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Abstract

A key ingredient in quantum resource theories is a notion of measure. Such as a measure
should have a number of fundamental properties, and desirably also a clear operational
meaning. Here we show that a natural measure known as the convex weight, which quantifies
the resource cost of a quantum device, has all the desired properties. In particular, the convex
weight of any quantum resource corresponds exactly to the relative advantage it offers in an
exclusion task. After presenting the general result, we show how the construction works for
state assemblages, sets of measurements and sets of transformations. Moreover, in order to
bound the convex weight analytically, we give a complete characterisation of the convex
components and corresponding weights of such devices.
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A key ingredient in quantum resource theories is a notion of measure. Such as a measure should
have a number of fundamental properties, and desirably also a clear operational meaning. Here we
show that a natural measure known as the convex weight, which quantifies the resource cost of a
quantum device, has all the desired properties. In particular, the convex weight of any quantum
resource corresponds exactly to the relative advantage it offers in an exclusion task. After presenting
the general result, we show how the construction works for state assemblages, sets of measurements
and sets of transformations. Moreover, in order to bound the convex weight analytically, we give a
complete characterisation of the convex components and corresponding weights of such devices.

Introduction.— Quantum theory allows for concepts
that have no analogue in classical physics. Most prom-
inent examples include entangled states, incompatible
measurements, and quantum memories. An important
question is to characterize these genuinely quantum re-
sources, in particular to quantify their non-classicality. A
natural approach to this problem is to view these genu-
ine quantum properties as resource for some task, and
ask to what extent a given quantum device deviates from
the classical scenario. Recently, a general framework of
quantum resource theories has been developed to address
these questions (see Ref. [1] for a recent review). These
ideas have already been formally applied to a broad range
of quantum properties, such as entanglement [2], joint
measurability [3, 4], steering [5, 6], thermal operations
[7], asymmetry [8] and coherence [9].

In general, a resource theory is defined via a set of free
resources (for instance associated to classical resources),
and a set of free operations. Applying a free operation
to a free resource should always give back a free resource,
and more generally free operations cannot boost the avail-
able resource. Hence, classical pre- and post-processings
are usually part of free operations, which implies that
the set of free resources must be convex. This motivates
the use of convexity-based measures in order to quantify
quantum resources, i.e. to measure their non-classicality.

Recently, a large body of work has been devoted to
one of these measures, namely the generalised robustness
[5, 10–19]. The latter quantifies the resource of a given
device, by asking by how much it can be mixed with an-
other (arbitrary) device before the resource is lost (i.e.
the mixture belongs to the free set). Loosely speaking,
this captures the distance between a given device and the
set of free devices. Since its introduction, the generalized
robustness has been found to possess three very attract-
ive and fundamental properties: (i) faithfulness, i.e. it
is zero if and only if a device is free, (ii) convexity, (iii)
monotonic under free operations, (iv) it quantifies the
outperformance of a quantum device with respect to all
classical ones in an explicit task, namely a discrimination

game, (v) it can be calculated efficiently when the free
set can be expressed through semi-definite constraints
(thereby forming a certificate).

In this manuscript, we prove that another, also well-
motivated, quantifier has the five fundamental properties
mentioned above. This quantifier is known as the convex
weight. It has a natural interpretation in the context of
resource theories. Namely, it characterizes how large frac-
tion of a given resource device can be generated with free
(or classical) resources. In this sense, the convex weight
provides a direct quantifier of the resource cost, and is
thus complementary to the generalized robustness. Con-
sider for instance a resource that is extremal, but very
close to the free set. While the generalized robustness is
very small for this resource, the convex weight will nev-
ertheless be equal to zero.

In order to prove property (iv), we construct expli-
citly a task for which the convex weight quantifies exactly
the relative advantage provided by the resource over any
free device. This task corresponds to an exclusion (or
anti-distinguishability) task. That is, given a randomly
chosen element xk from a known list of elements {xi},
one should provide as answer any xi 6= xk. After discuss-
ing the general framework, we discuss the cases where the
quantum devices corresponds to sets states, sets of meas-
urements and quantum channels. For instance, any set of
incompatible quantum measurements provides an advant-
age in a task of state exclusion, and the convex weight
represents the relative advantage over any set of compat-
ible (i.e. jointly measurable) measurements. Finally, we
show that the convex weight can be easily bounded (and
in simple cases even decided) by fully analytical meth-
ods, a fact that we illustrate by characterising all devices
and corresponding weights that can appear in a convex
decomposition of a given device.

Convex weight of quantum devices.— We concentrate
on three categories of quantum devices: quantum states,
measurements and transformations. We may also extend
the notion to include sets of such devices, e.g., a collec-
tion of states or measurements. Formally, states corres-
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pond to positive unit-trace operators denoted by ̺, meas-
urements to collections of positive operators denoted by
{Mj} with the normalisation

∑

j Mj = 11, and trans-
formations are given as completely positive trace non-
increasing maps denoted by I (or Λ if trace preserving).
For a convex and compact subset F of (a given class of)
quantum devices one defines the convex weight WF (D)
of a device D as the maximum relative number of times
a device from the set F can be used to produce D. Form-
ally,

WF (D) = min λ

s.t. : D = (1 − λ)DF + λD̃,
(1)

where the optimisation runs over devicesDF in the subset
F and general devices D̃ outside of F .

The weight has the following appealing properties of a
resource quantifier: (i) faithfulness, i.e. it is zero if and
only if a device is free, (ii) convexity, (iii) monotonic
under free operations, (iv) task-oriented interpretation,
(v) simple to bound analytically. The properties (i) and
(iii) follow directly from the definition, the properties
(ii) and (v) are proven in the Appendix and the property
(iv) is the main message of this manuscript. We note
that as a by-product of proving property (v) we provide
a complete characterisation of the convex components of
a given device.

Exclusion input-output games.— An input-output
game G is defined as a triplet G = (E ,M,Ω), where
E = {p(i)̺i} is a state ensemble, M = {Mj} forms a
POVM, and Ω = {ωij} is a real-valued reward function.
The task is to find a transformation I that minimises the
payoff defined as

P (I,G) :=
∑

ij

ωij p(i)tr[I(̺i)Mj ] . (2)

Note that in the case I = id and ωij = δij the payoff cor-
responds to the exclusion probability in a minimum error
state discrimination task. Note also that in contrast to
input-output games, where the task is to maximise the
payoff, in exclusion input-output games we are interested
in minimisation. One could argue that there is not much
difference between input-output games and their exclu-
sion variants, as one can flip the signs in the reward func-
tions and look at the absolute value of the payoff. The
difference between the games becomes evident, however,
when looking at canonical input-output games (see be-
low) that remove all covariance between the payoff and
the reward function. As it turns out, such elimination
of covariance is necessray for the connection between re-
source measures and quantum games [19, 20]. This dual-
ity between the games also highlights the duality between
the concepts of generalised robustness and the convex
weight.

In order to define input-output games for sets of
devices, we define the games for each device separately

and as payoff we take the sum of the individual pay-
offs. Formally, in the definition of a game we replace
the state ensemble E = {p(i)̺i} with a state assemblage
A = {p(i, x)̺i|x}, the single POVM M = {Mj} with a
measurement assemblage MA = {Mj|x}, and the reward
function Ω = {ωij} with a fine-tuned reward function
Ωf = {ωijx}. We refer to the triplet (A,MA,Ωf ) with
the same symbol G as used above when there is no risk
of confusion. Now the payoff for a set of transformations
{Ix} reads

P ({Ix},G) :=
∑

ijx

ωijx p(i, x)tr
[

Ix(̺i|x)Mj|x

]

. (3)

Again, the case {Ix} = {id} and ωijx = δij corresponds
to a minimum error discrimination task.

Input-output games that do not relate to minimum
error discrimination have some redundancy: a game can
be transformed into another one by scaling the reward
function or by adding a constant to it. This results in
a scaled or shifted payoff. In order to treat such games
on an equal footing, we eliminate the scaling and shifting
covariance by defining canonical versions of the games. A
canonical version of a game is obtained by first shifting
the lowest payoff to zero when optimised over (sets of)
transformations and then scaling the highest payoff to
one.

Main idea.— The convex weight WF (D) of a device D
with respect to a free set F is defined in Eq. (1). Solving
this equation for D̃ and defining D̂F := (1−λ)DF results
in

WF (D) = min λ (4)

s.t.:
1

λ
(D − D̂F ) ∈ Dev, D̂F ∈ CF ,

where Dev is the set of all devices and CF = {αDF |α ≥
0, DF ∈ F} is a cone based on the subset F .

Of the two optimisation constraints the conic one is
linear and it reads the same for all three categories of
devices (or sets thereof). The other constraint, how-
ever, is non-linear and as such we check it in more de-
tail. For states and measurements the constraint re-
duces to positive semi-definiteness of D − D̂F . This is
due to the fact that the normalisation, i.e. having unit
trace or a sum equal to identity, of 1

λ(D − D̂F ) is auto-
matic. A transformation can be seen as an element of a
quantum instrument, i.e. a collection of completely pos-
itive trace non-increasing maps summing to a completely
positive trace preserving map. As such, we consider in-
struments in place of transformations from here on. This
way the non-linear optimisation constraint becomes lin-
ear. Namely, as the normalisation is now automatic, the
operator 1

λ (D− D̂F ) being an instrument corresponds to

positive semidefiniteness of the Choi picture of D − D̂F .
With the above modification we have brought the prob-

lem of calculating the weight of a quantum device D with
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respect to the set F into a linear problem with conic
constraints. Such optimisation problems are called conic
programs. Below we spell out these programs explicitly
in their dual form for states, measurements and chan-
nels as a special case of instruments. The treatment of
general instruments is presented in the Appendix. The
connection between convex weight and the performance
in input-output games follows directly from the dual.

For a state assemblage A = {p(i, x)̺i|x} the primal of
the cone program (4) reads

1 − WF (A) = max
1

|X |
∑

i,x

tr[σi|x] (5)

s.t.: p(i, x)̺i|x ≥ σi|x ∀i, x, (6)

{σi|x}i,x ∈ CF ,

where |X | is the number of states for each x. This op-
timisation problem is an example of a cone program, the
dual of which is given by [21, 22]

1 − WF (A) = min
Y ≥0

∑

i,x

p(i, x)tr
[

̺i|xYi|x

]

(7)

s.t.:
∑

i,x

tr
[

Ti|xYi|x

]

≥ 1 ∀ {Ti|x} ∈ F

where Y =
⊕

i,x Yi|x is a witness. The solution of the
dual problem equals that of the primal given that the
so-called Slater condition holds, which in this case can
be verified by choosing Y = α11 for large enough α > 0.
This removes the redundant parts of the free cone as well.

To see the objective function of the dual problem as
an instance of an input-output game, we define another
witness as Ỹi|x := Yi|x/N where N := ‖ ∑

i,x Yi|x‖. For

each x we can add an extra term to {Ỹi|x}i, namely

11 − ∑

i,x Ỹi|x, which ensures that we get a witness cor-
responding to a set of POVMs. Note that in the process
we embed the state assemblage back into the larger space
if needed and complete the witness into a POVM on the
larger space by adding the missing parts to the last out-
come. The new witness results in an objective function
that is a scaled version of the success probability in a spe-
cific minimum error discrimination task. More precisely,
psucc(A,MA) :=

∑

i,x p(i, x)tr
[

̺i|xMi|x

]

. Clearly psucc

is linear in the first argument and so from Eq. (1) we get

psucc(A,MA) ≥ [1 − WF (A)] min
AF ∈F

psucc(AF ,MA),

(8)

Noting that the scaling caused by adjusting the wit-
ness does not affect the following expression, putting the
above inequality together with (7) one arrives at

inf
MA

psucc(A,MA)

minAF ∈F psucc(AF ,MA)
= 1 − WF (A), (9)

where we have used the standard convention that the
optimisation is performed over those measurement as-
semblages MA for which the l.h.s. is finite. We are ready
to state our first observation.

Observation 1. Let F be a convex subset of state as-
semblages. For any state assemblage A /∈ F there ex-
ists a set of measurements that anti-distinguishes the as-
semblage better than any assemblage in F . Moreover,
the relative advantage is exactly quantified by the con-
vex weight of A with respect to F .

As possible examples of the set F we mention unsteer-
able assemblages and their generalisation to assemblages
that can be prepared by states with an upper-bounded
Schmidt number. In this case, the anti-distinguishing
POVM can be alternatively interpreted as an instance of
the task of subchannel exclusion supported by one-way
local operations and classical communication (one-way
LOCC), see [5] for the details of such interpretation. In
the case of state ensembles (i.e. assemblages with only
one input x = 1), the anti-distinguishing POVM relates
to the task of subchannel exclusion on a single system,
see [13, 18] for details. In the case of single states, one
can relate the POVM to the task as a phase exclusion, see
[18]. In these cases, the possible examples include trivial
ensembles, separable states, and states with a positive
partial transpose.

We note that in the case where the free set F consists of
trivial ensembles, i.e. ensembles that code no information
about which state was sent E := { 1

|X|̺}, the weight cor-

responds to a measure of anti-distinguishability. In other
words, the optimisation constraints are equivalent to the
conditions Y ≥ 0 and

∑

i Yi ≥ |X |11. One can rewrite
the second constraint as

∑

i Yi ≥ 11 by multiplying the
object function with |X |. Moreover, assuming that there
is an optimal witness {Ỹi} that does not satisfy the equal-
ity

∑

i Ỹi = 11, one can filter the witness with the inverse
square root of

∑

i Ỹi, hence, ending up with the optimisa-
tion constraints that correspond to POVMs. Note that
the weight with respect to a trivial ensemble gives a tight
lower bound for the guessing probability, whereas the re-
lated generalised robustness measure gives a tight upper
bound. Interestingly, if one wishes to approach either
problem analytically, instead of searching for a POVM
that optimally (anti-)distinguishes an ensemble, one can
search for a single state for the trivial ensemble that op-
timises the corresponding convex distance, see Appendix
for more details.

For a measurement assemblage MA = {Mi|x} the
primal problem reads

1 − WF (MA) = max
1

|X |d
∑

i,x

tr[Oi|x] (10)

s.t.: Mi|x ≥ Oi|x ∀i, x, (11)

{Oi|x}i,x ∈ CF ,

where d is the dimension of the Hilbert space. The dual
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of this reads

1 − WF (MA) = min
Y ≥0

∑

i,x

tr
[

Mi|xYi|x

]

(12)

s.t.:
∑

i,x

tr
[

Ti|xYi|x

]

≥ 1 ∀ {Ti|x} ∈ F

where Y =
⊕

i,x Yi|x is again a witness. With a sim-
ilar argument as in the case of state assemblages, one
checks that the Slater condition is valid. To get an
expression similar to Eq. (9), we decompose the wit-
ness as Yi|x = Ñp(i, x)̺i|x, where ̺i|x := Yi|x/tr

[

Yi|x

]

,

p(i, x) := tr
[

Yi|x

]

/Ñ , and Ñ :=
∑

i,x tr
[

Yi|x

]

. Noting
again that scaling does not affect the desired expression,
we write

inf
A

psucc(A,MA)

minOA∈F psucc(A,OA)
= 1 − WF (MA), (13)

where the optimisation is performed over those state as-
semblages A for which the l.h.s. is finite. We arrive at
our second observation.

Observation 2. Let F be a convex subset of sets of
POVMs. For any set of POVMs MA /∈ F there exists
a state exclusion task where MA outperforms any set of
POVMs in F . Moreover, the relative advantage is exactly
quantified by the convex weight of A with respect to F .

As examples of convex sets of measurements we men-
tion joint measurability, informativity of a POVM (see
Appendix for the explicit form of the weight), and sim-
ulability with projective (or any fixed subset of) POVMs.
Note that in the case of sets of POVMs, the task includes
the classical communication of the label x from the pre-
paring party to the measuring party. This allows the
measuring party to choose the measurement setting after
receiving the label. In the case of discrimination tasks,
such scenario is referred to as state discrimination with
pre-measurement information [16].

In the case of quantum channels, i.e. completely pos-
itive trace-preserving maps, we start by writing the cone
program in the Choi picture

1 − WF (Λ) = max tr
[

JΓ̂

]

(14)

s.t.: JΛ − JΓ̂ ≥ 0, JΓ̂ ∈ CJF
,

where JΛ is the Choi state of Λ, and similarly for Γ̂. The
above optimisation problem is an instance of a cone pro-
gram. Such a program comes with a dual formulation
given by

1 − WF (Λ) = min
Y

tr[Y JΛ] (15)

s.t.: Y ≥ 0, tr[Y T ] ≥ 1 ∀ T ∈ JF ,

where Y is a dual variable constituting a witness for the
set JF . Once again, the Slater condition can be validated
as in the case of state assemblages.

One can decompose the witness as Y =
d

∑

ij ωij p(i)̺
T
i ⊗ Mj for some state ensemble {p(i)̺i},

POVM {Mj}, and set of real numbers {ωij}. (The
transpose is taken in the computational basis.) This
decomposition shows that the weight WF (Λ) is related
to a payoff P (Λ,G) of a specific input-output game:

tr[Y JΛ] =
∑

ij

d ωij p(i)tr
[

(̺T
i ⊗Mj)JΛ

]

=
∑

ij

d ωij p(i)tr
[

trH

[

(̺T
i ⊗ IK)JΛ

]

Mj

]

=
∑

ij

ωij p(i)tr[Λ(̺i)Mj ]

= P (Λ,G), (16)

where in the penultimate inequality we have used the
identity (A.27) given in the Appendix.

To get our result for channels, note that an optimal
decomposition for Λ from Eq. (1) with devices DF = Γ
and D̃ = Λ̃ gives a lower bound for the payoff of any
canonical input-output game as

P (Λ,G) = [1 − WF (Λ)]P (Γ,G) + WF (Λ)P (Λ̃,G)

≥ [1 − WF (Λ)]P (Γ,G)

≥ [1 − WF (Λ)] min
Γ∈F

P (Γ,G). (17)

Note further that an input-output game given by an op-
timal witness Y is up to scaling in the canonical form.
This can be seen by putting Eq. (1) into the Choi picture
and applying an optimal witness on both sides of the res-
ulting equation. It follows that the payoff for the channel
Λ̃ is zero. Putting this together with Eqs. (15,16,17) and
noting that the last equation is invariant under scaling
of the games we get

inf
G

P (Λ,G)

minΓ∈F P (Γ,G)
= 1 − WF (Λ), (18)

where the infimum is taken over all canonical input-
output games. We are ready to state our third result.

Observation 3. Let F be a convex subset of channels.
For any channel Λ /∈ F there exists an input-output game
in which the channel results in a lower payoff than any
channel in F . Moreover, the relative advantage is exactly
quantified by the convex weight of Λ with respect to F .

Note that this Observation can be directly generalised
to the level of sets of channels and sets of quantum in-
struments by considering the involved completely posit-
ive maps as a direct sum and having individual input-
output games for each block. More precisely, for a set
of instruments I := {Ii|x}i,x one gets an extra coeffi-
cient 1/|X | and the Choi states become direct sums of
the individual (subnormalised) ones, i.e.

⊕

i,x JIi|x
in

Eq. (14). The dual is simply a direct sum of the duals of
the form Eq. (15) and the witnesses get the decomposi-
tion Yi|x =

∑

a,b p(a, i, x)ωabix̺a|i,x ⊗ Mb|i,x. The payoff
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is then defined as the sum of all individual payoffs

P (I,G) :=
∑

a,b,i,x

p(a, i, x)ωabixtr[Ia|x(̺i|x,a)Mj|x,a].

(19)

Using Eq. (15) it is straightforward to show that

inf
G

P (I,G)

minΓ∈F P (Γ,G)
= 1 − WF (I). (20)

As examples of free sets F we mention entanglement
breaking channels, incompatibility breaking channels,
compatible channels, compatible instruments, random
unitaries, and finite rounds of LOCC protocols.

Conclusions.— We showed that the convex weight, a
natural measure for quantum resrouces, has all the desir-
able properties. Besides the basic requirements of faith-
fulness, convexity, and monotonicity, the convex weight
also exactly captures the relative advantage of a quantum
resource in an exclusion (or anti-distinguishability) task.
This correspondance is fully general and can be applied in
principle to any type of quantum resource. As examples
we have discussed the cases of state assemblages, sets of
POVMs and sets of transformations.

Moreover, these ideas could be directly applied to ex-
periments (similarly to those of Refs [23, 24]), as the ex-
clusion task requires only control of the input state and
the output measurements.
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where this denotes the optimal solutions to the optimisa-
tion problem in Eq. (1), i.e., W(D) = ω and W(E) = ν.
We define new variables by

µ = pω + (1 − p)ν (A.23)

MF =
p(1 − ω)DF + (1 − p)(1 − ν)EF

1 − µ
(A.24)

M̃ =
pωD̃ + (1 − p)νẼ

µ
(A.25)

This allows us to write the mixture pD+(1−p)E = (1−
µ)MF +µM̃ . The weight of the mixture W(pD+(1−p)E),
is given by an optimal triplet (µ̃, NF , Ñ) for which

pD + (1 − p)E = (1 − µ̃)NF + µ̃Ñ . (A.26)

From the optimality of µ̃ we can conclude that µ̃ ≤ µ
and thus W(pD + (1 − p)E) ≤ pW(D) + (1 − p)W(E).

Convex weight for transformations— Here we provide
the technical details needed for the derivation of the con-
vex weight in the case of transformations, with special
attention being given to channels.

Consider a pair of Hilbert spaces H,K—with their
respective spaces L(H),L(K) of operators—and the set
T (H,K) of all transformations, i.e., completely positive
trace-non-increasing maps, I : L(H) → L(K). In the
case that a given transformation is trace-preserving, we
refer to it as a channel and denote it by Λ; the set C(H,K)
of all channels from L(H) to L(K) is a strict subset of
T (H,K). It is important to note for our purposes that
T (H,K) is convex. For a given channel I ∈ T (H,K)
we define the Choi matrix JI ∈ L(H ⊗ K) via JI =
(id ⊗ I) |ψ+〉〈ψ+|, where |ψ+〉 = 1/

√
d

∑

i |ii〉 ∈ H ⊗ H
and d = dim(H). In the case that we are dealing with
a channel Λ the Choi matrix JΛ is both positive and of
unit trace (for a transformation it is just positive), hence
it is a state on H ⊗ K known as the Choi state of Λ. We
may retrieve the original transformation from the Choi
matrix via

I(ρ) = d trH

[

(ρT ⊗ 11K)JI

]

, (A.27)

where trH [·] denotes the partial trace over H and the
T superscript denotes transposition with respect to the
computational basis. This corresponds to an inverse of
the map I 7→ JI , and hence the map is an isomorphism.

We denote by F ⊂ C(H,K) the set of free channels,
which are defined to be the channels satisfying R(Λ) = 0
for some resource measure R : C(H,K) → R. The free
set varies depending on the intended resource—with ex-
amples being entanglement breaking, unitary and LOCC
channels—though the most important point from our per-
spective is that such sets are themselves convex. We de-
note by CJF

= {tJΓ|t ≥ 0,Γ ∈ F} the cone spanned by
the image of the set F under the Choi isomorphism.

For a given free set F , the convex weight WF of a
channel is the largest degree to which that channel can

be seen as an element of F . More explicitly, it is given
by

WF (Λ) = min λ

s.t. : Λ = (1 − λ)Γ + λΛ̃,

Γ ∈ F, Λ̃ ∈ C(H,K).

(A.28)

If we apply the Choi isomoprhism, then Equation (A.28)
can be rewritten in terms of the corresponding Choi
states:

WF (Λ) = min λ

s.t. : JΛ = (1 − λ)JΓ + λJΛ̃,

JΓ ∈ JF , Λ̃ ∈ C(H,K).

(A.29)

We wish to remove JΛ̃, and so we rearrange to JΛ̃ =
1
λ(JΛ − JΓ̂), where JΓ̂ = (1 − λ)JΓ = J(1−λ)Γ. The re-
strictions on the convex weight are now that JΛ̃ must
be positive, corresponding to the equivalent condition of
complete positivity of Λ̃, and that JΓ̂ ∈ CJF

. Noting that
1 − λ is a nonnegative quantity, and that 1 −λ = tr

[

JΛ̂

]

,
we arrive at the desired form of the convex weight for the
case of channels:

1 − WF (Λ) = max tr
[

JΓ̂

]

s.t. : JΛ − JΓ̂ ≥ 0, JΓ̂ ∈ CJF
.

Finding the convex components of a POVM and bound-

ing the convex weight.— To give an analytical method for
finding bounds on the convex weight, we present a char-
acterisation of all POVMs together with the respective
weight that can appear in a convex decomposition of a
given POVM. The technique is based on the minimal
Naimark dilation and although we present it only for the
discrete case, we note that the continuous case can be
treated in a similar manner by using the techniques in
Ref. [27, Theorem 1].

We begin by recalling the a characterisation of non-
normalised positive operator measures that are upper
bounded by a POVM [28, Lemma 1]. For this purpose,
we fix a POVM M with the input sigma-algebra Σ and
let

(

H⊕, J, P
)

be its minimal (diagonal) Naimark dilation.
Especially, J∗J = 11H. We let D(H⊕) denote the algebra
of (bounded) operators commuting with the projections
PX for all X ∈ Σ. Let P J = JJ∗ be the (minimal)
Naimark projection from H⊕ onto the (closed) subspace
P JH⊕ of H⊕; we have H ∼= P J H⊕.

Lemma 1. Let N be a (possibly non-normalized) posit-
ive operator measure. Then NX ≤ MX for all X ∈ Σ
if and only if there exists a (unique) E ∈ D(H⊕),
0 ≤ E ≤ 11H⊕ , such that NX = J∗PXEJ for all X ∈ Σ.

As a direct consequence we get can write for any
POVM M1 that is in a convex decomposition of M , i.e.
MX = λMX|1 +(1−λ)MX|2 for all X ∈ Σ with λ ∈ (0, 1],
the following result.
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Theorem 1. There exists a unique E1 ∈ D(H⊕) with
0 ≤ E1 ≤ λ−111H⊕ and J∗E1J = 11H such that MX|1 =
J∗PXE1J for all X ∈ Σ.

Motivated by the theorem we define a mapping T :
D+

P J (H⊕) → Comp(M) by T (E)X = J∗PXEJ , where

D+
P J (H⊕) := {E ∈ D(H⊕) |E ≥ 0, P JEP J = P J}

(A.30)

and Comp(M) consists of POVMs M1 for which there
exists another POVM M2 and a weight λ ∈ (0, 1] such
that MX = λMX|1 + (1 − λ)MX|2 for all X ∈ Σ; we
say that M1 is a component of M with the weight λ.
Note that the condition P JEP J = P J is equivalent to
J∗EJ = 11H and that for all E ∈ D+

P J (H⊕) one has

‖E‖−1 ≤ 1. Hence, for any E ∈ D+
P J (H⊕) one can take

a λ such that E ≤ λ−111H⊕ and write

MX = λT [E]X + (1 − λ)QX , (A.31)

where QX := 1
1−λ

[

MX − λT [E]X
]

clearly normalised to
identity and is seen to be positive by writing M using
the minimal dilation.

We are ready to state the following Corollary.

Corollary 1. Any number λ ∈ (0, 1] is a weight of a
component M1 if and only if λ ≤ ‖E1‖−1. Moreover, M
is extreme if and only if D+

P J (H⊕) = {11H⊕}.

As an example of the above Corollary we take the
case where the free set F consists of trivial POVMs, i.e.
POVMs of the form Oi = p(i)11 with {p(i)}i being a
probability distribution. It is straight-forward to verify
that a minimal dilation of a discrete POVM M can be
given through the isometry J =

∑

i,k |eik〉〈dik|, where
{|eik〉}ik is an orthonormal basis of the dilation space
H⊕ =

⊕

i Hi, Hi = span{eik}, and Mi =
∑

k |dik〉〈dik|
is the spectral decomposition of Mi with orthogonal vec-
tors |dik〉 6= 0 (the eigenvalues are λik = ‖dik‖2).

In order to bound the convex weight of M with respect
to the set F we take a POVM O ∈ F and write it using
the above minimal dilation as

Oi =
∑

kl

〈eil|Eieik〉|dil〉〈dik| (A.32)

where Ei ∈ L(Hi), Ei ≥ 0. Solving the matrix elements
gives

〈eil|Eieik〉 =
p(i)

λik
δkl, (A.33)

where {λik}k are the eigenvalues of the POVM element
Mi. Now the operator E =

∑

Ei has the norm ‖E‖ =
supik{p(i)λ−1

ik }. Hence, any point from the free set gives
an upper bound on the convex weight. To see this, we
note that supik{p(i)λ−1

ik } = supi{p(i)λ−1
min(Mi)}, where

λmin(Mi) refers to the smallest eigenvalue. The optim-
isation over the free set corresponds to optimising over

the distributions {p(i)}. It is easy to check that for a
distribution that maximises the weight of a trivial com-
ponent, i.e. minimises supi{p(i)λ−1

min(Mi)}, one needs to

have p(i)λ−1
min(Mi) = p(j)λ−1

min(Mj) for all i, j. Namely,

were this not the case for an optimal distribution, one
could define another distribution that replaces the p(i)
and p(j) that give the highest and the second highest

value of p(i)λ−1
min(Mi) with p̃(i) = p̃(j) := p(i)+p(j)

2 . Hence,

the optimal distribution is p(i) = λmin(Mi)/
∑

j λmin(Mj)

the trivial weight is simply 1 −WF (M) =
∑

j λmin(Mj).
Finding the convex components of an instrument and

bounding the convex weight.— More generally, one can
approach the convex weight of instruments and, hence,
state ensembles in a similar manner [27, Example 2]. A
minimal Stinespring dilation of a (Heisenberg picture) in-

strument {I†
i } is given by an isometry J and a normalized

projection valued measure {Pi} as

I†
i (B) = J†(B ⊗ Pi)J (A.34)

where B is a (bounded) operator of the output space.

Recall that tr
[

I†
i (B)ρ

]

= tr[BIi(ρ)] where ρ is an initial

state. It is straight-forward to check, using Lemma 1 of
Ref. [29], that another instrument Ĩ†

i is a component of

I†
i with weight λ if and only if there exists a (unique)

positive operator E on the dilation space or ancilla H⊕,
commuting with {Pi}, such that

Ĩ†
i (B) = J†(B ⊗ EPi)J (A.35)

with J†(11 ⊗ E)J = 11 and λ ≤ ‖E‖−1. Note that
E =

∑

i Ei where Ei ≥ 0 lives in the support space of Pi.
For example, consider a state ensemble {p(i)̺i}. Now
the input space is trivial (i.e. C, L(C) ∼= C), Ii = p(i)̺i,

and I†
i (B) = tr[p(i)̺iB] = 〈ψ|(B ⊗ Pi)ψ〉 where ψ is a

purification of the total state
∑

i p(i)̺i = trH⊕ [|ψ〉〈ψ|]
(since J = |ψ〉〈1|) and {Pi} constitutes a sharp resolu-
tion of the identity of the ancilla. Hence, the component
Ĩ†

i (B) = 〈ψE |(B ⊗ Pi)ψ
E〉, where ψE = (11 ⊗ E1/2)ψ is

a unit vector, so that Ĩi = p̃(i)˜̺i = trH⊕

[

|ψE
i 〉〈ψE

i |
]

with ψE
i = (11 ⊗ Pi)ψ

E = (11 ⊗ E
1/2
i )ψ. Especially,

〈ψE
i |ψE

j 〉 = p̃(i)δij and p̃(i) = ‖(11 ⊗ E
1/2
i )ψ‖2 gives the

necessary and sufficient conditions for the positive oper-

ators Ei:
∑

i ‖(11 ⊗ E
1/2
i )ψ‖2 = 〈ψ|(11 ⊗ E)ψ〉 = 1. It is

straight-forward to check that

Ei =
p̃(i)

p(i)
̺

−1/2
i ˜̺i̺

−1/2
i . (A.36)

As a special free set, one can consider ensembles that
carry no information about the sent state, i.e. p̃(i)˜̺i =
1
n ˜̺. The corresponding convex weight corresponds to
finding an optimal measurement for the task of exclusion.
Hence, instead of searching for collections of positive op-
erators (i.e. POVMs) that optimise the guessing probab-
ility, one can search for a single state that minimises the
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quantity maxi ‖Ei‖. We note that the task of minimum-
error discrimination can be similarly be mapped into the
search of a single state instead of a POVM, but in this
case it is not clear how to find analytical bounds for the
corresponding measure of generalised robustness.


