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Abstract: In light of rising antimicrobial resistance and a decreasing number of antibiotics with novel
modes of action, it is of utmost importance to accelerate development of novel treatment options.
One aspect of acceleration is to understand pharmacokinetics (PK) and pharmacodynamics (PD) of
drugs and to assess the probability of target attainment (PTA). Several in vitro and in vivo methods
are deployed to determine these parameters, such as time-kill-curves, hollow-fiber infection models or
animal models. However, to date the use of in silico methods to predict PK/PD and PTA is increasing.
Since there is not just one way to perform the in silico analysis, we embarked on reviewing for which
indications and how PK and PK/PD models as well as PTA analysis has been used to contribute
to the understanding of the PK and PD of a drug. Therefore, we examined four recent examples in
more detail, namely ceftazidime-avibactam, omadacycline, gepotidacin and zoliflodacin as well as
cefiderocol. Whereas the first two compound classes mainly relied on the ‘classical’ development path
and PK/PD was only deployed after approval, cefiderocol highly profited from in silico techniques
that led to its approval. Finally, this review shall highlight current developments and possibilities to
accelerate drug development, especially for anti-infectives.

Keywords: target attainment; PK/PD; modelling; cefiderocol; ceftazidime; avibactam; gepotidacin;
zoliflodacin; omadacycline

1. Introduction

The COVID-19 pandemic, which is currently moving towards the endemic phase
in some parts of the world, has received great attention since 2020. However, out of the
spotlight of COVID-19, the ‘silent pandemic’ of antimicrobial resistance (AMR) is still
on-going and growing [1]. Back in 2014, the World Health Organization (WHO) already
tried to put the spotlight on potential pathogens and defined a pathogen priority list [2].
Among the pathogens listed were the so-called ESKAPE pathogens [3], the Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterobacter species [4].

The research landscape has remained relatively unchanged despite the priority list
being in place for nearly a decade. The reason for this is that the majority of antibiotic
research is still being conducted by small and medium-sized companies and in academia [5].
As a result, the outlook for human health appears grim, with recent estimates showing a
likelihood of over 10 million deaths due to AMR by 2050 [6–8]. Although the number of
novel antimicrobials has increased recently, most of these novel drugs do not harbor novel
modes of action [5,9,10]. The persistent lack of innovation has led to fewer newly approved
antibiotics in the pipeline than cancer drugs [11]. Certainly, incentives have to be developed
to foster and enable development in this area [12,13]. Moreover, a recent report by the FDA
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has highlighted a number of key areas, including speeding up the development of new
FDA-regulated products, reducing costs associated with assessing them, and improving
health outcomes [14]. Thus, novel approaches will facilitate a faster transition from bench
to bedside.

Once drugs enter the preclinical stage and, later, the clinical stage, pharmacokinetic
(PK) and pharmacodynamic (PD) effects are investigated. However, this process is time
consuming and expensive, in particular when entering clinical trials [5,12]. Therefore, it is
of the utmost importance to understand PK/PD correlations and to estimate the probability
of target attainment (PTA) in relevant compartments early in development. Traditionally,
PK/PD considerations were based on the assumption that plasma concentrations are the
best predictors of efficacy. This is certainly true and relevant in case of, e.g., bloodstream
infections, but might have limitations for urinary tract infections, soft-tissue infections,
or lung infections [15–17]. Recently, authorities have also attempted to demonstrate rele-
vant concentrations in target tissues. Whereas the measurement of homogenized tissue
concentrations neglects the compartmentalization of the tissue itself [18], approaches such
as microdialysis or the determination of epithelial lining fluid (ELF) concentrations are
more appropriate, but still have some restrictions, as the sampling of ELF in humans can
be technically challenging [17,19–25]. The next step is to determine efficacy, i.e., the PD
effect. Typically, this is performed using in vitro models, such as the minimal inhibitory
concentration (MIC) [26], compartmental models [27], the determination of intracellularly
active bacteria [28,29], time–kill curves in and without the presence of serum, and/or the
hollow fiber infection model (HFIM) [30,31]; otherwise, it is performed using in vivo mod-
els, such as the neutropenic thigh, lung, sepsis, and urinary tract infection models [32–38].
These model systems serve to determine the so-called PK/PD index, a measure of efficacy
depending on a certain PK parameter that is translatable from in vitro/preclinical species to
humans. Most antibiotics fall into one of the three most clearly established categories: such
as f Cmax/MIC, f AUC/MIC, or f T>MIC [39]. Novel methods are needed to determine these
PK/PD indices, in order to accelerate the process of demonstrating the target attainment
of a drug. These novel methods can consist of deploying in silico methods to support or
replace classical PK/PD determinations as performed with the currently available in vitro
and in vivo systems [40–45].

The distinctiveness of the novel in silico methods lies in their diverse construction
methods; this makes them a powerful tool capable of predicting target achievement.
There are several options for constructing PK and PK/PD models [46,47]. Depending
on the requirements and input data, rather simplistic compartmental models or more
complex models, such as physiologically-based pharmacokinetic (PBPK) models, can be
constructed [45,48–52]. The latter kind relies on the incorporation of physiological parame-
ters and an organ-based substructure including sub-compartments. This enables the use of
PBPK models inter alia for cross-species extrapolation and age-specific predictions of PK
behavior [47,53]. Both types of model can then be linked to PD data, enabling to predict the
probability of target attainment (PTA), i.e., a measure of how realistic a PD effect will be
attained in vivo [54–57].

With this review, we aim to show how target attainment has been demonstrated by
drugs that have been recently (less than five years) approved or drugs that are currently
under late-stage clinical investigation. We selected drugs with different modes of action to
highlight how PK/PD correlations and target attainment were determined in preclinical and
clinical studies using different modelling techniques; we also investigated the lessons that
can be learned for the development of novel anti-infectives. Our search criteria included the
compound name, such as ‘tigecycline, omadacycline, ceftazidime, avibactam, gepotidacin,
zoliflodacin and cefiderocol’, and the combined search terms ‘PK/PD’, ‘PK model’, ‘PK
modeling’, ‘PK modelling’, and ‘PTA’.
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2. Development of Ceftazidime/Avibactam: Using Modelling to Determine the
PK/PD Target

Ceftazidime (CAZ) is a cephalosporin that is active against P. aeruginosa; together
with avibactam (AVI), a non-ß-lactam ß-lactamase-inhibitor inhibiting enzymes belong-
ing to Ambler classes A and C and selected class D beta-lactamases [58], it extends the
spectrum against Enterobacteriaceae and several multi-drug resistant (MDR) Pseudomonas iso-
lates [59–61]. In the last five years, novel beta-lactamase inhibitors, such as taniborbactam
combined with a cephalosporin [62,63], as well as reports on the resistance of ceftazidime-
avibactam (CAZ-AVI), have emerged [64,65]; however, we would like to highlight how the
PK/PD targets were determined for AVI alone and how target attainment was achieved
for the combination using PK/PD modelling. CAZ-AVI has been studied extensively in
preclinical in vitro and in vivo models, as summarized elsewhere [66]. In the following
section, we want to highlight some PK/PD modelling studies that contribute to a better
understanding and prediction of PK/PD targets as well as PTA. A non-exhaustive list of
those studies can be found in Table 1.

Determining a PK/PD target for a beta-lactamase inhibitor, such as AVI, can be quite
challenging, as it does not harbor intrinsic bacterial activity. Thus, several studies deploy
PK/PD modelling based on in vitro data and/or on in vivo data. A study by Sy et al.
investigated the PK/PD correlations of CAZ-AVI by developing a mathematical model
incorporating the bacterial killing and degradation of CAZ, in the case of absence of AVI
and in the case of restoration of CAZ activity in presence of AVI [67]. This semi-mechanistic
model was constructed for and reflected the PK/PD relationships of three different MDR
P. aeruginosa isolates. Although only based on time–kill kinetic studies, i.e., studies under
static conditions, it correctly predicted results from in vitro HFIM, i.e., studies under dy-
namic conditions, for several strains, similarly to previously published models [54,55,68,69].
Moreover, this model also correctly predicted log10 cfu reductions in neutropenic thigh
and lung infection models conducted with more than 25 strains. This showed a successful
validation of this model. Additionally, it demonstrated the power of properly validated
PK/PD models: having a PK/PD model in place to predict PK/PD relationships for
different strains in in vivo standard pharmacodynamics models helps to reduce animal
experimentation and is completely in line with 3R. Impressively, the model produced by
Sy and colleagues also predicted the log10 cfu change in patients for doses of 2 g CAZ
and 0.5 g AVI as a 2 h infusion correctly [67]. Using this model, the same group was able
to predict the PK/PD index for AVI as f T>MIC [70] as it had previously been observed
from experimental data [71,72]. Similarly to the predictions from Sy et al. [67,70], Kristof-
ferson et al. constructed a semi-mechanistic model for Enterobacteriaceae, incorporating
the scenarios and interplays of an actively growing susceptible bacterial population, a
non-growing drug-insusceptible resting state, and a pre-existing mutant population [73]. In
contrast to the models developed by Sy et al., this model incorporated a drug effect for AVI
that had been observed in the initial stages of the time–kill curves. Thus, it described the
effects of CAZ and AVI alone, as well as the ‘enhancer effect’ of AVI on CAZ. Again using
simulated human dosing, the utility of the model was demonstrated. This suggests that, if
properly validated, PK/PD models could also serve as an option for conducting clinical
trials virtually in future, as observed in fields other than anti-infective research [74–77];
consequently, they may accelerate drug development.

Table 1. PK/PD models used for ceftazidime-avibactam.

Type of Model Purpose Reference

Compartmental PK/PD model Prediction of PTA in vivo and in humans for
P. aeruginosa and Enterobacteriaceae [67,69,70,73]

Compartmental population PK/PD model Estimation of PTA in adults for
different indications [78–84]
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Nevertheless, there is another dimension to consider when using PK/PD models for
reaching target attainment, especially in clinical practice. Whereas the aforementioned
PK/PD models offer a perspective on which doses are needed to achieve a PD effect in a
‘standard’ human being, for clinical PK/PD models, covariates are explored, reflecting the
characteristics of different populations, such as pediatric populations or populations in
certain disease states, as frequently observed in infectious diseases. For this purpose, popu-
lation PK/PD models were developed (PopPK/PD). In the PopPK/PD model constructed
and validated by Li et al., the model aimed to assess certain factors, known as covariates,
that influence the success of therapy, i.e., to calculate the PTA [80]. They constructed a
two-compartment PopPK/PD model for adult populations in the indications of complicated
intra-abdominal (cIAI) and complicated urinary tract infections (cUTI). They used nonlinear
mixed-effects modelling (NONMEM) for healthy populations and patients from cIAI and
cUTI phase III clinical trials and set the joint target for CAZ as 50% f T > 8 mg/L and for
AVI as 50% f T > 1 mg/L, as described previously [72]. As both CAZ and AVI are mainly
excreted via the kidneys, creatinine clearance was found to be one of the most predominant
covariates, warranting dose adjustments in instances of creatinine clearance values lower
than 50 mL/min. Thus, this study highlighted that, across indications (not only limited to
cIAI and cUTI, but also including nosocomial pneumonia), the MIC breakpoint of 8 mg/L
was sufficient to reach a PTA > 90% against Enterobacteriaceae and P.aeruginosa. Moreover,
it gave guidance for dose adjustments in the case of renal insufficiency [80]. In addition
to this study in adults, Franzese et al. addressed the question of PTA in pediatric patients
older than three months [84]. They calculated the PTA based on the dosing regimens used
in pediatric populations in previous clinical trials [85,86] and proved that the doses were
sufficient to reach PTA in pediatric populations with normal renal function or mild renal
impairment. Thus, the modelling results supported the current dosing scheme in clinical
practice [84].

Another PopPK/PD model aimed to describe ELF concentrations, as ELF is the target
compartment for pneumonia. Modelling ELF concentrations is useful, as the sampling
of ELF concentrations is technically challenging. Therefore, Dimelow and colleagues con-
structed two- and three-compartment PK models to fit plasma concentration data and to
be able to compare ELF levels to plasma PK/PD targets [79]. The study used ELF data
from a previous phase I study [87] to build the models. It showed that the ELF:plasma
ratios for CAZ and AVI were higher, especially at lower plasma concentrations. Thus, the
study concluded that the ELF penetration was greater than that calculated previously using
non-compartmental AUC methods. It demonstrated that, in instances of nonlinear drug
penetration into the lung, as has been observed for CAZ and AVI, compartmental PopPK
models can be useful and have broad applicability for drugs penetrating the lungs [79].

In conclusion, PK/PD modelling for CAZ-AVI did prove to be helpful in preclinical
as well as clinical settings. To date, many of the studies involving CAZ-AVI have shown
that, especially in the clinical context, modelling is of utmost importance and can be a tool
for reducing the number of clinical trials needed to explore dosage regimens for specific
populations and indications [78,88].

3. The Case of Omadacycline: PK/PD Modelling Data Still Scarce

Omadacycline (OMC) is an aminomethylcycline antibiotic, first approved in 2018
by the United States Food and Drug Administration (FDA). It belongs to the group of
third-generation tetracyclines and, in contrast to tigecycline or eravacycline, it allows for
intravenous as well as oral step-down therapy [89]. Like other tetracyclines, it binds to the
16S rRNA component of the 30S subunit and effectively blocks the aminoacyl-tRNA to the
acceptor side of the ribosome in a reversible manner [90]. It has been demonstrated that,
compared to other tetracyclines, OMC retains its activity in the instance of resistance mech-
anisms involving efflux pumps or ribosomal protection proteins [91,92]. However, recent
studies suggest that cross-resistance might occur between OMC and, e.g., tigecycline [93].
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In contrast to CAZ-AVI, there are scarce PK/PD modelling data for OMC to support
current dosing regimens: only two PopPK models have been published so far [94,95]. This
might be attributed to the fact that OMC was only approved recently (<five years).

A study by Lakota et al. used a three-compartment model with first-order absorp-
tion and a transit compartment accounting for an absorption delay as a result of peroral
administration and first-order elimination, as well as a three-compartment model with
zero-order intravenous input; they gave the best fits upon validation with healthy sub-
jects as well as with patients enrolled in phase 1b and phase 3 studies [94]. To enable the
study of ELF levels, ELF concentrations were modelled as a sub-compartment of the first
peripheral compartment. In that study, the model was constructed in such a way that OMC
was distributed between the central (i.e., plasma) compartment and the first peripheral
compartment. Moreover, ELF concentrations were estimated as a fraction of concentration
in this first peripheral compartment. Using phase 3 patient data for external validation,
population and individual plasma exposures were effectively captured. The timing of food
consumption was considered an important factor, relative to dosing, for bioavailability.
In the final model, this was parameterized as a function of the absolute time of food con-
sumption relative to dosing by deploying a Hill-type function. Moreover, the assessment
of patient-specific covariates showed the effect of sex was not of high importance, as Cmax
decreased only by 9%, Cmin increased by 25%, and CL decreased by ~16% for females
relative to males. In summary, the PopPK model described by Lakota et al. can serve
as a good basis and starting point for subsequent PK/PD and PK/PD target attainment
analysis [94].

It was surprising that only a few PK/PD models were available for OMC. A glance at
the other third-generation tetracyclines shows that, for tigecycline, for example, only a few
PK/PD modelling studies have been published to date [96–98]. As adjusted doses of tige-
cycline have been suggested for patients with severe hepatic functions [98], the only factor
found in PK models for OMC affecting PK was the timing of food consumption. Future
research might elucidate whether there are further covariates that should be considered for
therapy with OMC, especially in critically ill patients.

4. Gepotidacin and Zoliflodacin: Novel Bacterial Topoisomerase II Inhibitors under
Clinical Development

Zoliflodacin (ZOL) was mainly developed to treat infections caused by Neisseria
gonorrhoeae [99,100], although it is also active against S. aureus [99]. Gepotidacin (GEP)
recently proved to be effective against S. aureus, Streptococcus pneumoniae and Escherichia
coli [101–103], as well as a plethora of Gram-positive and Gram-negative anaerobes [104].
Additionally, both ZOL and GEP harbor novel chemical scaffolds as spiropyrimidinetriones
and triazaacenaphthylenes, respectively. Due to their unique mechanism of action, ZOL and
GEP have been assigned a new drug category, as “Novel Bacterial Topoisomerase Inhibitors”
(NBTI). They are currently under phase 3 clinical investigation for uncomplicated gonorrhea
(ZOL) and uncomplicated UTIs (GEP) [100,105].

Compared to fluoroquinolones that induce double-stranded DNA breaks, GEP induces
breaks in single-stranded DNA [106], whereas ZOL binds to the GyrB subunit and inhibits
DNA synthesis by the accumulation of double-stranded cleavages via the stabilization of
the cleaved DNA [107]. Thus, both GEP and ZOL exhibit modes of action distinct from
those of conventional fluoroquinolones, such as moxifloxacin, and thereby open up new
areas for further investigation. Interestingly, the preclinical data indicate that GEP might
not exert the same side-effects as conventional fluoroquinolones with respect to negative
effects on skeletal development [108].

In contrast to OMC, several studies deployed PK/PD modelling. A list of those
studies can be found in Table 2. However, in the following section, the techniques or
specific outcomes of selected studies will be highlighted.
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Table 2. PK and PK/PD models used for gepotidacin and zoliflodacin.

Type of Model Purpose Reference

PBPK Prediction of GEP dosages in renally impaired patients [109]
PBPK and PopPK Prediction of GEP dose needed to treat pediatrics in case of plaque [110]

PopPK Prediction of dose and dose selection for GEP for a phase 3 study of the
treatment of uncomplicated urogenital gonorrhea [111]

Compartmental PK/PD model Prediction of efficacious dose for ZOL that also suppresses resistance selection [112,113]

In a recent study that aimed to analyze the PK/PD relationships of ZOL in cases of
suboptimal dosing and (partially) resistant strains of N. gonorrhoeae, a PopPK/PD model
with three outputs, i.e., the concentration of ZOL, the total N. gonorrhoeae burden, and the
burden of N. gonorrhoeae with lower susceptibility/resistance to ZOL, was developed [113].
Microbiological and in vitro PK/PD data for the N. gonorrhoeae strains upon treatment with
different concentrations of ZOL were determined using an HFIM. Based on these in vitro
data, the study aimed to predict the dosages to be used for therapy in humans that would
enable eradication in a clinical setting. The results revealed that a single oral dose of 3 or
4 g eradicated a ZOL-susceptible N. gonorrhoeae strain and suppressed the amplification
of selected mutants with increased ZOL MIC and gyrB resistance mutations. In contrast,
0.5, 1, and 2 g doses failed to eradicate it, resulting in selection for GyrB D429N-resistant
populations. Moreover, the simulations revealed that ZOL double mutants (GyrB S467N
plus the D429N substitution) might not be effectively treated, even with oral doses of 2–6 or
4–8 g q12h. Moreover, pre-existing ZOL-target GyrB S467N substitution was predisposed
to develop resistance and the subsequent need for treatment with ZOL doses > 3 g. In
conclusion, this study emphasized that rapid point-of-care testing might be necessary to
detect possible gyrB mutations, as these have a high influence on the choice of ZOL dosing
to assure successful therapy [113]. In a similar manner, Jacobsson and colleagues studied
different WHO reference strains of N. gonorrhoeae in HFIM, using the same PopPK/PD
model with three outputs [112]. Using this modelling, they were able to determine that the
activity of ZOL was mainly concentration- rather than time-dependent. This finding was of
particular importance for the design of subsequent clinical trials to enable the optimization
of dosing compared to previous trials [114]. Moreover, they were able to demonstrate
that the dosing frequency became less important for doses > 2 g of ZOL, as the kill rate N.
gonorrhoeae approached a maximum and, consequently, supported the use of a single oral
dose of 3 g of ZOL [112].

Likewise, several modelling studies have been conducted for GEP. Bulik and col-
leagues first conducted dose fractionation studies to determine the PK/PD index of GEP
to inform clinical trials [39,115]. For GEP, f AUC/MIC best described the correlation of PK
and PD. For the treatment of acute bacterial skin and skin structure infection (ABSSSI),
a target f AUC/MIC ratio of 13.4 for S. aureus and of 14 for S. pneumoniae was identified;
this was then implemented for the design of clinical trials [116]. Moreover, the study also
assessed a post-antibiotic effect (PAE). The clinical utility of a PAE determined in vivo has
been demonstrated previously [117]. Bulik and colleagues observed a PAE ranging from
3 to 12.5 h for S. aureus and from 5.25 to ~8.5 h for S. pneumoniae [115], which was compara-
ble to fluoroquinolones [118]. As this effect was not dose dependent, the authors concluded
that, in the case of GEP, the PAE was a predictable characteristic for informing decisions
regarding clinical dosing intervals [115].

Hossain et al. developed a PBPK model to evaluate PK after the administration
of different doses of GEP in populations without and with moderate or severe renal
impairment [109]. Thereby, moderate renal impairment was defined with a GFR of 30 to
60 mL/min and severe renal impairment with a GFR of 15 to <30 mL/min. The rationale
for choosing a PBPK model was that the researchers wanted to simulate GEP concentrations
not only in plasma, but also in target compartments such as urine. Moreover, they also
simulated concentrations in saliva, as the sampling of saliva might be more feasible when
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invasive blood sampling is not possible, e.g., in pediatrics. The PBPK model was verified
with virtual healthy white and Japanese populations against available clinical PK data.
They demonstrated that the Cmax values increased while clearance decreased, with a higher
severity degree of renal impairment. Saliva concentrations were linear to the observed
plasma concentrations. However, the geometric mean AUC0-t was elevated to a higher
extent than plasma in all patient groups with renal impairment. Hemodialysis was not able
to remove significant amounts of the drug from the system. Urine drug levels remained
high, although a decrease was observed with decreasing renal function. The authors
highlighted this fact as the urine concentrations were still in the target range for efficacy
and, thus, important for the treatment of urinary tract infections. In summary, this study
demonstrated the utility of PBPK modelling for GEP as it predicted not only plasma and
urine concentrations, but also saliva concentrations with potential utility for sampling.

In a similar manner, Nguyen et al. aimed to assess whether a PopPK or a PBPK
model was best suited for predicting PK in pediatrics [110]. Both the PopPK and PBPK
models were based on previously published models developed for adult populations.
The PBPK model developed for adults was then used with similar parameters, but with
pediatric physiology, including enzyme maturation. In contrast, the PopPK model was
built using growth charts and tables for children that provided data for pediatrics aged
from 2 to 20 years with the corresponding median body weights. Moreover, a second
dataset from ModelRisk® was used, accounting for the age and weight span for pediatrics
from 0.01 to 12 years of age. Additionally, allometric exponents were used to account for
size-related changes to clearance, as well as a maturation function accounting for size-
and age-related changes to total clearance. Both models, the PopPK as well as the PBPK
model, provided good predictions for GEP in pediatric populations. However, the authors
concluded that the performance of the PopPK model in children aged three months and
younger was suboptimal as a result of differences in the maturation characterization of the
drug-metabolizing enzymes involved in clearance, which are unrelated to body weight in
adults. Thus, this study showed the utility of PBPK modelling, as it might better account
for special populations and also for disease populations because it has a mechanistic
understanding of drug disposition.

In summary, modelling studies for ZOL and GEP were used to describe PK rather
than to conduct PTA analysis. In contrast to, e.g. OMC, PBPK models were also used to
better describe the distribution of drugs to different sub-compartments.

5. New Routes with Cefiderocol: From In Silico Studies to Market

In the face of rising carbapenem resistance [7], cefiderocol (CEF), a siderophore-
conjugated cephalosporin, has recently emerged as a novel antibiotic with an unprece-
dented mode of action [119]. CEF was granted FDA approval in November 2019 and is used
to treat cUTIs [120]. Unlike the structurally similar antibiotics ceftazidime and cefepime,
CEF carries a chlorocatechol group on the end of the C-3 side chain, conferring siderophore
activity [121–123]. With its siderophore properties [124,125], the drug enters the periplasm
of bacteria, as it relies on active iron transport and maintains stability against ß-lactamases,
thereby killing bacteria in a more efficient way [126,127].

Due to the fact that CEF was developed under the FDA streamline development
program [128], which aims to minimize the number of clinical trials and instead relies
primarily on preclinical evaluations of antimicrobial effectiveness, it is pertinent to focus on
in silico strategies, such as PK/PD modelling. This section, therefore, outlines modelling
studies conducted with regard to CEF to illustrate the innovative strategies being employed;
we highlight their ability to help replenish the antibiotic pipeline in a more sustainable
fashion (Table 3).
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Table 3. PK/PD models used for cefiderocol.

Type of Model Purpose Reference

Compartmental PopPK/PD model Prediction for PTA in renally impaired patients and patients in different
disease states [129–131]

Compartmental PK Prediction of exposure in ELF; prediction of total and unbound
concentrations in critically ill patients [132,133]

Kawaguchi and colleagues performed a series of studies on CEF utilizing compart-
mental modeling [129–132,134], with the most recent study utilizing an intrapulmonary PK
model that adequately described the concentrations of the drug in ELF [132]. Data from
20 healthy subjects and 7 patients with pneumonia requiring mechanical ventilation were
used to develop the model. They showed that the PTA values for both 75% f T>MIC, ELF
and 100% f T >MIC, ELF were >90% against MICs ≤ 4 µg/mL in renally impaired patients
and ≥87.0% in patients with normal renal function. Moreover, the delayed absorption
and/or elimination of CEF in ELF was observed in patients with pneumonia but was not
seen in healthy subjects, showing a difference in distribution towards ELF which might be
attributed to the different physiological conditions in the lung, such as inflammation [25].
The authors concluded that the intrapulmonary PK modelling and PTA prediction were
useful tools to support dosing recommendations in nosocomial pneumonia.

In a similar manner, Kawaguchi et al. aimed to conduct PTA analysis for different
disease states, such as pneumonia, blood stream infection (BSI), sepsis, or cUTIs. Therefore,
they built a PopPK/PD model to evaluate the impact of potential covariates on PK [131].
The PopPK model was constructed as a three-compartment model which accounted inter
alia for the effects of creatinine clearance (CrCL), the effects of infection sites on total
clearance (CL), the effect of body weight on the volume of distributions in the central
and peripheral compartments, and albumin concentration. This more advanced PopPK
model was built based on previous PopPK models for dose adjustment based on renal
function [129] and on models evaluated with patient data from cUTI and acute uncom-
plicated pyelonephritis [130]. In this PopPK model, the estimated glomerular filtration
rate (eGFR) adjusted by body surface area (BSA), absolute eGFR, and CrCL was used to
calculate the plasma concentrations of CEF in PopPK [130]. Significant covariates in the
final model were identified as the disease status (with or without infection) and body
weight, although the effects of body weight were not considered to be clinically significant.
The constructed model was able to effectively describe the plasma concentrations. Clear
relationships between CL and all renal function markers were observed. Patients with
infection had a 26% higher CL than those without infection. Notably, the authors found
that CEF exposure in patients with infection was lower than in healthy subjects. However,
in all patients with test regimens (2 g q8h as standard), the f T>MIC values were higher than
75% (and, in most patients, 100%), suggesting sufficient exposure to CEF [130]. In the subse-
quent model, which included more disease states, such as BSI, pneumonia, and cUTI, they
showed that CrCL was the dominant covariate [131]. The CL in patients with pneumonia,
BSI, and cUTI was comparable to that of healthy subjects. Furthermore, they observed that
Cmax and AUC overlapped among infection sites and that they were similar in pneumonia
patients with and without mechanical ventilation. With respect to PK/PD relationships,
no clear correlation was found for any of the outcomes or the vital status, which might
be attributed to the fact that the %f T>MIC was 100% in most of the patients. Nevertheless,
they calculated the 75% f T>MIC, as well as the 100% f T>MIC, for the simulated patients with
different infection sites and renal functions. The PTA for 75% f T>MIC was shown to be
>95% against MICs < 4 µg/mL. This was independent of infection sites and renal function.
In contrast, a difference was observed for PTA for 100% f T>MIC: here, the PTA was >90%
against MICs < 4 µg/mL for all infection sites and renal function groups, except for normal
renal function in BSI. In conclusion, this model demonstrated that, even with augmented
renal clearance, PTA can be achieved with the recommended dosing regimens and adjusted
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regimens based on renal function in patients with pneumonia, BSI/sepsis, and cUTI caused
by Gram-negative pathogens.

In summary, extensive modelling studies have been performed for CEF using differ-
ent disease states and scenarios with respect to, e.g., the renal clearance. These studies
demonstrate the power of PK/PD modelling as it helped to minimize clinical testing and
to accelerate the development of CEF.

6. Discussion

We have discussed which specific models have been deployed for CAZ-AVI, OMC,
GEP, ZOL, and CEF, and how they contribute to a better understanding of PK and PTA.

For CAZ-AVI several models, compartmental as well as PopPK models were only
developed after approval; however, they still contribute to a better understanding of PK
and PD and of dosing. It was especially surprising and encouraging how well predictions
with respect to in vivo efficacy in animal models were made [69]. Moreover, in the case of
CAZ-AVI, the PK/PD models helped to explain PK/PD indices for AVI and to estimate the
dosages of AVI needed in combination with CAZ [73].

Surprisingly, published PK/PD modelling data for supporting dosing decisions and
PTA are very scarce for OMC as well as tigecycline. Only PopPK models have been used;
these require a fairly complex structure to capture all the characteristics of OMC after
different routes of administration [94]. It is possible that, for OMC, this can be attributed
to the fact that Lakota and colleagues only identified food consumption as an important
covariate, but identified none of the conventional covariates, such as liver or renal function.
Future studies for OMC might explain whether no other covariates influence PK.

In case of ZOL and GEP, compartmental, population and PBPK models were used. For
the indications envisaged for ZOL and GEP, PBPK models are of particular interest as they
enable researchers to model compound concentrations in target compartments and allow
for a more complex structure. As shown here, the PBPK model enabled the prediction
of saliva concentrations, which can be correlated with compound concentrations in other
fluids; they therefore serve as a non-technically challenging sampling alternative [109]. The
example of ZOL and GEP demonstrates that, dependent on the research question, either
PopPK or PBPK models or both can be suitable [110].

Finally, several PopPK models of CEF demonstrated the power of validated PK/PD
models. They served to predict PTA in different disease states and, adding slightly more
complexity, for different degrees of renal function [129–132]. Notably, they did not deploy
PBPK models, although this might have also enabled the prediction of compound concen-
trations in different target compartments, such as the lung or kidney. However, it seems
that compartmental population models sufficed for prediction, meaning that there was no
need for more complex models. The case of CEF demonstrates how modelling can help to
determine dosages for different disease states and alterations in physiological functions in
order to provide PTA and success of treatment.

7. Conclusions

In conclusion, recently approved drugs as well as drugs in the later stages of develop-
ment profit from PK/PD modelling, as it helps to elucidate PK, PK/PD, and which dose
is needed for each disease to achieve a high PTA. Out of the drugs with the four different
mechanisms of action presented in this review, CEF constitutes a prime example for accel-
erated development using PK/PD modelling, whereas the opposite seems to be true for
OMC, at least with respect to the published modelling data. Finally, PK/PD modelling
can help to reduce preclinical experimentation as well as clinical trials in the event that
virtual clinical trials are conducted. These techniques are already frequently deployed in
other disciplines, so that there is hope that they can also be used for the acceleration of
antibiotic development to bring novel treatment options to patients and, ultimately, to help
combat AMR.
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