
All-Pairs Nearly 2-Approximate Shortest-Paths

in O(n2 polylog n) Time

Surender Baswana1, Vishrut Goyal2, and Sandeep Sen3

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany.
sbaswana@mpi-sb.mpg.de

2 Persistent Systems Private Limited, Pune, India.
vishrut goyal@persistent.co.in

3 Department of Computer Science and Engineering, I.I.T. Kharagpur, India.
ssen@cse.iitkgp.ernet.in

Abstract. Let G(V, E) be an unweighted undirected graph on |V | = n

vertices. Let δ(u, v) denote the shortest distance between vertices u, v ∈
V . An algorithm is said to compute all-pairs t-approximate shortest-
paths/distances, for some t ≥ 1, if for each pair of vertices u, v ∈ V ,
the path/distance reported by the algorithm is not longer/greater than
t · δ(u, v).

This paper presents two randomized algorithms for computing all-
pairs nearly 2-approximate distances. The first algorithm takes expected
O(m2/3n log n+n2) time, and for any u, v ∈ V reports distance no greater
than 2δ(u, v) + 1. Our second algorithm requires expected O(n2 log3/2)
time, and for any u, v ∈ V reports distance bounded by 2δ(u, v) + 3.

This paper also presents the first expected O(n2) time algorithm to
compute all-pairs 3-approximate distances.

1 Introduction

All-pairs shortest path problem is undoubtedly one of the most fundamental
algorithmic graph problem. Given a graph G(V, E) on n(= |V |) vertices and
m(= |E|) edges, the problem requires computation of shortest-paths/distances
between each pair of vertices. There are various versions of this problem de-
pending on whether the graph is directed or undirected, edges are weighted or
unweighted, weights are positive or negative. In its most generic version, that is,
for directed graph with real edge-weights, the best known algorithm [6] for this
problem requires O(mn+n2 log log n) time. However, for graphs with m = θ(n2),
this algorithm has a running time of θ(n3) which matches that of the old and
classical algorithm of Floyd and Warshal. The best known upper bound on the
time complexity of this problem is O(n3

√
log log n/ log n) due to Zwick [10],

which is marginally sub-cubic.
In the recent past, there has been a growing interest in designing efficient

(sub-cubic running time) and simple algorithms for all-pairs approximate shortest-
paths, and successful attempts have been made for undirected graphs. Zwick [9]
provides an excellent survey on algorithms for computing approximate shortest

All-Pairs Nearly 2-Approximate Shortest-Paths in O(n2 polylog n) Time 661

paths. An algorithm is said to compute all-pairs t-approximate distances, if for
any pair of vertices u, v ∈ V , the distance δ∗(u, v) reported by the algorithm

satisfies 1 ≤ δ∗(u,v)
δ(u,v) ≤ t. In the following paragraph, we provide a very brief

summary of the current state-of-the-art algorithms for all-pairs t-approximate
shortest paths.

Cohen and Zwick [2], building upon the work of Dor et al. [3], designed
an algorithm that given any undirected weighted graph with n vertices and m
edges, computes all-pairs 2-approximate shortest paths in O(n3/2

√
m) time and

all-pairs 3-approximate shortest paths in just O(n2 log n) time. For unweighted
graphs, given arbitrarily small ζ, ε, ρ > 0, Elkin [4] designed an algorithm that
requires O(mnρ + n2+ζ) time, and for any pair of vertices u, v ∈ V , reports
distance δ∗(u, v) satisfying the inequality :

δ(u, v) ≤ δ∗(u, v) ≤ (1 + ε)δ(u, v) + β

where β is a function of ζ, ε, ρ. If the two vertices u, v ∈ V are separated by

sufficiently long distances in the graph, the stretch δ∗(u,v)
δ(u,v) ensured by Elkin’s

algorithm is quite close to (1 + ε). But the stretch factor may be quite huge for
short paths since β depends on ζ as (1/ζ)log 1/ζ , depends inverse exponentially
on ρ and inverse polynomially on ε. Thorup and Zwick [7] introduced a remark-
able data-structure called approximate distance oracle, that requires sub-cubic
preprocessing time and sub-quadratic space, and yet answers an approximate-
distance query in constant time (hence the name oracle). For a given integer
k ≥ 2, the space of the approximate distance oracle is O(kn1+1/k) and it reports
any (2k − 1)-approximate distance query in O(k) time. The preprocessing time
for (2k − 1)-approximate distance oracle is O(mn1/k) which has been improved
to O(min(mn1/k, n2 log n)) for unweighted graphs in [1]. Thorup and Zwick [7]
also show that for any t < 3, a data-structure that answers any t-approximate
distance query in constant time must occupy θ(n2) space. This implies a lower
bound of Ω(n2) on space as well as on time complexity of any algorithm that an-
swers any 2-approximate distance query in constant time. As mentioned above,
the algorithm of Cohen and Zwick [2] establishes an upper bound of O(n3/2

√
m)

on time complexity of all-pairs 2-approximate shortest path problem.

1.1 Our Contribution

As an important contribution of this paper, we show that we can, in time
O(n2 polylog n), compute all-pairs nearly 2-approximate shortest paths for un-
weighted undirected graphs.

1. We first design a data-structure that, given any u, v ∈ V , requires constant
time to report distance bounded by 2δ(u, v) + 1, that is, an additive error
of one unit over the 2-approximate distance. The expected preprocessing
time required to build this data-structure is O(m2/3n logn + n2). In this
way, our new algorithm, at the expense of introducing an additive error of
just one unit, achieves a significant improvement in the running time over

662 Surender Baswana, Vishrut Goyal, and Sandeep Sen

the previous best algorithm [2] for all-pairs 2-approximate distances. The
improvement is by a factor of at-least n1/6 for the range m > n3/2, whereas
for m < n3/2, the new algorithm takes expected O(n2) time.

2. We further reduce the expected preprocessing time to O(n2 log3/2 n) at the
expense of increasing the additive error to 3, that is, given any pair of vertices
u, v ∈ V , the distance δ∗(u, v) reported by our data-structure satisfies

δ(u, v) ≤ δ∗(u, v) ≤ 2δ(u, v) + 3

As would become clear subsequently from the paper, the additive error shows
up only in some restricted worst case only. In general, the algorithm will
behave very much like a 2-approximate shortest path algorithm.

3. As an additional and final contribution, this paper shows that it takes ex-
pected O(n2) time to compute 3-approximate distance oracle of size O(n3/2).

Without any modifications, all our data-structures for reporting approximate
distances can also be used to report approximate shortest-paths in optimal time.

2 A New Scheme for 2-Approximate Shortest Paths

Let G(V, E) be an unweighted graph. The basic construct of our scheme is a
restricted breadth-first-search (BFS) tree defined as Ball as follows.

Definition 1. For a vertex u and a set R ⊂ V of vertices, Ball(u, R) denotes
the set of vertices of the graph, such that the distance from u to these vertices is
less than the distance from u to the nearest vertex of the set R.

New scheme for approximate distance

Let R ⊂ V be a set of vertices. Let nu denote the vertex from the set R nearest
to u.

1. Global distance information
For each vertex s ∈ R, keep a BFS tree storing distance to all the vertices
in the graph.

2. Local distance information
For each vertex u ∈ V \R, compute distance to all the vertices of Ball(u, R)
and its nearest vertex nu.

3. Keep a data-structure to determine, in constant time, whether any two
Balls overlap (share a common vertex) or not.

The above scheme may appear similar to 3-approximate distance oracle of Tho-
rup and Zwick [7] except the third step. It is this step that proves to be crucial
in achieving 2-approximate distances.

Now we shall describe how our scheme can be used to answer a distance
query with stretch 2.

All-Pairs Nearly 2-Approximate Shortest-Paths in O(n2 polylog n) Time 663

Case−1 Case−2

Case−3

PSfrag replacements

a

a + 1

b
b + 1

uu

u v

v

vw

nu

nunu

nv

nv

x vertex of set R

Fig. 1. Three cases in reporting distance between u and v

Answering distance query using new scheme

Q(u, v) : We answer a distance query between u and v in the following order.

– If v ∈ Ball(u, R) or u ∈ Ball(v, R) :

report δ(u, v)

– Else if Ball(u, R) and Ball(v, R) overlap :

report δ(u, w) + δ(v, w) for some w ∈ Ball(u, R) ∩ Ball(v, R)

– Else :

report minimum of (δ(u, nu) + δ(nu, v)) and (δ(v, nv) + δ(nv , u))

The query Procedure Q(u, v) explores all the three possible cases in the fixed
order. In the first two cases, we manage to report distance using only the local
distance information stored at vertices u and v. In the final and the third case,
when the two Balls are non-overlapping, we use the global distance information
stored at nu and nv.

Lemma 1. Given a graph G(V, E) and any two vertices u, v ∈ V , the approx-
imate distance between u and v as reported by the query procedure Q(u, v) is
bounded by 2δ(u, v) + 1.

Proof. Let a and b be the radii of Ball(u, R) and Ball(v, R) respectively. The
approximation factor associated with the distance reported by Q(u, v) depends

664 Surender Baswana, Vishrut Goyal, and Sandeep Sen

on which of the three steps, we report the distance at. So we analyze the three
cases as follows:

Case 1 : The distance is reported in the first step of Q(u, v).
In this case, either u or v lie in the Ball of the other. Without loss of generality,
let us assume that v lies in Ball(u, R) (see Fig. 1, Case-1). Here we report the
exact distance between u and v.
Case 2 : The distance is reported in the second step of Q(u, v).
Note that since the query procedure failed to report the distance in the first step,
therefore, the distance between u and v is more than the radius of Ball(u, R)
and Ball(v, R). In other words, δ(u, v) is more than a and b. (see Fig. 1, Case-2).

Let w be a vertex lying in both Ball(u, R) and Ball(v, R). Clearly, δ(u, w) ≤
a and δ(v, w) ≤ b. Therefore, the distance reported in this step is bounded by
a + b, which is no more than 2δ(u, v) as explained above.
Case 3 : The distance is reported in the third step of Q(u, v).
Since the query procedure failed to report the distance in the second step,
Ball(u, R) and Ball(v, R) are separated by distance x ≥ 1. So the shortest
path between u and v can be viewed as consisting of three sub-paths : the first
subpath is the portion of the path lying inside Ball(u, R) and has length a, the
second sub-path is the portion of the path lying outside the two Balls and has
length x, and the third sub-path is the portion of the path lying inside Ball(v, R)
and has length b. Hence, the distance between u and v is a+x+b for some x ≥ 1.
(see Fig. 1, Case-3).

In the third step, we report the minimum of (δ(u, nu)+δ(nu, v)) and (δ(v, nv)+
δ(nv , u)). It can be noted that δ(u, nu) = a + 1 and δ(v, nv) = b + 1. Now con-
sidering the path from nu to v passing through u, we can observe that δ(nu, v)
is bounded by 2a + x + b +1. Similarly, analyzing the path from nv to u passing
through v, we can observe that δ(nv , u) is bounded by 2b + x + a + 1. Therefore,
the distance reported by Q(u, v) is bounded as follows.

min((δ(u, nu) + δ(nu, v)) , (δ(v, nv) + δ(nv, u)))

≤ min(3a + x + b + 2, 3b + x + a + 2)

= min(3a + b, 3b + a) + x + 2

= 3b + a + x + 2 {wlog assume that a ≥ b}
≤ 2a + 2b + x + 2 {since a ≥ b}
≤ 2(a + x + b) + 1 {since x ≥ 1}
= 2δ(u, v) + 1

Hence, the distance between u, v as reported byQ(u, v) is bounded by 2δ(u, v)+1.

Remark: It is worth noting that the distance between any two vertices u, v ∈ V ,
as reported by Q(u, v), is bounded by 2δ(u, v) even in the Case-3, if at-least
one of the following conditions hold:
(i) x > 1, that is, the two Balls are separated by a path longer than one edge.
(ii) a 6= b, that is, the radii of the two Balls differs.

All-Pairs Nearly 2-Approximate Shortest-Paths in O(n2 polylog n) Time 665

tree edge

sampled vertex

PSfrag replacements

u

r(u) − 1

r(u) − 2

Fig. 2. To compute Ball(u, Rp), we need to explore adjacency list of vertices lying in
inner-shaded shell (of radius r(u) − 2) only.

3 Efficient Sub-Routines for Realization of the New
Scheme

3.1 An Efficient Algorithm for Computing Balls

Let Rp be a set formed by selecting each vertex independently with probability
p < 1. We shall now present an algorithm for computing Ball(u, Rp), for all
u ∈ V \Rp.

Let r(u) denote the distance from u to nu. It follows from Definition 1 that the
vertices of Ball(u, Rp) and their distance from u can be computed by building a
BFS tree at u up to level (distance) r(u)−1. Therefore, prior to the computation
of Ball(u, Rp), we compute r(u). In fact, the following procedure shows that it
requires just a single BFS traversal to compute r(u) and nu, for all u ∈ V \Rp.

Add a dummy vertex y to the given graph and connect it to all the vertices of
set Rp. Compute a full BFS tree rooted at y. If a vertex u lies at level ` (hence
at distance ` from y) in this BFS tree, it is at distance ` − 1 from nu, that is,
r(u) = `−1. In addition to r(u), we can also compute nu for each vertex u from
this BFS tree.

If r(u) = 1, then Ball(u, Rp) consists of vertex u only and we are done. For
the case when r(u) ≥ 2, we build a BFS tree upto level r(u) − 1 to compute
Ball(u, Rp), and the computation time required in doing so is of the order of
the number of edges explored. Since the graph is undirected, an edge will be
explored at-most twice (once by each of its end-point), and we would charge
the cost of exploring an edge to that end-point, which explores it first. Let
v1(= u), v2, · · · , vn be the sequence of vertices of the given graph arranged in
non-decreasing order of their distance from u. Note that computing BFS tree
upto level r(u) − 1 requires exploring the adjacency list of vertices up to level
r(u)− 2 only (see Fig. 2). Therefore, in the computation of Ball(u, Rp), we shall
explore adjacency list of vi if the following two events happen:
E i
1 : There is no vertex in the set {vj |j < i} which is selected in the sample Rp.
E i
2 : There is no vertex from {vj |j > i} that is adjacent to vi and also a sampled

vertex.

666 Surender Baswana, Vishrut Goyal, and Sandeep Sen

The events E i
1 and E i

2 are independent (since the vertices are sampled in-
dependently). Following our charging scheme mentioned above, exploring adja-
cency list of vertex vi would contribute O(d′(vi)) to the computation time of
Ball(u, Rp), where d′(vi) is the number of edges incident on vi from vertices
{vj |j > i}. So the expected cost of computing Ball(u, Rp) is

n
∑

i=1

(

Pr(E i
1) · Pr(E i

2) · d′(vi)
)

=

n
∑

i=1

(

(1− p)i−1(1− p)d′(vi)d′(vi)
)

≤
n

∑

i=1



(1− p)i−1

d′(vi)
∑

j=1

(1− p)j−1





≤
n

∑

i=1

(

(1− p)i−1 1

p

)

≤ 1

p

n
∑

i=1

(1− p)i−1 ≤ 1

p2
.

Theorem 1. Given an unweighted graph G(V, E), and p < 1, let Rp be a set
formed by selecting each vertex independently with probability p. There exists
an algorithm for computing Ball(u, Rp), for all u ∈ V \Rp in expected time
O(m + n

p2).

In a similar way, it can be shown that the expected number of vertices in
Ball(u, Rp) is O(1/p) (observe that for vertex vi to belong to Ball(u, Rp), the
event E i

1 must happen).

Lemma 2. Given an unweighted graph G(V, E), a uniformly random sample
R ⊂ V of size

√
n induces a bound of

√
n on expected size of Ball(u, R).

It follows from Definition 1 that Ball(u, X) ⊂ Ball(u, Y), for all Y ⊂ X ⊂ V .
Therefore, our algorithm would require less time to compute Ball(u, X) than to
compute Ball(u, Y). So we can state the following corollary based on Theorem
1.

Corollary 1. Given an unweighted graph G(V, E) and p < 1, let Rp be a set
formed by selecting each vertex independently with probability p < 1. For any
set R ⊃ Rp, it takes expected O(m + n

p2) time to compute Ball(u, R), for all

u ∈ V \R.

3.2 Computing Overlap Matrix O

To determine, for a pair of vertices u, v ∈ V , whether there exists a vertex
common to both Ball(u, R) and Ball(v, R), we keep a matrix O such that O[u, v]
is null if Ball(u, R) ∩ Ball(v, R) = ∅, otherwise O[u, v] stores a vertex that
belongs to both the Balls. To build the matrix O efficiently, we form the following
sets,

C(v, R) = {u ∈ V |v ∈ Ball(u, R)}.
It is easy to observe that we can form the sets {C(v, R)|v ∈ V } by a single
scan of the sets {Ball(u, R)|u ∈ V }. Now once we have C(v, R), ∀v ∈ V , we can
compute the matrix O as follows.

All-Pairs Nearly 2-Approximate Shortest-Paths in O(n2 polylog n) Time 667

Algorithm for computing overlap matrix O
For each v ∈ V \R do

For each u ∈ C(v, R) do
For each w ∈ C(v, R) do
O[u, w]← v

The running time of the above algorithm for computing the overlap matrix O is
of the order of

∑

v∈V |C(v, R)|2 + n2. In order to compute the overlap matrix O
in O(n/p2 + n2) time (which also matches the time required to compute Balls),
we would need a set R ⊂ V which would ensure that |C(v, R)| = O(1/p), for
all v ∈ V . We shall employ the random sampling scheme given by Thorup and
Zwick [8] to compute the desired sample R as follows.

Procedure for computing the sample set R

Procedure sample(G, p) {
R = ∅; V ′ = V ;
While (V ′ 6= ∅)

Add a uniform sample of size np from V ′ to R;
For every u ∈ V \R do

Compute Ball(u, R);
For every v ∈ V \R do

C(v, R)← {u ∈ V | v ∈ Ball(u, R)};
V ′ ← {v ∈ V | |C(v, R)| > 4/p};

Return R;
}

For the first iteration, R is a uniform sample from V , that is, R = Rp. So
using Theorem 1, the first iteration requires expected O(m + n/p2) time. Note
that in each subsequent iteration, the sample R only grows. Hence it follows from
Corollary 1 that each subsequent iteration will also require expected O(m+n/p2)
time. It is shown in [8] that in every iteration, the size of V ′ decreases by a factor
of 2 with probability at-least 1/2. Hence after expected log n iterations, V ′ would
be reduced to ∅. Thus, the expected size of the final sample R would be np logn
and C(v, R) will be bounded by O(1

p), for each v ∈ V .

Theorem 2. Given an unweighted graph G(V, E) and p < 1, a set R ⊂ V of
size O(np log n) can be computed in expected O(m log n+ n

p2 log n) time ensuring
that
• It takes a total of O(m + n/p2) time to compute Ball(u, R), ∀u ∈ V \R.
• It takes O(n2 + n

p2) time to build the overlap matrix O.

668 Surender Baswana, Vishrut Goyal, and Sandeep Sen

4 Algorithms for Nearly 2-Approximate Shortest Paths

4.1 Algorithm I

Our first algorithm for computing nearly 2-approximate distances is a realization
of the scheme mentioned in Sect. 2.

Algorithm I

Preprocessing
Let R be the set of vertices as defined by Theorem 2.

1. For each u ∈ V \R, compute Ball(u, R).
2. Compute overlap matrix O.
3. For each v ∈ R, build a full BFS tree rooted at v in the graph.

Reporting distance between u, v ∈ V
Q(u, v)

Computing BFS tree from vertices of the set R requires O(m|R|) = O(mnp log n)
expected time. Hence applying Theorem 2, it follows that the total expected time
for preprocessing the graph in Algorithm I is given by

m log n + n2 +
n

p2
log n + mnp log n = n2 + m2/3n log n { for p = 1

3
√

m
}.

Theorem 3. An unweighted graph G(V, E) can be preprocessed in O(m2/3n logn+
n2) expected time to output a data-structure of size O(n2) that, given any u, v ∈
V , requires constant time to report distance δ∗(u, v) satisfying

δ(u, v) ≤ δ∗(u, v) ≤ 2δ(u, v) + 1.

The previous best known algorithm [2] for computing 2-approximate dis-
tances requires O(n3/2√m) running time. Thus, in the worst case, we have been
able to improve the running time by a factor of O(n1/6) at the expense of intro-
ducing an additive error of just one unit.

4.2 Algorithm II

The preprocessing time of the first two steps in Algorithm I described above
can be bounded by O(n2 log n) with a suitable choice of p. The third step that
computes BFS trees from vertices of set R requires O(m|R|) time, which is
certainly not O(n2 log n) when the graph is dense. To improve its preprocessing
time to (n2 polylog n), one idea is to perform BFS from R on a spanner (having
o(n2) edges) of the original graph. A spanner is a subgraph that is sparse but
still preserves approximate distance between vertices in the graph.

Definition 2. Given α ≥ 1, β ≥ 0, a subgraph G(V, E ′), E′ ⊂ E is said to be
an (α, β)-spanner of G(V, E) if for each pair of vertices u, v ∈ V , the distance
δs(u, v) in the spanner is bounded by αδ(u, v) + β.

All-Pairs Nearly 2-Approximate Shortest-Paths in O(n2 polylog n) Time 669

The sparsity of a spanner comes along with the stretching of the distances in the
graph. So one has to be careful in employing an (α, β)-spanner (with α > 1) in the
third step, lest one should end up computing nearly 2α-approximate distances
instead of nearly 2-approximate distances. To explore the possibility of using
spanner in our algorithm, let us revisit our distance reporting scheme Q(u, v).
The full BFS trees rooted at the vertices of set R serve to provide global dis-
tance information in the scheme Q(u, v) and they are required, only when u and
v belong to non-overlapping Balls. In the analysis of this case, we partitioned the
shortest path between u and v into three sub-paths (see Fig. 1,Case-3): the sub-
paths of lengths a and b covered by Ball(u, R) and Ball(v, R) respectively, and
the sub-path of length x lying between the two Balls and not covered by either
Ball. We showed that the distance δ∗(u, v) as reported by Q(u, v) is bounded by
2a+2b+x+2. A comparison of this expression of δ∗(u, v) with δ(u, v) = a+x+b
suggests that there is a possibility of stretching the uncovered sub-path (of length
x) between the Balls by a factor of 2 and still keeping the distance reported to
be nearly 2-approximate. So we may employ an (α, β)-spanner in the third step
of our algorithm, provided α (the multiplicative stretch) is not greater than 2
and more importantly, for each vertex u ∈ V \R, the shortest path from nu to
u as well as the shortest paths from u to all the vertices of Ball(u, R) are pre-
served in the spanner. To ensure these additional features, we shall employ the
parameterized spanner introduced in [1].

Parameterized (2,1)-Spanner [1]
Given a graph G(V, E), and a parameter X ⊂ V , a subgraph G(V, E ′) is said
to be a parameterized (2, 1)-spanner with respect to X if
(i) G(V, E′) is a (2, 1)-spanner.
(ii) All those edges whose at-least one endpoint is not adjacent to any vertex
from

the set X are surely present in the spanner too.

An O(m) time algorithm has been presented in [1] to compute a parameterized
(2, 1)-spanner for a given X ⊂ V (as a parameter). To ensure that the spanner is
a parameterized (2, 1)-spanner, the algorithm establishes the following lemma.

Lemma 3. [1] For an edge e(u, v) not present in the spanner, there is a vertex
x ∈ X adjacent to u in the spanner such that there is a path from x to v in the
spanner of length no more than 2.

The feature (ii) of the parameterized (2, 1)-spanner suggests that if we choose
R as the parameter, all the edges lying inside a Ball are present in the param-
eterized spanner, and hence all the shortest paths that lie within a Ball are
preserved too. Now observe that the shortest path from nu to u lies fully inside
Ball(u, R) except the first edge of this path which is incident on nu. So to ensure
that the shortest path from nu to u is also preserved, it would suffice if we aug-
ment the spanner with all the edges in the original graph that are incident on nu.

670 Surender Baswana, Vishrut Goyal, and Sandeep Sen

Algorithm II

Preprocessing
Let R be the set of vertices as defined by Theorem 2.

1. For each u ∈ V \R, compute Ball(u, R).
2. Compute overlap matrix O.
3. (a) Let G(V, E′) be a parameterized (2, 1)-spanner with respect to R for

the given graph G(V, E).
(b) For each v ∈ R, compute a full BFS tree rooted at v in G(V, E ′∪E(v)).

(E(v) denotes the edges incident on v in the original graph G(V, E))

Reporting distance between u, v ∈ V
Q(u, v)

From the discussion above, it follows that for any pair of vertices u, v ∈ V , the
distance reported in Case-3 by Q(u, v) will be

δ∗(u, v) ≤ 2(a+ b)+(2x+1)+2 {since x is stretched to 2x+1 }
= 2(a + x + b) + 3 = 2δ(u, v) + 3.

To analyze the running time of Algorithm II, observe that we perform BFS
on a (2, 1)-spanner. Therefore, a bound on the size of the spanner is required.
We shall use the following lemma from [1].

Lemma 4. [1] Let Rp be a set formed by selecting each vertex independently
with probability p. For any set R ⊃ Rp, the expected size of parameterized (2, 1)-
spanner will be O(|R|n + n/p).

Lemma 4 implies that the size of (2, 1)-spanner with parameter R (as determined
in Sect. 3.2) would be O(n/p+nnp logn). Hence the expected preprocessing time
of Algorithm II will be of the order of

m log n+
n

p2
log n+np logn

(

n

p
+ n2p log n

)

= O(n2 log
3

2 n) {for p =
1√

n 4
√

log n
}

Theorem 4. An unweighted graph G(V, E) can be preprocessed in O(n2 log3/2 n)
expected time to output a data-structure of size O(n2) that, given any u, v ∈ V ,
requires constant time to report distance δ∗(u, v) satisfying

δ(u, v) ≤ δ∗(u, v) ≤ 2δ(u, v) + 3.

5 Algorithm for 3-Approximate Shortest Paths

Algorithm 3-approx

Preprocessing
Let R be a set formed by picking each vertex with probability 1/

√
n.

1. For each u ∈ V \R, compute Ball(u, R).
2. (a) Let G(V, E′) be a parameterized (2, 1)-spanner with respect to R.

(b) For each v ∈ R, compute a full BFS tree rooted at v in G(V, E ′∪E(v)).

All-Pairs Nearly 2-Approximate Shortest-Paths in O(n2 polylog n) Time 671

Reporting distance between vertices u, v ∈ V
If v ∈ Ball(u, R) or u ∈ Ball(v, R),

report δ(u, v)
Else

report minimum of (δ(u, nu) + δs(nu, v)) and (δ(v, nv) +
δs(nv, u))
(note that δs(x, y) denotes distance between x and y in the underlying spanner.)

Lemma 5. The Algorithm 3-approx reports all-pairs 3-approximate distance.

Proof. Let neither u ∈ Ball(v, R) nor v ∈ Ball(u, R). We have two cases now.
Case 1: Ball(u, R) = {u}
Let v0(= u), v1, · · · , vl(= v) be the shortest path between u and v. Since Ball(u, R)
consists of vertex u only, u must be adjacent to nu. Also by Lemma 3, there is
a path of length at-most 2 units between nu and v1 in the parameterized span-
ner. Furthermore, the distance δs(v1, vl) between v1 and vl in the spanner is no
greater than 3(l − 1). Hence δs(nu, v) ≤ 3(l − 1) + 2. Since δ(u, nu) = 1, the
distance reported by the Algorithm 3-approx is no more than 3l.

Case 2: Ball(u, R) 6= {u}
Consider Ball(v, R). Let its radius be a ≥ 0. The vertex u lies outside this Ball.
The shortest path from v to u can be visualized as consisting of two segments
(see Fig. 3) : the sub-path Pvw of length a lying inside the Ball and the sub-pathPSfrag replacements

uu′v
a

nv

x
w

Pvw Pwu

Fig. 3. Analyzing the path from v to u when Ball(u, R) 6= {u}

Pwu of length x ≥ 1 outside the Ball. Let the length of path Pwu be stretched
to x′ in the parameterized spanner. Since the parameterized spanner preserves
all-paths within a Ball, therefore, the distance (δ(v, nv) + δs(nv, u)) reported by
the algorithm would be 3a + 2 + x′. To ensure that this distance is no more
than three times the actual distance δ(u, v) = a + x, all we need to show is
that x′ ≤ 3x − 2. Let e(u′, u) be the last edge of the path Pwu. Now observe
that Ball(u, R) 6= {u} implies that Ball(u, R) has radius at-least one. So the
edge e(u′, u) must be present in the spanner (see feature (ii) of the parameter-
ized spanner). Now the part of the path Pwu excluding the edge e(u′, u) is of
length x−1, and can’t be stretched to more than 3(x−1) in the spanner. Hence
x′ ≤ 3(x− 1) + 1 = 3x− 2, and we are done.

672 Surender Baswana, Vishrut Goyal, and Sandeep Sen

The set R used in the Algorithm 3-approx is a uniform random sample of√
n vertices. Hence using Theorem 1, it follows that a total of O(n2) expected

time is required to compute Ball(u, R), ∀u ∈ V \R. Also Lemma 4 implies that
the number of edges in (2, 1)-spanner with parameter R is O(n

√
n). So the

expected time required for building full BFS trees on all the vertices of R in the
(2, 1)-spanner is O(n2). Hence the expected preprocessing time of the Algorithm
3-approx is O(n2).

Space requirement : Keeping distance information from each x ∈ R to all the
other vertices requires a total of O(n3/2) storage. For each vertex u ∈ V \R, we
can store the vertices belonging to Ball(u, R) along with their distance from u in
a 2-level hash table of [5] with optimal size O(|Ball(u, R)|). Using this hash table,
it can be determined whether v ∈ Ball(u, R) or not in worst case constant time.
So the space requirement of the data-structure of our algorithm (3-approximate
distance oracle) given above is O(n3/2), which is optimal as shown in [7].

Theorem 5. An unweighted graph G(V, E) can be preprocessed in expected O(n2)
time to output a data-structure of size O(n3/2) that can answer any 3-approximate
distance query in constant time.

6 Conclusion and Open Problems

Given an undirected unweighted graph G(V, E) on |V | = n vertices, we can
compute all-pairs 3-approximate distances in O(n2) time. More importantly, we
can compute nearly 2-approximate distances in O(n2 polylog n) time. This upper
bound is quite close to the Ω(n2) lower bound on computing 2-approximate
distances. It would be quite interesting to remove the additive error from our
algorithm completely or to prove an Ω(n2+ε) lower bound for computing all-pairs
2-approximate distances.

References

1. S. Baswana and S. Sen. Approximate distance oracles for unweighted graphs in
Õ(n2) time. In Proceedings of the 15th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 271–280, 2004.

2. E. Cohen and U. Zwick. All-pairs small stretch paths. Journal of Algorithms,
38:335–353, 2001.

3. D. Dor, S. Halperin, and U. Zwick. All pairs almost shortest paths. Siam Journal
on Computing, 29:1740–1759, 2000.

4. M. Elkin. Computing almost shortest paths. In Proceedings of the 20th Annual
ACM Symposium on Principles of Distributed Computing, pages 53–62, 2001.

5. M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with o(1)
worst case time. Journal of ACM, 31:538–544, 1984.

6. S. Pettie. A new approach to all-pairs shortest paths on real-weighted graphs.
Theoretical Computer Science, 312:47–74, 2004.

7. M. Thorup and U. Zwick. Approximate distance oracle. In Proceedings of 33rd
ACM Symposium on Theory of Computing (STOC), pages 183–192, 2001.

All-Pairs Nearly 2-Approximate Shortest-Paths in O(n2 polylog n) Time 673

8. M. Thorup and U. Zwick. Compact routing schemes. In 13th Annual ACM Sym-
posium on Parallel Algorithms and Architectures, pages 1–10, 2001.

9. U. Zwick. Exact and approximate distances in graphs - a survey. In Proceedings
of the 9th Annual European Symposium on Algorithms (ESA), pages 33–48, 2001.

10. U. Zwick. Slightly improved sub-cubic bound for computing all-pairs shortest
paths. In 15th Annual International Symposium on Algorithms and Computation
(ISAAC), to appear, 2004.

