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Satellite radiance observations combine global coverage with high temporal and 

spatial resolution, and bring vital information to NWP analyses especially in areas where 

conventional data are sparse. However, most satellite observations that are actively 

assimilated have been limited to clear-sky conditions due to difficulties associated with 

accounting for non-Gaussian error characteristics, nonlinearity, and the development of 

appropriate observation operators.  To expand existing capabilities in satellite radiance 

assimilation, operational centers including ECMWF, MetOffice, JMA, and NCEP have 

been pursuing efforts to assimilate radiances affected by clouds and precipitation from 

microwave sensors.  The expectation is that these data can provide critical constraints on 

meteorological parameters in dynamically sensitive regions and have positive impact on 

forecasts of precipitation. 

As described in the previous issue of the JCSDA newsletter, NCEP’s efforts to 

assimilate all-sky data in the Gridpoint Statistical Interpolation (GSI) system have been 

focused on temperature sounding data from the Advanced Microwave Sounding Unit-A 

(AMSU-A) and Advanced Technology Microwave Sounder (ATMS) in non-precipitating 

cloudy conditions. Efforts in all-sky satellite data assimilation at the Global Modeling 

and Assimilation Office (GMAO) at NASA Goddard Space Flight Center have been 

focused on the development of GSI configurations to assimilate all-sky data from 

microwave imagers such as the GPM Microwave Imager (GMI) and Global Change 

Observation Mission-Water (GCOM-W) Advanced Microwave Scanning Radiometer 2 

(AMSR-2). Electromagnetic characteristics associated with their wavelengths allow 

microwave imager data to be relatively transparent to atmospheric gases and thin ice 

clouds, and highly sensitive to precipitation.  Therefore, GMAO’s all-sky data 

assimilation efforts are primarily focused on utilizing these data in precipitating regions. 
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The all-sky framework being tested at GMAO employs the GSI in a hybrid 4D-EnVar 

configuration of the Goddard Earth Observing System (GEOS) data assimilation system, 

which will be included in the next formal update of GEOS.  This article provides an 

overview of the development of all-sky radiance assimilation in GEOS, including some 

performance metrics. In addition, various projects underway at GMAO designed to 

enhance the all-sky implementation will be introduced. 

 

Highlights of all-sky satellite data configuration in GEOS  

Various components of the GEOS system have been modified to assimilate cloud 

and precipitation affected microwave radiance data (Table 1).  To utilize data in cloudy 

and precipitating regions, state and analysis variables have been added for ice cloud (qi), 

liquid cloud (ql), rain (qr) and snow (qs). This required enhancing the observation 

operator to simulate radiances in heavy precipitation, including frozen precipitation.  

Background error covariances in both the central analysis and EnKF analysis in hybrid 

4D-EnVAR system have been expanded to include hydrometeors.  In addition, the bias 

correction scheme was enhanced to reduce biases associated with thick clouds and 

precipitation.  

 

a. Cloud Scattering Coefficients in CRTM  

 

The observation operator for satellite radiances in GSI consists of spatial 

interpolation and the Community Radiative Transfer Model (CRTM), version 2.2.3. 

Scattering and extinction coefficients, asymmetry factor, and phase functions associated 

with hydrometeors for microwave wavelengths are read from a lookup table built using 

the Mie calculation for various cloud types (i.e. cloud ice, cloud liquid, rain, snow, 

graupel, and hail), and for various effective radius assuming a Gamma size distribution 

(Yang et al. 2005).  Due to the known limitations of Mie scattering parameters for frozen 

hydrometeors, especially for high frequency (> 85 GHz) microwave channels (Kim 2006, 

Liu 2008, Geer and Baordo 2014), new parameters were calculated using the Discrete 
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Dipole Approximation (DDA) method for non-spherical frozen precipitation from Liu 

(2008).  Eleven different non-spherical ice crystal shapes in Liu’s database, in addition to 

scattering properties of spherical ice crystals calculated with the Mie method, are 

examined to find an optimal choice of ice crystal shape to reconstruct the cloud scattering 

coefficients for CRTM (Figure 1).  For each shape of ice crystal, a CRTM cloud 

coefficient lookup table was generated for 33 microwave frequencies between 10.65 GHz 

and 190.31 GHz, seven atmospheric temperatures between 243 K and 303 K, and 405 

effective radius sizes starting from 0.005 mm.  The maximum effective radius considered 

for rain in the new CRTM coefficients is 1.191 mm.  For snow crystals, the maximum 

effective radius considered ranges from 0.664 mm to 1.278 mm, depending on snow 

crystal shape. Field et al. (2007) particle size distribution was assumed for frozen 

hydrometeors and Marshall-Palmer size distribution (Marshall and Palmer 1948) was 

assumed for liquid hydrometeors. After replacing original cloud coefficients with new 

cloud coefficients constructed with DDA scattering parameters, Simulated GMI 

brightness temperatures based on the new cloud coefficients are found to be closer to the 

observations and exhibit less first-guess departure bias in precipitating regions than those 

based on the original coefficients (Figure 2). 

 

b. Enhanced Bias Correction 

As with clear-sky radiances in the GEOS, bias correction for all-sky microwave 

radiances is performed using a variational bias correction scheme (VarBC, Dee 2004, 

Auligne et al. 2007) which estimates bias correction coefficients as part of the variational 

assimilation. For clear sky microwave radiance data from microwave sensors such as 

AMSU-A, SSMIS, and ATMS, the bias predictors include a constant, the scan angle, a 

2
nd

 order polynomial of the atmospheric temperature lapse rate weighted by the radiance 

weighting function, and the retrieved cloud water path. For the all-sky implementation, 

three changes were made to the original VarBC: First, the retrieved cloud liquid water 

path was removed as a predictor. Second, only near-clear sky observations with near-

clear sky background are used in updating bias correction coefficients for pre-existing 
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predictors.   Third, the mean of the observed and calculated cloud index based on 37-GHz 

brightness temperatures, (CIavg), and its square, are used as two additional bias correction 

predictors to correct the cloud amount-dependent first-guess biases. Results indicate that 

the modified VarBC scheme removes most of the bias in the first-guess departures, as 

indicated in Figure 3.  The magnitude of remaining biases associated with thick cloud and 

heavy precipitation are reduced to less than 2 K in all CI ranges. Similar results are 

obtained for all GMI channels (not shown). 

 

c. Background error covariance matrix 

The analysis control vector in the current GEOS analysis scheme includes stream 

function, unbalanced velocity potential, unbalanced virtual temperature, unbalanced 

surface pressure, relative humidity, ozone mixing ratio, and skin temperature (Rienecker, 

et al. 2008).  With the newly added control variables, the corresponding static and flow-

dependent background error covariances must be generated. Climatological statistics 

were estimated following the NMC method (Parrish and Derber 1992) using pairs of 24-

hr and 48-hr GEOS forecasts between 1 June 2016 and 16 January 2017. Ensemble 

covariances are based on the spread of the 32 ensemble forecasts from the GEOS hybrid 

scheme during each analysis cycle. 

The panels on the left side of Figure 4 show the vertical distribution of the static 

background errors for cloud liquid, cloud ice, rain, and snow water. Aside from the fact 

that the estimated errors are by construction zonally invariant, they have generally 

smooth spatial structure. Relatively large errors for liquid clouds are seen in storm tracks 

in midlatitudes. Static errors in the southern hemisphere are slightly larger than in the 

northern hemisphere.  Generally speaking, the maximum errors for cloud liquid water 

occur in the layer between 900 hPa and 850 hPa. Static background errors for cloud ice 

water show large values near the tropical tropopause, where large amounts of cloud ice 

exist in the anvils of convective clouds.  Static background errors for rain and snow are 

larger in the tropics than other latitudes. Large background errors for rain occur in the 
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tropical lower troposphere between sea level and 600 hPa, while large errors for snow 

occur in the tropical middle troposphere between 600 hPa and 450 hPa.   

The panels on the right side of Figure 4 show cross-sections of ensemble background 

errors for hydrometeors taken from GEOS on 12 December 2015 12Z.  The results 

indicate that the magnitudes of the ensemble background errors are similar to those of the 

static background errors, although ensemble-based estimates show more detailed flow-

dependent structures.  Note that there are regions with nearly zero ensemble error 

corresponding to areas where the ensemble members forecasted nearly zero clouds (clear 

sky).  In contrast, the static background errors show nonzero values over broad ranges of 

latitude.   

 

Impact Assessments 

Cycled	data	assimilation	experiments	were	conducted	 to	examine	 the	 impact	

of	all-sky GMI radiances on GEOS analyses and forecasts.  	GEOS	was	run	in	a	hybrid	

4D-EnVar	 configuration	with	 a	horizontal	 resolution	of	 0.5° for	 the	 analysis	 and	

0.25°	 for	 the	 forecast.	 	The	control	 run	assimilated	all	 the	data	used	routinely	 in	

GEOS	(conventional data, AMSU-A, ATMS, MHS, IASI, AIRS, GPSRO, and satellite 

wind data), while the experimental	run	assimilated	all-sky	GMI	data	additionally.		It 

was found that the all-sky GMI data generally have a significant impact on the lower 

tropospheric humidity and temperature analyses, especially in the tropics, which leads 

to improved forecasts of these quantities (Figure 5).  Similar results were obtained for 

all seasons (not shown).  In	 addition,	 a	 noticeable	 positive	 impact	 of	 all-sky	 GMI	

assimilation	 on	 hurricane	 track	 forecasts	 was	 identified	 for	 Hurricane	 Melor,	

which	occurred	in	the	western	Pacific	during	December	2015.	
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Discussion 

Currently, static and ensemble background errors have the same weight (0.5) for all 

analysis variables in GEOS. Climatological background errors for highly nonlinear and 

situation-dependent clouds and precipitation may be less meaningful compared with other 

dynamical variables. To assign much larger weight to the ensemble-based background 

errors for hydrometeors, the capability to assign different weights for hydrometeors 

versus other dynamic variables is under development. The current all-sky framework will 

be enhanced by various updates both in the forecast model and analysis scheme. For 

example, the inclusion of a two-moment microphysics scheme (Barahona et al. 2014) in 

the GEOS forecast model will provide estimates of cloud particle size distributions to the 

all-sky observation operator.  Future versions of the CRTM will account for cloud 

fraction in calculating radiances. This should improve the simulation of brightness 

temperature compared with the current version of CRTM, which considers only clear-sky 

or completely overcast conditions.  In addition, we are testing various dynamic thinning 

approaches in order to use more data in cloudy and precipitating regions.  All these 

enhancements are expected to extend the scope of all-sky radiance assimilation to include 

more microwave measurements and, in turn, lead to improved analyses and forecasts. 
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Table	 1:	 Comparisons	 of	 clear-sky	 and	 all-sky	 microwave	 brightness	 temperature	

assimilation	 framework	 in	 GEOS-5	 Atmospheric	 Data	 Assimilation	 System.	 (Here	 T:	

atmospheric	 temperature,	 q:	 specific	 humidity,	 Ps:	 surface	pressure,	 oz:	 ozone	mixing	

ratio,	u:	u-wind,	v:	v-wind,	ql:	liquid	cloud	mixing	ratio,	qi:	ice	cloud	mixing	ratio,	qr:	rain	

water	mixing	 ratio,	 qs:	 snow	water	mixing	 ratio,	 and	CIavg:	mean	of	 the	observed	and	

calculated	cloud	index	based	on	37-GHz	brightness	temperatures.)	

	

 

 

 

	

	

	

	

 

 

 

 

 

 

 

 Clear-sky All-sky 

State variables T, q, Ps, oz, u, v T, q, Ps, oz, u, v, ql, qi, qr, qs 

Analysis variables T, q, Ps, oz, u, v T, q, Ps, oz, u, v, ql, qi, qr, qs 

Observation 

operator 

CRTM (v. 2.3.3) CRTM (v.2.3.3) with new cloud 

scattering coeffficents reconstructed 

with DDA scattering parameters 

Observation Error Constant for each channel of 

each sensor (& inflated during 

QC procedures) 

Symmetric error model 

(Geer and Bauer 2010) 

Quality control Screen out cloud affected 

radiance 

Keep cloud and precipitation affected 

radiance. Screen out data over ocean if 

SST < 278K. 

Bias correction 

predictors in 

VarBC  

Constant, lapse rate, lapse rate
2
, 

cos (zenith angle),  

and cloud liquid water path 

Constant, lapse rate, lapse rate2,  

cos (zenith angle),  

CIavg, and CIavg
2
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Figure	1:	Microwave	scattering	properties	as	a	function	of	frequency	for	a	snow	water	content	

of	0.1	g	m
-3
.	In	actual	CRTM	look	up	table,	extinction	coefficients	are	stored	in	[m

2
kg

-1
]	unit.	 
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Figure	2:	Comparisons	of	 simulated	GMI	166	GHz	vertically	polarized	brightness	 temperatures	

(TB)	with	 the	 observations	 near	 Hurricane	 Celia	 on	 12	 July	 2016	 00Z:	 	 (a)	 Observed	 TBs,	 	 (b)	

CRTM	simulated	TBs	with	original	 scattering	 coefficients	based	on	Mie	method,	and	 (c)	CRTM	

simulated	 TBs	with	 the	DDA	method	 calculated	 scattering	properties	 of	 3-bullet	 rosette	 snow	

crystals.		The	colorbar	shown	in	(c)	works	for	(a)	and	(b)	as	well.		



	 11	

	

	

	

	

	
Figure	3:	Bias	of	first-guess	departures	of	GMI	channel	13	as	a	function	of	CIavg.	Thin	solid	(Thick	

solid)	 line	 shows	 the	 biases	 before	 (after)	 using	 CIavg	 as	 additional	 predictors	 in	 VarBC.	 All	

assimilated	 data	 points	 between	 12/01-12/31/2015	 were	 used.	 Results	 only	 in	 the	 bins	 that	

have	the	number	of	data	points	greater	than	5	are	shown	in	this	figure.			
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Figure	4:	Comparisons	of	static	background	errors	(left	figures)	and	ensemble	background	errors	

(right	figures)	as	a	function	of	latitude	and	vertical	level.	(a)	and	(b):	liquid	cloud,	(c)	and	(d):	ice	

cloud,	(e)	and	(f):	rain,	and	(g)	and	(h):	snow.	

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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Figure	5:	RMS	error	differences	between	 the	GEOS	 control	 and	all-sky	GMI	experiment	 in	 the	

tropics	for	December	2015:	(a)	850hPa	specific	humidity	(b)	850hPa	temperature,	(c)	850hPa	V-

wind.	
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Figure	6:	GEOS	forecasts	of	the	track	of	hurricane	Melor	(December	2015):	(a)	without	and	(b)	

with	the	assimilation	of	all-sky	GMI	data. 
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