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ABSTRACT

The ADHM formalism is adapted to self-dual multimonopoles for
arbitrary charge and arbitrary gauge group. Each configuration is
characterized by a solution of a certain ordinary non—linear differ-
ential equation, which has chances to be completely integrable. For
axially symmetric configurations it reduces to the integrable Toda
lattice equations. The construction of the potential requires the
solution of a further ordinary linear differential equation.

INTRODUCTION

The SU(4) supersymmetry (with arbitrary gauge group G) is the
only known non-trivial quantum field theory in 3+1 dimensions which
has good chances to be explicitly solvable'. In particular, there
are indications that the conformal invariance of this theory is not
broken by any anomalies. However, it may be broken spontaneously by
a non-zero expectation value of the scalar field, as supersymmetry
guarantees in certain directions of the field space a flat effective
potential. Simultanecusly, the gauge group G is broken down to a
subgroup K, which always contains an Abelian factor. With respect
to the latter, the theory contains magnetic monopoles.

These monopoles may be considered as excitations of the field
of a dual quantum field theory. Dynamically, they are expected to
behave exactly as a supersymmetry multiplet containing massive gauge
bosons®. More precisely, the dual theory should have the same form
as the original one, but with the dual gauge group G' and a corre-
sponding subgroup KV ¥,



To check these ideas, monopole solutions of the classical the-
ory should be helpful. For simplicity let us consider the case
where only one component ¢ of the six SU(4) components of the scalar
field has a non-zero value at infinity, which corresponds to a non-
zero vacuum expectation value in the quantum field theory. To ob-
tain static solutions we want to find the most general finite energy
solution of the equation

Bi = Di¢ » (1)

where the D; are covariant derivatives, and Bj is the corresponding
magnetic field. Of course, ¢ has to be in the adjoint representa-—
tion of G.

If one introduces a dummy space direction with coordinate x°,
the scalar field may be considered as the corresponding component
of the gauge potential. Then Eq. (1) takes the same form as the
self-duality equation for instantons

B. = E. . (2)

The ADHM construction yields the most general finite action
solution of this equation”. 1In a suitable gauge, the potentials
turn out to be algebraic.

THE ADHM CONSTRUCTION FOR MULTIMONGPOLES

The condition of finite energy and x’~independence is somewhat
more difficult to handle than the condition of finite action,
Nevertheless we shall see that the ADHM construction can be adapted
to our case, though its algebraic character becomes somewhat less
obvious.

If one complexifies the R* to C", self-dual fields yield an
analytic vector bundle over the space CP®-CP! of anti-self-dual
planes in C*. The points in a fibre are functions X from the cor-
responding plane to the fundamental representation of G which are
constant with respect to covariant differentiatioms in the plane.
CP3-CP! can be covered by two charts, and the corresponding transi-
tion function of the bundle essentially yields back the potential,

Instead of using a transition function, the ADHM construction
embeds the bundle in the direct product of the base with a larger
linear space. In this larger space, X is now defined globally and
fulfils the equation®
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where for fixed B!,B both { and Q have to fulfil the Dirac equation

(Due+“JAA,éA'B - [Due*“]AA,ﬂg: -0 . )

Here the eM form the usual basis of the quaternions, represented by
2 %X 2 matrices, with el = 12. Moreover,

X = X eM (%)

U
represents the coordinates in ct.

In order to avoid confusion, we now shall denote base space
coordinates by XM. The points in the fibre over an anti-self-dual
plane

! I}
XA AﬂA = wA (6)
fulfil the additional condition

~at font _
A AwA + Qg,wB =0 . %

Still this leaves too much freedom, as there are solutioms X which
vanish all over some planes. One may either divide them out or re-
place the basis directly by R", with points in the fibre given by

wat ! !
GAA L Qg,xB Ao . (8)

For G = SU(N), Eq. (8) yields for each X an N-dimensional complex
hyperplane in the vector space of normalizable solutions of Egs. (3)
and (4). This vector space has a scalar product, which induces a
natural connection on the CN-bundle over R* described by Eq. (8) and
in this way gives back the potential on which the construction was
based,

Equation (8) may be written in the form

A+(X)vi(X) =0 for i1i=1, ..., N, (9)

where the vi(X) are orthonormal solutions of Eqs. (3) and (4) and A
is of the form

A=a + bX {(10)

with X-independent linear operators a,b. The potential is given by
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Different choices of the vy yield gauge equivalent potentials.

All this applies equally for instantons and self-dual monopoles,
with the single change that the condition of normalizability requires
a four-dimensional integration in the former case and a three-
dimensional one in the latter.

Now Eqs. (9) to (11) can be applied without knowing the details
of the domain of At [given by Eqs. (3) and (4)] or of its range
(given by the normalizable solutions of the Dirac equation). One
just needs some general information on the linear operators a,b and
can show a posteriori that all potentials constructed by Egqs. (9)
and (10) using such operators yield self-dual fields with the re-
quired properties. The main information taken over from the ADHM
construction is that A*A is invertible and commutes with the gquater—
nions. This already guarantees that the resulting field will be
regular and self-dual®.

In the instanton case the only further information used is the
dimension of domain and range of A*. The Dirac equation has k line-
arly independent normalizable solutions, where k is the instanton
number, and the number of linearly independent normalizable solutions
of Eqs. (3) and (4) is 2k + N.

In the monopole case we have to take account of the dummy co-
ordinate x°. We introduce its conjugate momentum z and take for
the Dirac equation a basis of sclutions of the form

YG,x%) = exp (ix°2)U(X) . (12)
The number k(z) of normalizable solutions of this form is known ’°%.
It is zero, if z lies outside the interval spanned by the extremal

eigenvalues of ¢(«).

For Egs. (3) and (4), X and € can also be written in the form
of Eq. (12). Moreover one obtains

P ! ! I /
A L 'Qg,xB Ay Z[DueU]A A(Dz)_lﬁg; , (13)

except for those values of z for which D? is not invertible. These
values are the eigenvalues of ¢(=) and yield the jumping points of
k(z).

Let us label the basis of normalizable solutions of Egqs. (3)
and (4) by { of the form (12). Then in Eq. (13) the multiplication
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by x° may be expressed as a derivation with respect to z. Everything
else commutes with 9¢. Thus our A is of the form

= (iaz + X1 + 1A(z) . (14)

k{z)

Here 1, (., is the k(z) dimensional unit matrix and A(z) also is k(z)
dimensional. The matrix elements are quaternions,

Let us write

A(z) = euTu(z) ) (15)

To obtain a AYA which commutes with the quaternions, the TH(z) must
be anti-hermitian. T°(z) can always be absorbed by an equivalence
transformation

A+ U(2)YAU(z) , U(z) € U(k(z)) , (16)

which represents a different choice of the basis of solutioms of
Egs. (3) and (4) for each z. For the Tj(2), i =1, 2, 3, one obtains
the differential equations

=1
Ti(z) =3 Eijk [Tj(z)Tk(z)] . (17)

Together with suitable boundary conditions at the jumping points of
k(z) these equations yield the most general self-duval multimonopole
configuration.

The T;(z) are meromorphic and can have at most simple poles.
For phy51cal values of z those can only occur at the jumping points
of k(z). In a mathematically precise formulatlon, domaln and range
of A are Sobolev spaces, such that 4 and A* are bounded?. Moreover,
A*A can easily be seen to be bounded below by a positive constant,
as :

ata = -ai +(x iTi)+(xi +iT) . (18)

Thus AYA is invertible and all configurations constructed this way
are regular.

According to Eq. (17) the trace part of the Tj(z) is constant
and can be absorbed by a translation of X. This defines a unique
centre for arbitrary multimonopole configuratioms. Under rotatioms,
the Tl(z) transform as a vector. The traceless part of the symmet-
ric temsor tr(T; (z)TJ(z)) is independent of z and may be diagona-
lized by a rotation.  This defines a system of natural axes for the
mul timonopole.



Apart from the translations, the general solutiom of Eq. (17)
depends on 3(k(z)2-1) parameters, of which k(z)?~1 can be absorbed
by an equivalence transformation of type (16), but with a z-
independent U. For an axially symmetric multimonopole configurationm,
rotations around the symmetry axis can be represented as such equi-
valence transformations. If one decomposes SU(k(z)) with respect
to a Cartan subalgebra which contains the generator of these equiva-
lence transformations, Eq. (17) yields the completely integrable
Toda lattice equations'®. Note that these equations occurred in a
configuration space analysis of spherically symmetric monopoles,
while in z space the same equations describe the more general axially
symmetric case. In general, the boundary conditions are different.

Let tiel be the residue of A(z), as z approaches some pole zg.
According to Eq. (17) the tj must form an SU(2) subalgebra of
SU(k(z)). The maximal embedding can only occur at the extremal
eigenvalues of ¢(=), as otherwise the equations above and below zg
decouple completely and yield independent monopoles in two direct
factors of G.

THE CASE G = SU(2)

For G = SU(N) the number N is according to Eq. (9) the dimen-
sion of the kermel of A*. According to Eq. (18) the dimension of
the cokernel vanishes, such that

N = index(a*) . 19

To evaluate this index we have to find all local non-normalizable
solutions of Eq. (9). Let us consider at some pole of A(z) an ir-
reducible representation of the t{ of dimension d. With

i

t = tie (20}
one finds
2 - 2 _ 2 _
£2 4+ ¢t = Z €3 = (@2-1)/4 . (21)

i

As the trace of t vanishes, all eigenvalues are known. One cbtains
d+ 1 solutions of type

v(z) v (z-z ) dTD/2 (22)
and d - 1 non—normalizable solutions of type
v(z) v (z~~zs)(_d_l)/2 . (23)



Let ¢(=) only have two distinct eigenvalues, between which k(z)
is a constant k. To obtain N = 2, Eq. (9) must have 2k - 2 non-
normalizable local solutions. This is only possible if at both
jumping points of k(z) the t; form SU(2) algebras which are maxi-
mally embedded into SU(k). In this case, k is the magnetic charge’*®.
One can check the behaviour of the scalar field by solving Eq. (9)
in the limit r + «. Up to normalizations the solutions behave like

zs)(k_l)/2 exp (#rz) . (24)

vi(z) v (z 7

Equation (11) yields for the eigenvalues of ¢(=)

¢, = i[zs - *2151_:] , (25)

as it should be. The case k = 1 yields the simple BPS monopole, to-
which the ADHM formalism has been applied beforell.

Now let us count the number of multimonopole parameters. Let
T;(2) + 8;(z) be an infinitesimal perturbation of a solution of
Eq. (17) which still is a solution. We have to find zero modes of
the operator

(PG)i = 6{ - Eijk [Tjék} s (26)

which are non-singular at the boundaries. On Gi of the form
Gi = [Tiu] (27)

this operator acts simply as a differentiation of u. Constant u
yields an equivalence transformation and may be neglected. Thus we
may consider P to be an operator defined on §; modulo §; of form
(27). Then PP is bounded away from zero, such that the dimension
of the kernel of P is equal to its index. Thus we only have to con-—
sider local zero modes of P close to the jumping points. With

(Pﬁ)i = Eijk [tjsk] (28)
one finds
p2+p=*Zt§_- (29)

If one includes Gi of type (27), the trace of p vanishes, such that
one can easily calculate all eigenvalues. Under the adjoint action
of the t;, the algebra of SU(k) decomposes into k-1 irreducible
representations of dimensions d,, r = 1, ..., k-1, For each one
there are d,+ 2 solutions of type
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5 (z-z ) (deTD/2 (30)

and d_ -2 solutions of type

5 (z-z ) (rtD/2 (31)

Thus

index(P) = 2(k%-1) - ZZ (d,-2) = 4(k-1) . (32)
r

If one adds the translations, one has the correct number of degrees
of freedom.

Finally let us solve Eq. (17) for k = 2. If one rotates the
configuration to the natural system of axes, the T;(z) form up to
normalizations a standard set of SU(2) generators, and according to
Eq. (17) this set does not depend on z. Thus we may write

Ti(z) = -ifi(z)ci/Z . (33)

One obtains the first integrals

2 2 _
and
2 =[] [fi(z) + cij]’i . (35)
i#l

Thus we obtain Jacobi elliptic functions with a pure real and a pure
imaginary period.

According to the choice of the z interval, one obtains sU(2),
SU(3), and SU(4) configurations. In the latter case, the f;(z) must
stay regular at the boundary of the interval, in the SU(2) case they
must have poles at both ends.

The solutions of Eq. (9) can only be multiplied by a constant
matrix, when z is shifted by a period. Thus they are essentially
elliptic sigma functious.

Axial symmetry yields Cy; = O and up to rescaling

f3 = -cot z , (36)

f1 = f; = - L (37)




or the corresponding hyperbolic functions. For this case the solu-
tions of Eq. (9) can be read off from Ref. 9.

The axially symmetric configurations of higher charge can also
be obtained from Eqs. (36) and (37), if one replaces the matrices o
in Eq. (33) by a maximal embedding of SU(2) in SU(k), i.e. by a k-
dimensional representation of SU(2). This procedure also has more
general applications.

Spherical symmetry requires ciz = c13 = 0, and

1
fi(z) il ‘ (38)

In this case, only SU(3) and SU(4) configurations are possible. The
SU{3) solution is known 2, but the SU(4) solution, which contains a
free parameter, appears to be mnew. ‘

OPEN PROBLEMS

Equations (17) and (9) yield all self-dual multimonopole con-
figurations. If ¢(®) has more than two different eigenvalues the
boundary conditions for A(z) across the corresponding jumping points
of k(z) still have to be studied in detail.

Equation (17) is non-linear, but it might be possible to charac-
terize all solutions in a relatively simple way. More precisely,
one might hope to represent the solutions as automorphic functions
on some compact Riemann surface. The linear Eq. (9) may not allow
such a treatment and in the general case may have to be treated
numerically.

It will be interesting to compare the ADHM representation of
the multimonopoles with other approaches!¥s1*,
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