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Abstract. We discuss in detail a compact all-solid-state laser
delivering sub-5-fs, 2-MW pulses at repetition rates up to
1 MHz. The shortest pulse generated thus far measures only
4.6 fs. The laser system employed is based on a cavity-
dumped Ti:sapphire oscillator whose output is chirped in
a single-mode fiber. The resulting white-light continuum is
compressed in a novel high-throughput prism chirped-mirror
Gires–Tournois interferometer pulse compressor. The tem-
poral and spectral phase of the sub-5-fs pulses are deduced
from the collinear fringe-resolved autocorrelation and optical
spectrum. The derived pulse shape agrees well with the one
retrieved from the measured group delay of the continuum
and calculated characteristics of the pulse compressor.

PACS: 42.65.Re; 42.30.Rx; 42.81.-I

Ever since pulsed lasers were invented there has been a race
towards shorter optical pulses [1]. Next to the fact that the
breaking of any record is a challenge, a major scientif-
ic driving force came from dynamical studies showing that
ultrashort pulses were essential to the exploration of ele-
mentary processes in chemistry, photobiology, and physics.
For instance, the primary step in bond-breaking reactions
(femtochemistry) [2], the rate of electron-transfer in photo-
synthetic reaction centra [3, 4], and the time scales of re-
laxation processes in condensed phase [5, 6] could only be
time-resolved with femtosecond excitation pulses. On the
road towards femtoseconds pulse generation a better grasp
of the underlying physics proved to be essential. A mile-
stone here was the development of the colliding pulse mod-
elocked (CPM) laser [7]. When the importance of a careful
balance between the group delay and dispersion on pulse
formation was recognized [8, 9], sub-100-fs optical pulses be-
came feasible [10, 11]. Further development ultimately led
to the prism-controlled CPM laser [12, 13], which delivered
pulses of∼ 30 fs. It was this CPM laser that laid the foun-
dation for many ground-breaking experiments in the past
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decade, from the observation of wave-packet motion in chem-
ical reactions [14] to the exploration of carrier dynamics in
semiconductors [15, 16].

Another crucial invention for ultrashort optical pulse gen-
eration was the technique of fiber pulse compression [17].
A relatively long pulse is injected into a single-mode fiber
and via the combined action of self-phase-modulation [18]
and dispersion becomes spectrally broadened, carrying an
almost linear chirp [19]. This spectrally and temporal-
ly broadened pulse is subsequently compressed by a pair
of gratings [20–22], prisms [10, 23], or their combination
[24, 25] to a much shorter pulse. The compressor’s action is
to retard in a well-defined manner the frequencies of the pulse
that have advanced. Pulse compression of the amplified out-
put of the CPM laser culminated in the generation of optical
pulses of6 fs (assuming a hyperbolic secant pulse profile)
in 1987 [25]. The electric field of such a pulse exhibits only
4.5 oscillations at its FWHM.1 With these ultrashort puls-
es, photon echoes in solution could be studied for the first
time [26–28], and their large spectral widths turned out to
be very useful for pump–probe experiments in photobiolo-
gy [29, 30].

A new era in ultrafast laser technology began with the de-
velopment of the fs modelocked Ti:sapphire laser [31], which
routinely generates pulses of about 10-15 fs[32–37]. In add-
ition, this laser exhibits low amplitude noise and is extremely
reliable. Not surprisingly, in the past five years Ti:sapphire-
based lasers have replaced the CPM lasers in many laborato-
ries as new ultrafast light sources. Sub-10-fs pulse formation
from a Ti:sapphire laser also looked promising, as the fluores-
cence bandwidth of the lasing material [38] allows for pulses
as short as4 fs. However, despite much work, the shortest
pulses generated by this laser to date are∼ 7-8 fs in du-
ration [39–44] and according to current understanding this
seems to be the practical limit [42, 45, 46].

With the development of a 13-fs cavity-dumped laser,
pulse compression was shown to be a viable route towards

1The frequently cited number of 3 oscillations [6, 25] refers to the duration
of the intensity envelope, which, in contrast to the electric field, contains no
oscillations at the optical frequency.
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pulses of less than6 fs [47]. Another very promising devel-
opment was the use of a hollow fiber for spectral broadening
of ultrashort pulses [48]. A distinct advantage of a hollow
fiber is that it can stand high intensities, allowing pulses ofmJ
energy to be compressed.

Recently we showed that pulse compression of the out-
put of a cavity-dumped Ti:sapphire laser can produce pulses
of about 5 fs at repetition rates of up to1 MHz [49, 50].
The shortest pulses were attained by using a prism-grating
compressor; slightly longer pulses were obtained from the
higher-throughput prism-chirped mirror compressor. It was
also suggested that with custom-designed chirped mirrors,
shorter pulses with higher pulse energies should be possible.
Nisoli et al. recently showed that by using a hollow fiber,
∼ 20-µJ, sub-5-fs pulses can be generated at a1-kHz repeti-
tion rate [51].

In this paper we report on the generation of sub-5-fs puls-
es from a cavity-dumped Ti:sapphire laser using a prism
chirped mirror Gires–Tournois interferometer compressor.
Group delay measurements of the generated continuum,
which served as input for the design of this novel compres-
sor, are discussed. It is shown that the pulse shape and spectral
phase can be determined from the collinear autocorrelation
function in combination with the optical spectrum. A similar
pulse shape is calculated when the optical spectrum and phase
difference between the pulse compressor and continuum are
used as input.

Precise knowledge of the amplitude and phase of ultra-
short pulses is extremely important in many experiments, es-
pecially when dynamics occur on the time scale of the pulse
width. An example is femtosecond photon echo in solution,
where explicit use of the pulse shape in calculations of the
echo relaxation moved essential [52, 53]. Another example is
coherent control of wave-packet motion and bond-breaking
reactions [54–56]. More generally, a detailed description of
the molecule–light-field interaction requires full knowledge
of the electric field. The applicability of the so-called slowly
varying envelope approximation in experiments with ultra-
short pulses becomes questionable [57]. In fact this approxi-
mation may break down and in that case new effects are to be
expected.

In Sect. 1 we discuss the cavity-dumped laser used to
produce the pulses that generate the continuum to be com-
pressed. In Sect. 2 the spectral phase of the continuum is
discussed, and in Sect. 3 the temporal shape of the continuum
is dealt with and compared to calculations based on spec-
tral phase measurements. In Sect. 4 the spectral and tempo-
ral shape of the continuum are commented on. Sect. 5 deals
with the compressor and Sect. 6 discusses the pulse–duration
measurements. In Sect. 7 we demonstrate how the ampli-
tude and phase of the compressed pulse can be reconstructed
from measurement of the interferometric autocorrelation and
the spectrum of the pulse. Sect. 8 provides a summary and
suggests some applications of this compact sub-5-fs, 2-MW
laser.

1 Cavity-dumped Ti:sapphire laser and white-light
continuum generation

Figure 1 displays the schematic of the self-mode-locked
cavity-dumped Ti:sapphire laser used for continuum gen-

Fig. 1. Schematic of an all-solid-state sub-5-fs laser. Ti:Sa4-mm-long
Ti:Sapphire crystal (Union Carbide); L1f = 12.5-cm lens; M1–M4 r =
−10-cm cavity mirrors; HR1, HR2 high reflectors (CVI); OCT = 2% out-
put coupler (CVI); M5 pick-off mirror (Newport BD2); IP1, IP2 intracavity
69◦ fused-silica prisms; CM1, CM2 chirped mirrors for pre-compression
(R&D Lezer Optika); WLG white-light generator; GTI1, GTI2 Gires-
Tournois interferometers (R&D Lezer Optika); CM3, CM4 chirped mirrors
for pulse compression (R&D Lezer Optika); P1, P245◦ fused-silica prisms;
RM low-dispersion overcoated silver roof mirror (R&D Lezer Optika). The
cavity-dump beam, in reality ejected in the vertical plane, is depicted here
as being displaced in the horizontal plane. The compressor output beam
passes just above GTI2. The solid arrow through the OC shows the82-MHz
output used in cross-correlation experiments. The whole set-up occupies
a work space of1 m×1.5 m on an optical table

eration. It represents the next version of a design reported
earlier [47]. Compared to the conventional Ti:sapphire oscil-
lator [32, 36, 58], its cavity-dumped counterpart incorporates
an additional mirror fold around an acousto-optic modula-
tor [59]. In this way the intracavity pulse energy is stored
in a relatively high-Q cavity, which can be switched out of
the resonator at any desired repetition rate. The maximal
pulse energy of a cavity-dumped Ti:sapphire laser is typical-
ly a factor of 10 higher than that from its non-cavity-dumped
counterpart. A careful cavity design ensures that the Kerr-lens
self-mode-locking action is not disturbed by the extra fold
and by the added dispersion due to the Bragg cell. The best
performance of the system is achieved when the fold mirrors
of the cavity dumper are separated by nearly a confocal dis-
tance and the mirror fold around the Ti:sapphire crystal set to
the inner edge of the second stability zone [47]. This configu-
ration allows the system to operate under soft-aperture Kerr-
lens mode-locking conditions, thus making the oscillator less
sensitive to perturbations caused by the cavity-dumping pro-
cess and mechanical instabilities [47, 60–62] than in the first
stability zone. In the last case the hard aperture needed to
initiate the mode-locking reduces the intracavity power.

Compared to the earlier design [47] the current version
of the cavity-dumped Ti:sapphire laser has been significantly
improved and presents a more versatile and compact master
oscillator. First, the argon-ion pump laser has been replaced
by an intracavity-doubledNd:YVO4 laser (Spectra Physics
Millennia). The superior beam-pointing stability and noise
characteristics of this diode-pumped solid-state laser allow
the pump power to be reduced to∼ 4 W. Second, by the intro-
duction of a high reflector (HR1) in the prism arm, the cavity
has been folded, which led to a more compact laser. Third, the
output coupler OC has been placed at the nondispersive end
of the cavity, providing an additional output at82 MHz. Last,
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we have saved space by replacing the output (cavity-dumped)
pulse pre-compressor, consisting of four prisms [50], with
two chirped mirrors [63].

With a 3-mm-thick Bragg cell (Harris), driven by a5-W
electronic driver (CAMAC Systems), the laser dumps∼ 13-fs,
40-nJ pulses at a1-MHz repetition rate. Pulses up to45 nJ
are generated when the rf signal is amplified to16 W by an
rf power amplifier (CAMAC Systems). Even higher pulse en-
ergies are available at lower repetition rates. Usage of the
CAMAC rf driver enhances the contrast ratio between the
preceding/trailing and dumped pulses from 1:150 [64] to
∼ 1 : 1000. The last figure is similar to the contrast ratio
achieved when using an electro-optical cavity-dumper [65],
be it that in the latter case the repetition rate is limited by
∼ 10 kHz.

The pre-compressed13-fs pulses from the cavity-dumped
laser, with75-nm spectral bandwidth around790 nm, were
launched into a single-mode polarization-preserving fiber
(Newport, F-SPV,2.75-µm core diameter) through a 18/0.35
microscope objective (Melles Griot). The optimal fiber length
calculated according to [19] was∼ 1 mm; however, for prac-
tical reasons connected to the mounting of the fiber, we used
a piece of∼ 3.5 mm. Angular alignment of the fiber along
the longitudinal axis proved necessary to prevent polarization
rotation of the light passing through the fiber as a result of
chromatic anisotropy. A 3D piezo-driven (Piezo-Jena) fiber-
positioning stage is used to simplify the alignment procedure.
To keep the fiber tip dust-free, a constant flow of dry nitrogen
was applied to the focusing area. No damage to the fiber was
observed for up to40-nJ pulses. Other types of fibers from
different manufacturers were also tested; however, the abili-
ty to withstand high input intensities (∼ 10 TW/cm2) seems
a unique property of Newport single-mode fibers. As of now,
we have no explanation for this phenomenon.

The fiber output was recollimated by a low-dispersion
objective lens (LLU-3-10-LMO, Optics for Research). The
white-light continuum, generated by self-phase modulation
exhibits approximately a fourfold spectral broadening com-
pared to the initial spectrum (Fig. 2). The optimal pulse en-
ergy for injection into the fiber was found to be∼ 35 nJ, as
judged by the quality of the generated continuum. In this
case, the pulse energy measured after recollimation of the
continuum is about18 nJ. The long-term stability of the con-
tinuum intensity measured at several wavelengths varies from
∼ 0.7% rms at the edges of the spectrum (below500 nmand
above1100 nm) to less than0.5% rms near the central fre-
quencies.

The blue-shifted wing of the continuum reaches into the
UV, and the red-shifted part stretches into the near infrared,
even beyond the spectral cutoff of the silicon detector used for
the spectral measurements (Fig. 2). The shortest pulse attain-
able by compression of this continuum is obtained by Fourier
transformation of the spectrum, assuming a constant spectral
phase. This yields a pulse duration of∼ 3.7 fs (Fig. 2, inset).
Note that despite the irregular spectrum of the continuum the
ideally compressed pulse looks very clean. It is also worth
pointing out that the low-intensity wings of the continuum –
excluded in the compression scheme to be discussed later –
carry enough intensity for a variety of spectroscopic applica-
tions. Moreover, use of a long piece of fiber enables delivery
of the pulse to a remote point in applications where the spec-
tral bandwidth rather than the pulse width is important [66].

Fig. 2. Fiber-output (solid line) and cavity-dumped laser (filled contour)
spectra. The inset shows the pulse obtained by Fourier transforming the
fiber output spectrum, constant spectral phase assumed

2 Measurement of spectral phase

Pulse compression is used for the removal of spectral phase
distortions accumulated by self-phase-modulation and propa-
gation through dispersive media. Precise knowledge of the
phase characteristics of a chirped pulse is therefore vitally
important to the design of an appropriate pulse compressor.
In order to fully characterize a pulse one needs to know its
spectrumI(ω) and spectral phaseϕ(ω) or its time-dependent
intensityI(t) and temporal phaseϕ(t). The temporal and spec-
tral descriptions are complementary and follow from each
other by Fourier transformation. Since no detector is fast
enough to resolve the temporal shape of a pulse on a fs time
scale, indirect methods have to be used to resolve the tempo-
ral shape of afs pulse.

In recent years a number of techniques of indirect phase
and pulse-shape retrieval have been proposed [67–78]. For
instance, in various implementations of frequency-resolved
optical gating (FROG, see for example [71–73]) a spectral-
ly dispersed signal of autocorrelation-type is recorded. When
a well-known phase-retrieval algorithm is used to analyse
FROG traces,I(t) andϕ(t) can be recovered.

Another approach to phase retrieval is spectrally-resolved
up-conversion [25, 68–70, 75, 76, 78]. In this method, the
analysed pulse (further called the probe pulse) is mixed with
a well-characterized reference pulse in a nonlinear crystal.
The resulting signal at the sum frequency is dispersed through
a monochromator and can be expressed as

S(Ω, τ)∝ R(Ω)Ω2∣∣∣∣∣∣
∞∫
−∞

Er(ω)Ep(Ω−ω)eiωτ ei∆k(Ω,ω)L −1

∆k(Ω,ω)L
dω

∣∣∣∣∣∣ 2 , (1)

whereR(Ω) stands for the spectral sensitivity of the detector,
Er(ω) = Ar(ω) exp[iϕr(ω)] and Ep(ω) = Ap(ω) exp[iϕp(ω)]
are the (complex) amplitudes of the reference and probe puls-
es, respectively,τ is a delay between them, andL is the
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interaction length. The phase mismatch for type 1 (oo→e)
interaction [79] is given as

∆k(Ω,ω)= ko(Ω−ω)+ko(Ω)−ke(Ω) , (2)

with k denoting the wavevectors for ordinary (o) or extraor-
dinary (e) waves. As in FROG, the cross-correlation signal
S(Ω, t) contains explicit information about the complex elec-
tric field of the probe pulse, provided that the reference pulse
has been fully characterized.

A valuable asset of the spectrally-resolved up-conversion
technique is that in some special cases a time-consuming
algorithm of phase retrieval can be replaced by a straightfor-
ward analysis. For instance, if the spectrum of the reference
pulse is sufficiently narrow and its spectral phase is constant,
(1) simplifies significantly and becomes

S(Ω, τ)∝ R(Ω)Ω2 sinc2
[ [ko(Ω−ωr)+ko(ωr)−ke(Ω)]L

2

]
A2

p(Ω−ωr)A
2
r

(
τ− dϕp(Ω)

dω

)
,

(3)

where Ar(t) stands for the temporal amplitude of the refer-
ence pulse. Note that the magnitude of the measured signal
is proportional toΩ2 [80]. This often-omitted factor gains
importance with increased spectral bandwidth of the probe
pulse.

Equation (3) shows that if the delayτ is scanned for a giv-
en setting of a monochromatorΩ, the maximum of the up-
converted signal directly reflects the group delay of the probe
field [75]:

τp(Ω = ωp+ωr)= dϕp(ωp)

dω
. (4)

Another important trait of spectrally-resolved up-conversion
is that no factor limiting the acceptance bandwidth, such as
phase-matching or the spectral response of a detector, influ-
ences the position of the maxima. These factors affect only
the signal intensity. Furthermore, the phase-matching condi-
tions are also relaxed for spectrally-resolved up-conversion
compared to second-harmonic FROG, because the necessary
acceptance bandwidth of the crystal is smaller by a factor of
approximately two.

The spectral phase of the chirped white light is readily
obtained fromτp(Ω) by integration of (4):

ϕp(ω)=
∫
τp(ω) dω (5)

The aforementioned technique is valid for reference puls-
es whose spectral bandwidths are appreciably narrower than
those of the probe pulse. However, if a spectrally infinite-
ly narrow pulse is chosen, the duration of the up-converted
signal becomes infinitely long, limiting the time resolution.
In the other extreme limit, when an infinitely short refer-
ence pulse is used, the up-converted signal is detected with
an infinitely broad spectrum, limiting the resolution in the
frequency domain. Therefore, there is an optimal reference-
pulse duration that yields a compromise between temporal
and spectral resolution.

In our experiment we cross-correlated the chirped white-
light pulse with a laser pulse from the output coupler (shown
as a solid arrow through the OC in Fig. 1) in a100-µm-thick
BBO crystal. The importance of having an independent ref-
erence beam at82 MHz from the laser now becomes evident.
This pulse has a suitable duration and spectral width for the
reference pulse in the cross-correlation experiment. In order
to have this pulse chirp-free, it was passed through a 4-prism
compressor. The interferometric autocorrelation of this pulse
was found to be in excellent agreement with the one calcu-
lated from the pulse spectrum by assuming a constant spectral
phase.

To measure the group delay across the continuum, the
up-converted signal was scanned as a function of the time
delay between the white light and reference pulse at differ-
ent wavelengths selected by a monochromator. The lay-out of
this experiment is shown in the inset to Fig. 3. The spectral
resolution of the monochromator was∼ 1 nm. The limited

Fig. 3. Normalized probe-reference correlation signals at different wave-
lengths. The monochromator settings are indicated on the left of each trace.
The schematic of the cross-correlation experiment is shown in the inset.
Probe pulse stands for the white-light continuum, the reference pulse at
82-MHz repetition rate is derived directly from the Ti:sapphire laser. PMT
photomultiplier tube
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phase-matching bandwidth of the crystal meant that small an-
gular tuning was necessary to obtain reliable measurements
of the infrared and the visible components of the white-light
spectrum. Typical normalized up-converted profiles at differ-
ent settings of the monochromator are depicted in Fig. 3. The
corresponding frequencies of the white light can be obtained
when the central wavelength of the reference pulse (800 nm)
is known. The duration of the up-converted signals increases
toward the blue-shifted wing of the continuum. This is ex-
plained by a faster change in the spectral phase of the probe
pulse within the spectral width of the reference pulse, com-
pared to the relatively slowly changing phase in the infrared
region, where material dispersion is considerably lower. The
modulation appearing in some profiles is due to intensity vari-
ations in the spectrum around the central frequency of the
continuum (Fig. 2). The up-converted signals cover the fun-
damental wavelengths of the white-light from 0.55 to1.2µm.
Note that the bandwidth of the white-light that can be up-
converted stretches much further into the infrared region than
can be reliably measured (Fig. 2) by using a silicon photodi-
ode array. This means that the real bandwidth of the white-
light continuum and the shortest achievable pulse duration
(Fig. 2, inset) are most probably underestimated.

To obtain the group delay across the white-light spectrum,
weighted averages of the time-dependent up-converted traces
were found. There are two reasons why this approach is supe-
rior to the evaluation ofτ(ω) from the peak positions as given
by (4). First, the actual peak positions might be additionally
shifted because of the unevenly distributed spectral intensity
in the probe pulse. Second, by calculating weighed averages
one uses the information from all experimental points and not
only from the maxima [69, 70, 78]. The group delay of the
white-light continuum is shown in Fig. 4 as solid points. The
solid line represents a low-order polynomial fit used in cal-
culations of the pulse compressor. The estimated group delay
dispersion is∼ 380 fs2 at the wavelength of600 nmand de-

Fig. 4. Group delay of the white-light continuum retrieved from the probe-
reference cross-correlations. Solid circles denote the first momenta of the
up-converted temporal profiles and the solid line is a polynomial fit to the
experimental points

creases to∼ 220 fs2 at1µm. We will return to the discussion
of the apparent nonlinearity in the group delay in Sect. 4.

In closing this section we note that the measurements
described in it were repeated several times with slightly dif-
ferent fiber lengths. The results were found to be identical
– within experimental uncertainty – to those presented in
Figs. 3 and 4, which indicates a remarkable long-term stabili-
ty of the spectral phase.

3 Temporal analysis of the white light

To verify the group delay measurements, we studied the prop-
erties of the white-light continuum in the time domain. The
temporal profile of the pulse and its instantaneous frequency,
obtained by Fourier transformation of the electro-magnetic
field, taking into account the spectral phase calculated accord-
ing to (5), is shown in Fig. 5. The electromagnetic field is
derived from the spectrum of the continuum (Fig. 2). Nega-
tive times represent the leading and positive times the trailing
edge of the pulse. Note that the direction of time is unambigu-
ous because no time-reversal symmetry is present in a cross-
correlation experiment. Since the red-shifted components of
the spectrum are concentrated in the leading edge of the pulse
and the blue-shifted ones are trailing behind, we observe the
usual chirp characteristics for pulse propagation in the nor-
mal dispersion regime. The asymmetry of the pulse and its
spectrum will be addressed in more detail in the following
section.

To probe the temporal shape of the pulse, the continuum is
mixed with the reference pulse in a15-µm-thick BBO crystal
and the up-converted signal is detected by using a photo-
multiplier tube (PMT) [17, 81, 82]. The measured signal is
displayed in Fig. 6 (open circles). In comparing this experi-
mental pulse shape with the calculated one, several factors
should be taken in consideration. First, the finite duration of
the reference pulse needs to be taken into account. Second,
the spectral response of the detector and the relevant phase-
match conditions must be regarded. The up-converted signal

Fig. 5. Calculated temporal intensity (solid line) and chirp (dotted line) of
the white-light continuum
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Fig. 6. Comparison of the experimental (open circles) and computed (solid
line) cross-correlation between the white-light continuum and the reference
pulse (filled contour). The solid curve was obtained by numerical correla-
tion of the reference pulse with the white-light pulse and corrected for the
spectral sensitivityR′(λp). The overall spectral response of the detector and
up-conversion efficiency of a15-µm BBO crystal is displayed in the inset

can be calculated by integration of (3) over frequency:

SCC(τ)=
∞∫
−∞

S(Ω, τ) dΩ . (6)

Taking into consideration the fact that the probe pulse is
spectrally narrower than the white-light continuum, we may
assume that each given instant corresponds to a single instan-
taneous frequency. In this approximation, (6) and (3) yield

SCC(τ)∝ R′
(
ωp(τ)

) ∞∫
−∞

∣∣Ep(t)
∣∣ 2
∣∣Er(t− τ)

∣∣ 2 dt , (7)

whereωp(τ) denotes the instantaneous frequency of the probe
field as depicted by the dotted line in Fig. 5 and the overall
spectral sensitivity is

R′
(
ωp(τ)

)= R
(
ωr+ωp(τ)

) [
ωr+ωp(τ)

]2
sinc2

[
ko
(
ωp(τ)

)+ko(ωr)−ke
(
ωr+ωp(τ)

)]
L

2
. (8)

The correction termR′(ωp), comprising a spectrally vary-
ing conversion efficiency, the phase-matching factor of the
crystal, and the spectral response of the PMT, is depicted in
the inset to Fig. 6. The main spectral distortions occur at the
high-frequency part of the white-light continuum (i.e. in the
trailing edge) where phase-mismatch in the non-linear crys-
tal increases owing to the increased dispersion. The resulting
temporal shape of the continuum calculated according to (7)
is depicted in Fig. 6 as a solid line, and agrees reasonably well
with the experimentally measured data, given all the assump-
tions made. This also indicates that the spectral phase was
measured correctly. Comparison of the profiles of the chirped
pulses in Figs. 5 and 6 shows also that a frequency-unresolved
cross-correlation may deviate appreciably from the true pulse
profile because of the spectral filtering effect.

4 Fiber output: experiment vs. numerical simulations

In a single-mode fiber, spectral broadening occurs because of
the self-phase-modulation (SPM), whereas a combination of
SPM and normal (or positive) group velocity delay (GVD)
acts to smoothen the chirp [19]. The dynamic evolution of
a pulse propagating in a single-mode fiber is described by the
nonlinear Schrödinger equation (NSE) [83]. When only SPM
and group delay dispersion are considered, the solution of the
NSE yields a symmetric power spectrum, which corresponds
to a symmetric rectangular-like pulse in the time domain and
an almost linear chirp over most of the pulse duration [19]. It
has been shown that linear frequency chirp, corresponding to
a parabolic spectral phase, can be compensated by a quadratic
compressor [19].

However, experiments [22] and numerical studies [84–88]
have shown that higher-order dispersion and nonlinearities
become increasingly important for propagation of femtosec-
ond pulses, even for fibers shorter than1 cm. In order to
account for the intensity dependence of the group velocity,
the conventional NSE should be extended to include a nonlin-
ear correction term involving the time derivative of the pulse
envelope, the so-called optical shock term [84]. This means
that the part of the pulse that has the highest peak intensi-
ty, moves at a lower speed than the low-intensity wings. This
effect, called self-steepening, causes pulse asymmetry and
has been widely discussed in the literature (see, for example,
Chap. 4 of [83] and the references therein). In the absence
of mechanisms that stabilize this self-steepening process, it
leads to an infinitely sharp pulse edge which creates an opti-
cal shock, similar to the development of an acoustic shock on
the leading edge of a sound wave. Moreover, in this case the
spectral phase of the pulse undergoes fast fluctuations which
are difficult to compensate in a compressor.

Significant progress in numerical modelling of pulse
propagation in fibers was made by taking into considera-
tion both the optical shock term and higher-order dispersion
[84–87]. It was shown that these two effects acting togeth-
er suppress severe oscillations in the chirp. The predicted
strongly asymmetric pulse shape and power spectrum agree
reasonably well with the measured properties of our white-
light pulse2. The nonlinearity of the chirp near the leading
edge of the pulse fully agrees with our measurements. It is
worth noticing that despite the fact that the spectrum is asym-
metric, the bandwidth introduced by the higher-order terms
can effectively be used to obtain pulses shorter than those
from the purely SPM-broadened spectra [87].

5 Compressor design

A light pulse broadened by SPM action in a fiber and by
propagation through bulk material can be compressed by
passing it through a suitable optical element with anomalous
(or negative) dispersion [89]. The group delay (or the spectral
phase) is conventionally expanded into a Taylor series around

2The results of simulations most relevant to our experiments are presented
in [86] in Fig. 2 (pulse shape and chirp) and Fig. 12 (pulse spectrum and
spectrum phase)
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a central frequencyω0 [25]:

τ(ω)= dϕ(ω0)

dω
∼= ϕ′′(ωo)(ω−ω0)+ 1

2
ϕ′′′(ω0)(ω−ω0)

2

+ 1

6
ϕ′′′′(ω0)(ω−ω0)

3+ . . . , (9)

whereτ(ω) is the group delay,ϕ′′(ω0) is the group delay dis-
persion (GDD),ϕ′′′(ω0) is the third-order dispersion (TOD),
ϕ′′′′(ω0) is the fourth-order dispersion (FOD), etc. Note that
a constant (non-frequency-dependent) group delay has been
disregarded in (9). This equation shows that in first order one
should match the GDD of the compressor to the GDD of the
pulse, in second order the TOD of the pulse and compressor
should be matched, and so on.

The quest for optical pulse compression emerged soon
after the invention of sub- nanosecond lasers. The first re-
port on extracavity pulse compression concerned a mode-
locked He-Ne laser [90]. Over the past three decades a num-
ber of compressors have been proposed and successful-
ly implemented: resonant Gires–Tournois interferometers
(GTIs) [91], resonant vapour delay lines [17], diffraction grat-
ings [20, 92], and prism pairs [10, 23]. In particular, a combi-
nation of gratings and prisms [24, 25] was triumphantly used
to achieve6-fs pulses [25]. This compressor can compensate
for both GDD and TOD over a very broad spectral range [93].
Recently, chirped mirrors [94] revolutionized the technology
of ultrashort pulse generation.

Design of an appropriate high-throughput pulse compres-
sor becomes increasingly difficult for larger bandwidth of the
chirped pulse. In addition, the spectral region over which any
of the aforementioned compressors provides adequate phase
compensation narrows rapidly with increasing chirp rate. The
requirements for compression of the white-light continuum
arise from the fact that both GDD and TOD are positive, as is
evident from Fig. 4. Therefore, one should aim for a compres-
sor that exhibits both negative GDD and negative TOD. In our
previous paper [50], we reported that the spectral range of the
prism-grating compressor can be broadened by careful bal-
ancing the GDD against the FOD, such that nearly transform
limited 5-fs pulses were obtained. This seems to represent the
current limit of this technique for pulses chirped in a fused-
silica fiber. Moreover, an oscillatory residual phase remained
– as a trade-off between phase corrections of different orders
– which led to sidelobes on the5-fs pulse. Another inherent
drawback of the grating-prism compressor is its low through-
put, typically∼ 25% [50]. Note that the200-nmbandwidth of
recently designed high-efficient (∼ 90%) gratings [95] is not
sufficient for pulse compression down to5-fs.

A major advance in pulse-compression technology was
made by the introduction of a compressor based on chirped

Fig. 7a–g. Overview of optical elements used in the compressor and au-
tocorrelator: a 45◦ fused silica prism compressor, (b) chirped mirror,
(c) Gires-Tournois interferometer, (d) overcoated silver mirrors, (e) 1 m of
air, (f ) beam splitter in the autocorrelator, and (g) total compressor. Group
delays of various dispersive components are indicated by solid lines (left
axis) and dotted lines show transmittance or reflectance (right axis). The
compressor itself comprises three parts: a prism pair, chirped mirrors, and
Gires-Tournois interferometers. Solid circles in (g) are the experimentally
measured group delay depicted with the reversed sign and used as the de-
sired group delay of the compressor. Reflection on the beam splitters is not
taken into account in the overall throughput. The interprism pathlength in
air is included in the prism compressor
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mirrors and prisms [96]. In contrast to gratings, chirped mir-
rors can be made that have a large acceptance bandwidth and
a very high reflectivity at the same time. With this prism–
chirped-mirror compressor, pulses of20-fs were amplified
to the mJ level [97]; more recently a similar compressor
was used to generate5.5-fs, 6-nJ pulses at1-MHz repeti-
tion rate [50] and sub-5-fs, 20-µJpulses at a1-kHz repetition
rate [51].

To improve on our previous compression scheme [50], we
designed a novel high-throughput compressor. To obtain the
required negative GDD and FOD a fused-silica prism com-
pressor was used (Fig. 7a), which, however, overcompensates
the TOD when used alone. Recently it was shown that ultra-
broadband chirped mirrors can be made that exhibit negative
GDD and positive TOD (Fig. 7b), while having a reflectivi-
ty exceeding99% over a bandwidth of600–1100 nm[63, 98].
This means that a combination of chirped mirrors and a prism
compressor provides flexible control over TOD across a large
spectral range [63]. For higher-order phase corrections,
broadband dielectric GTIs [99–101] have been shown to be
suitable (Fig. 7c). GTIs counteract the FOD of the prism
pair, which becomes significant above900 nm. These ideas
lead us to design a compressor that consists of a prism pair,
ultra-broadband chirped mirrors, and dielectric GTIs.

We employed dispersive ray-tracing analysis [93, 102] to
compute the group delay of the three-stage compressor. Use
of (9) to calculate the spectral phase by a Taylor expansion
becomes impractical since the compressor should span the
region from 600 to1100 nm. Wavelength-dependent refrac-
tive indices were calculated from dispersion equations and the
corresponding refraction angles in the prism compressor were
obtained by using Snell’s law. Subsequently, the total accu-
mulated phase of the prism compressor and bulk material was
computed at each wavelength. By numerical differentiation of
the phase, the group delay of the prism part of the compressor
was obtained. This group delay was added to the group de-
lay of the reflective optics to compute the overall group delay
of the compressor. The resulting group delayτCOMPR is then
compared to the measured group delay of the white-light con-
tinuum τWLC, but taken with opposite sign. Subtracting the

Fig. 8. Measured white-light continuum spectrum exiting the compressor
(solid line) and calculated residual spectral phase of the compressed pulse
(dotted line)

calculated group delay from the desired, we find the residual
group delay

τRES(ω)= τCOMPR(ω)− τWLC(ω) , (10)

which we integrate to obtain the residual spectral phase
ϕres(ω). To further characterize the compressor performance,
the input white-light spectrum (Fig. 2) modified by the com-
pressor throughput (Fig. 7, dotted curves) is calculated. With
the residual phase taken into account, the temporal shape and
phase of the compressed pulse is then computed via a Fourier
transformation.

An overview of all optical elements used in the com-
pressor and autocorrelator is presented in Fig. 7. The previ-
ously employed [50] unprotected gold-coated mirrors with
90% peak reflectivity and rapidly growing absorption be-
low 600 nm, were substituted by low-dispersion and higher-
reflectivity overcoated silver mirrors (Fig. 8d). The dispersion
due to propagation in air [103] was also found to play an
essential role for5-fs pulses (Fig. 7e).

The compressor performance is optimized by varying the
number of reflections on the dispersive mirrors, by changing
the interprism spacing, and by varying the prism apex angles.
Optimal performance is judged by looking for the shortest
pulse through second harmonic generation in the autocorrela-
tor. Hence, the pathlength in air from the compressor output,
the 0.5-mm-thick beam splitter at45◦ incidence (Fig. 7f),
and reflections from the autocorrelator mirrors should be in-
cluded in the calculations as well. Pulse broadening due to
dispersion inside the autocorrelator nonlinear crystal was not
considered because of its negligible effect. Reflectivity curves
(Fig. 7, dotted lines) and group delays (Fig. 7, solid lines)
of the chirped mirrors, GTIs, the overcoated silver mirrors,
and beam splitters were provided by the manufacturer (R&D
Lezer-Optika, Hungary).

The angle of incidence onto the fused-silica [104] prism,
being a sensitive parameter, was chosen to correspond to the
angle of least deviation for the sake of experimental conve-
nience. Simulations show that apex angles smaller than45◦
are impractical because they call for unreasonably large inter-
prism separation. Moreover, with increased prism separation
the positive dispersion of air (Fig. 7e) between the prisms be-
comes more important so that the whole compressor would
need to be put in a vacuum. Note that the amount of the TOD
could also be reduced by employing doubled-prism pairs, as
has been demonstrated previously [51, 58].

Optimal compression (Fig. 7g) was obtained for five re-
flections from the chirped mirrors, two reflections from the
GTI mirrors, and a45◦ prism compressor with the follow-
ing settings:∼ 5.2 mm of prism material for the800-nm-
wavelength ray and∼ 115 cmdistance between apices. The
root-mean-square error of the residual group delay amounts
to ∼ 1.5 fs. The blue wavelength cut-off of the prism com-
pressor coincides with the abrupt reflectivity drop of the
chirped mirrors, thus no additional loss of the spectral con-
tent originates from the prism part of the compressor. The
compressor throughput is fairly flat between 600 and1100 nm
and amounts to∼ 75%, mainly due to eight reflections from
the non-Brewster-angle prisms. When a low-dispersive anti-
reflection coating is deposited on the surfaces of the prisms,
the total compressor throughput should reach∼ 90%.
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The measured spectrum and calculated residual phase of
the white-light continuum passed through the compressor are
presented in Fig. 8. The Fourier transform of this spectrum
with constant phase assumed yields a pulse of∼ 4.5 fs in du-
ration, i.e. somewhat longer than the Fourier transform of the
input spectrum (Fig. 2, inset). This lengthening of the pulse
occurs due to the loss of spectral components in the near in-
frared and visible part of the continuum. The residual phase
falls within ±π/4 limits for most of the spectral region. The
oscillations of the phase around700 nmare connected to the
trade-off between higher-order dispersions of the chirped mir-
rors and prism pair. Residual phase correction should be fea-
sible by installation of a programmable phase mask [105] into
the pulse compressor. The applicability of this technique has
recently been demonstrated for pulses as short as10 fs[106].
Spectral shaping would also allow manipulating of the spec-
trum leading to cleaner optical pulses [107].

With the compressor being set up near the cavity-dumped
laser and white-light generator (Fig. 1) the overall size of the
system is1 m×1.5 m. This compactness makes our sub-5-fs
laser system extremely robust and ensures cavity alignment
for a long time. At laser startup the only thing needed is cor-
rection for the sub-micron drift of the fiber tip. The short
warming-up time of the diode-pumped “Millennia” means
that the stable regime of sub-5-fs operation is achieved within
minutes. The compactness of the laser source presents a dis-
tinct advantage in experiments because it allows the experi-
mental set-up to be close to the laser and thereby limits the
amount of pulse propagation through air.

6 Pulse-duration measurement

Accurate pulse-width measurement of pulses containing only
a few oscillations is quite a challenge. An easy and infor-
mative method used to judge the compression quality is the
second-order interferometric autocorrelation (IAC) [89, 108].
An additional benefit from this technique is that it can be
used as an on-line tool. Of course, the technical demands
made on a5-fs autocorrelator are substantial. In our experi-
ments we employ a Mach–Zehnder interferometer [50, 109–
111], which has the advantage of being fully symmetric with
respect to both arms. Note that the “magic” 0: 1 : 8 ratio
between the minimum, asymptotic level, and maximum of
the IAC trace [108] is obtained only if the intensities of the
two interfering beams are strictly equal. If one intensity ex-
ceeds the other one by a factor ofβ, the renormalised ratio
becomes 0: [4−3

√
β/(1+β)] : 8 with the asymptotic level

being between 1 and 4. Imperfections in alignment of the
interferometer lead to the same result.

The input beam is split and recombined in such a way
that each of the beams travels once through an identical beam
splitter and both reflections occur on the same coating–air
interfaces (Fig. 9). To match the beam splitters [112], the ini-
tial horizontal polarization of the compressed pulse is rotated
by a periscope. A15-µm BBO crystal is used for second-
harmonic generation. Such a thin crystal is required to avoid
dispersion-induced pulse broadening and to ensure a suffi-
ciently broad phase-matching bandwidth.

The moving arm of the interferometer is driven by a piezo
transducer (PZT) controlled by a computer via a digital–
analog convertor (DAC) and a high-voltage amplifier (HVA).

Fig. 9. Schematic of Mach–Zehnder interferometer for measurements of
interferometric autocorrelation. BS1, BS250% ultra-broadband beam split-
ters centred at800 nm; M1–M4 low-dispersion overcoated silver mirrors;
M5 r =−10-cm, unprotected gold coated mirror; BBO15-µm-thick BBO
crystal; M6 r = −10-cm protected aluminium-coated mirror; PD photo-
diode; PMT photo multiplier tube; PZT piezo-electric transducer; HVA
high-voltage amplifier; DAC digital–analog converter; ADC analog–digital
converter. All optics were obtained from R&D Lezer Optika, Budapest

Fig. 10. Interferometric autocorrelation (IAC) of the compressed pulse.
Open circlesexperimental points;solid line IAC calculated by Fourier
transformation from the spectrum and predicted residual spectral phase. The
corresponding pulse-intensity profile is shown in the inset. Bottom panel
depicts He-Ne laser interference fringes used for on-line time calibration
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After the M3–M4 arm is moved to a new position, the second-
harmonic intensity is measurd by sampling and digitalizing
the photomultiplier (PMT) signal. The experimental points
obtained in this way are depicted in Fig. 10 by open circles.
To introduce an on-line calibration of the time axis, a He-
Ne laser beam is aligned in a direction opposite to the white
light. The signal of the photodiode (PD) monitoring the inter-
ference fringes at the wavelength of the He-Ne laser [113] is
used for precise time calibration (Fig. 10, lower panel).This
allows autocorrelation measurements to be performed with
∼ 0.2-fs accuracy throughout the whole scanning region of
∼ 100-fs. A typical time step is∼ 0.1 fs, or 23 points per
oscillation period at an800-nm wavelength at the rate of
∼ 60 msfor a100-fs scan.

The typical IAC shown in Fig. 10 was obtained by setting
the compressor according to the calculated optimal settings,
after which the amount of prism material was balanced so as
to get the shortest autocorrelation. Compared to our previ-
ous result [50], the wing structure of the IAC is substantial-
ly reduced, which demonstrates the superior characteristics
of this compressor. We verified the importance of the GTIs
for high-order dispersion correction by changing the angle
of incidence from the design angle of45◦ to ∼ 15◦. In this
case the group-delay curve shifts towards shorter wavelengths
(Fig. 7c), resulting in broadening of the central part of the
IAC function and an appreciable increase in the amplitude of
its wings.

When fitting the IAC to a hyperbolic secant envelope, we
get a pulse of∼ 3.8 fs, whereas for a Gaussian a pulse of
∼ 4.5 fs is obtained. The former value violates the spectrum-
limited pulse duration of∼ 4.5 fs derived earlier (Sect. 5).
Furthermore, neither of these pulse shapes reproduces the
wing structure on the experimental IAC. This clearly indi-
cates that one should be extremely cautious fitting the IAC
of a short pulse to an a priori assumed pulse profile, es-
pecially when the pulse spectrum is not smooth. It should
also be noted that the standard deviation, conventionally used
in fitting routines to judge the fit quality [114], can hard-
ly serve as a criterion in favour of any particular pulse
shape. Most of the experimental points in the IAC are lo-
cated at the slopes of the fringes where the gradient is too
high for any anomaly to be recognized. As a matter of fact,
only 8–10 points at the extrema of the IAC are meaning-
ful, which is clearly not sufficient to discriminate between
the different pulse profiles. We will return to the problem
of retrieving the pulse shape from the IAC in the next sec-
tion.

A good criterion for judging the accuracy of calculations
of the phase of the compressor is to simulate the IAC by
Fourier transforming the spectrum, taking into account the
calculated residual phase (Fig. 8). The resulting trace, given
as a solid line in Fig. 10, reproduces the experimental data
remarkably well. The excellent agreement obtained validates
our analysis of the phase characteristics of the compressor
and underlines the correctness of the developed numerical
routines. The corresponding temporal profile of the com-
pressed pulse is presented in the inset to Fig. 10. The pulse
duration amounts to∼ 4.8 fs FWHM, which corresponds to
∼ 2.7 optical oscillations of the electric field at780 nmwave-
length. The oscillatory structure on the trailing edge of the
pulse originates from the imperfection in the phase compen-
sation around700 nm(Fig. 8).

7 5-fs pulse reconstruction from the IAC and spectrum

In the previous section we showed that a fit of the interfero-
metric autocorrelation (IAC) to an a priori analytical pulse-
intensity profile is not warranted. Obviously, it would be
a major step forward if the pulse shape could be retrieved
from the IAC without us having to rely on any assumption
concerning the temporal profile of the electric field. It was
pointed out by Naganuma et al. [67] that information on the
phase and amplitude of the pulse is, in principle, contained in
the IAC and pulse spectrum. Recently, a robust algorithm that
recovers this information from the autocorrelation was report-
ed [115, 116]. In this section we apply this algorithm to the
retrieval of the phase and pulse shape of the compressed pulse
from the IAC.

The normalized interferometric autocorrelation signal can
be expressed as [67]

IAC(τ)=1+2G(τ)+4Re
[
F1(τ) exp(iω0τ)

]
+Re

[
F2(τ) exp(−2iω0τ)

]
, (11)

where

G(τ)=
∞∫
−∞

I(t)I(t− τ) dt , (12)

F1(τ)=
∞∫
−∞

I(t)+ I(t− τ)
2

E(t)E∗(t− τ) dt , (13)

F2(τ)=
∞∫
−∞

E2(t)E∗2(t− τ) dt . (14)

Here G(t) stands for the (background-free) intensity au-
tocorrelation, andF2(t) represents the second-harmonic field

Fig. 11. Fourier transform of the experimental interferometric autocorrela-
tion function. The mirror image of the spectrum at the negative frequencies
is not shown. The close similarity between the zero and double-frequency
peaks indicates that the compressed pulse is almost chirp-free
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autocorrelation. Note that when the temporal phase is a con-
stant the functionsG(t) andF2(t) become identical [67]. This
property can be exploited to determine whether the com-
pressed pulse carries any residual chirp. Since the carrier
frequencies ofG(τ) andF2(τ) are different, the simplest way
to extract this information from the IAC (Fig. 10) is to Fourier
transform the IAC, with the constant background [1 in (11)]
subtracted. One then obtains a spectrum composed ofG(ω) at
zero frequency,F1(ω) at the fundamental frequencyω0, and
F2(ω) at the second-harmonic frequency 2ω0 (Fig. 11). Note
that since the last two components are projected at both pos-
itive and negative frequencies, their magnitudes are reduced
by a factor of 2 compared to the ratios given by (11). As
can be seen from Fig. 11, the functionsG(ω) and F2(ω) are
quite similar, which confirms our earlier conclusion that the
compressor has removed most of the chirp in the white-light
continuum. Nonetheless, the small asymmetry ofF2(ω) in-
dicates that there is some residual chirp in the compressed
pulse.3

Peatross et al. recently demonstrated temporal decorrela-
tion of the intensity autocorrelation function [115]. Their idea
based on the application of the Wiener–Khinchin theorem to
G(τ) [117]:

G(ω)= |I(ω)| 2 , (15)

whereI(ω) andG(ω) are the Fourier-transforms of the pulse
intensityI(t) and the autocorrelation function, respectively:

I(ω)= 1√
2π

∞∫
−∞

I(t)eiωt dt , (16)

G(ω)= 1√
2π

∞∫
−∞

G(τ)eiωt dτ . (17)

It is evident from (15) that the functionG(ω) contains no in-
formation on the phaseΨ(ω) of I(ω) = |I(ω)| exp[iΨ(ω)].4
However, since the pulse intensityI(t) is real, non-negative,
andfinite in time, it can be shown [115, 116] that the intensity
autocorrelation has a certain uniqueness. Information on the
direction of time, which an autocorrelation lacks, could easily
be obtained experimentally [72, 118, 119].

Figure 12 shows the computational scheme used to re-
trieve the shape and phase of the pulse. In the first loop, we
use the algorithm proposed by Peatross et al. [115]. The in-
put consists of the spectral intensityI(ω), calculated from
the experimental autocorrelation according to (15) and an ini-
tial guess of the phaseΨ(ω). The Fourier transform into the
time domain yields the temporal pulse intensityI(t). Because
I(t) must be a non-negative function, all negative parts ofI(t)
are set to zero. The resultingI(t) is then Fourier transformed
back into the frequency domain, yielding the next approxi-
mation toΨ(ω). At this point, an iterative fitting procedure

3Note that there is a distinct difference between transform-limited (or
spectral-limited) and chirp-free pulses. For instance, in the case of an asym-
metric spectrum, a transform-limited pulse does carry some chirp, even if its
spectral phase is constant.
4The phaseΨ(ω) of the spectral intensityI(ω) should not be confused with
the phaseϕ(ω) of the electrical fieldE(ω).

Fig. 12. Block diagram of the iterative algorithm for pulse shape and phase
retrieval. Dashed rectangles represent two successive parts of the algo-
rithm used to retrieve the pulse shape and the phase, respectively. The
input of the algorithm is the zero-frequency spectrum of the interferometric
autocorrelationG(ω) and the pulse spectrumS(ω) (shaded boxes)

starts, whereby in each consecutive round|I(ω)| is replaced
by [G(ω)]1/2. Convergence is judged by comparison of the
calculated and experimental autocorrelations or their Fouri-
er transforms. In a number of simulations we found that the
precision of the experimental data and sampling of time and
frequency arrays used in the calculations are the major fac-
tors limiting the convergence of the algorithm. Note that no
minimum phase assumption (as in [117]) has been made.

The pulse intensityI(t) recovered in the first round is then
injected into the second loop, which aims to recover the spec-
tral and temporal phases of the pulse. The algorithm used here
(Fig. 12, lower part) was developed by Gerchberg and Sax-
ton [120]. It is based on the fact that the modulus of a complex
field in the time domain,|E(t) = [I(t)]1/2| and a modulus
of its Fourier transform|E(ω)| = [S(ω)]1/2, whereS(ω) de-
notes the power spectrum, uniquely define the full complex
fields E(t) and E(ω) in a majority of practical cases [121].
The algorithm employs a sequence of Fourier transformations
with the spectral and temporal amplitudes being replaced by
[S(ω)]1/2 and [I(t)]1/2 on each consecutive run. The itera-
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Fig. 13a–c. Output of the pulse-retrieval program.a - pulse intensity re-
trieved in the first loop (solid line) and recovered in the second loop (dotted
line) of the iterative algorithm. Temporal phase (thin line) corresponds to
the latter intensity curve.b - recovered spectrum (dotted line) and input
spectrum (solid line). c - retrieved spectral phase (dotted line) and spectral
phase resulting from compressor design (solid line)

tive procedure is halted when the difference between two
subsequent iterations becomes negligibly small.

The solid line in Fig. 13a displays the pulse recovered
from the IAC in Fig. 11. The pulse duration of4.8 fs is iden-
tical to that obtained from phase calculations at the pulse
compressor (Fig. 10, inset). Note that the wing structure on
the trailing edge of the pulse is consistent with the predict-
ed magnitude. The final results of the complete algorithm
are presented in Fig. 13. The resulting temporal and spec-
tral phases are depicted in Figs. 13a and 13c, respectively. In
order to demonstrate the level of agreement between the input
and output values of the algorithm, the temporal and spectral
intensities (dotted lines in Figs. 13a and 13b), corresponding
to the final iteration are plotted against the decorrelated pulse
intensity and the spectral intensity (solid lines). The predict-
ed residual phase of the compressor (solid line in Fig. 13c)
agrees reasonably well with the phase rendered by the second

loop of the algorithm. We obtain a pulse duration of∼ 4.8 fs
for the decorrelated pulse in the first loop and∼ 4.9 fs for the
output of the entire algorithm confirming the pulse duration
and its shape derived in Sect. 6 (Fig. 10, inset).

8 Summary and future prospects

In this paper we have discussed a compact and robust light
source that generates sub-5-fs, 2-MW pulses at variable rep-
etition rates of up to1 MHz, by using a novel three-stage
compressor. The phase characteristics of the compressor have
been analysed with dispersive ray-tracing and mapped on-
to the measured group delay of the continuum. The fideli-
ty of this approach has been confirmed by the fact that the
pulse shape derived from the optical spectrum and the calcu-
lated residual phase, fit the measured autocorrelation function
very well. It has also been shown that the interferometric au-
tocorrelation and optical spectrum of the compressed pulse
comprised sufficient information to derive the temporal pulse
intensity and its phase.

We foresee several applications of this ultrafast laser.
First, it is an almost ideal tool for ultrafast spectroscopy, if
not for the short pulse then for the white-light continuum that
can be used as a probe for spectral events from the blue-green
part of the spectrum to the near infrared region (500 nmto
1.3µm). The large bandwidth of this laser may also be of
use in optical coherence tomography measurements [66]. For
the near future we aim for an all-chirped-mirror compressor,
which would enable an even more compact design of this
laser. With smaller diode-pumped light sources coming on the
market there is every reason to believe that soon it will be
possible to build a sub-5-fs cavity-dumped laser that fits onto
a breadboard of only1 m×0.5 m. This may be an important
asset for many applications.

We propose to use sub-5-fs pulses from this cavity-
dumped laser in an ultrafast photon-echo study of the free
electron in water. Pioneering optical studies started about
ten years ago [122, 123] when optical pulses of about100 fs
became available in the wavelength region where the equili-
brated aqueous electron absorbs (∼ 800 nm). Following these
experiments, several mixed quantum-classical molecular dy-
namical studies were performed on the electron-in-water
system [124–126]. These investigations gave a clear picture
of the energetics and dynamics of the aqueous electron, and
provided a strong stimulus for new experiments. However,
as the equilibration and solvation dynamics of the electron
occur on a sub-100-fs time scale, a full characterization of the
electron’s dynamics has not been achieved yet [127].

The aqueous electron is one of the simplest physical sys-
tems to study, yet grasp of its dynamics at a fundamental
level is extremely important. It is unique in the sense that
it provides the opportunity to confront results of state-of-
the-art nonlinear optical experiments with quantum molecu-
lar dynamics simulations. The wet electron is also relevant
from a chemical point of view, as water is one of the most
ubiquitous solvents in all of chemistry. Because water has
a large dipole moment and exhibits strong hydrogen bonding,
its dynamics is often strongly coupled to the reaction path,
especially when a rearrangement of electronic charge takes
place. Our laser system seems ideally suited, as the sub-5-fs
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Fig. 14. Interferometric autocorrelation of a4.6-fs pulse.Open circlesex-
perimental points,solid line calculated IAC of deduced pulse shape shown
in the inset

pulse spectrum overlaps very nicely with that of the aqueous
electron.

9 Note added

While this manuscript was under review, the pulse compres-
sor was further improved by replacing the collimating lens
by an off-axis parabolic mirror (Janos Technology). Because
of reduced material dispersion the number of bounces on the
chirped mirrors was also reduced and the interprism distance
shortened. Furthermore, a different type of fiber (Newport
F-SV) was found to generate an output mode of better qual-
ity. In addition, this fiber is much simpler to align since it
does not require polarization matching. The resulting inter-
ferometric autocorrelation of the compressed pulses is dis-
played in Fig. 14. The derived pulse shape is depicted as
inset in Fig. 14; the corresponding pulse width is deduced
to be∼ 4.6 fs. Clearly, the wings of the pulse have been
improved significantly, as is obvious from a comparison of
Figs. 10 and 14. We have also shown that the interferomet-
ric autocorrelation of a sub-5-fs compressed pulse, similar
to the one depicted in Fig. 14, can be obtained by measur-
ing the two-photon-induced photocurrent [128, 129] in aGaP
photodiode [130].
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