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Abstract

The all-pairs shortest-path problem is an intricate part in numerous practical applications. We describe a shared

memory cache efficient GPU implementation to solve transitive closure and the all-pairs shortest-path problem

on directed graphs for large datasets. The proposed algorithmic design utilizes the resources available on the

NVIDIA G80 GPU architecture using the CUDA API. Our solution generalizes to handle graph sizes that are

inherently larger then the DRAM memory available on the GPU. Experiments demonstrate that our method is

able to significantly increase processing large graphs making our method applicable for bioinformatics, internet

node traffic, social networking, and routing problems.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture
Graphics Processors Parallel processing G.2.2 [Graph Theory]: Graph algorithms

1. Introduction

Graphics hardware continues to improve every year. Recent
years witnessed a dramatic increase in the computational re-
sources available on GPUs. The hundreds of GFLOPS of-
fered on modern graphics architecture allow the developer
to program a broad range of general purpose algorithms on
the GPU [OLG∗07]. This architecture permits many opera-
tions to achieve a substantial speedup over current general
purpose processors.

GPGPU algorithms efficiently map to the stream pro-
gramming model inherent in the GPU design. The stream
model assumes an arithmetic intensive algorithm processing
in parallel on every input producing a corresponding out-
put. Sengupta [SHZO07] argues a GPU stream model is ex-
tremely effective for a small, bounded neighborhood of in-
puts, however many appealing problems necessitate more
data intensive support. Data intensive GPGPU algorithms
suffer from two significant problems. First, there is consid-
erably less on board memory accessible to GPUs. For ex-
ample, NVIDIA’s Tesla C870 computing processor has 1.5
GB GDDR3 SDRAM of total dedicated memory and the
Nvidia 9800 GX2 has 1 GB. For many algorithms to work
effectively on real world problems, GPGPU algorithms must
handle nontrivial solutions for datasets larger then the GPU’s
accessible DRAM memory. Secondly, GPU reads and writes
to on-board RAM are relatively expensive operations com-

pared to a CPU’s operations on main memory since there
is no cache located between the threads and DRAM. A sin-
gle GPU memory operation therefore has high associated la-
tency. GPGPU algorithms must hide memory latent opera-
tions with solutions that efficiently utilize the cache’s high
bandwidth potential and threading capabilities with well-
aligned memory accesses. If the GPU utilizes the cache’s
high bandwidth potential through massive parallelism cor-
rectly, it has a overall advantage compared to a CPU.

In this paper, we will first present a blocked (tiled) for-
mulation of the transitive closure of a graph that is highly
parallel and scalable. Second, we leverage this solution to
solve the Floyd-Warshall (FW) algorithm on the GPU to find
the shortest paths between all pairs of vertices in a graph,
extending Venkataraman et al. [VSM03] single core CPU
cache efficient algorithm to exploit the parallelism and ef-
ficiency of the GPU using CUDA. Our approach handles
graph sizes larger than the on-board memory available to
the GPU and additionally, breaks the graph in a nontriv-
ial on-chip shared memory cache efficient manner to in-
crease performance. Our technique provides: a substantial
60–130x speedup over a standard CPU solution O(v3), a
45–100x speedup to a blocked (tiled) CPU implementa-
tion specified by Venkataraman et al. [VSM03], and fur-
thermore, our method provides a speedup of 5.0–6.5x rel-
ative to a standard GPU implementation proposed by Harish
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and Narayanan [HN07], and a 2x–4x speed up compared to
the best auto-generated highly tuned CPU code generated by
Han et al. [HFP06].

The paper is organized as follows: Section 2 describes
prior work of transitive closure, all-pairs shortest path prob-
lem (APSP) algorithms and implementations, and a brief
overview of work to manage memory on the GPU. In Sec-
tion 3, we review Warshall’s Transitive Closure and Floyd’s
APSP algorithms. Section 4 provides details of implement-
ing our shared memory cache efficient algorithm and how
we generalize the solution to operate on graphs larger
than the GPU’s on-board memory. Section 5 demonstrates
the strength of our method by measuring the performance
over previously published standard CPU implementations,
blocked (tiled) CPU implementations, Han et al. [HFP06]
program generater tuned code, and previous GPU implemen-
tations on both synthetic and real world dataset (CAIDA AS
Relationships Dataset). Finally, we discuss the implementa-
tion issues on the GPU and future directions.

2. Prior Work

The all-pairs shortest path problem (APSP) is well studied in
prior work due to its significance affecting a variety of prob-
lems: network routing, distributed computing, and bioinfor-
matics to name a few. A straightforward solution solves the
problem by running a single-source shortest-pair algorithm
|V| times, once for each vertex as the source [CLRS01]. If
one utilizes a sophisticated min-priority queue with a Fi-
bonacci heap data structure, this yields a O(V 2lg(V )+V E),
the asymptotically best time complexity. However, if the
graph is dense with negative weight edges, the running time
is O(V 3), utilizing the the Floyd-Warshall algorithm, making
this solution impractical for graphs with large vertex sizes.

Warshall [War62] formulated how to compute the transi-
tive closure of Boolean matrices. Later, Floyd [Flo62] de-
veloped an algorithm, the Floyd-Warshall algorithm (FW),
based on Warshall’s theorem to solve the all-pairs shortest-
path problem. Early on, Foster described simple techniques
to parallelize the FW algorithm in his book [Fos95]. Dia-
ment and Ferencz [DF] talked about comparing straightfor-
ward parallel implementations, one of which used blocking
to speedup calculations. Venkataraman et al. [VSM03] pro-
posed a more complex blocked version of Floyd’s all-pairs
shortest-path algorithm to better utilize the cache for large
graphs and provided a detailed performance analysis. They
achieved a speedup of 1.6 and 1.9 over the unblocked basic
implementation’s counterpart.

Penner and Pranna [PP06] proposed cache-efficient im-
plementations of transitive closure and the Floyd-Warshall
algorithm showing a 2x improvement in performance over
the best compiler optimized implementation on three dif-
ferent architectures. Han et al. [HFP06] created a program
generator to derive the variant of the FW algorithm which is

most efficient for a CPU. The generator uses tiling, loop un-
rolling, and SIMD vectorization to produce the best solution
for a given CPU by tuning and testing a variety of parame-
ters.

Furthermore, Subramanian et Al. [STV93] showed a theo-
retical foundation for the prospect of efficient parallelization
of APSP algorithm and devises an approach that yields a run-
time complexity of O(log3n), with n the number of proces-
sors in planar layered digraphs. Bondhugula et al. [BDF∗06]
proposed a tiled parallel Field Programmable Gate Arrays
(FPGAs)-based implementation of the APSP problem. Han
and Kang [HK05] presented a vectorized version of the FW
algorithm that improved performance by 2.3 and 5.2 times
of speed-up over a blocking version.

Micikevicius [Mic04] proposed using graphics hardware
to solve APSP. Each pixel corresponded to a unique dis-
tance matrix entry, so the fragment shader was used to per-
form the FW algorithm. Additionally, using the 4 component
RGBA vector capability on the legacy hardware (NVIDIA
5900 ULTRA), they were able to produce further perfor-
mance gains. Harish and Narayanan [HN07] proposed us-
ing CUDA to accelerate large graph algorithms (including
APSP) on the GPU, however they implemented only a ba-
sic version of Floyd-Warshall algorithm. Therefore, they
are limited by the device memory limits and cannot handle
graphs larger then the GPU’s DRAM. Additionally, Harish
and Narayanan do not perform any improvements to handle
the unique structure of the G80’s on-chip shared memory
cache layout. Utilizing a shared memory coherent blocking
method, we display a 5x-6.5x increase in performance over
Harish and Narayanan’s proposed CUDA GPU implementa-
tion.

Both the relatively small cache size and the significant la-
tency issue are inherent in stream computing on the GPU.
The G80 has only 16 kB of fast on-chip shared memory.
Govindaraju et al. [GLGM06] analyzed scientific algorithms
on older NVIDIA 7900 GTX GPUs (that did not contain
shared memory) and presented models to help performance.
Furthermore, they updated the cache-efficient algorithms for
scientific computations using graphics processing units and
hardware. They showed performance gains of 2-10x for
GPU-based sorting, fast Fourier transform and dense matrix
multiplication algorithms [GM07].

Early GPU work centered on developing cache-efficient
algorithms for matrix-matrix multiplication using a variety
of blocking techniques [LM01,HCH,FSH04,NVI07]. Addi-
tionally, Lefohn et al. proposed a template library for defin-
ing complex, random-access graphics processor (GPU) data
structures [LSK∗06] to help increase performance of a vari-
ety of algorithms. More recently, Deschizaux and Blanc used
a simple tiling method to store the frequencies for their plane
in their wave propagation kernel [DB07] in CUDA.
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3. Overview

In this section, we give a short overview of modern GPUs,
a review of the transitive closure and the all-pairs shortest-
path algorithms, and describe a memory layout of the graph
using GPU memory.

3.1. G80 Architecture and CUDA

In recent years, many scientific and numeric GPGPU appli-
cations found success due to graphics hardware’s stream-
ing data-parallel organizational model. With the introduc-
tion of NVIDIA G80 GPU architecture, the graphics pipeline
now features a single unified set of processors that func-
tion as vertex, geometry, and fragment processors. Addition-
ally, the release of the Compute Unified Device Architecture
(CUDA) API [NVI07] on the G80 architecture allows devel-
opers to easily develop and manage general purpose scien-
tific and numerical algorithms without formulating solutions
in terms of nontrivial shaders and graphic primitives.

The GPU serves, to an extent, as a coprocessor to the
CPU programmed through the CUDA API. A single pro-
gram know as a kernel is compiled to operate on the GPU
device to exploit the massive data parallelism inherit on Sin-
gle Instruction, Multiple Data (SIMD) architecture. Groups
of threads then execute the kernel on the GPU. Threads
are organized into blocks which allow efficient sharing of
data through a high-speed shared memory region (16 kB in
size) on the G80 architecture accessible to the programmer
directly through CUDA. Shared memory is shared among
threads in a block, facilitating higher bandwidth and overall
performance gains. Therefore, algorithms must intelligently
manage this ultra fast shared memory cache effectively. This
will fully utilize the data parallelism capabilities of graphics
hardware and alleviates any memory latency that data inten-
sive algorithms suffer from on the GPU.

3.2. Warshall’s Transitive Closure

Let G = (V,E) be a directed graph with vertex set |V |,
the transitive closure (or reachability) problem endeavors
to locate whether a directed path between any two given
vertices in G exists. A vertex i is reachable by vertex j

iff there exists some directed path from i to j in G. The
transitive closure of G is defined by the directed graph,
G∗ = (V,E∗) which contains the same vertex set |V | as
G however has an edge (i, j) ∈ E∗ iff there is a path from
vertex i to vertex j in G. The transitive closure of a graph
provides the list of edges at any vertex showing paths reach-
ing other vertices thereby answering reachability questions.
Algorithm 1 [CLRS01] solves for the transitive closure of G.

3.3. Floyd-Warshall APSP Algorithm

Again, let G=(V,E) be a directed graph with |V| vertices.
Now, we solve APSP by the Floyd-Warshall algorithm us-

TRANSITIVE CLOSURE (G)
1 : n ← |V [G]|
2 : for i← 1 to n

3 : do for j ← 1 to n

4 : do if i = j or (i, j) ∈ E[G]

5 : then t
(0)
i j ← 1

6 : else t
(0)
i j ← 0

7 : for k ← 1 to n

8 : do for i ← 1 to n

9 : do for j ← 1 to n

10 : do tk
i j ← tk−1

i j ∨ (tk−1
ik
∨ tk−1

k j
)

11 : return T (n)

Algorithm 1: Pseudocode for Transitive Closure.

ing a dynamic programming approach on a directed graph
[CLRS01]. (Note, the Floyd-Warshall algorithm has a run-
ning time of Θ(|V 3|)).

wi j =







0 if i = j,
weight o f edge(i, j) if i 6= j and (i, j) ∈ E,
∞ if i 6= j and (i, j) 6∈ E.

(1)

Let dk
i j be the weight of a shortest path from vertex i to

vertex j for which all intermediate vertices are in the set
{1,2, . . . ,k}Where k=0, we have d0

i j = wi j . A recursive def-
inition from the above formulation is given by:

d
k
i j =

{

wi j if k = 0;

min
(

d
(k−1)
i j ,d

(k−1)
ik

+d
(k−1)
k j

)

if k ≥ 1.
(2)

We can now solve the Floyd-Warshall Algorithm [CLRS01]:

FLOYD-WARSHALL (W)
1 : n ← rows[W ]

2 : D(0) ← W

3 : for k← 1 to n

4 : do for i ← 1 to n

5 : do for j ← 1 to n

6 : do d
(k)
i j ← min(d

(k−1)
i j ,d

(k−1)
ik

+d
(k−1)
k j

)

7 : return D(n)

Algorithm 2: Pseudocode of the Floyd-Warshall Algorithm.

3.4. Memory overview of the graphs

We store the nodes and edges of the graph in a matrix form.
The vertices of the graph are represented by the unique in-
dices along nxn matrix (n represents the number of nodes in
our graph). An edge between 2 vertices is specified by a 1
connecting the x axis index of the matrix to the y axis index.

We partition the nxn matrix W that holds our graph G into
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sub-matrices of size BxB, where B is the blocking factor such
that there are now (n/B)2 blocks. Now our blocked version
of FW will operate B iterations of the outer-loop in the sim-
ple FW Algorithm (Algorithm 2) via the GPU algorithm de-
scribed in Section 4 below. We load the necessary blocks
(described below in section 4) into GPU memory, synchro-
nize the threads, perform the FW algorithm, then return re-
sult to global memory.

4. Implementation

In this section, we discuss the design and implementation
of our tiled FW algorithm on NVIDIA GPUs utilizing the
CUDA programming API.

4.1. Algorithm

Our goal in this section is to revise the original straight-
forward FW algorithm into a hierarchically parallel method
that can be distributed, in parallel, across multiple multi-
processors on the GPU, and furthermore across multi-
ple GPUs. Our method implements a unique extension of
Venkataraman et al. [VSM03] adapting for efficiency on
GPUs using CUDA. The method begins by examining the
data conflicts that exist in a distributed FW algorithm. The
original FW algorithm can not be broken into distinct sub-
matrices that are processed on individual multi-processors
because each sub-matrix needs to have terms across the en-
tire dataset. If we examine the FW algorithm presented (Al-
gorithm 2) we see that each element d, is updated through
examining every other data element in matrix W, mak-
ing data partitioning impossible. The algorithm negates this
problem by carefully choosing a sequential ordering of
groups of sub-matrices that use previously processed sub-
matrices to determine the values of the current sub-matrices
being processed.

To begin the algorithm, we partition the matrix into sub-
blocks of equal size. In each stage of the algorithm, a pri-
mary block is set. The primary block for each stage is along
the diagonal of the matrix, starting with the block holding
the matrix value (0,0).

The primary block holds the sub-matrix holding values
from (pstart , pstart) to (pend , pend), where

pstart =
primary block number × matrix length

number o f primary blocks
(3)

pend = pstart +

(

matrix_length

number o f primary blocks

)

−1 (4)

Each stage of the algorithm is broken into three passes. In
the first pass we only compute values for the primary block.
The computations are completed in one CUDA block, and
therefore only one multi-processor is active during this pass.
The block computes FW where i, j, and k range from pstart

to pend .

Phases when block (1,1) is the self-dependent block

Phases when block (t,t) is the self-dependent block

Figure 1: A tiled FW algorithm proposed in section 4.

For the first primary block, we can view the sub-block as
its own matrix for which we compute the FW algorithm. At
the completion of the first pass, all pairs have been located
between nodes pstart through pend . In the second pass we
would like to compute all sub-blocks that are only dependent
upon the primary block and themselves. By careful examina-
tion of the memory accesses, we can see that all sub-blocks
that share the same row or the same column as the primary
block are only dependent upon their own block’s values and
the primary block. This can be shown by noticing that for
current blocks that share the row of the primary block, k
ranges from pstart to pend , j ranges from pstart to pend , and i

ranges from cstart to cend , where cstart and cend are the start
and end indices for the current block in the x direction.

We can therefore show that the indices of d range from
[cstart → cend , pstart → pend ], [cstart → cend , pstart → pend ],
[pstart → pend , pstart → pend ] for di j , dik, and dk j respec-
tively. Since the indices of the current block range from
[cstart → cend , pstart → pend ], and the indices of the pri-
mary block range from [pstart → pend , pstart → pend ], we
can clearly see that the second pass only needs to load the
current block and the primary block into memory for updates
to the current block. A similar proof can be used to show
that the memory usage for the column blocks only need to
load the primary block and the current column block. In the
second pass we have computed the all pairs solution for all
blocks sharing the same row or column as the primary block
for values of k from pstart to pend , with each block being
computed in parallel on a separate multi-processor.

In the third pass we would like to compute the values of
the remaining blocks for ranges of k from pstart to pend .
We perform the same methods as in the second pass by
examining the memory accesses of the block. For each re-
maining block, we note that its values of d range from

[ci
start → c

j
end

, c
j
start → c

j
end

], [ci
start → ci

end , pstart → pend ],
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[pstart → pend , c
j
start → c

j
end

] for di j , dik, dk j respectively,

where ci
start , ci

end , c
j
start , c

j
end

are the current i start, current i

end, current j start and current j end, respectively. We note
that [ci

start → ci
end , pstart → pend ] is the block with the col-

umn of the current block and the row of the primary block,

while [pstart→ pend , c
j
start→ c

j
end

] has the row of the current
block and the column of the primary block. Both of these
blocks were computed in pass 2. Figure 2 shows a visualiza-
tion of this data access.

Figure 2: Visualization of data access.

With the completion of pass 3, all cells of the matrix have
their all-pairs solution calculated for k values ranging from
pstart to pend . The primary block is then moved down the
diagonal of the matrix and the process is repeated. Once the
three passes have been repeated for each primary block, the
full all pairs solution has been found.

4.2. Memory and Grid Layout

In each pass of the algorithm the primary block number is
sent as an input to the kernel. The individual thread blocks
must determine which sub-matrix they are currently process-
ing and determine what data to load into its shared memory.
In the first pass, this is a straightforward task. The primary
block is the current block and its data is the only memory be-
ing loaded. Each thread can load the data point correspond-
ing to their own thread id, and save that value back to global
memory at the end of the pass.

In the second pass, the primary block is loaded with the
current block, with each thread loading one cell from each
block. At the end of the algorithm, each thread saves its cell
from the current block back to global memory.

The grid lay out in the second pass determines the ease of
processing. For a data set with n blocks per side, there are
2× (n− 1) blocks processed in parallel during the second
pass. We layout these blocks into a grid of size n− 1 by 2.
The first row in the grid processes the blocks in the same row
as the primary block while the second row in the grid pro-
cesses the blocks in the same column as the primary block.
The block y value of 1 or 0 specifies the row or column at-
tribute and can be used as a conditional to specify how data
is indexed.

We also need to make sure the blocks are correctly in-
dexed by the x index. The blocks need to make sure to ’skip’
over the primary block. This can be accomplished by the fol-
lowing equation.

Skip center block = min

((

blockIDx.x+1

center_block_ID+1

)

,1

)

(5)

This value is added to the blockIdx.x when referencing
the current block to load. Skip center block will round to 0
when the center block index is greater than the blockIdx.x
and be set to 1 when the center block is less than or equal
to the blockIdx.x. In shared memory, the two blocks are laid
out side-by-side as shown in figure 3.

Figure 3: Visualization of memory configuration of Pass 1

and Pass 2.

The third pass contains a grid size of n− 1 by n− 1. As
in the second pass, we must skip over the primary block and
any row or column blocks computed in the second pass. This
is accomplished by the following equations that share the
same format as skip center block above.

Skip center block(x) = min

((

blockIDx.x+1

center_block_ID+1

)

,1

)

(6)

Skip center block(y) = min

((

blockIDx.y+1

center_block_ID+1

)

,1

)

(7)

These values are added to the blockIdx in the x and y di-
rections. The shared memory layout in the third pass must
contain three blocks, the current block, the column block and
the row block as shown in figure 4.

Figure 4: Visualization of memory configuration of Pass 3.

The maximum size of the sub-block is limited to the
minimum of 1/3 the total shared memory size (16 kB for
the 8800) and the maximum threads per block (512 for the
8800).
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4.3. Adapting transitive closure to APSP

The FW algorithm can be used to find the transitive clo-
sure of the graph and to find the all-pairs-shortest-path. The
transitive closure of a graph is a Boolean result describ-
ing whether a path exists between two nodes. The all-pairs
shortest-path provides the shortest path between those two
nodes for every pair of nodes in the graph. The transitive
closure begins with a matrix of size n by n. As an input, a
1 is placed in all cells where two nodes are connected by
an edge and a zero is placed in all other cells. Transitive
closure replaces line 6 of Algorithm 2 with the following:
di j = di j ‖ (dik & dk j)

The matrix can be represented by a variety of different
data types, int, bool, char, etc. Our implementation used ints
to remove bank conflicts although a less memory intensive
data type could be used necessitating each thread to process
multiple cells at a time to reduce conflicts.

To determine the all pairs shortest path we must update
our data types and change our processing equation. Each cell
in the matrix must now hold two values [c1, c2]. The cell rep-
resents the shortest path as the combination of two sub paths.
These sub paths are represented as i to c1 and c1 to j, where
(i, j) is the index of the matrix cell. At the end of the algo-
rithm, the shortest path between any two nodes a, b can be
found by accessing the cell [a,b] and then recursively gather-
ing the sub paths between [a, c1] and [c1, b]. A cell with no
sub paths has a value of −1 for c1. The value of c2 contains
the number of edges between a and b. The algorithm is ini-
tialized by placing [−1, 1] in every cell (i, j) where there is
a connection, and [0, 0] for all other cells. Our implementa-
tion uses float2s to hold the cell values to ease indexing, but
a vector of two ints could also be used.

1 : i f ((distance(i,k)≥ 1 && distance(k, j)≥ 1) &&
((distance(i,k)+distance(k, j) < distance(i, j) ‖
(distance(i, j) == 0)

2 : (matrix[i, j] = (k, distance(i,k)+distance(k, j))
Algorithm 3: Pseudocode for path checking.

The processing equation for all pairs shortest path must
first check if a path exists between d jk and dk j . Next, it must
check if the new path is shorter than the existing path di j , if
one exists. We illustrate this process in pseudo-code above in
Algorithm 3. The primary methods of the algorithm remain
the same across transitive closure and all pairs shortest path.
The increased memory size for all pairs shortest path reduces
the number of nodes that can be processed on a single GPU
and changes the optimal block size to 18x18.

4.4. Adapting the algorithm across multiple GPUs

Our algorithm can be easily adapted across multiple GPU’s.
CUDA’s API allows a programmer to specify programming
multiple GPU’s in parallel by spawning different threads on

the CPU. To ease processing, the dataset is broken into pages
of data, similar to the blocks of data used in shared mem-
ory. The word page will refer to a square of data residing in
global memory, while a block will refer to a square of mem-
ory residing in shared memory. Each page is equal sized,
with equal numbers of pages in the x and y directions of the
graph. The maximum page size is equal to memory on the
graphics card. The page size varies according to the size of
the dataset, the number of GPUs, and the GPU memory size.

The previously described tiled all-pairs algorithm is per-
formed on each page in the same manner that the Floyd-
Warshall algorithm is performed on each block in shared
memory. The first pass is performed in parallel on each GPU,
ensuring the necessary information is available to all cards
for pass 2 without having to perform additional memory
transfers. The pages processed during the second pass are
split among the available GPUs. Once all the blocks in the
second pass have completed and their results have been re-
turned, the third pass is performed, being evenly spit among
the GPUs. As described in the initial algorithm, the primary
page is then advanced and the process is repeated. The page
processing uses the same tiled FW algorithm as performed
on each multiprocessor shown in figure 1.

In the shared memory algorithm, each pass requires a dif-
ferent number of blocks to process the algorithm. In the
multi-GPU algorithm the same memory layout occurs. The
first pass of the algorithm only requires the primary page.
The second pass requires the primary page along with the
page being processed. The third pass requires the row and
column pages associated with the page being processed.

The first, second and third sub-passes performed in shared
memory must correctly load data from the right page into
shared memory. In the first major pass the tiled algorithm
remains the same because only the primary page is being
loaded. In the second major pass, for each minor pass, di j

and dik from equation 2 perform their lookups from the cur-
rent page being processed, while dk j is loaded from the pri-
mary page. In the third major pass, di j accesses the page
being processed, while dik is loaded from the column page
and dk j is loaded from the row page.

The multi-GPU algorithm described above naively dis-
tributes pages to be processed among the GPUs. It does
not schedule the GPUs according to the information already
loaded on the GPU. The algorithm may also have idle GPUs
while some GPUs wait for others to finish processing their
blocks in the second and third passes. This results in reduced
occupancy for the GPUs along with non-optimal memory
transfers. A more efficient method would be to have a sep-
arate thread that schedules the GPU threads to process the
most optimal page.

We tested our multi-GPU algorithm using NVIDIA’s
CUDA API on a Windows PC with a 2.8 GHz Xeon(TM)
CPU and 2 GB of RAM using 2 NVIDIA GeForce 8800 GT
graphics cards.
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5. Experimental results

This section analyzes the performance of our algorithm on
both synthetic and real-world datasets. To demonstrate the
strength of our approach, we provide 2 comparisons. First,
we analyze the performance of our SM cache efficient GPU
algorithm on various large graph sizes between a standard
CPU, cache-efficient CPU implementation, and highly tuned
CPU implementation generated by the SPIRAL. Further-
more, we compare our technique to the latest GPU imple-
mentation and demonstrate a significant performance gain.

5.1. Comparison of Synthetic Dataset with Prior

CPU-based and GPU based FW Algorithms

Figure 5 compares our method to a standard CPU imple-
mentation of FW and a shared memory cache-efficient CPU
implementation proposed by Venkataraman et al. [VSM03].
We simply generated a synthetic dataset by randomly spec-
ifying direct paths between vertices in our initial matrix to
illustrate the arbitrary cases our method handles. We see that
the CPU versions grow at a rate of O(n3). For large graphs
these calculations take an unreasonable amount of process-
ing time. The cache-efficient CPU implementation has 1.6-
1.9x increase in performance as reported by Venkataraman
et al. [VSM03]. However, the curve still grows at a rate that
makes larger graphs impractical to run on the CPU still.
Our method greatly outperforms both CPU versions, thereby
making processing large graphs more practical and efficient.

We tested our single-GPU algorithm using NVIDIA’s
CUDA API on a Windows PC with a 2.8 GHz Xeon(TM)
CPU and 2 GB of RAM using 1 NVIDIA QUADRO FX
5600 graphics card.
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Figure 5: Performance of our SM cache-efficient GPU im-

plementation compared to standard CPU implementation

and a cache-efficient CPU implementation proposed by

Venkataraman et al. [VSM03] for APSP.

Figure 6 compares our method to a standard GPU imple-
mentation proposed by Harish and Narayanan [HN07]. Our

method has a 5.0-6.5x increase in performance due to a bet-
ter shared memory cache-efficient algorithm. Additionally,
since we block the initial graph into parts, our algorithm
generalizes to work on arbitrary sized graphs, unlike Bond-
hugula et al. [BDF∗06] which is limited by the size of on-
board memory on the GPU.
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Figure 6: Performance of our SM cache-efficient GPU im-

plementation compared to standard GPU implementation

proposed by Harish and Narayanan [HN07] for APSP.

5.2. Comparison of Synthetic Dataset with Prior GPU

based Transitive Closure Algorithm

Figure 7 compares our method to a standard GPU implemen-
tation of the Transitive Closure algorithm. Our method has a
7.5-8.5x increase in performance.
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Figure 7: Performance of our SM cache-efficient GPU im-

plementation compared to standard GPU implementation of

the Transitive Closure algorithm.

5.3. Comparison of AS Relationships Dataset with Prior

CPU-based and GPU based Algorithms

To demonstrate the strength and the applicability of our
method, we tested our solution on a real world dataset.
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We used the CAIDA Route Views BGP autonomous sys-
tem (AS) links annotated with inferred relationships dataset
[CAI08]. We preprocessed the data once on the CPU to gen-
eralize all the indexing to our straightforward node indexing
scheme on the GPU by mapping the node indices to a sim-
pler data type rather than encode all the information CAIDA
provides. For example we only created directed edges for 1
relationship (if AS1 is a customer of AS2) between the nodes
to generate our test graph. We do this since, inherently, the
number of nodes, not edges, affect the overall running time.
However to formulate other relationships requires a trivial
text processing step. For the connections between the first
1000 AS nodes the standard GPU implementation time was
1371.95 ms. Our shared memory cache efficient implemen-
tation ran in 189.29 ms showing a 7.26x speedup.

Additionally, we compared our method to the best auto-
generated highly tuned CPU code generated by Han et al.
[HFP06]. Figure 8 compares our multi-GPU results for large
graphs. Han et al.’s auto-generator analyzes various variants
of the APSP algorithm, tuning for the best blocking size,
loop unrolling setting, tiling, and SIMD vectorization com-
bined with hill climbing search to produce the best code for
a given platform [HFP06]. We implemented our tests using
NVIDIA’s CUDA API on a Windows PC with a 2.8 GHz
Xeon(TM) CPU and 2 GB of RAM. We received slightly dif-
ferent timings then the authors since Xeon processors have
only a 512 kB cache and the paper used a 3.6 GHz Pentium 4
which has a 1 MB cache. We note Han et al.’s times in table
1, in addition to the times we produced.
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Figure 8: Performance of our SM cache-efficient GPU im-

plementation compared to the best variant of Han et al.’s

[HFP06] tuned code.

6. Conclusions and Future Work

In this paper, we described a parallel blocked version of the
transitive closure and Floyd’s all-pairs shortest-paths algo-
rithms that handle two key issues that data dependant al-
gorithms suffer from on the GPU. Namely, our algorithm
is both shared memory cache efficient and generalizes to

graph sizes larger then the GPU’s on-board memory effec-
tively. Using the GPU to find a solution to these problems in-
creases performance over previously proposed solutions and
does not require exotic distributed computing hardware. Our
method adapts graphics hardware which is more common
among standard users and cheaper, thus providing a wider
market of usage of our implementation.

Having a more efficient APSP implementation that is
practical for the common user has potential for a variety of
interesting practical applications. To list a few: geo-location
algorithms, internet node routing, and social network appli-
cations all can potentially benefit from our proposed method
since APSP and transitive closure are fundamental graph al-
gorithms that function as building blocks of numerous appli-
cations.

One extension to our implementation would be to con-
struct a function to print the vertices on the shortest path.
CLRS [CLRS01] suggests either computing the predecessor
matrix Π from the resultant matrix, or computing a predeces-
sor matrix Π "online" just as the Floyd-Warshall algorithm
computes the output matrix.
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