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Abstract
All the roots of the general nth degree trinomial admit certain convenient representa-
tions in terms of the Lambert and Euler series for the asymmetric and symmetric cases
of the trinomial equation, respectively. Previously, various methods have been used to
provide the proofs for the general terms of these two series. Taking n to be any real or
complex number, we presently give an alternative proof using the Bell (or exponential)
polynomials. The ensuing series is summed up yielding a single, compact, explicit,
analytical formula for all the trinomial roots as the confluent Fox–Wright function
1�1. Moreover, we also derive a slightly different, single formula of the trinomial root
raised to any power (real or complex number) as another 1�1 function. Further, in
this study, the logarithm of the trinomial root is likewise expressed through a single,
concise series with the binomial expansion coefficients or the Pochhammer symbols.
These findings are anticipated to be of considerable help in various applications of
trinomial roots. Namely, several properties of the 1�1 function can advantageously
be employed for its implementations in practice. For example, the simple expressions
for the asymptotic limits of the 1�1 function at both small and large values of the
independent variable can be used to readily predict, by analytical means, the critical
behaviors of the studied system in the two extreme conditions. Such limiting situa-
tions can be e.g. at the beginning of the time evolution of a system, and in the distant
future, if the independent variable is time, or at low and high doses when the indepen-
dent variable is radiation dose, etc. The present analytical solutions for the trinomial
roots are numerically illustrated in the genome multiplicity corrections for survival of
synchronous cell populations after irradiation.
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1 Introduction

Since the topics of the trinomial roots and the Lambert function have historically been
tightly intertwined, we shall subdivide this introductory section into two parts, one
dealing with the former and the other with the latter subject.

1.1 Trinomial roots

The theme of the roots of trinomials has a remarkable history beginning with Lambert
in 1758 [1,2], followed by Euler in 1777 [3,4] and continued by many authors during
the past 260years to the present. In particular, it is from finding all the trinomial roots
that the important subject of the Lambert W and Euler T functions emerged in the
literature. Research on trinomial roots resulted in numerous reports, some of which are
given in Refs. [5–52] (1851–2018). Presently, we primarily focus upon derivations of
the analytical formulae for all the roots of trinomials through the series developments
using the Bell polynomials [53] (1934) and the Fox–Wright function [54–58] (1933–
1961). The Bell (or exponential) polynomials arise in obtaining the closed expressions
for general derivatives of functions. For example, the Faà di Bruno formula [59–
61] (1855–2002) for the nth derivative of composite functions can be derived by
using the Bell polynomials, as shown by Riordan [62,63] (1946,1978). The Fox–
Wright function n�m is an extension of the generalizedGauss hypergeometric function
n Fm . The confluent Fox–Wright function 1�1 is the generalized Kummer confluent
hypergeometric function 1F1 . While the series for 1F1 in powers of its independent
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variable (say x) is known to converge at any finite x (|x | < ∞), the corresponding
series for 1�1 in x converges only within its convergence radius R (|x | < R).

In 1777, Euler [3] found a series for all the roots of the symmetrized form of
the trinomial characteristic equation. Subsequently, over a long period of time, using
various methods, the Euler formula has been proven by a number of authors ranging
from McClintock in 1895 [11] to Wang in 2016 [50]. We presently give yet another
proof of the Euler formula for all the trinomial roots by deriving the explicit expression
for the general expansion coefficient in terms of the complete Bell polynomials Bn .

Moreover, transforming these multivariate to univariate polynomials, the expansion
coefficients are reduced to the binomial coefficients and the Pochhammer symbols
(a)n . Finally, the obtained series is explicitly summed up with the result given by the
confluent Fox–Wright 1�1 function.

The Fox–Wright functions n�m [54–58] and its generalizations have been used in a
number of studies on different subjects and a few articles are listed in Refs. [45–47,64–
67] (1994–2007). The usefulness of the analytical formula for trinomial roots in terms
of the confluent Fox–Wright function 1�1 is in the possibility to exploit the known
asymptotic behaviors of the 1�1 function at both small and large values of its inde-
pendent variable x . This is exemplified in the present illustration of the trinomial roots
encountered in a radiobiological model for cell survival after exposure to radiation.

1.2 The LambertW and Euler T function

The Lambert and Euler functions, with their most frequently encountered properties,
have thoroughly been reviewed in the literature. Therefore, all that is given in this sub-
section is mainly a complement to the existing compilations of the bibliography on this
subject matter. Despite numerous entries in the cited publications, the present list of
references is still far from being exhaustive due to a huge number of reported studies.
Because of the versatile nature of applications of these two functions in various dis-
ciplines, we will categorize the selected articles according to their research branches.

The Lambert W function [1,2] and the related Euler T function [3,4] play a
very important role across interdisciplinary research. These two functions are the
multi-valued solutions of the transcendental equations y = xex [∴ x = W (y)]
and functions y = xe−x [∴ x = T (y)]. They arise from a linear-exponential, or
equivalently, linear-logarithmic equations for the unknown, sought quantity. This spe-
cial combination of the two elementary functions describes two different behavioral
patterns (linear and exponential or linear and logarithmic) that a large number of phe-
nomena share in vastly different fields. The underlying common physical, chemical or
biological effects behind a linkage of a linear with an exponential term is often related
to two different stages of a complete process of time-evolution of a generic dynam-
ical system. These stages might compete with each other, or they could correspond
to a slow and a fast component of the whole developmental process, or they could be
associated with the two complementary mechanisms, etc. Such two components may
characterize e.g. the rise and fall of the studied observables (experimentallymeasurable
quantities) that describe the behavior of a system in varying environmental conditions
under the influence of an external agent. For example, a system of coupled differen-
tial rate equations from chemical kinetics (that cannot be solved exactly by analytical
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means) can be approximately reduced (within a quasi-stationary state assumption) to
a linear-exponential or linear-logarithmic transcendental equation whose exact solu-
tion is the Lambert function. This occurs in the Michaelis-Menten formalism [68]
(1913) for enzyme catalysis in the Briggs–Haldane setting [69] (1925). The same
linear-exponential pattern behavior is routinely encountered in many systems whose
time evolution obeys differential or difference equations. Such time evolution is often
accompanied with time delays, in which case the delayed differential equations are
used, and these end up with a linear-exponential transcendental equation which yields
exactly the Lambert function.

Of course, these transcendental equations can be solved by numerical means (e.g.
by the Newton iteration). However, the possibility of obtaining the exact analytical
solution of such equations, e.g. through the Lambert function, is appealing. The reason
is that a closed, analytical form of a function is invaluable as it provides the neces-
sary asymptotic forms both at small and large values of the independent variable.
Such asymptotes govern the development of the system in the two extreme conditions
and provide a way to control and, indeed, predict the behavioral patterns. In the last
20years, the inter-disciplinary literature witnessed an ever increasing interest in the
Lambert function. It is anticipated that this enviable trend will be pursued in the next
20years and beyond.

The mentioned circumstances embodied through the linear-exponential mathemat-
ical form in the transcendental equations are ubiquitous and this is the main reason
for the universal applicability of the Lambert function in distant and seemingly unre-
lated fields. It would be virtually impossible to enumerate various mechanisms in
versatile research branches that could produce the Lambert function as the end result.
The number of articles dealing with this remarkable function is enormous, and no
review can be exhaustive enough in citing and/or commenting on a greater part the
related publications. The present work is no exception, and we shall content our-
selves to mention only a smaller fraction of the past contributions to this topic. What
makes an investigative result important is its usefulness to a wider circle of other
researchers over an extended period of time. The Lambert function passed this test
of time as testified by an unprecedented use of this function in mathematics, physics,
astrophysics, chemistry, biology, medicine, population genetics, ecology, sociology,
education, energetics, technology, etc. To help the general reader (with a hope of moti-
vating a further extension of the applications of the Lambert function) and especially
due to an unprecedentedly abundant literature, it is deemed instructive to group the
publications into several categories.

The first quoted are the originators, Lambert and Euler, with two cited articles per
author. Subsequently, general information is collected by quoting books, tabular pub-
lications, PhD Theses, reviews, international workshops, websites and posters. This
is followed by quoting computational contributions (algorithms, programs, libraries,
open source codes) and articles with ceveral quite accurate approximate formulae for
the Lambert function.

The next quoted are the publications on the applications of the Lambert
and Euler functions in various disciplines, such as mathematics, physics, astro-
physics/astronomy, chemistry, biomedicine, ecology, sociology, technology and
education. Some of these publications deal exclusively with the Lambert and Euler
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functions, whereas the other studies address a number of features of these functions
among the other treated topics.

According to the outlined scheme, the list of publications referring to the transcen-
dental Lambert and Euler functions reads as:

• Lambert’s articles On the series solution for trinomial roots [1,2](1758, 1770).
• Euler’s articles On the Lambert series for trinomial roots [3,4] (1777, 1783).
• Books Series solutions of algebraic equations, theory of transcendental functions,
enumerative combinatorics, population of species, time-delayed systems, etc. [70–
83] (1906–2016). In particular, Pólya and Szegő [71] (1925) examined the function
y = xex and found its inverse. Their solution is recognized as theLambert function,
whose contemporary notation is W and, therefore, the inverse of y = xex from
Ref. [71] is given by x = W (y).

• Tables Tables of mathematical properties of the Lambert W function and their
integrals: [84,85] (2004, 2010). The former study is in Russian and the latter work
is from the American National Institute of Standards and Technology (NIST).

• Ph.D. Theses Linear time-delayed systems, growth models for plants, etc [86–90]
(2007–2012).

• Reviews Asymptotic behaviors, links to trinomial zeros, solar cells, biochemical
kinetics, enzyme catalysis, radiobiological models for radiotherapy in medicine,
ecology and evolution, etc. [91–105] (1996–2018).

• Conferences A workshop marking the first 20years of a revitalization of the Lam-
bert function, a meeting on the Lambert function alongside some other special
functions in optimization [106,107] (2016).

• Websites Exactly solvable transcendental equations, exactly solvable growth mod-
els, optimization, computer assisted research mathematics and its applications
priority (CARMA), fast library for number theory (FLINT), etc [108–120] (1999–
2017).

• Posters the main features of relevance to mathematics [121] (1996), physics and
engineering with a contribution to Euler’s tercentenary celebration [122] (2007).

• Computational libraries, algorithms, programs (someas open source codes inFOR-
TRAN e.g. wapr.f and matlab wapr.m) with either high or unlimited accuracy
(arprec, arblib, lamW) [123–142] (1973–2018).

• Approximate, closed formulae for the Lambert function (incorporating the asymp-
totic behaviors of the Lambert function), e.g. a global approximate formula (a
single expression with five adjusted parameters) as a rational function with very
good accuracy, or alternatively, a highly accurate approximation using the Padé
rational polynomials for the Lambert function [143–146] (1998–2017).

• Articles by Wright Linear and non-linear difference-differential equations, solu-
tions of transcendental equations, etc. [147–149] (1949–1059).

• Articles by Siewert et al.Kepler’s problem,Riemann’s problem, critical conditions,
the exact solutions of transcendental equations in mathematics and physics, etc.
[150–164] (1972–1981).

• Articles by Corless et al. Lambert’s W function in Maple, the exact solutions of
transcendental equations in mathematics and physics, delayed differential equa-
tions, etc. [165–177] (1993–2012).
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• Articles by Scott et al. Molecular physics (exchange forces for H+
2 ), general rela-

tivity, quantum mechanics, etc. [178–184] (1993–2012).
• Applications in mathematics Solutions to Riemann’s problems for transcenden-
tal equations, Siewert–Burniston’s method and its generalization for determining
zeros of analytic functions, generalized Gaussian noise model, stiff differential
equations, infinite exponentials, series of exponential equations, etc. [185–213]
(1952–2018).

• Applications to systems with delayed dynamics Stability of delayed systems
with repeated poles, delayed fractional-order dynamic systems, communication
networks, multiple delays in synchronization phenomena, bifurcation analysis,
characteristic roots of time-delay systems, eigenvalue assignment for control in
time-delay systems, time-delayed response of smart material actuator under alter-
nating electric potential, etc. [214–225] (2002–2015).

• Applications in physics Corrections in counting detectors, atomic physics (helium
eigenfunctions), molecular physics, black-body radiation, quantum statistics, non-
ideal diodes in solid-state physics, electromagnetism, accelerator-based physics
(particle storage rings), plasma physics, transport physics (the Fokker–Planck
equation), laser physics, thermoelectrics, pair (positron–electron) creation in
strong fields, scattering physics, nuclear magnetic resonance (NMR) physics,
algorithmic aspects of the Lambert function for problems in physics, a quantum-
mechanical Schrödinger eigen-problemwith a potential in the form of the Lambert
W function having the exact solution via the confluent hypergeometric function
(this potential is of short range and it supports a finite number of bound states),
motions of projectiles inmediawith resistance forces, etc. [226–251] (1980–2016).

• Applications in astrophysics Solar winds, solar cells, parametrization of solar pho-
tovoltaic system, etc. [252–259] (2004–2016).

• Applications in chemistryMichaelis–Menten enzyme kinetics, NMR for biochem-
istry, etc. [260–276] (1997–2017).

• Applications in biomedicineEpidemics, periodic breathing in chronic heart failure,
dark adaptation and the retinoid cycle of vision, infection dynamics, associa-
tions/dissociation rate constants of interacting biomolecules, statistical analysis
and spatial interpolation in functional magnetic resonance imaging, acidity in
solid tumor growth and invasion, a glucose-insulin dynamic system, blood oxy-
genation level dependent (BOLD) signals from brain temperature maps, survival
of irradiated cells, etc. [277–288] (2000–2015).

• Applications in ecology and evolutionEuler–Lotka equation, Lotka–Volterra equa-
tion, etc. [80,103] (2009, 2016).

• Applications in hydraulics (fluid dynamics)Flow friction, full bore pipe flowwithin
the Colebrook–White equation, etc. [289–293] (2007–2018).

• Applications in energetics and agriculture Moisture content in transformer oil
[294] (2013).

• Applications in economy Economic order quality: [295] (2012).
• Applications in sociologySpread of social phenomena (behaviors, ideas, products),
explosive contagion model [296] (2016).

• Use of the Lambert function in education Complementing elementary functions
by the Lambert function, the Lambert function in the introduction to intermediate
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physics, the utility of theLambert function in chemical kinetics, undergraduate the-
oretical physics eduction,Wien’s displacement law, quantum square well, hanging
chain and the gravitational force, etc. [297–313] (2002–2018).

1.3 Applications using trinomial roots

Trinomial roots attracted a wide interest of researchers over a period longer than
250years with many interesting and important applications [1–52]. In an application
of the presently obtained formulae, we will give an example dealing with trinomial
roots encountered in radiobiological models for radiotherapy. This illustration con-
cerns cell survival after irradiation for which the measured data from synchronous
cell populations ought to be corrected for genome multiplicity [314,315] prior to
appropriate comparisons with the predictions of radiobiological models. Specifically,
regarding all but the G1 phase cell populations, the corrections of the measured colony
surviving fractions F(D) at each dose D need to be made for replications of deoxyri-
bonucleic acid (DNA) molecules, that are the principal radiation target. Such a type of
corrections yields a fractional trinomial equation with the sought single cell surviving
fraction S(D) raised to power n where 1 ≤ n ≤ 2. The resulting trinomial roots S(D),

amenable to proper comparisons with radiobiological models, are given by a concise
analytical formula as the confluent Fox–Wright function 1�1. The results are numer-
ically illustrated on synthesized cell surviving fractions highlighting the competitive
roles of genome multiplicity and radiation damage repair as the two components of
shoulders in dose–response curves. Our analytical solutions for trinomial roots can
also be applied to many other problems, including those with integer powers encoun-
tered in e.g. spatially-dependent cell surviving fractions that need to be reconstructed
from the measured positron emission densities in image-guided radiotherapy [316].

2 The complete Bell polynomials

The multi-variate complete Bell polynomials (the exponential polynomials) [53],
denoted by B ≡ Bk(x1, . . . , xk), are given by [63]:

exp

( ∞∑
m=1

xm
tm

m!

)
=

∞∑
k=0

Bk(x1, . . . , xk)
tk

k! , (2.1)

where t is a parameter and {x1, . . . , xk} is a set of k variables. Hereafter, all the
parameters and variables are generally taken to be complex quantities. The polynomial
Bn are known explicitly through the multiple sum [63]:

Bn(x1, x2, . . . , xn) =
∑

m1,...,mk≥0

n!
m1!m2! . . . mk !

( x1
1!

)m1
( x2
2!

)m2
. . .

( xk

k!
)mk

,

(2.2)
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where the indices {m1, m2, . . .} must fulfill the single condition:

m1 + 2m2 + 3m3 + · · · + nmn = n. (2.3)

A recursion for {Bk} can be deduced from the known exponentiation of a power series:

exp

( ∞∑
m=1

αmtm

)
=

∞∑
k=0

βk tk, (2.4)

where {αm} is known and {βk} is defined recursively by the relation:

βk = 1

k

k∑
m=1

mαmβk−m, β0 = 1. (2.5)

Introducing the mth variable xm by m!αm, we can cast (2.4) into the following form:

exp

( ∞∑
m=1

xm
tm

m!

)
=

∞∑
k=0

yktk, xm = m!αm, (2.6)

where {yk} is defined by a recursion deduced from (2.5) as:

yk = 1

k

k∑
m=1

m
xm

m! yk−m, y0 = 1. (2.7)

Comparison of (2.4) with (2.7) leads to a relation between Bk and yk :

Bk(x1, . . . , xk) = k!yk . (2.8)

The use of this relation to replace, respectively, yk and yk−m by Bk(x1, . . . , xk)/k! and
Bk−m(x1, . . . , xk−m)/(k − m)! in (2.7) yields the recursion for the general expansion
coefficient from series (2.4):

Bk(x1, . . . , xk) = 1

k

k∑
m=1

m

(
k

m

)
xm Bk−m(x1, . . . , xk−m), B0 = 1, (2.9)

where
( k

m

)
is the binomial coefficient,

(
k

m

)
= k!

m!(k − m)! . (2.10)
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A more general expression for the binomial coefficients
(a

n

)
, where ′′a′′ is not neces-

sarily an integer, is given by:

(
a

n

)
≡ �(a + 1)

n!�(a − n + 1)
= (−1)n (−a)n

n! . (2.11)

Here,� is the gamma function which for a non-negative integer n reduces to a factorial
via �(n + 1) = n! (n = 0, 1, 2, . . .). Further, the quantity (a)n is the Pochhammer
symbol (also called the rising factorial):

(a)n = a(a + 1)· · ·(a + n − 1) = �(a + n)

�(a)
, (2.12)

which has the following property,

(a)n−k = (−1)k n!
(a − n − 1)k

. (2.13)

There is also a falling factorial denoted by [a]n, which is for any value of ′′a′′ defined
by:

[a]n = a(a − 1) · · · (a − n + 1), [0]n = 0 (n ≥ 1), [1]n = δn,1, (2.14)

where δn,m is the Kronecker δ-symbol,

δm,m =
{
1, n = m
0, n �= m

. (2.15)

The binomial coefficient
(a

n

)
is related to the falling factorial [a]n via:

[a]n = n!
(

a

n

)
. (2.16)

Moreover, the rising and the falling factorials are connected by the expression:

[a]n = (−1)n(−a)n . (2.17)

We used (2.9) to calculate several Bell polynomials with the results:

B0 = 1, B1 = x1, B2 = x21 + x2, B3 = x31 + 3x1x2 + x3, (2.18)

B4 = x41 + 6x21 x3 + 4x1x2 + 3x22 + x4, (2.19)

B5 = x51 + 10x31 x2 + 10x21 x3 + 15x1x22 + 5x1x4 + 10x2x3 + x5, (2.20)

B6 = x61 + 15x41 x2 + 20x31 x3 + 45x21 x22 + 15x21 x4 + 60x1x2x3
+ 6x1x5 + 15x32 + 15x2x4 + 10x23 + x6, (2.21)

B7 = x71 + 21x51 x2 + 35x41 x3 + 105x31 x22 + 35x31 x4
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+ 210x21 x2x3 + 21x21 x5 + 105x1x32 + 105x1x2x4 + 70x1x23
+ 7x1x6 + 105x22 x3 + 21x2x5 + 35x3x4 + x7, (2.22)

B8 = x81 + 28x61 x2 + 56x51 x3 + 210x41 x22 + 70x41 x4
+ 560x31 x2x3 + 56x31 x5 + 420x21 x32 + 420x21 x2x4
+ 28x21 x6 + 840x1x22 x3 + 168x1x2x5 + 105x42 + 210x22 x4
+ 280x2x23 + 28x2x6 + 280x21 x23 + 280x1x3x4
+ 56x3x5 + 35x24 + 8x1x7 + x8, (2.23)

B9 = x91 + 36x71 x2 + 84x61 x3 + 378x51 x22 + 126x51 x4
+ 1260x41 x2x3 + 126x41 x5 + 1260x31 x32 + 1260x31 x2x4
+ 84x31 x6 + 3780x21 x22 x3 + 756x21 x2x5 + 954x1x42
+ 1890x1x22 x4 + 2520x1x2x23 + 252x1x2x6 + 840x31 x23
+ 1260x21 x3x4 + 504x1x3x5 + 315x1x24 + 36x21 x7 + 9x1x8,

+ 1260x32 x3 + 378x22 x5 + 1260x2x3x4 + 36x2x7 + 280x33 ,

+ 84x3x6 + 126x4x5 + x9, (2.24)

B10 = x101 + 45x81 x2 + 120x71 x3 + 630x61 x22 + 210x61 x4 + 2520x51 x2x3

+ 252x51 x5 + 3150x41 x32 + 3150x41 x2x4 + 210x41 x6 + 12600x31 x22 x3
+ 2520x31 x2x5 + 4725x21 x42 + 9450x21 x22 x4 + 12600x21 x2x23
+ 1260x21 x2x6 + 2100x41 x23 + 4200x31 x3x4 + 2520x21 x3x5
+ 1575x21 x24 + 120x31 x7 + 45x21 x8 + 12600x1x32 x3 + 3780x1x22 x5
+ 12600x1x2x3x4 + 360x1x2x7 + 2800x1x33 + 840x1x3x6

+ 1260x1x4x5 + 10x1x9 + 945x52 + 3150x32 x4 + 6300x22 x23
+ 630x22 x6 + 2520x2x3x5 + 1575x2x24 + 2100x23 x4 + 120x3x7
+ 210x4x6 + 126x25 + 45x2x8 + x10. (2.25)

3 The cyclic indicator polynomials

The multi-variate cyclic indicator polynomials Ck(x1, . . . , xk) are defined as [63]:

exp

( ∞∑
m=1

xm
tm

m

)
=

∞∑
k=0

Ck(x1, . . . , xk)
tk

k! . (3.1)

The alternative, explicit form of Ck(x1, . . . , xk) is [63]:

Cn(x1, x2, . . . , xn) =
∑

m1,...,mk≥0

n!
m1!m2! . . . mk !

( x1
1

)m1
( x2
2

)m2
. . .

( xk

k

)mk
,

(3.2)
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under the same condition (2.3). It is also possible to calculate Ck(x1, . . . , xk) recur-
sively [63]:

Ck+1(x1, . . . , xk+1) =
k∑

m=0

(
k

m

)
xm+1Ck−m(x1, . . . , xk−m), C0 = 1. (3.3)

Comparing now (2.1) and (3.1), or (2.4) and (3.2), we can see that Ck(x1, . . . , xk) is
linked to Bk(x1, . . . , xk) by the relation:

Ck(x1, . . . , xk) = Bk(y1, . . . , yk), yk = (k − 1)!xk . (3.4)

Using the results for Bn from (2.18)–(2.25), we calculated the first eleven cyclic
indicator polynomials {Cn} and found some typographic errors in Riordan’s book
[63, p. 84]: his variables tk corresponds to ours xk and in C9 the following 3 terms
378t52 t22 , 3024t4t5, 25920t21 t should read as 378t51 t22 , 3024t41 t5, 25920t21 t7, respec-
tively.

4 The partial Bell polynomials

Besides the multi-variate complete Bell polynomials Bn, there are also the multi-
variate partial Bell polynomials Bn,k introduced via [63]:

e−y f (x) Dn
x e

y f (x) =
n∑

k=1

Bn,k( f1, . . . , fn−k+1)yk, (4.1)

where

fn = Dn
x f (x), fn ≡ fn(x), Dx = d

dx
. (4.2)

The explicit expression for the partial polynomial Bn,k is given by:

Bn,k(x1, . . . , xn−k+1) =
∑

m1,...,mk≥0

n!
m1! . . . mk !

( x1
1!

)m1
. . .

( xk

k!
)mk

, (4.3)

where the multiple sums are to be carried out over all the indices {m1, m2, . . .} that,
unlike (2.3), must simultaneously satisfy two conditions

m1 + m2 + m3 + · · · + mk = k
m1 + 2m2 + 3m3 + · · · + nmn = n

}
. (4.4)
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Similarly to (2.9) for {Bn}, there is also the following recursion for {Bn,k} :

Bn,k(x1, . . . , xn−k+1) =
n−k+1∑

m=1

(
n − 1

m − 1

)
xm Bn−m,k−1(x1, . . . , xn−m−k+2), (4.5)

with the initialization B0,0 = 1. Using (4.4), it follows:

(
f1
1!

)m1

. . .

(
fk

k!
)mk

=
(

f1
1! f

)m1

. . .

(
fk

k! f

)mk

f m1+···+mk (x),

=
(

f1
1! f

)m1

. . .

(
fk

k! f

)mk

f k(x),

and, thus (
f1
1!

)m1

. . .

(
fk

k!
)mk

=
(

h1

1!
)m1

. . .

(
hk

k!
)mk

f k(x), (4.6)

where

hn = fn

f (x)
, hn ≡ hn(x). (4.7)

This implies the scaling:

Bn,k( f1, . . . , fn−k+1) = f k(x)Bn,k(h1, . . . , hn−k+1). (4.8)

Therefore, (4.1) can also be given by:

e−y f (x) Dn
x e

y f (x) =
n∑

k=1

Bn,k(h1, . . . , hn−k+1)yk f k(x). (4.9)

We can set y = 1 in (4.9) and then substitute Bn,k( f1, . . . , fn−k+1) for
f k(x)Bn,k(h1, . . . , hn−k+1), as per (4.8). In such a case, (4.9) becomes:

e− f (x) Dn
x e

f (x) =
n∑

k=1

Bn,k( f1, . . . , fn−k+1). (4.10)

On the other hand, we have:

Bn( f1, . . . , fn) =
n∑

k=1

Bn,k( f1, . . . , fn−k+1), (4.11)

and this simplifies (4.10) as follows [53]

e− f (x) Dn
x e

f (x) = Bn( f1, . . . , fn). (4.12)
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We have extracted the first few polynomials Bn,k( f1, . . . , fn−k+1) from the definition
(4.3) and they read as:

B1,1 = x1, B2,1 = x2, B2,2 = x21 , B3,1 = x3, B3,2 = 3x1x2, B3,3 = x31 .

(4.13)

An extended table of Bn.k with 1 ≤ k ≤ n ≤ 12 can be found in Ref. [317].

5 Derivatives of any analytical function raised to an arbitrary power

As a digression, the justification of which will be given in the subsequent analysis, we
are now looking for the nth derivative of the function 1/ f λ(x) :

Rn,λ(x) ≡ Dn
x

1

f λ(x)
) =

(
d

dx

)n 1

f λ(x)
, (5.1)

where λ is an arbitrary parameter (real or complex) and f (x) is any analytical function.
We start from the following integral representation of 1/ f λ(x) :

1

f λ(x)
= 1

�(λ)

∞∫
0

duuλ−1e−u f (x). (5.2)

Inserting (5.2) into (5.1) yields the intermediate integral:

Rn,λ(x) = 1

�(λ)

∞∫
0

duuλ−1e−u f (x)
{
eu f (x)Dn

x e
−u f (x)

}
. (5.3)

The expression in the curly brackets is of the type of the lhs Eq. (4.1) and this gives:

Rn,λ(x) =
n∑

k=1

Bn,k(h1, . . . , hn−k+1) {− f (x)}k

⎧⎨
⎩ 1

�(λ)

∞∫
0

duuλ+k−1e−u f (x)

⎫⎬
⎭ .

(5.4)

The result of the integral in the curly brackets in (5.4) can be obtained employing
(5.2):

1

�(λ)

∞∫
0

duuλ+k−1e−u f (x) = �(λ + k)

�(λ)

1

f λ+k(x)
. (5.5)
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Here, we use (5.3) to identify the term �(λ + k)/�(λ) as the Pochhammer symbol
(λ)k as per (2.12). Then, inserting (5.5) into (5.4), we have:

(
d

dx

)n 1

f λ(x)
= 1

f λ(x)

n∑
k=1

(−1)k(λ)k Bn,k(h1, . . . , hn−k+1). (5.6)

The sum over k in (5.6) can be carried out by using the following relationship which
connects the partial and complete Bell polynomials:

n∑
k=1

(−1)k(λ)k Bn,k(h1, . . . , hn−k+1) = Bn(ζ f1, . . . , ζ fn), (5.7)

with

ζm = (−1)m(λ)m

f m(x)
, (5.8)

where fm(x) is given by (4.2). Finally, thenth derivative of function 1/ f λ(x)becomes:

(
d

dx

)n 1

f λ(x)
= Bn(ζ f1, . . . , ζ fn)

f λ(x)
. (5.9)

6 An arbitrary power of a MacLaurin series of any function

Here, we specify the general function f (x) from the preceding section to be given by
its MacLaurin series:

f (x) =
∞∑

n=0

an xn, (6.1)

where the elements of the set {an} are the expansion coefficients. We are interested
in obtaining the result for an arbitrary power of the MacLaurin series in (6.1) which,
as an analytical function, is differentiable any number of times. By definition, the
MacLaurin series of any analytical function 1/ f λ(x) reads as:

1

f λ(x)
=

∞∑
n=0

bn
xn

n! , (6.2)

where the general expansion coefficient bn is:

bn =
{

Dn
x

1

f λ(x)

}
x=0

. (6.3)
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This is the justification for considering the nth derivative of 1/ f λ(x) in the preceding
section. The reason for investigating an arbitrary power of a series expansion in the
first place is dictated by the method of finding the trinomial roots in the form of a
series. For f (x) given by the series (6.1), it follows:

fn(x) = Dn
x f (x) = Dn

x

∞∑
m=0

am xm =
∞∑

m=n

(−1)m(−m)nam xm−n, (6.4)

so that

f λ(0) = a−λ
0 , fn(0) = n!an . (6.5)

With (6.5) at hand, the coefficient bn becomes:

bn = Bn(ξ f1, . . . , ξ fn), (6.6)

where

ξm = (−1)m(λ)m

aλ+m
0

. (6.7)

Hence, an arbitrary power of the MacLaurin series (6.6) is compactly written as:

( ∞∑
n=0

an xn

)−λ

=
∞∑

n=0

Bn(ξa1, . . . , ξan)
xn

n! . (6.8)

The two values of λ are of special interest. First, the case λ = 1 is for reversion of a
series when (6.8) reduces to:

1
∞∑

n=0
an xn

=
∞∑

n=0

Bn(ξa1, . . . , ξan)
xn

n! , ξ k = (−1)kk!
ak+1
0

. (6.9)

The second case is when λ is a negative integer m (m = −1,−2, . . .) for which (6.8)
becomes:

( ∞∑
n=0

an xn

)m

=
∞∑

n=0

Bn(ξa1, . . . , ξan)
xn

n! , ξ k = [m]kam−k
0 . (6.10)
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7 The Lambert series solution for all the roots of trinomial equations

The Euler T (x) and the Lambert W (x) functions are defined as the solutions of the
following transcendental equations:

y = xe−x ∴ x = T (y), (7.1)

y = xex ∴ x = W (y). (7.2)

The replacement of x by T (y) in (7.1) and x by W (y) in (7.2) yields the equivalent
definitions of the Euler and Lambert functions:

y = T (y)e−T (y), (7.3)

y = W (y)eW (y). (7.4)

Alternative to the linear-exponential forms (7.3) and (7.4), the T and W functions can
be introduced through the linear-logarithmic relationships. Namely, taking the natural
logarithm of both sides of Eq. (7.3), it follows:

ln T (y) − T (y) = ln y, (7.5)

ln W (y) + W (y) = ln y. (7.6)

Among several representations of these functions, the power series expansions are
given in the explicit forms:

T (y) ≡
∞∑

n=1

nn−1

n! yn = y + y2 + 3

2
y3 + 8

3
y4 + 125

24
y5 + 54

5
y6 + 16807

720
y7 + · · · ,

(7.7)

W (y) ≡
∞∑

n=1

(−n)n−1

n! yn = y − y2 + 3

2
y3 − 8

3
y4 + 125

24
y5 − 54

5
y6 + 16807

720
y7 − · · · .

(7.8)

The following evident relationship between the T and W functions shows that neither
function is odd (symmetric) nor even (asymmetric):

W (−x) = −T (x). (7.9)

The Euler and Lambert functions have not originally appeared in the literature in
the way they are usually introduced through Eqs. (7.1) or (7.3) and (7.2) or (7.4),
respectively. Rather, Lambert [1] first discovered that all the roots x of the trinomial
equation:

x = q + xn (n = 1, 2, 3, . . .), (7.10)
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where q is a fixed parameter and n any positive integer, can be expressed precisely
as a series of the type from the rhs of Eq. (7.8). On the other hand, the series (7.8)
is obtained as the solution the transcendental equation (7.2). As such, this dualism
is the origin of using the name Lambert function for all the roots x via x = W (y)

of the implicit equation (7.2). Thus, the original function, which since the 1990s is
called the Lambert W function, does not stem from an explicit search of an inverse
of the function y = xex . In fact, the actual inverse (xex )(−1) of the function xex has
repeatedly been established by e.g. Pólya and Szegő [71] and others. However, since
the same Lambert function W is the common solution x to the two seemingly different
problems (7.2) and (7.10), it ought to be an equivalence between the two problems.
This can indeed be shown by e.g. reference to the related work of Euler [4], who in
his analysis of the Lambert series (7.8), re-wrote Eq. (7.10) in a symmetrized form:

xα − xβ = (α − β)vxα+β (α, β, v : any constants), (7.11)

where v, α and β are known. In the special case α = 1 and β = n, it follows that
(7.11) is reduced to an equation of the form (7.10) as given by:

x̃ = q − x̃n, q = v(n − 1), x̃ = 1

x
(x �= 0). (7.12)

For α �= β, both sides of Eq. (7.11) can be divided by α − β in which case the lhs of
the ensuing equation (xα − xβ)/(α − β) = vxα+β would become an undetermined
expression 0/0 in the limit β → α. Then, l’Hôpital’s rule would give:

lim
β→α

vxα+β = vx2α = lim
β→α

xα − xβ

α − β
= lim

β→α

d

dβ

xα − xβ

α − β
= xα ln x, (7.13)

so that

ln x = vxα. (7.14)

To find the solution of (7.14), we first change x to X via:

x = eX , (7.15)

and this gives

X = veαX . (7.16)

Multiplying both sides of this equation by αe−αX yields:

Y e−Y = vα, Y = αX . (7.17)
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By virtue of the relation (7.1) for the Euler T function, it follows from (7.17) that:

Y = T (vα). (7.18)

Returning to the original variable x via Y = αX ,where X = ln x, according to (7.15),
we finally have:

ln x = 1

α
T (vα) . (7.19)

Thus the closed form solution for all the roots x of trinomial characteristic equation
(7.14) is:

x = e(1/α)T (vα), (7.20)

where T (y) is given by the rhs of (7.7), which Euler [4] calls the Lambert series. This
derivation is based upon the definition (7.3) for the T function. Another derivation
could also be carried out by exploiting the fact that both the problem (7.14) and the
alternative definition (7.5) for the T function contain a logarithmic function. Thus,
we first multiply both sides of Eq. (7.5) by α to write vαxα = α ln x, or equivalently,
vαxα = ln xα. Then, we add the term ln vα to both sides of this latter equation, to
write vαxα + ln vα = ln xα + ln vα = ln vαxα, so that after rearranging, we obtain:

ln Z − Z = ln vα, (7.21)

where,

Z = vαxα . (7.22)

Comparison between (7.5) and (7.21) leads to the identification:

Z = T (vα) . (7.23)

Returning to the original variable by means of (7.23) yields the final result for x raised
to the power α as:

xα = 1

vα
T (vα) . (7.24)

Thus, this second derivation gives directly xα in terms of the constant vα through the
function (vα)−1T (vα). Correctness of the derivations based upon the two equivalent
definitions (7.3) and (7.5) can be checked through cancellation of the common term
T (vα) in division of (7.20) by (7.24):

ln x

xα
= T (vα)/α

T (vα)/(vα)
= v ∴ ln x

xα
= v (QED), (7.25)

in agreement with the initial problem ln x = vxα from Eq. (7.14).
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Overall, we started by searching the solution of the original Lambert [1] trinomial
characteristic equation (7.10). However, already at the outset, this main problem was
replaced by its symmetrized version (7.11) due to Euler [4]. Thus, instead of (7.10),
we solved the related problem (7.11). Nevertheless, a similar procedure of solving
(7.11) can also be adapted to (7.10), which this time we re-write in a more general
form:

x = q + xα, (7.26)

where α is any real number, i.e. not necessarily an integer.

8 All the trinomial roots in terms of the Bell polynomials

Here, we shall address the main topic of the present study, and that is finding all the
roots of the trinomial characteristic equation:

x − yxα − 1 = 0 (α : any constant) (8.1)

where α and y are known. Here, as in Euler’s Eq. (7.11), power α is any constant
(real, complex). In other words, unlike Lambert’s Eq. (7.10), power α of the root x in
(8.1) does not need to be restricted exclusively to the set of integer numbers. In the
course of the analysis, we shall present a novel method based upon the use of the Bell
polynomials for raising a series for x to the power α. Note that there is no need to
consider a more general trinomial equation:

zα − βz + γ = 0. (8.2)

This is the case because (8.2) is reduced to (8.1) for β �= 0 and γ �= 0 by setting
x = (γ /β)z and y = γ α−1β−α.

A convenient starting point to solve (8.1) for x is to develop x in powers of y :

x =
∞∑

n=0

bn yn, (8.3)

where {bn} (n = 1, 2, 3, . . .) is the infinite set of the unknown expansion coefficients.
To find the general coefficient bn, we insert (8.3) into (8.1) and write:

∞∑
n=0

bn yn = 1 + y

( ∞∑
n=0

bn yn

)α

. (8.4)

On the rhs of Eq. (8.4), the series (8.3) is raised to the power α. It is for this reason
that it was necessary to find the general formula (6.8) for a series raised to an arbitrary
power. Thus, we employ (6.8) in (8.4) viz:
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( ∞∑
n=0

bn yn

)α
=

∞∑
n=0

Bn(1!ζb1, 2!ζb2, . . . , n!ζbn)
yn

n! , (8.5)

where,

ζ k = (−1)k(−α)kbα−k
0 . (8.6)

Substituting now (8.5) into (8.4), it follows:

∞∑
n=0

bn yn = 1 + y
∞∑

n=0

Bn(1!ζb1, 2!ζb2, . . . , n!ζbn)
yn

n! . (8.7)

Equating the coefficients of the same powers of y from both sides of Eq. (8.7), we
connect bn with Bn as:

bn = Bn−1(1!ζb1, 2!ζb2, . . . , (n − 1)!ζbn−1)

(n − 1)! , b0 = 1(n > 1). (8.8)

This result can equivalently be given through the cyclic indicator polynomials using
(3.4):

bn = Cn−1(ζb1, ζb2, . . . , ζbn−1)

(n − 1)! , b0 = 1(n > 1). (8.9)

Therefore, all the roots of the transcendental equation (8.1) are expressed either through
the complete Bell polynomials:

x − yxα − 1 = 0

x =
∞∑

n=0

Bn−1(1!ζb1, 2!ζb2, . . . , (n − 1)!ζbn−1)
yn

(n − 1)!

⎫⎪⎬
⎪⎭ , (8.10)

or through the cyclic indicator polynomials,

x − yxα − 1 = 0

x =
∞∑

n=0

Cn−1(ζb1, ζb2, . . . , ζbn−1)
yn

(n − 1)!

⎫⎪⎬
⎪⎭ . (8.11)

In the sums from (8.10) and (8.11), the term with n = 0 is, by definition, equal to 1.

9 Frommulti- to uni-variate polynomials for trinomial roots

There is more to the result (8.10) and that is a further simplification of the complete
Bell polynomials. To illustrate this point, wemake use of (2.18) and (2.19) to explicitly
calculate the first few coefficients bn (0 ≤ n ≤ 4) as:

b0 = 1, b1 = 1, b2 = α, b3 = α(3α − 1)

2! . (9.1)
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With more details, the next coefficient (b4) is also reduced to a simple form:

3!b4 = B3(1!ζb1, 2!ζb2, 3!ζb3),

= (1!ζb1)
3 + 3(1!ζb1)(2!ζb2) + 3!ζb3,

= ζ 3b31 + 3(2!ζ 2b1b2) + 3!ζb3,

= (−1)3(−α)3 + 6(−1)2(−α)2α + 6(−1)1(−α)1
α(3α − 1)

2
,

= α(α − 1)(α − 2) + 6α2(α − 1) + 3α2(3α − 1),

= α(16α2 − 8α − 4α + 2) = 16α3 − 12α2 + 2α, (9.2)

so that,

b4 = 16α3 − 12α2 + 2α

3! . (9.3)

A similar calculation for b5 and b6 yields the final results:

b5 = 125α4 − 150α3 + 55α2 − 6α

4! , (9.4)

b6 = 1296α5 − 2160α4 + 1260α3 − 300α2 + 24α

5! . (9.5)

Thus, in general, (n − 1)!bn as is a polynomial (8.8), say pn−1(α) of degree n − 1 in
the variable α with no free term and with the integer coefficients:

bn = pn−1(α)

(n − 1)! , n ≥ 2 (b0 = b1 = 1), (9.6)

with

p1(α) = α, (9.7)

p2(α) = 3α2 − α, (9.8)

p3(α) = 16α3 − 12α2 + 2α. (9.9)

p4(α) = 125α4 − 150α3 + 55α2 − 6α. (9.10)

p5(α) = 1296α5 − 2160α4 + 1260α3 − 300α2 + 24α, etc. (9.11)

On the other hand, according to (8.8), the same general term (n − 1)!bn = pn−1(α)

is also the Bell polynomial (n − 1)!bn = Bn−1(1!ζb1, 2!ζb2, . . . , (n − 1)!ζbn−1). In
such a way, the particular multi-variate Bell polynomial Bn−1(1!ζb1, 2!ζb2, . . . , (n −
1)!ζbn−1) in the n specified variables {x1, x2, . . . , xn} = {ζ1!b1, ζ2!b2, . . . , ζ(n −
1)!bn−1} becomes, in fact, the uni-variate polynomial pn−1(α) in the variable α :

Bn(1!ζb1, 2!ζb2, . . . , n!ζbn) = pn(α). (9.12)
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Here, the polynomial pn(α) is the uni-variate polynomial in variableα.Moreover, these
latter polynomials can be represented in a more convenient factored form. Namely, by
returning to e.g. (9.2), the line α(α2 − 8α − 4α + 2), which precedes the final result
16α3 − 12α2 + 2α, can be rewritten as α(α2 − 8α − 4α + 2) = α[4α(4α − 1) −
2(4α − 1)] = α(4α − 1)(4α − 2). Therefore, b4 from (9.3) is equivalently given by:

b4 = α(4α − 1)(4α − 2)

3! . (9.13)

Further, by the like reductions of the corresponding intermediate expressions within b5
and b6, i.e. prior to obtaining the polynomials in (9.4) and (9.5), we explicitly verified
that the following is true:

b5 = α(5α − 1)(5α − 2)(5α − 3)

4! , (9.14)

b6 = α(6α − 1)(6α − 2)(6α − 3)(6α − 4)

5! . (9.15)

Hence, this self-evident pattern infers the following factored formof the general expan-
sion coefficient bn from (8.3):

bn = α(nα − 1)(nα − 2)(nα − 3) · · · (nα − n + 2)

(n − 1)! ,

= α

(n − 1)!
n−2∏
k=1

(nα − k), n ≥ 3 (b0 = b1 = 1, b2 = α). (9.16)

The outlined derivation simplifies the expression in (8.11) according to:

x − yxα − 1 = 0

x =
∞∑

n=0

{α(nα − 1)(nα − 2)(nα − 3) · · · (nα − n + 2)} yn

(n − 1!

⎫⎪⎬
⎪⎭ . (9.17)

This finding coincides with the result of Euler [3] from 1777. Most recently, the proof
of (9.17) has also been given by Wang [50] in 2016.

10 All the trinomial roots by a series in terms of the Pochhammer
symbols

Equivalently, (9.16) can be cast into another form involving the Pochhammer symbol
(2.12):

bn = (−1)nα

(n − 1)! (1 − nα)n−2. (10.1)
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Referring to (9.6),we see that theBell uni-variate polynomials pn acquire the following
concise expression:

pn(α) = α

n−1∏
k=1

(nα − α − k), (10.2)

pn(α) = (−1)n+1α(1 − nα − α)n−1. (10.3)

In particular, (10.2) is recognized as the canonical representation of pn(α) written as
the product of the monomials α − αn,k :

pn(α) = α(n + 1)n−1
n−1∏
k=1

(α − αn,k), (10.4)

where {αn,k} is the set of the roots that are all positive rational numbers smaller than
unity:

αn,k = k

n + 1
< 1 (1 ≤ k ≤ n − 1). (10.5)

Thus, all the roots of the transcendental equation (8.1) are given by the series (8.3)
with the expansion coefficients {bn} from (10.1), as summarized by:

x − yxα − 1 = 0

x = 1 + α

∞∑
n=1

(1 − nα)n−2
(−y)n

(n − 1!

⎫⎪⎬
⎪⎭ . (10.6)

11 Arbitrary real- or complex-valued powers of trinomial roots

Regarding the roots x of the transcendental equation (8.3), it is also of interest to find
the power function xβ where β is any real or complex parameter. This can be done by
starting from the series (8.3) to write:

xβ =
( ∞∑

n=0

bn yn

)β

,

=
∞∑

n=0

Bn(1!ξb1, 2!ξb2, . . . , n!ξbn)
yn

n! ,

=
∞∑

n=0

cn yn (11.1)
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where

ξ k = (−1)k(−β)kbβ−k
0 , (11.2)

cn = 1

n! Bn(1!ξb1, 2!ξb2, . . . , n!ξbn). (11.3)

The first few expansion coefficients {cn}, are found by using the expressions (2.18)–
(2.25) for the Bell polynomial with the results:

c0 = 1, c1 = β, c2 = β

2! [(2α − 1) + β] , (11.4)

3!c3 = B3(1!ξb1, 2!ξb2, 3!ξb3),

= (1!ξb1)
3 + 3(1!ξb1)(2!ξb2) + 3!ξb3,

= ξ3b31 + 6ξ2b1b2 + 6ξb3,

= (−1)3(−β)3 + 6(−1)2(−β)2α + 6(−1)1(−β)1
α(3α − 1)

2
,

= β [(β − 1)(β − 2) + 6(β − 1)α + 3α(3α − 1)] ,

= β {[(3α − 1)(3α − 2)] + [β(β − 1)] + [2β(3α − 1)]} , (11.5)

∴ c3 = β

3! {[(3α − 1)(3α − 2)] + [β(β − 1) + 2β(3α − 1)]} , (11.6)

c4 = β

4! {[(4α − 1)(4α − 2)(4α − 3)] + [β(β − 1)(β − 2)

+ 3β(β − 1)(4α − 1) + 3β(4α − 1)(4α − 2)]} , (11.7)

c5 = β

5! {[(5α − 1)(5α − 2)(5α − 3)(5α − 4)] + β [(β − 1)(β − 2)(β − 3)

+ 4(β − 1)(β − 2)(5α − 1) + 6(β − 1)(5α − 1)(5α − 2),

+ 4(5α − 1)(5α − 2)(5α − 3)]} . (11.8)

The pattern which emerges from here is clear as each cn (2 ≤ n ≤ 5) is a sum of
n structurally grouped terms. The structure is such that each cn has the three types
of products, the ones involving only the parameter α (stemming from the expansion
coefficients {bn}), the ones with the parameter β alone and the mixed terms having α

as well as β. Because of such a special structure, it is possible to express every cn in a
more compact way comprised of only n product of mixed terms. For example, in the
case of c3 from (11.5), we have:

3!
β

c3 = (3α − 1)(3α − 2) + β(β − 1) + 2β(3α − 1),

= {(3α − 1)(3α − 2) + β(3α − 1)} + {β(β − 1) + β(3α − 1)} ,

= {(3α − 1)(3α − 2 + β)} + {β(3α − 2 + β} ,

= (3α − 1 + β)(3α − 2 + β), (11.9)

∴ c3 = 3!
β

(3α − 1 + β)(3α − 2 + β). (11.10)
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Carrying out calculations similar to c3, by using the intermediate steps prior to arriving
at (11.7) and (11.8), we obtain the following results:

c4 = 4!
β

(4α − 1 + β)(4α − 2 + β)(4α − 3 + β), (11.11)

c5 = 5!
β

(5α − 1 + β)(5α − 2 + β)(5α − 3 + β)(5α − 4 + β). (11.12)

This evidently implies the general formula for the expansion coefficient cn for any
subscript n as:

cn = β

n! (nα − 1 + β)(nα − 2 + β) · · · (nα − n + 1 + β),

= β

n!
n−1∏
k=1

(nα − k + 1 + β), (11.13)

or alternatively

cn = (−1)n−1

n! β(1 − nα − β)n−1, n ≥ 1 (c0 = 1). (11.14)

Thus, with the result (11.14) at hand, and having in mind (11.1), we can now give
the power β of the root x of the transcendental equation (8.3), so that the pair of the
expressions in (10.6) can be extended to add the 3rd formula containing xβ :

x − yxα − 1 = 0

xβ = 1 + β

∞∑
n=1

(−1)n−1(1 − nα − β)n−1
yn

n!

⎫⎪⎬
⎪⎭ . (11.15)

12 Logarithmic function of trinomial roots

The logarithm of the trinomial root can be found taking the limit β → 0 in the power
function xβ from (11.15). First, we extract the part (xβ − 1)/β from (11.15):

xβ − 1

β
=

∞∑
n=1

(−1)n−1(1 − nα − β)n−1
yn

n! . (12.1)

Since the lhs of this equation is an undetermined (0/0) for β → 0, l’Hôpital’s rule
applies and this generates the logarithmic function:
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lim
β→0

xβ − 1

β
= ln x,

= lim
β→0

∞∑
n=1

(−1)n−1(1 − nα − β)n−1
yn

n! . (12.2)

This gives the logarithmic function ln x of the general trinomial root x as:

x − yxα − 1 = 0

ln x =
∞∑

n=1

(−1)n−1(1 − nα)n−1
yn

n!

⎫⎪⎬
⎪⎭ . (12.3)

13 Trinomial roots in terms of the confluent Fox–Wright function

First, let us examine the particular case β = 1 in the power function xβ from (11.15).
Using (2.13), it follows for β = 1 :

{
(−1)n−1(1 − nα − β)n−1

}
β=1

= (−1)n−1(−nα)n−1 = 1

n

(
nα

n − 1

)
. (13.1)

Thus, for β = 1 the power function xβ from (11.15) is simplified to:

x = 1 +
∞∑

n=1

(
nα

n − 1

)
yn

n
. (13.2)

Let us give an example for e.g. α = 1 for which we have
( nα

n−1

)
/n = 1, so that (13.2)

becomes x = 1 + ∑∞
n=1 yn, or equivalently, x = ∑∞

n=0 yn . This is correct since for
α = 1, the general transcendental equation (8.1) is reduced to x −yx −1 = 0, yielding
x = 1/(1 − y) = ∑∞

n=0 yn, after using the binomial expansion of x = 1/(1 − y).

We can also use the definition (2.11) to express the binomial coefficient from (13.2)
in terms of the gamma functions according to:

1

n

(
nα

n − 1

)
= �(1 + nα)

�(2 + n{α − 1})
1

n! . (13.3)

This permits expressing (13.2) in the following equivalent form:

x − yxα − 1 = 0
x = 1�1([1, α]; [2, α − 1]; y)

}
, (13.4)

where 1�1 is the confluent Fox–Wright �-function whose general definition is given
by:
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1�1([a, α]; [b, β]; z) ≡
∞∑

n=0

�(a + nα)

�(b + nβ)

zn

n! . (13.5)

The confluent Fox–Wright �-function 1�1 of order (1;1) itself is the special case of
the more general Fox–Write �-function n�m of orders (n; m) :

n�m([a1, α1], . . . , [an, αn]; [b1, β1], . . . , [bm, βm]; z) ≡
∞∑

k=0

∏n
r=1 �(ar + kαr )∏m
s=1 �(bs + sβs)

zk

k! .

(13.6)

The confluent Fox–Wright function 1�1 is an extension of the confluent Kummer
hypergeometric function 1F1 :

1F1(a; b; z) ≡
∞∑

n=0

�(a + n)

�(b + n)

zn

n! . (13.7)

Similarly, the more involved case of the �-function, namely n�m, is an extension of
the generalized Gauss hypergeometric function n Fm :

n Fm(a1, . . . , an; b1, . . . , bm; z) ≡
∞∑

k=0

∏n
r=1 �(ar + k)∏m
s=1 �(bs + s)

zk

k! . (13.8)

Moreover, there is a complete coincidence for a = 1 and b = 1 in the confluent case
and similarly for the general case of the two pairs of functions:

1�1([a, 1]; [b, 1]; z) = 1F1(a; b; z), (13.9)

n�m([a1, 1], . . . , [an, 1]; [b1, 1], . . . , [bm, 1]; z) = n Fm(a1, . . . , an; b1, . . . , bm; z).

(13.10)

14 Convergence radius of the series for trinomial roots

While the 1F1-function from (13.7) is convergent for every z (real or complex), this
is not the case for the 1�1-function (13.5). It is, therefore, important to find the con-
vergence radius R of the series in (13.5). This latter series would converge provided
that |z| < |R|, where:

R = lim
n→∞

γn+1

γn
, γn ≡ �(a + nα)

�(b + nβ)

zn

n! . (14.1)

Using the well-known asymptotic form of the gamma function �(u) for large values
of its variable u (real or complex):

�(u) = √
2πuu−1/2e−u, (14.2)
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it follows

γn = (nα)a+nα

(nβ)b+nβ
e−n(α−β) zn

n! , (14.3)

so that

lim
n→∞

γn+1

γn
= ααβ−β z, (14.4)

and, therefore

|R| = |ααβ−β | · |z|. (14.5)

Thus, the series (13.5) for the confluent Fox–Wright 1�1-function will converge for
|R| < 1, i.e. for |ααβ−β | · |z| < 1, implying that the convergence region does not
depend on the parameters a and b :

|z| < |α−αββ | : Convergence region for 1�1 from (13.5). (14.6)

Setting here β = α − 1 and z = y regarding 1�1([1, α]; [2, α − 1]; y) from (13.4),
we see that the series for the Fox–Wright 1�1-function representing the root x of the
transcendental equation (8.1) will converge for |(α − 1)1−ααα| · |y| < 1, so that:

x − yxα − 1 = 0

x = 1 +
∞∑

n=1

(
nα

n − 1

)
yn

n

Convergence region : |y| < |(α − 1)α−1α−α|

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (14.7)

Let us now return to (12.3) for ln x of the roots x of (8.1). Therein, we can use (2.12)
and (2.11) to have:

(−1)n−1(1 − nα − β)n−1
yn

n! = �(nα)

n!�(1 + nα − n)
= 1

nα

(
nα

nα − n

)
. (14.8)

This transformation maps (12.3) into the expression:

x − yxα − 1 = 0

ln x = 1

α

∞∑
n=1

(
nα

nα − n

)
yn

n

⎫⎪⎬
⎪⎭ . (14.9)

To find the convergence radius ρ of this series, we set:

ρ = lim
n→∞

δn+1

δn
, δn = 1

nα

(
nα

nα − n

)
= �(nα)

n!�(nα − n + 1)
, (14.10)
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and make use of (14.2) to calculate δn+1/δn with the result:

lim
n→∞

δn+1

δn
= αα

(α − 1)α−1 y. (14.11)

From here, the convergence requirement |y| < |ρ| leads to |y| < |(α − 1)α−1α−α| so
that:

x − yxα − 1 = 0

ln x = 1

α

∞∑
n=1

(
nα

nα − n

)
yn

n

Convergence region : |y| < |(α − 1)α−1α−α|

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (14.12)

Thus, the series (14.7) and (14.12) for x and ln x, respectively, have the same con-
vergence radius. Note that the sum in (14.12) cannot be extended to include the term
n = 0 because in that case the numerator would be singular, {�(nα)}n=0 = ∞.

Finally, we will consider the general case of β arbitrary in the power function xβ

from (11.15). For any value of β, employing (2.13), it follows:

(−1)n−1(1 − nα − β)n−1
1

n! = �(nα + β)

n!�(nα + β − n + 1)
= 1

nα + β

(
nα + β

n

)
,

(14.13)

and this yields

x − yxα − 1 = 0

xβ = 1 + β

∞∑
n=1

(
nα + β

n

)
yn

nα + β

⎫⎪⎬
⎪⎭ . (14.14)

Alternatively, using the gamma functions instead of the binomial coefficient, by way
of (14.13), the series from (14.14) can be rewritten as:

xβ = 1 + β

∞∑
n=1

(
nα + β

n

)
yn

nα + β
= 1 + β

∞∑
n=1

�(nα + β)

�(nα + β − n + 1)

yn

n!

= β

∞∑
n=0

�(β + nα)

�({β + 1} + n{α − 1})
yn

n! .

(14.15)

The last line in (14.15) and the definition (13.5) reduce xβ the confluent Fox–Wright
1�1-function for xβ in the case of any value of the parameter β :

x − yxα − 1 = 0
xβ = β1�1([β, α]; [β + 1, α − 1]; y)

}
. (14.16)
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15 An illustration in radiobiology for radiotherapy

There is a large number of radiobiological models for description of cell surviving
fraction S after exposures to radiation by dose D [101,102]. These models rely upon
the two main assumptions: the critical targets of radiation are the DNAmolecules and
genome integrity is the prerequisite for reproduction of mammalian cells. Custom-
arily, radiobiological models adopt an implicit assumption that no part of DNA has
replicated. However this is not justified for two cases with differing types of popula-
tions in e.g. synchronized cells. One case is the cell population in the S (or G2) phase,
where a fraction n − 1 (1 ≤ n ≤ 2) of DNA molecules has replicated. The other
case is mitotic cell population, in which a fraction m − 1 (1 ≤ m ≤ 2) has a double
complement of DNA due to the age spread, while the remaining fraction (2− m) has
divided. As such, whenever the radiation produces damages to the genome, measured
surviving fractions for all but the G1 phase cell populations are affected by genome
multiplicity. Thus, experimental data for the two mentioned population types should
be corrected for DNA replication before making appropriate comparisons with radio-
biological models that generally ignore genome multiplicity [314,315,318–330]. The
pertinent corrections for both cases have been derived in Refs. [314,315] and, for the
S (or G2) phase population, it follows:

Sn(D) − 2S(D) + F(D) = 0, 1 ≤ n ≤ 2, (15.1)

where the dose-dependent function F(D) represents the data for the measured colony
surviving fractions. As such, Eq. (15.1) extracts the single cell surviving fractions
S(D) from the measured (observed) experimental data F(D). Therefore, the solu-
tions S(D) of Eq. (15.1) are the quantities that can be compared with the single cell
surviving fractions from radiobiological models. It is seen that (15.1) is an nth degree
characteristic trinomial equation, where n is not an integer.

Introducing the substitution x = (2/F)S, we transform (15.1) exactly to the form
of the general trinomial equation (8.1) provided that the following identification is
made:

α = n, x = 2
S(D)

F(D)
, y = Fn−1(D)

2n
. (15.2)

With this at hand, and by reference to (13.4), all the solutions (roots) of the fractal
trinomial equation (15.1) are given in terms of the following confluent Fox–Wright
function 1�1 with non-integer n :

S(D) = F(D)

2
1�1

(
[1, n]; [2, n − 1]; Fn−1(D)

2n

)
, 1 ≤ n ≤ 2. (15.3)

The series representation of this formula can be extracted from (13.2) and it reads:

S(D) = F(D)

2

{
1 +

∞∑
k=1

(
kn

k − 1

)
Fkn−k(D)

2knk

}
, (15.4)
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= F(D)

2

{
1 +

∞∑
k=1

�(1 + kn)

�(2 + kn − k)

Fkn−k(D)

2knk!

}
, (15.5)

where (13.3) is used. According to (14.7), and given that F(D) ≥ 0, the domain of
validity (the convergence region) of this development expansion becomes:

Fn−1(D)

2n
< |n − 1|n−1n−n, 1 ≤ n ≤ 2. (15.6)

The biological effect of radiation denoted by EB(D) is defined as the negative natural
logarithm of the surviving fraction, S(D). Therefore, with the help of (14.12) and
(15.3), it follows:

EB(D) ≡ − ln S(D), (15.7)

= ln
2

F(D)
− 1

n

∞∑
k=1

(
kn

kn − k

)
Fkn−k(D)

2knk
, (15.8)

= ln
2

F(D)
−

∞∑
k=1

�(kn)

�(1 + kn − k)

Fkn−k(D)

2knk! , (15.9)

where (14.8) is employed. This series is convergent for the same values of F(D) that
satisfy the validity condition (15.6). Outside the convergence regions for (15.5) and
(15.9), one can resum divergent series using analytical continuation by means of e.g.
the Padé approximant [331].

As an illustration, we presently carried out the computations on the given synthe-
sized cell survival fractions for two different input data that are either S(D) or F(D)

in the cases (i) and (ii), respectively.
In the case (i), which is a direct problem, S(D) was taken as the known input data,

whereas F(D) is computed from (15.1) through F(D) = 2S(D) − Sn(D). Here,
as in Refs. [314,315], we employ the single-hit-single-target sampling for the input
single cell surviving fraction according to the purely exponential inactivation S(D) =
exp (−αD). These latter cell survivals give a straight line in the semi-logarithmic
plot, with S(D) versus D (the bottom curve in Fig. 1a). On the other hand, for e.g.
n = nmax = 2, the output cell colony survival F(D) is a clearly shouldered curve
(the top curve in Fig. 1a). Therein, the shoulder in F(D), which appears at lower
doses, is most pronounced for n = nmax = 2, whereas it is flattened and stretched for
n = 1.5 (the middle curve in Fig. 1a). Of course, for n = nmin = 1, the output F(D)

and the input S(D) coincide, F(D) = {2S(D) − Sn(D)}n=1 = S(D). A shoulder
in a cell surviving curve is usually attributed to a repair mechanism. The results in
Fig. 1a for the case (i) indicate that the inclusion of DNA replications can also produce
shouldered cell surviving curves.

Conversely, in the case (ii), which is an inverse or reconstruction problem, the
input data are the colony cell surviving fractions F(D). Here, the task is to extract or
retrieve the output single cell surviving fraction S(D) from F(D).These reconstructed
S(D) data, as the roots of the trinomial equation (15.1), have been computed from the
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Inverse Problem: Reconstructed Single Cell Survival from Cell Colony Survival

Input: F(D) = 2S(D) − Sn(D)

With S(D) = exp(− α D−β D2)

α = 1.89×10−3 rad−1

β = 1.98×10−6 rad−2, α/β ≈ 954 rad−1 = 9.54 Gy−1

Output: Solution of Equation Sn(D) − 2S(D) + F(D) = 0,

Giving the Roots S(D) = [F(D)/2] 1Ψ1([1,n]; [2,n−1]; F n−1(D)/2n),  n ∈ [1,2]

F(D) [Input] Cell Colony Survival: Top (n=2, Line & Filled Circles)
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 Trinomial Roots on  (b)  as the Fox−Wright Function for Retrieval of the Output Single Cell Survival  S(D)
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Cell Survival for Synchronous Populations: Corrections for Genome Multiplicity

Fig. 1 Synthesized data on the corrections for genomemultiplicity (DNA replications) [314,315] in survival
of irradiated synchronized cell populations similar to the correspondingmeasured quantities fromRef. [318].
This correction, which is illustrated here on two panels, relates the single cell survival S(D) to colony cell
survival F(D) as a function of instanteneous dose D. On (a), using the input S(D), the output F(D) is
computed (a direct problem). On (b), employing the input F(D), the output S(D) is reconstructed as the
trinomial roots (an inverse problem). The top panel shows that DNA replication can generate the shoulder
with no recourse to cell repair at all. On the bottom panel, a shoulder in S(D) is significantly reduced after
eliminating the DNA replication component from F(D) which includes both the genome multiplicity and
damage repair; see the text for more details (color online)
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solution (15.3). In the case (ii), themost interesting choice corresponds to F(D)which
assumes that no part of DNA has been replicated. With such an input, the output S(D)

from (15.1) takes into account DNA replications for n > 1. The input cell colony
survival F(D) = 2S(D) − Sn(D) is sampled with the linear-quadratic (LQ) single
cell survival S(D) = exp (−αD − βD2). The ensuing data F(D) for n = 2 are
shown by the top curve in Fig. 1b. We see that a departure from the straight line,
which stems from the term exp (−αD), appears as a prominent shoulder built from
two components or mechanisms. One component is cell repair which is described in
the LQmodel by the Gaussian exp (−βD2). The other component is DNA replication
(or genome multiplicity). Next, starting from the sampled input data F(D) for a
fixed n, we reconstruct the output data S(D). As stated, this is done by using (15.3)
to compute the roots S(D) = [F(D)/2]1�1([1, n]; [2, n − 1]; Fn−1(D)/2n) of the
trinomial equation Sn(D)−2S(D)+ F(D) = 0 from (15.1). The resulting single cell
survival data S(D) for n = 2 are displayed by the bottom curve in Fig. 1b. This latter
curve for S(D) has a reduced shoulder relative to the top curve for F(D). The reason
is that S(D) has no contribution from the component due to DNA replications.

Similarly to the case (ii), in measurements with synchronized cell populations, the
colony surviving fractions F(D), as the input data to (15.1), contain the contributions
fromDNA replications and repair. In the output, the single cell surviving fraction S(D)

from (15.3) is void of DNA replications. Here, the trinomial equation (15.1) acts as if it
were a kind of a “deconvolution” in the sense of removing the unwanted information.
The unwanted information is DNA replication which is present in experimental data
F(D), but absent from radiobiological models. The desired information S(D), with
no replication in any part of DNA, being hidden in F(D), is now unfolded by rooting
the trinomial equation (15.1) whose roots are given by (15.3). The ensuing single cell
surviving fractions S(D), as the experimental data with no contribution from genome
multiplicity, can be used to make the appropriate comparisons with the conventional
radiobiological models that, from the onset, ignore DNA replications. In a separate
publication, we shall thoroughly investigate this type of radiobiologically important
applications, using the measured cell colony surviving fractions from e.g. Refs. [318–
324].

16 Discussion and conclusions

The well-known theorem by Abel proves that no algebraic solution for the roots of a
general nth degree polynomial exists for n > 4. Even in the important case of the sim-
pler, nth degree trinomials, it is not possible to obtain the algebraic roots. An algebraic
solution is the exact formula due to a finite number of steps. Of course, numerical
computations can give highly accurate values of the roots e.g. by diagonalizing the
equivalent Hessenberg or companion matrix which, due to its extreme sparseness, can
be of a very high dimension [332–334].Nevertheless, it is of interest to find outwhether
the exact zeros of the nth degree polynomials can be obtained analytically through e.g.
an infinite number of steps, as originally suggested by Girard [335]. Such solutions
are said to be non-algebraic and they can occasionally be expressed by certain special
functions e.g. transcendental functions, and the like. They can be viewed as certain
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series or products that involve infinitely many steps. For example, following Girard’s
idea [335], it was Lambert [1] who found a series solution of the nth degree trinomial
equation xn − x + q = 0, where q is the free, constant term. Subsequently, Euler
[3] symmetrized the latter equation as xα − xβ = (α − β)vxα+β , where {α, β, v} are
some fixed constants (none of which is necessarily an integer). He solved this equation
for the roots x giving a formula as a series (the Euler series). Later, several proofs of
Euler’s formula using various methods have been published by a number of authors,
including Refs. [11,20,33–36,45,47,50].

The next step regarding the trinomial roots based upon the Euler formula would be
to carry out an explicit summation of the Euler’s series. The reason for having such an
explicit summation (preferably in a form of one of the known special functions), is in
the possibility of exploiting the established features of the identified special function.
For example, of particular importance are the asymptotic behaviors of the known
special functions at both small and large values of its independent variable. These
asymptotes are very useful for analyzing the critical behaviors of the studied system
at the two extreme conditions or situations.

We have currently proceeded towards the goal of summing up the Euler series for
the root x of the general trinomial equation x − yxα − 1 = 0 (where α is any real or
complex number) through the following steps:

• First, we carry out the proof of the Euler’s formula by deriving the general expan-
sion coefficient of the Euler series in terms of the complete multi-variate Bell
polynomial Bn (also called the exponential polynomial).

• Second, the multi-variate Bell polynomial is reduced to a much simpler univariate
polynomial in terms of either the Pochhammer symbol or binomial coefficients.

• Third, the Pochhammer simplification enables the identification of the transformed
series as a special function called the confluent Fox–Wright function 1�1.

• Fourth, another confluent Fox–Wright function 1�1 is also found for an arbitrary
power (any real or complex constant) of the derived trinomial roots.

• Fifth, the logarithm of the trinomial root is expressed through a single series with
the expansion coefficients in the form of either the Pochhammer symbols or the
binomial coefficients.

Being an extension of themore familiarKummer confluent hypergeometric function
1F1, the function 1�1 makes the present series solutions for trinomial roots very
practical, both theoretically and computationally. In theoretical developments, we can
explore the knownproperties of the 1�1 function (asymptotes, integral representations,
etc.). Also in computations, we can use the formulae for analytical continuations
into the regions beyond the original convergence radius of the 1�1 function. This
is achieved by expressing 1�1 in variable x as a linear combination of two other
1�1 functions in another variable related to x . The other variable can be 1/x or
x/(1 − x) or 1 − x, etc., similarly to the existing analytical continuation formulae of
the Gauss hypergeometric function 2F1. Even without these special transformations,
analytical continuation beyond the original convergence region can also be achieved
by the continued fraction representation of the 1�1 function (in the same way as
has been done for the 2F1 function). This is the case because a continued fraction
can be expressed as a ratio of two polynomials, i.e. the Padé approximant, which is
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intrinsically an extrapolator (an analytical continuator). It should be emphasized that
unlike the 1F1 function, which converges everywhere, the 1�1 function converges
only within its finite convergence radius. We found that the series representation of
the trinomial roots and their logarithms have the same convergence radius.

An illustration is given using synthesized data for survival of irradiated cells. The
simulations are reminiscent of the corresponding measured colony surviving fractions
for Chinese hamster synchronized cell populations exposed to 250kVp X-rays (see
the survival curve in e.g. Fig. 9 from Ref. [318] for 10.4h after incubation). Shown
in the present Fig. 1 are the single cell surviving fractions S(D) and the cell colony
surviving fractions F(D) as a function of radiation instantaneous dose D. Panels (a)
and (b) on Fig. 1 are on the direct and inverse problems, respectively. Both panels
in this figure deal with a relationship between S(D) and F(D). This is a trinomial
relationship, Sn(D)−2S(D)+ F(D) = 0 (1 ≤ n ≤ 2), from correcting S(D) for the
missing genome multiplicity n (DNA replications) [314,315]. In Fig. 1a, the input and
output data are S(D) and F(D), respectively. Conversely, in Fig. 1b, the input and
output data are F(D) and S(D), respectively. The input bottom curve in Fig. 1a is a
purely exponential survival S(D) as a straight line on a semi-logarithmic scale. When
this S(D) is corrected for genome multiplicity with n = 1.5 and n = 2, the middle
and the top curves are obtained in Fig. 1a for the output data F(D) = 2S(D)−Sn(D),

respectively. Here, a clearly delineated shoulder appears in the top curve of F(D) for
n = 2. In Fig. 1b, the input data F(D), given by the top curve, are the linear-quadratic
colony surviving fractions corrected for genome multiplicity with n = 2. Here, a
pronounced shoulder is built from two components: DNA replication and radiation
damage repair.When such digitized F(D) data are inserted into the trinomial equation
Sn(D) − 2S(D) + F(D) = 0, its two-valued roots S(D) are obtained for n = 2
(computation is carried out from the present series solution for the single cell survival
S(D) in terms of the Fox–Wright function 1�1). The smaller of the two roots, as the
physical solution, is shown by the bottom curve in Fig. 1b. Therein, because S(D) is
void of the contribution from DNA replications, a diminished shoulder (due to repair
alone) is seen in the bottom curve for S(D).This is clear by reference to the top curve in
Fig. 1b for F(D) whose shoulder contains both DNA replication and cell repair. Such
observations are anticipated to be a further motivation for additional explorations of
surviving fractions corrected for genome multiplicity. These corrections are necessary
for cell populations in all the phases of the cell reproduction cycle, except theG1-phase
cell population.
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