the first challenge value for
the card is the pair (K}, /) where K} = X{ ®h(X4,..., X}). If the pair
(Kg, t7) is contained in the list L1, B acts on that query, and the answer
is generated according to the encryption protocol. Similarly, if A asks
for the decryption of a ciphertext Y7/ in the distinguishing phase, and if
the corresponding challenge value (Y7, #/) is contained in Lo, B acts and
the answer is generated according to the decryption protocol. B does
not act on more than g, queries. Due to the collision resistance of h,
A does not know more than one value (X3,...,X}) with K} = X| @
h(X3,...,X}). For the same reason, A know only one value (Y3, ... ,le)
with t* = h(Y3,...,Y}"). Hence, for every i € {1,...,q,}, A can ask no
more than one plaintext X7 to be encrypted during the distinguishing
phase, where the corresponding pair (K}, #’) would be found in the list
L. Similarly, we argue for decryption queries. Asking for the encryption
of T = (X],X},...,X]) is equivalent to asking for the decryption of

T = (Y?,YS,... ,Ylj), and we only regard non-equivalent queries. &

Let k> g, and A be asking for the encryption of a plaintext (XT, X%, ..., X[).
We assume (K}, t*) ¢ {(K},tY),.. . (Kf —1,t* = 1)} If j € {1,...,qn} and
(KJ,t7) = (Kk,t%), then B acts and the answer to this query does not de-
pend on the switch S. If j € {gn + 1,...,k — 1}, then (Xf,Xg,...,le) +
(XF, Xk . ..,Xlk), because the j-th and the k-th query are not equivalent. If
(X{,X3,... . X]) # (X, X5,..., X[), then (KJ,#7) = (K§,t*) implies a colli-
sion (X3,.. .,le) # (X5, ..., X}) for h.

All-or-Nothing Transform and Remotely Keyed Encryption Protocols 193

Depending on previous protocol runs and responses, we define the set U, C
0,1} x {0, 1}57? of ciphertexts(3 is a length of a plaintext):

U = ({0.)" = {1 Y1) < ({0.1)77)

For S = 1, the ciphertext (Ylj ,Yzj) .,Ylj) is a uniformly distributed random
value in {0,1}% x {0,1}#=°. We define what it means for the k-th query to be
Ty Xy e YF e {Y ... YT Obviously, if not X, then (Y, V¥, ... V)
is a uniformly distributed random value in Uy. Further:
k—1
2b
Consider S = 0. Obviously, if not X, then (Y, Yy, ..., V}F) € Uy. Also, if not
X, then K¥isnotin {K{,..., Ké“*l}, and then GKéc (YF,...,YF) is a uniformly
distributed random value in {0, 1}7-0. Furthermore, if t/ = t*, Y7 # Y} due to
K} # K{f. 4
If Kj # K§, then Ey, (K}) and Ej, (KF) are two independent random values
in {0, 1}°. If (K}, %) ¢ {(K§,tY), ..., (KF—1,tF—1)}, forevery j € {1,..., k—1},
K} # Kk if t/ =t*. Hence, P [Y] =Y} | K} # K}] <27°.
k—1
P[X,[S=0] < ST
We write X* if any query in k in the distinguishing phase is X}.

P(X|S=1] <

q

lq

P[Y*|S=1] < —1] < -+

[(Zr]S5=1]< > P[X]|S 1]_22
k=qn+1

q q2

P2 |S=0] < > P2 S=0] <5
k=qn+1

If A asks for the decryption of the ciphertext (Y}*, Y, ..., Y/*) as the k-th query
instead of asking for an encryption, the same argument applies. Therefore, the
advantage of A is

2

Advy < %

)

We compare the proposed LP_SRKE protocol with BFN’s length-preserving
RKE and Lucks’s ARKE. BFN’s scheme and ARKE operate as Fig.6 and Fig.7,
respectively. On the part of the host, the cryptographic calculations are exactly
the same for three protocol. While BFN’s scheme and ARKE require two inter-
actions between the host and the card, LP_SRKE requires only one interaction.
Inside the card, BFN’s scheme requires six evaluations of cryptographic functions
and ARKE requires four evaluations. However, LP_SRKE requires three evalua-
tions of cryptographic functions. Therefore, the proposed LP_SRKE has smaller
computations and requires only one interaction between the host and the card.
This scheme can be a solution for the open problem suggested by BFN[4][5]:

194 Sang Uk Shin et al.

Is there a secure, length-preserving RKE that requires only one round of
interaction?

Q

Fig.6. BFN’s length-preserving RKE protocol

Fig. 7. ARKE protocol

5 Conclusions

In this paper, we proposed new secure remotely keyed encryption protocols; a se-
cure, length-increasing RKE and a secure, length-preserving RKE. The proposed
protocols have smaller computations than the existing RKE protocols and pro-
vide sufficient security. Especially, because the proposed length-preserving RKE
requires only one interaction between the host and the card, we suggested the
proposed length-preserving scheme as the solution for the open problem(Is there

All-or-Nothing Transform and Remotely Keyed Encryption Protocols 195

a secure, length-preserving RKE that requires only one round of interaction?)
suggested by BFN. Also, as a cryptographic function G in the host of the pro-
posed protocols, we used the TAON_G with all-or-nothing properties proposed
by Rivest. The TAON_G is an improved version of AON hashing-3 proposed
by Shin, et al[l1], and provides better security without additional computation
overhead.

References

1. M. Bellare, R. Canetti, H. Krawczyk, ”Keying Hash Functions for Message Authen-
tication,” in Advances in Cryptology - Crypto’96, LNCS, vol.1109, pp.1-15, 1996
182

2. M. Bellare, J. Kilian, R. Rogaway, "The Security of Cipher Block Chaining,” in
Advanced in Cryptography - Crypto’94, LNCS, vol.839, Springer, pp.341-358, 1994
187

3. M. Blaze, ”"High-Bandwidth Encryption with Low-Bandwidth Smartcards,” in Pro-
ceedings of the Fast Software Encryption Workshop, LNCS, vol.1039, Springer,
pp.33-40, 1996 183, 184

4. M. Blaze, J. Feigenbaum, M. Naor, ” A Formal Treatment of Remotely Keyed En-
cryption,” in Advanced in Cryptography - Eurocrypt’98, LNCS, vol.1403, pp.33-40,
1998 179, 184, 185, 191, 193

5. M. Blaze, J. Feigenbaum, M. Naor, ”A Formal Treatment of Remotely Keyed En-
cryption,” Full version of Eurocrypt’98, 1999 179, 184, 185, 186, 188, 190, 191,
193

6. M. Jakobsson, J.P. Stern, M. Yung, ”Scramble All, Encrypt Samll,” in Proceedings
of the Fast Software Encryption Workshop, LNCS, vol.1636, 1999 183, 184

7. S. Lucks, ”On the security of Remotely Keyed Encryption,” in Proceedings of the
Fast Software Encryption Workshop, LNCS, vol.1267, Springer, pp.219-229, 1997
184

8. S. Lucks, Accelerated Remotely Keyed Encryption,” in Proceedings of the Fast
Software Encryption Workshop, LNCS, vol.1636, 1999 184, 185, 191

9. B. Preneel, P. van Oorschot, " MDx-MAC and Building Fast MACs from Hash Func-
tions,” in Advances in Cryptology - Crypto’95, LNCS, vol.963, pp.1-14, 1995 182

10. R. L. Rivest, ”All-Or-Nothing Encryption and The Package Transform,” in Pro-
ceedings of the Fast Software Encryption Workshop, LNCS, vol.1267, pp.210-218,
1997 179

11. Sang Uk Shin, Kyung Hyune Rhee, Jaec Woo Yoon, ”Hash Functions and the MAC
Using All-Or-Nothing Property,” in Proceedings of PKC’99(International Workshop
on Practice and Theory in Public Key Cryptography), LNCS, vol.1560, pp.263-275,
1999 179, 180, 195

	Introduction
	All-or-Nothing Transform
	Remotely Keyed Encryption Protocols
	Related Work
	Security Requirements

	New Secure Remotely Keyed Encryption Schemes
	Building blocks
	A Secure, Length-Increasing RKE
	A Secure, Length-Preserving RKE

	Conclusions

