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Preface

Topoisomerases are complex molecular machines that modulate DNA topology to maintain 

chromosome superstructure and integrity. Although capable of stand-alone activity in vitro, 

topoisomerases frequently are linked to larger pathways and systems that resolve specific DNA 

superstructures and intermediates arising from cellular processes such as DNA repair, 

transcription, replication, and chromosome compaction. Topoisomerase activity is indispensible to 

cells, but requires the transient breakage of DNA strands. This property has been exploited, often 

for significant clinical benefit, by various exogenous agents that interfere with cell proliferation. 

Despite decades of study, surprising findings involving topoisomerases continue to emerge with 

respect to their cellular function, regulation, and utility as therapeutic targets.
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Introduction

The extended, double-helical structure of DNA poses a unique challenge to living 

organisms. Chromosomes must be folded and compacted in an orderly manner to fit within 

the confines of the cell. Natural nucleic-acid transactions such as transcription, replication, 

and repair – all of which require access to nucleotide sequence information – necessitate 

duplex melting events that overwind and underwind (or supercoil•) (Fig. 1A) nucleic acid 

segments, interfering with appropriate gene expression. DNA repair and replication further 

generate entanglements between chromosomal regions that, if left unresolved, can lead to 

potentially mutagenic or cytotoxic DNA strand breaks.

Enzymes known as topoisomerases manage these transactions. Endowed with an ability to 

cut, shuffle, and religate DNA strands, topoisomerases can add or remove DNA supercoils, 

and disentangle snarled DNA segments. How topoisomerases carry out such complex 
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•Glossary Term: Supercoil. The result of duplex DNA twisting upon itself in 3-dimensional space.
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functions has long been a significant question of both biochemical and biophysical interest. 

However, in recent years it has become evident that topoisomerases do not work at random; 

they can instead preferentially distinguish between different types of DNA juxtapositions 

and collaborate with disparate factors direct their action. It also has become clear that a rich 

and growing variety of natural and synthetic agents block topoisomerase function for the 

purposes of evolutionary competition or therapeutic gain.

In this Review, we touch upon a few of the many recent findings that have broadened our 

understanding of the roles played by topoisomerases in supporting chromosome biology and 

cell viability. Our goal is not to provide a comprehensive overview for those studying these 

complex enzymes, but rather to convey a sense of the vitality and richness of the 

topoisomerase field to the general biological community, particularly insofar as the 

evolutionary and functional diversity of these complex machines, and their roles in the flow 

of genetic information, genome maintenance, and human health. Given these limitations, we 

apologize to those colleagues whose work is only topically discussed, or excluded due to 

space limitations.

Topoisomerase families

At first glance, a bewildering number of different topoisomerases exist. However, nature’s 

topoisomerase collection is not as complicated as it first appears. For example, all 

topoisomerases contain a nucleophilic tyrosine, which they use to promote strand scission. 

This feature links DNA cleavage to the formation of a transient, covalent enzyme–DNA 

adduct, which in turn prevents the inadvertent release of nicked or broken DNA duplexes 

that might otherwise damage the chromosome (Fig. 1B). All topoisomerases also can be 

assigned into one of two primal classes, type I and type II, depending on whether they 

cleave one or two strands of DNA, respectively. Enzymes with an odd Roman numeral (for 

example, “I” or “V”) after their name fall into the type I class, whereas those with an even-

numbered Roman numeral after their name are type II. Topoisomerase subtypes – “A,” “B,” 

or “C” – are then used to distinguish between enzyme families that have significantly 

different amino acid sequence relationships and/or structures. Some topoisomerase subtypes 

further encompass multiple paralogs1 that have diverged from one another in terms of their 

specific activities. A brief overview of these groupings follows to provide a context for 

subsequent discussion. For more extensive coverage of topoisomerase evolution, structure, 

and mechanism, the reader is invited to see 1,2.

Type IA: single-stranded ‘strand-passage’ enzymes

Type IA topoisomerases have a toroidal protein structure that bears a superficial 

resemblance to a padlock 3. These enzymes effect topological changes in DNA through a 

“strand-passage” mechanism 4,5, in which a single DNA strand is cleaved and physically 

opened, and a second DNA is navigated through the gap; following passage of the second 

DNA, the broken DNA is resealed (Fig. 1C). Type IA topoisomerases comprise three 

distinct subfamilies that are found throughout all three cellular domains of life2. These 

1Glossary term: Paralogs. Homologous genes separated by a gene duplication event, which can evolve new functions.
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subfamilies are bacterial topo I (hereafter called topo IA), bacterial and eukaryotic topo III, 

and reverse gyrase 1. The primary activity of topo IA is to relax negatively-supercoiled 
DNA36,7. By contrast, topo III preferentially acts to resolve single-stranded DNA 

entanglements that can arise during DNA replication and repair 7–11. Reverse gyrase, found 

exclusively in thermophilic bacteria and archaea, positively supercoils DNA and renatures 

melted DNA strands through the action of an ATP-dependent superfamily-2 (SF-2) 
helicase4 domain fused to its type IA topoisomerase element12, 13.

Type IB: DNA “swivelases”

Type IB topoisomerases differ fundamentally in structure and mechanism from type IA 

enzymes 14. Rather than relying on strand passage, type IB topoisomerases effect supercoil 

relaxation by nicking a single strand of duplex DNA, and allowing one DNA end to rotate 

with respect to the other around the intact phosphodiester bond on the opposing strand 15. 

Rotation is controlled by friction between the DNA and the enzyme, which aids in aligning 

the broken ends for resealing 15,16 (Fig. 1D). Type IB proteins preferentially bind positively- 

or negatively- supercoiled substrates rather than relaxed substrates 17,18 using an interaction 

surface outside of its primary active site to bridge distal DNA segments 19. Some variants 

show a proclivity for positively-supercoiled DNA, which they can relax at a faster rate 18.

The active site architecture of type IB topoisomerases is evolutionarily related to that of 

tyrosine recombinases and integrases 20,21. Type IB enzymes are ubiquitous among 

eukaryotes, with some scattered homologs extant in certain viruses and bacteria 22. Type IB 

topoisomerases appear to be represented by a single family member (topo IB), although 

architectural differences that influence the rate and mechanism of supercoil relaxation are 

evident between various homologs in this group 15.

Type IC: a second class of swivelase

Type IC topoisomerases thus far have been found only in the archaeal genus Methanopyrus
23. Like topo IB, type IC topoisomerases relax positively- and negatively-supercoiled DNA 

through a nicking and rotation mechanism 24,25 (Fig 1D). However, the type IC active site 

shows little structural similarity to that of type IB enzymes, and appears to have a different 

evolutionary lineage 23,26. Type IC enzymes also retain functional elements that exhibit 

apurinic site lysase activity, which they can use for repairing abasic lesions5 in DNA 26,27. 

Only one topoisomerase variant, topo V, is presently known to comprise the type IC 

family 25.

2Glossary term: Domains of life. Refers to the three major evolutionary branches – bacteria, archaea, and eukaryotes – of modern 
day cellular lineages.
3Glossary Term: Negatively-supercoiled DNA. DNA becomes negatively supercoiled when undertwisted (that is, when wound to < 
10.5 bp/turn). This destabilizes DNA, allowing complementary strands to be more easily denatured. In contrast, DNA becomes 
positively supercoiled and more stabilized when over-twisted (that is, wound to > 10.5 bp/turn).
4Glossary Term: Superfamily-2 (SF-2) helicase. A diverse group of ATP-dependent nucleic-acid helicases and translocases that 
share a conserved domain architecture. Many members of this family can locally melt or unwind short duplex regions.
5Glossary term: Abasic lesions. A form of DNA damage in which the nucleobase has been excised from the sugar backbone.
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Type IIA: duplex DNA ‘strand-passage’ enzymes

As with their type IA counterparts, type IIA topoisomerases employ an active strand-passage 

mechanism for effecting topological changes in DNA. Type IA and IIA topoisomerases also 

share certain catalytic domains used for DNA cleavage 28,29. However, type IIA enzymes 

differ in that they cleave both strands of a DNA duplex and pass a second intact duplex 

through the transient break 30–32 (Fig 2A), and they use ATP to power strand 

passage 31,33,34. These activities allow type IIA topoisomerases to resolve both positive and 

negative DNA supercoils, as well as disentangle long intertwined chromosomes and DNA 

catenanes632,35. Type IIA topoisomerases are found throughout all cellular organisms, as 

well as in some viruses and organelles, and can be partitioned into three paralogous 

subfamilies – eukaryotic topo II, bacterial topo IV, and prokaryotic gyrase – that exhibit 

distinct functional properties 1,2. For instance, gyrase actively adds negative supercoils to 

DNA and is only weakly able to unlink catenanes 33,36,37, while topo IV (and certain topo II 

isoforms) is a robust decatenase that preferentially relaxes positively-supercoiled substrates 

over negatively-supercoiled ones 38,39 (Box 1). Interestingly, type IIA topoisomerases show 

some ability to discriminate between, and preferentially act on, regions of high DNA 

curvature or DNA crossovers due to their ability to sharply bend DNA segments37,40–43. By 

contrast, yeast and Drosophila melanogaster topo II do not show any preference for one 

type of supercoiled DNA over another 44,45.

Box 1

Selectivity and function of type IIA DNA topoisomerase paralogs

Vertebrates possess two topoisomerase II paralogs, topo IIα and topo IIβ, which share 

almost 77% sequence homology 198. However, the C-terminal regions of the two 

enzymes differ. In particular, the C-terminus of topo IIα shifts the activity of the enzyme 

toward the preferential relaxation of positive supercoils; by contrast, the equivalent 

region of topo IIβ does not appear to impart any supercoil preference 39. These 

differences may be linked to particular cellular functions 199, as topo IIα is essential in 

proliferating cells and assists in chromosome condensation, segregation and 

replication 200–202, while topo IIβ tends to be associated with DNA repair, transcription, 

and development 82,83,134.

Bacteria also often utilize two type IIA topoisomerase paralogs (gyrase and topo IV) with 

different activity profiles. Gyrase relaxes positive supercoils and actively adds negative 

supercoils to DNA, whereas topo IV relaxes both positive and negative supercoils and 

shows a heightened activity on positively-supercoiled and catenated 

substrates 33,38,203,204. An auxiliary domain appended to the primary strand-passage 

machinery of gyrase and topo IV appears to be responsible for controlling their 

functional distinctions 205,206, with sequence- and structure-based differences in this 

element permitting the wrapping of DNA by gyrase, but only DNA-binding by topo 

IV 206–209. The auxiliary DNA wrapping and binding domain of bacterial type IIA 

topoisomerases is not conserved in eukaryotic topo II, indicating that the improved action 

6Glossary Term: Catenanes. Topologically interlinked duplex DNA rings.
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of topo IV and topo IIα on positively supercoiled DNA arose independently during their 

evolution.

Type IIB: a second class of duplex DNA strand-passage enzyme

Type IIB topoisomerases are found in archaea, plants, and a few bacterial, protist, and algal 

lineages 46,47. As with their type IIA cousins, type IIB topoisomerases unlink tangled DNA 

duplexes by strand passage (Fig 2B) and relax both negative and positive supercoils 48. Type 

IIB topoisomerases also possess ATPase and DNA-cleavage domains similar to those found 

in type IIA enzymes, although the relative arrangement of these elements in primary 

sequence space and their overall structural organization differs significantly 46,48–51. The 

principal DNA binding subunit of type IIB topoisomerases is noteworthy in that it is 

evolutionarily related to Spo11, the factor responsible for creating double-stranded DNA 

breaks that initiate meiotic recombination 46,52. Thus far, only one family member, topo VI, 

is known to comprise the type IIB topoisomerase clade 46.

Topoisomerase families – why so many?

Given this diversity of topoisomerases, and the seeming overlap in their basic function, how 

do cells decide which one to use for a particular purpose? This question has been difficult to 

address, in part because different organisms often possess markedly different topoisomerase 

repertoires 1,2. Moreover, the regulatory strategies for a given topoisomerase can vary 

widely among species. At present, there appears to be no single answer. Rather, the 

molecular logic behind topoisomerase choice appears to derive from a confluence of factors, 

including: the type of topological problem that needs to be addressed, which topoisomerase 

genes happen to be present in the resident genome, whether specific architectural elements 

have been acquired to modulate topoisomerase function, and if different accessory factors 

and/or modifications that alter topoisomerase localization and activity are in use (Table 1 

and Supplementary information S1 (table)). Topoisomerases utilize a combination of these 

regulatory strategies in the majority of nucleic-acid transactions in which they participate. A 

discussion of the role of specific topoisomerases in different cellular processes follows.

DNA packaging

The length of chromosomal DNA far exceeds that of the cell in which it resides. Organisms 

thus employ a variety of mechanisms to assist with DNA compaction, including supercoiling 

and the use of chromosome organizing factors such as histones or nucleoid associated 

proteins 53. Plectonemic supercoiling7 alone has been estimated to condense DNA by two 

to three orders of magnitude (Figure 1A)54.

In bacteria, a need for compaction has been invoked as one of the principal reasons why 

chromosomal DNA is negatively supercoiled, and why gyrase, which adds those supercoils 

to DNA, is so ubiquitous throughout the bacterial kingdom 53,55. More recent studies, 

7Glossary term: Plectonemic supercoiling. The natural tendency of supercoiled DNA is to wrap back on itself, forming intra-
molecularly wound structures known as plectonemes (Figure 1A). Because DNA is itself a chiral molecule, negatively- and positively-
supercoiled states cause the DNA to coil in opposite directions (in the form of right- and left-handed supertwists, respectively).
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however, suggest that there are additional layers of complexity to this view. For example, 

two very closely related bacterial species, E. coli and S. typhimurium, share about 90% 

sequence identity across homologous genes 56, but have highly-dissimilar superhelical 
densities8, with E. coli DNA being significantly more underwound 57. Gyrase itself is not 

always necessary for DNA packaging, as the lone type IIA topoisomerase present in the 

hyperthermophilic bacterium Aquifex aeolicus is not a gyrase, as might be predicted on the 

basis of its sequence similarity with other gyrase N-terminal domains, but rather a topo 

IV 58. However, many thermophiles also possess reverse gyrase 59, which introduces 

positive supercoils that may aid compaction, as well as counteract thermal 

denaturation 60,61. Although the steady-state superhelical density of DNA in most 

prokaryotes has not been measured directly, multiple findings suggest that many species, 

particularly those that are adapted to growth at high temperatures, may have relatively 

relaxed chromosomes 62. How such organisms are able to sufficiently compact their 

chromosomes in the absence of supercoiling remains an open question, but the mechanism 

almost certainly relies on proteinaceous factors. Overall, the role of supercoiling in DNA 

compaction, and how topoisomerases collaborate to define the superhelical “setpoint” of the 

chromosome, is not fully understood.

Topoisomerases play another role in chromosome compaction by working with large 

condensation machineries (Table 1), principally a group of ATP binding cassette (ABC)-
family ATPases9 known as Structural Maintenance of Chromosomes (SMC) proteins 63–67. 

SMCs, and their counterparts Rad50 (eukaryotes) and SbcC and RecF (E. coli), are 

conserved factors involved in multiple aspects of chromosome cohesion, condensation, and 

DNA repair 68. SMCs and type IIA topoisomerases indirectly co-localize as part of the 

protein network that helps stabilize long-range contacts between chromosomal 

segments 67,69. SMCs, or their affiliated accessory factors, also have been reported to 

directly associate with both topo II and topo IV. For example, the Drosophila melanogaster 

Barren subunit (an ortholog of the condensin H protein) co-immunoprecipiates with topo II 

in vitro 66, while a dimerization region of the E. coli SMC homolog MukB interacts with the 

C-terminal domain of the ParC subunit of topo IV 64,65. Interestingly, both interactions 

appear to potentiate the relaxation of negatively-supercoiled DNA by the associated 

topoisomerase, although how stimulation is achieved is unresolved. At present, little is 

known about the effect and role of these interactions on global DNA superstructure or about 

their utility to the cell, although the MukB–ParC interaction is important for cell viability 65. 

Whether these associations are preserved in other species is not clear, and constitutes a clear 

avenue for additional investigation.

Replication and chromosome segregation

Topoisomerases are required both for the successful management of DNA replication, and 

for specific developmental strategies that depend on replication. In the latter instance, the 

8Glossary Term: Superhelical density. A measurement of the over- or under-twistedness of DNA, which is generally expressed as 
the ratio to which the twist of the supercoiled state differs from that of the relaxed state.
9Glossary Term: ATP Binding Cassette (ABC) ATPases. A family of proteins that include membrane bound transporters, repair 
proteins, and SMCs. ABC ATPases possess a conserved ATP binding domain that is often formed at dimer interfaces. Binding of ATP 
results in conformational changes, often dimerization, that affect associated binding partners and substrates.
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type IIB topoisomerase found in plants (topo VI) is required for a particular form of 

replication known as endoreduplication, a process by which chromosomes are copied 

multiple times in the absence of cell division 70–73. Endoreduplication gives rise to 

polyploid nuclei, which in turn can be used to regulate cell size 74. Why topo VI is needed 

specifically for endoreduplication, and why topo II cannot rescue a topo VI deficiency, is 

not clear 75. Similarly, replication of vertebrate mitochondrial DNA requires a special 

mitochondrial type IB topoisomerase, top1mt, a paralog of the nuclear type IB 

topoisomerase, top1 76,77. Mitochondrial DNA replication requires top1mt to form its 

regulatory displacement (D)-loop77, which in turn is thought to regulate DNA replication 

initiation and transcription 77. Surprisingly, when nuclear top1 is localized to the 

mitochondria, it cannot complement top1mt function and arrests the cell cycle 76. At present, 

it remains to be seen whether similar topoisomerase-dependent roles exist in other 

organisms. The role of topoisomerases in conventional DNA replication is better 

understood, with recent studies uncovering specific roles for topoisomerases in each of the 

three major replicative phases: initiation, fork progression, and termination.

Topoisomerases in replication initiation

In E. coli, replication initiation is dependent on local supercoiling at a lone origin10, oriC, 

that is regulated by the opposing activities of topo I and gyrase 78,79. During DNA 

replication initiation in eukaryotes, topoisomerases have been seen to associate directly with 

certain origins to aid in activation. For example, human topo IB and topo IIα co-localize 

with both the lamin B2 origin (an early firing, widely studied replication start site found on 

human chromosome 19) and the Orc2 subunit of the origin recognition complex11, while 

inhibition of topo IB interferes directly with origin firing 80 (Table 1). Formation of 

replication initiation complexes at the human Ors8 origin, (a late firing origin), as well as the 

lamin B2 origin, also have been reported to require DNA cleavage by topo IIβ – a 

topoisomerase associated with repair and development 81–83 – and the association of DNA 

repair proteins such as Ku70/80 and poly(adenosine diphosphate-ribose) polymerase-1 

(PARP1) 84. Why topoisomerases are needed during these early stages of eukaryotic 

replication is not well understood, but they may be involved in the control of torsional stress 

or DNA deformations that could be used either to help clear DNA regions for replisome 

assembly, or to promote DNA unwinding in the early stages of replisome assembly.

Topoisomerases in replication fork progression

During strand synthesis, topoisomerases are required to relieve positive supercoiling that 

arises from DNA unwinding by replicative helicases (Fig 3A). In bacteria, this role is 

typically fulfilled by DNA gyrase and/or topo IV 37,85–87. By contrast, eukaryotes rely 

primarily on topo IB for positive supercoil relaxation, although topo II can assist or even 

substitute for topo IB in this capacity 88–91. Some type II topoisomerases (for example, topo 

IV and human topo IIα – see Box 1) are markedly more adept at removing positive 

supercoils than negative ones 38–40, suggesting that cells may be under evolutionary pressure 

10Glossary Term: Origin. A chromosomal site for replisome assembly.
11Glossary Term: Origin recognition complex. A multi-subunit protein complex that localizes to specific DNA origins to initiate 
DNA replication in eukaryotes.

Vos et al. Page 7

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2015 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to acquire particularly robust relaxases that can accommodate rapidly moving replication 

forks.

A second consequence of a progressing fork is the formation of daughter duplex 

intertwinings (termed precatenanes12 in circular chromosomes) behind it (Fig. 3A). Such 

structures are produced as a natural byproduct of replicating the double helix of the mother 

chromosome and, if left unchecked, give rise to tangled or catenated DNAs that can lead to 

abnormal DNA segregation upon entry into cell division 92–96. The duplex strand-passage 

activity of type II topoisomerases plays a key role in resolving these topological linkages.

As two forks near one another, the unreplicated region between them represents a 

topological linkage, known as a hemicatenane13, which must be resolved before 

chromosome segregation can occur (Fig. 3B). If the two strands of the hemicatenane can be 

fully replicated prior to resolution, the resulting duplex DNA segments become a natural 

substrate for type II topoisomerases. Consistent with a need for these enzymes in resolving 

inter-chromosome crossovers, the removal or inactivation of topo II or topo IV can lead to 

hyper-catenated DNAs and the production of broken chromosomes during cell 

division 96–101.

However, there also is mounting evidence that type IA topoisomerases, particularly topo III, 

can participate directly in hemicatenane resolution before forks converge. For example, in 

bacteria, topo IV temperature-sensitive alleles can be rescued by overexpression of topo 

III 102. Topo III, which decatenates single-stranded DNA in vitro, has been shown to 

collaborate with RecQ-family helicases in disentangling hemicatenated structures (Table 1); 

in this partnership, the helicase may help generate single-stranded DNA to aid topo III 

function. The connection between these two enzyme classes is sufficiently entwined that 

they frequently form stable or co-localized complexes, along with auxiliary single-stranded 

DNA binding proteins such as SSB (in bacteria), or replication protein A (RPA)-like factors 

(Rmi1 in eukaryotes and Rmi2 in metazoans) 9,103–105. Consistent with the collaboration 

between these proteins as part of a functional “resolvosome”, ablation of the RecQ-partner 

of topo III in eukaryotes, the BLM helicase, leads to the enhanced formation of ultrafine 

DNA tangles, termed “microbridges,” between condensed chromosomes 106. The natural 

fusion of a RecQ-like (SF-2) helicase domain with a type IA topoisomerase module in 

reverse gyrase – which likewise can resolve hemicatenanes 13,107,108 – further highlights the 

frequent need for paired, RecQ-family helicase–topoisomerase activities in the cell.

Topoisomerases in replication termination

With respect to replication termination, topoisomerases have been found to play a role in at 

least two instances. In bacteria, the completion of DNA synthesis can be assisted by 

chromosomally-encoded termination regions (Ters), which bind dedicated factors that help 

arrest replicative helicases. In E. coli, the absence of topo IA diminishes the ability of the 

bacterium’s cognate termination factor (Tus) to block progression of the replicative DnaB 

12Glossary term: Precatenanes. Entangled daughter duplexes formed behind a replication fork during strand synthesis.
13Glossary Term: Hemicatenane. A junction between two double-stranded DNA molecules where one strand of one DNA forms a 
duplex with a complementary strand on the other duplex.
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helicase 109. This effect may arise as a consequence of the increased levels of negative 

supercoiling left by topo IA’s absence, which can stimulate DNA unwinding by the 

replicative helicase, DnaB, and may also serve to reduce the duration of the Tus–DnaB 

interaction. In yeast, topo II appears to facilitate fork progression at termination elements by 

localizing to such sites and working with the Rrm3 helicase to resolve the torsional stress 

arising from converging forks 110. This controlled pausing at termination elements ensures 

complete replication and counteracts abnormal genome rearrangements and breaks arising 

from fork convergence at replication termination (Table 1). Whether there exist other, more 

specific connections between topoisomerases and replication termination remains to be 

determined.

Topoisomerases in chromosome segregation

Once replication is complete, daughter chromosomes must be pulled apart and separated 

from each other. Topoisomerases promote these events by facilitating DNA compaction and 

disentangling (as described above) and by working directly with chromosome partitioning 

machineries and/or cytoskeletal elements. For instance, many bacteria use a dedicated motor 

protein, FtsK or SpoIIIE, to move newly replicated chromosomes into different cellular 

locales to aid segregation 111. In E. coli, topo IV physically associates with, and is 

stimulated by, FtsK, possibly as a means to both counteract the supercoils created by the 

translocating motor and to help unlink tangled DNA regions 112,113 (Table 1). A physical 

association between E. coli topo IV and the actin-like protein MreB also has been observed, 

and this pairing stimulates DNA decatenation as a possible additional force promoting 

chromosome segregation 114. Although no eukaryotic topoisomerase has been reported to 

bind to cytoskeletal elements, topo II does associate with factors responsible for centromere 

formation and chromosome segregation, including the aurora B kinase and the polo-like 

kinase (Plk)-1 115,116 (Table 1). The biological rationale for these interactions is not fully 

understood; however, the colocalization of topo II with aurora B and Plk-1 may be important 

for centromere resolution between sister chromatids. Additional links between 

topoisomerases and chromosome segregation appear likely to exist, but have yet to be 

discovered.

What attracts a given topoisomerase to a particular point in the replicative process? As the 

aforementioned examples highlight, this control can be achieved not only by the types of 

DNA intermediates that derive from a particular process (for example, hemicatenanes, pre-

catenanes and supercoils), but also by topoisomerase-associated partner proteins. Other 

intriguing interactions have been implicated in topoisomerase function during replication. 

For example, topo IV can associate with both the polymerase processivity clamp-loader 

assembly, which may localize the enzyme to oriC to decatenate newly synthesized 

chromosomes 117, and the SeqA factor, a protein that prevents replication reinitiation by 

sequestering hemimethylated DNA within oriC, and that stimulates topo IV decatenation 

and supercoil relaxation activity 118 (Table 1). These connections further highlight cellular 

needs for particular topoisomerase activities during elongation and initiation, respectively.
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Transcription and gene regulation

As with replication, transcription induces changes in DNA topology. A moving RNA 

polymerase produces localized positive supercoiling ahead of the transcription bubble and 

negative supercoiling in its wake 119,120 (Fig. 4A). Left unchecked, these supercoiling 

alterations can lead to significant changes in gene expression 121. Underwound DNA also 

has a higher propensity to form stable RNA–DNA hybrids (R-loops) than relaxed 

duplexes 122. Such structures can block cell growth and may contribute to genomic 

instability by stalling replication forks and promoting DNA breaks at highly transcribed 

genes 123,124.

Both type IA and type IB topoisomerases have been implicated in the removal of negative 

supercoils and the resulting suppression of R-loop formation 123,125. Indeed, the E. coli topo 

IA C-terminus interacts directly with RNA polymerase, and this interaction may help recruit 

the topoisomerase to negative supercoils 55,126. Type IB and type II topoisomerases further 

help relax positive supercoils in front of transcribing polymerases, with topo IB playing a 

more significant role in eukaryotic transcription and topo IV and gyrase handling these 

substrates in bacteria 37,55,127–129.

Topoisomerases have been linked to specific transcriptionally-related events, such as the 

activation or repression of particular promoters or nucleosome remodeling. For example, 

inactivation of topo IB in S. cerevisiae leads to histone-specific acetylation and methylation 

events that increase the transcription of telomere-proximal genes 130. In S. pombe, there is 

evidence that the presence or absence of topo IB activity can influence nucleosome 

disassembly and assembly, respectively, at certain promoter regions 129. Eukaryotic topo IB 

has been implicated in the control of gene expression through an associated kinase activity, 

which is reported to phosphorylate splicing factors such as SR (serine/arginine-rich) 

proteins131, regulating splicing factor localization and enhancing their activity132,133; topo 

IB-mediated phosphorylation of SR proteins in turn can be negatively regulated by the 

presence of poly(ADP-ribose) 133 (Table 1 and Supplementary information S1 (table)).

Remarkably, the transient, site-specific cleavage of DNA by human topo IIβ has been 

reported to be required to activate the transcription of genes regulated by certain nuclear 

receptors, a process that necessitates the activity of PARP14 and Ku80/Ku70, as well as 

DNA repair proteins such as DNA-PK (DNA-dependent protein kinase) 81,83. DNA 

cleavage and the subsequent recruitment of PARP and associated repair proteins appears 

necessary to exchange histone-1 for the high mobility group (HMG)B-1/2 factor, and to 

stimulate transcription 83. Similarly, topo IIβ associates with the promoter region of genes in 

human acute promyelocytic leukemia cell lines that are regulated by retinoic acid receptor 

elements, initially stimulating transcription; sustained transcriptional activation then leads to 

decreased transcript levels and the inhibition of granulocytic differentiation in a topo IIβ-

dependent manner 134.

14Glossary Term: PARP. Poly (ADP ribose) polymerase, an enzyme that adds chains of ADP to proteins as part of DNA damage 
and cell death responses.
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Some of these findings, such as those suggesting that topo IB might directly phosphorylate 

target proteins, or that cells might rely on a potentially mutagenic topo IIβ-meditated DNA-

cleavage event to control gene expression, raise as many questions as they answer. 

Nonetheless, even though it can be difficult to definitively determine whether the effects of 

topoisomerases on promoter function and structure are direct or indirect, it seems that these 

enzymes can influence transcriptional events in a manner that may not depend solely on 

their ability to control supercoiling. This complex area of investigation is likely to yield 

many more surprises.

Recombination and repair

Yet another area where topoisomerases play a critical role is in forming and managing 

double-stranded DNA (dsDNA) breaks. As noted earlier, DNA cleavage by at least one 

topoisomerase, topo IIβ, has been implicated in the control of promoter activity 81,83,134. 

However, double-stranded DNA-break formation through a variety of topoisomerases and 

topoisomerase-like proteins also impacts processes such as meiotic recombination, cell cycle 

checkpoint activation, and DNA repair. For instance, during meiotic recombination, the type 

IIB topoisomerase A-subunit homolog, Spo11, creates double-strand breaks that allow 

chromosomes to exchange segments through homologous recombination 46,52,135. Although 

there is no evidence presently linking Spo11 to a bona fide topoisomerase activity (in the 

sense that it would be capable of DNA strand passage) 136, its DNA-cleavage activity during 

meiosis is clearly controlled, as only a fraction of the total Spo11 pool bound to 

chromosomal loci is used to form DNA breaks and recombinogenic sites 137. Eukaryotes 

(with the exception of plants) do not appear to possess any clear homologs of the ATP-

binding B-subunit of topo VI, and how Spo11 is activated is unknown at present 136.

The creation of nicks and double-strand DNA breaks are potentially deleterious events for 

the cell. Hence, DNA cleavage by topoisomerases or topoisomerase-like factors has the 

capacity to elicit DNA damage responses. For example, following DNA-breakage by Spo11, 

the protein remains covalently attached to the DNA and must be removed 137. The removal 

of Spo11 and downstream DNA-end processing events appear to be carried out by double-

strand break repair proteins such as the Rad50–Mre11–Nbs1 (MRN) complex 136,137, Rad51 

and Dmc1-like factors 138,139, and the nuclease Sae2/CtIP 140. Meiotic recombination elicits 

a p53 damage response, which appears to be independent of the ATM and ATR (ataxia 

telangiectasia mutated and ATM Rad3-related) kinases and their associated repair 

pathways 141. Similar responses are seen when topoisomerases become inactivated 96, or are 

aberrantly linked to DNA through the action of DNA lesions or small-molecule inhibitors 

that promote the formation of topoisomerase-DNA cleavage complexes. However, 

additional systems also can be activated in these instances (for example, the ATM and ATR 

pathways, and BRCA1 or BRCA2 proteins 142,143) that induce cell cycle arrest and DNA 

repair. When topoisomerases become inadvertently trapped in a covalent complex with 

DNA, they further can be targeted for destruction by SUMOylation- and ubiquitinylation-

mediated mechanisms, and the covalent tyrosine-DNA adducts can be repaired by enzymes 

such as Tdp1 and Tdp2 143–152 (Supplementary information S1 (table)). Some of these latter 

events may be promoted by collision encounters with proteins such as RNA 

polymerase153–155.
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Other evidence also exists linking topoisomerase activity to mutagenesis. For instance, 

highly transcribed genes in eukaryotes are sometimes associated with enhanced levels of 

genetic instability and spontaneous mutation 156. Several recent studies have found that 2–3 

nucleotide deletions commonly observed in these regions are the result of topo IB 

activity 157,158. The mechanism behind these alterations has not been fully elucidated; topo 

IB may generate lesions by binding and cleaving within and adjacent to tandem dinucleotide 

repeats, forming a stable covalent DNA link that is then processed in part by endonucleases 

such as Mus81 and Rad1 157,158. Alternatively, topo IB may cleave at the scissile phosphate 
15 of a misincorporated ribonucleotide within or adjacent to the tandem dinucleotide repeats. 

The misincorporated ribonucleotide would then undergo an internal 2′-3′ cyclization event 

to release the enzyme and leave a small nick or gap in the DNA 159, giving rise to 

microdeletions from DNA misalignments during repair. In this regard, it is interesting to 

note that type II and type IB topoisomerases form stable adducts at sites of ribonucleotide 

incorporation in DNA 160, as well as at DNA lesions such as nicks 161 and abasic 

sites 162163,164. Thus, both classes of enzymes may contribute to a steady-state background 

of damage events with mutagenic potential.

Topoisomerases further play an important role during and after the repair of damaged DNA 

strands. This is particularly true during homologous recombination (HR), which generates 

interlinked intermediates that bear some similarities to those occurring during replication 

fork convergence (Fig. 4B). Recent work has found ample evidence for the participation of 

topo III in HR where, as with hemicatenane resolution during replication, it breaks up 

double-Holliday junctions in concert with both a RecQ-type helicase (Sgs1 in yeast 165, 

BLM in metazoans 166,167) and single-stranded DNA binding proteins such as SSB168, 

Rmi1 104 and Rmi2 105,169 (Table 1). Notably, the cooperative activity of this resolvosome 

allows HR to proceed without the generation of crossover products that exchange large 

chromosomal segments, which occurs when branch-endonucleases resolve double-Holliday 

junctions, and may therefore constitute the dominant means for resolving Holliday junctions 

in mitotic cells 104,166,167. Topo III also may help recruit other HR proteins to broken DNA 

ends. For example, Sgs1, Dna2, and RPA derived from budding yeast can resect DSBs in a 

topo III-independent manner in vitro; however, topo III stimulates Sgs1 helicase activity and 

is probably required at physiological concentrations to recruit Sgs1 to broken DNA 

ends 170,171. How disparate topoisomerase, helicase, and SSB protein activities collaborate 

to disentangle hemicatenated substrates is not known; studies of reverse gyrase may provide 

some mechanistic insights into this problem, since reverse gyrase is composed of an Sgs1-

like (SF-2) helicase domain fused to a type IA topoisomerase element 107,108.

PTM of eukaryotic topoisomerases

Eukaryotic topoisomerases are subject to a number of post-translational modifications 

(PTMs) that can alter their localization and activities at various stages in the cell cycle. 

These modifications may also influence the types of DNA structures on which 

topoisomerases preferentially act. Thus far, four types of topoisomerase PTM have been 

15Glossary Term : Scissile phosphate. The phosphate at which a nucleic acid backbone is broken by nucleophilic attack.
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observed: phosphorylation 172, acetylation 173, SUMOylation 145,151, and 

ubiquitinylation146.

The modification of poisoned topoisomerases trapped on DNA by SUMOylation and 

ubiquitinylation, in response to DNA damage, appears to target these enzymes for 

processing and/or degradation 145,146,151–155. However, apart from this function, the 

physiological role of topoisomerase PTMs has been somewhat controversial. Indeed, it is 

not uncommon to find studies that link the same type of modification to the regulation of 

different protein–protein partnering events, the activation or repression of specific 

topoisomerase activities, and/or proper and improper topoisomerase localization, sometimes 

in a mutually-exclusive manner. An example of this complexity is the role of SUMOylation 

in the temporal activation and localization of topo IIα through two E3 ligases16, RanBP2 

and protein-inhibitor-of-activated-STAT-1 γ (PIASγ). In Xenopus laevis, PIASγ has been 

linked to the SUMOylation of topo IIα, a modification that appears to reduce topo IIα’s 

ability to decatenate DNA in vitro 174. By contrast, PIASγ is reported to have no effect on 

topo IIα in mouse embryonic fibroblasts; instead, these cells appear to SUMOylate topo IIα 

through RanBP2, which enhances topo IIα localization and activation at centromeres during 

sister chromosome resolution in anaphase 175,176. The role of phosphorylation has been 

similarly difficult to tease apart, with studies variously reporting that this modification can 

potentiate, depress, or exert no effect on topoisomerase function 116,177–179. Nonetheless, 

some of these differences are almost certainly due to the particular site on the topoisomerase 

that is being modified. The regulation of eukaryotic topoisomerases through PTMs is a 

highly-interesting, but still relatively murky, area of research that undoubtedly holds 

significant surprises.

Topoisomerase inhibition

Although indispensible for cell viability, it is clear that topoisomerases also present a 

fundamental peril: they can be inadvertently inactivated, or their DNA cleavage activity can 

be corrupted, resulting in cytotoxic or mutagenic DNA breaks, which leads to cell death. 

The evolution of general repair systems, as well as more specific ones such as the tyrosyl-

DNA phosphodiesterases (Tdps) 147–150, help cells to deal with these problems. However, 

nature and humans also have been able to exploit topoisomerase inactivity and stalling 

through diverse means to deliberately kill cells, at times for tangible therapeutic benefit.

A number of proteins and protein-like factors have been found that specifically inhibit 

topoisomerase activity, particularly in bacteria (Table 1 and Supplementary information S1 

(table)). These proteins range from toxins that control plasmid stability (CcdB) 180,181 to 

agents that are involved in microbial competition (microcin B17) 182 and antibiotic 

resistance (Qnr and MfpA) 183. Such factors have varied modes of action that include 

attenuating the DNA binding activity of topoisomerases, or promoting their ability to cleave 

DNA. In considering protein-based anti-topoisomerase factors, it is interesting to note that 

their identification has come not through directed screens, but from basic research and 

serendipity. The continual discovery of new proteinaceous inhibitors points to the utility – 

16Glossary term: E3 ligase. An enzyme that attaches ubiquitin or ubiquitin like proteins to a target protein.
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and potentially relative ease – by which topoisomerase activity can be subverted, and 

strongly suggests that more anti-topoisomerase systems remain to be discovered.

On the biomedical side, topoisomerase inhibition has proven to be a highly versatile and 

useful approach for therapeutic intervention. Small-molecule agents targeting 

topoisomerases fall into two broad classes based on their mode of action: “inhibitors,” which 

attenuate enzyme activity, and “poisons”, which stabilize DNA-cleavage complexes (see 

Fig. 5 for a partial list of type II topoisomerase antagonists and their modes of action). 

Although many of the most significant therapeutics (for example, epipodophyllotoxins, 

quinolones, and camptothecins) have been used for decades, only relatively recently have 

their mechanisms of action been understood in molecular detail. For instance, camptothecin, 

and its derivatives such as Topotecan, poison topo IB by intercalating between cleaved DNA 

ends in the enzyme active site 184, impeding DNA religation and the relaxation of 

supercoils. Fluoroquinolones, which are used primarily as antibiotics that target gyrase and 

topo IV, as well as topo II poisons such as etoposide, act in a similar manner, binding 

between the 5′ and 3′ end of a broken DNA strand to prevent resealing and release 42. Other 

compounds that act in a very different manner, blocking either ATPase activity (for 

example, novo- and cholorobiocins 185,186, bisdioxopiperazines 187, and radicicol 188), DNA 

binding (simocyclinone D8) 189, or DNA cleavage (NTBI GSK299423)190. These 

compounds have been imaged in the presence of their respective targets, yielding insights 

into their function. Together, these findings have not only highlighted the molecular 

determinants that enable drug binding and explained their inhibitory effects, but further 

demonstrated that there is a rich abundance of molecular scaffolds capable of inhibiting 

topoisomerases (Supplementary information S2 (figure)). At present, no small-molecule 

agent is known to target type IA topoisomerases, although biochemical studies have 

suggested that such compounds likely would be cytotoxic 191. A hopeful, but presently 

unrealized, goal for these combined efforts is to point the way toward design of new 

inhibitors that show improved patient tolerance and that can circumvent emerging problems 

with drug-resistance.

How cells respond to topoisomerase poisons has been difficult to tease out. In bacteria, it 

was discovered relatively recently that fluoroquinolones help promote cell death by inducing 

the formation of reactive oxygen species (ROS) that further damage DNA 192,193. 

Interestingly, however, some fluoroquinolones (moxifloxacin and PD161144) also kill cells 

even when the ROS cascade is blocked (or when oxygen is absent), suggesting that there 

exists a second pathway for killing by some anti-topoisomerase agents 194. In eukaryotes, 

treatment of cells with poisons leads to the ubiquitinylation and SUMOylation of both topo I 

and topo II 145,146,151–155. These modifications are necessary in part for initiating the repair 

responses described earlier. However, the need for active repair mechanisms also sensitizes 

cells to agents that block such pathways. In this regard, inhibitors of PARP have shown 

some promise when administered with topoisomerase poisons in promoting tumor cell 

killing. Initially, the PARP-1 inhibitor NU1025 was reported to potentiate damage mediated 

by the topo I inhibitor camptothecin in mouse lymphocytic cells, but not to promote further 

damage in conjunction with the topo II-targeting agent, etoposide 195. However, more recent 

work has shown that mouse fibroblasts lacking PARP-1 are more sensitive to the topo II 

inhibitor C-1305 196, and that the PARP inhibitor ANI enhances the activity of the topo II 
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inhibitor doxorubicin against liver cells 197. Fully mapping the pathways and mechanisms 

by which cells contend with anti-topoisomerase agents, and looking for synergy between 

such compounds and other drugs, promises to be a rich vein of research, with powerful 

implications for the treatment of bacterial infections and cancer.

Concluding Remarks

Although first discovered over 40 years ago, the study of topoisomerases remains highly 

vigorous. Our knowledge of the role of cellular topoisomerases and their regulation by 

external factors continues to expand, but many pressing questions remain. For instance, 

there remain many significant gaps in describing the molecular operating principles that 

define where, when, and how a particular topoisomerase will act in the cell. The role of 

higher-order topoisomerase complexes (many of which are transient), the control of 

topoisomerases by post-translational modifications, and the mechanisms by which 

topoisomerases are directly involved in processes such as gene expression or the formation 

of DNA damage, similarly are poorly understood. At the same time, while studies are at 

long last explaining how certain classes of anti-topoisomerase agents function – particularly 

for small-molecule compounds – many of these insights have yet to be translated into the 

development of more efficacious drugs. Moreover, the available evidence suggests novel 

inhibitors and poisons remain to be identified, indicating that the therapeutic potential of 

topoisomerases is far from exhausted. Future cellular, biochemical, and structural efforts in 

this area will no doubt continue to offer up new surprises and insights into the action and use 

of these essential and complex molecular machines.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. DNA cleavage and type I topoisomerase mechanisms
(A) Schematic of negative (−) and positive (+) plectonemic DNA supercoiling. The two 

forms can be distinguished by their right- and left-handed superhelical wrapping, 

respectively. (B) Schematic of the DNA cleavage reaction. Topoisomerases catalyze strand 

scission by forming a reversible, covalent enzyme–DNA adduct through their active site 

tyrosine. Type IB and IC topoisomerases become attached to 3′ DNA ends, and type IA and 

II topoisomerases attach to 5′ DNA ends. (C) Type IA topoisomerases pass a single-stranded 

DNA segment (yellow) through a transient break in a second, single DNA strand (green). 

The structure of E. coli topo III (a type IA topoisomerase) bound to single-stranded DNA is 

shown 210. (D) Type IB topoisomerases nick one DNA strand (yellow), allowing one duplex 

end (green strand) to rotate with respect to the other around the remaining phosphodiester 

bond. The structure of human topo IB bound to duplex DNA is shown 20.
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Fig 2. Type II topoisomerase mechanism
(A) Type IIA topoisomerases cleave both strands of a duplex DNA (green) and pass another 

duplex DNA (purple) through the transient break in a reaction coupled to ATP turnover. The 

cleaved strands are religated, and the products of the reaction are released from the enzyme. 

The movement of the purple DNA duplex is indicated by a dashed arrow. The DNA 

cleavage domains are homologous to those of type IA topoisomerases. The structure of the 

yeast topo II ATPase and DNA cleavage domains are shown 187,211. (B) Type IIB 

topoisomerases use a duplex strand passage mechanism similar to that of type IIA enzymes, 

and share the same ATPase and cleavage domains but differ in overall tertiary structure. The 

structure of the topo VI holoenzyme is shown 51.
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Fig 3. Topoisomerase functions during DNA replication
Schematic of topological problems that arise during DNA replication. The names of the 

topoisomerases that resolve these superstructures are listed. Topoisomerase action is 

indicated by a dashed arrow. (A) Replication elongation. As a replisome progresses, positive 

supercoils form ahead of the fork, and newly-replicated precatenanes behind it. If 

unresolved, precatenanes can give rise to tangled or catenated DNAs that can lead to 

abnormal DNA segregation upon entry into cell division. Unresolved positive supercoils can 

impede fork progression and terminate DNA replication prematurely. (B) Replication 

termination. Hemicatenanes are formed as two forks converge, and these must be resolved 

before chromosome segregation can occur. The unreplicated mother duplex can be resolved 

by topo III, together with a RecQ-family helicase (for example, the BLM helicase in 

eukaryotes), after which the single-stranded gaps are filled in (1). Alternatively, the 

unreplicated mother duplex can be replicated to form duplex linkages, which are then 

removed by a type II topoisomerase (2).
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Fig 4. Topoisomerase functions during transcription and DNA repair
(A) Schematic of topological problems that arise during transcription. As RNA polymerase 

progresses, positive and negative supercoils form ahead and behind it, respectively. The 

names of the topoisomerases that act on these superstructures are listed; topoisomerase 

action is indicated by a dashed arrow. Topo IV can remove negative supercoils; however, it 

is listed in brackets because it is not the primary enzyme used by cells to resolve these 

superstructures. (B) Double-strand break repair through homologous recombination. The 

repair of broken DNA ends can proceed through a pathway that leads to the formation of a 

double-Holliday junction (HJ). Topo III, together with a RecQ-type helicase (such as BLM 

in eukaryotes) can resolve these junctions, generating disentangled chromosomes that have 

no crossovers between DNA ends (1). By contrast, the resolution of Holliday junctions by 

branch-endonucleases have a 50% chance of giving rise to repair chromosomes, the arms of 

which are now swapped (2).
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Fig 5. Inhibition or poisoning points for type II topoisomerases
Detailed schematic of the type II topoisomerase reaction cycle, showing all of the points 

where exogenous agents can disrupt function. During its reaction cycle, the topoisomerase 

initially binds one duplex DNA segment. Following binding, the topoisomerase can then 

associate with a second duplex DNA segment. ATP binding stimulates cleavage and 

opening of the first DNA, and passage of the second through the opening. Agents have been 

identified that interfere with: (1) DNA binding, (2) ATP binding, (3) DNA cleavage, (4) 

strand passage, (5) religation, and (6) product release. Only a partial list of all inhibitors and 

poisons is shown.
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