
All-to-All Communication on the Connection

Machine CM-200

KAPIL K. MATHUR 1 AND 2S. LENNART JOHNSSON

1David Shaw & Co., New York, NY 10036; e-mail: Mathur@deshau·.com
2Computer Science, Mathematics, and Electrical Engineering, University uf Houston, 4800 Calhoun Rd., Houston, TX 77204-3475;

e-mail: johnsson@cs.uh.edu

ABSTRACT

Detailed algorithms for all-to-all broadcast and reduction are given for arrays mapped

by binary or binary-reflected Gray code encoding to the processing nodes of binary

cube networks. Algorithms are also given for the local computation of the array indices

for the communicated data, thereby reducing the demand for the communications band

width. For the Connection Machine system CM-200, Hamiltonian cycle-based all-to-all

communication algorithms yield a performance that is a factor of 2 to 10 higher than the

performance offered by algorithms based on trees, butterfly networks, or the Connec

tion Machine router. The peak data rate achieved for all-to-all broadcast on a 2,048-

node Connection Machine system CM-200 is 5.4 Gbyte/s. The index order of the data in

local memory depends on implementation details of the algorithms, but it is well de

fined. If a linear ordering is desired, then including the time for local data reordering

reduces the effective peak data rate to 2.5 Gbyte/s. © 1995 by John Wiley & Sons, Inc.

1 INTRODUCTION

All-to-all broadcast and reduction on distributed

memory architectures are fundamental operations

in several important linear algebra computations,

such as matrix-vector and vector-matrix multi

plication, rank-1 updates, and matrix-matrix

multiplication. All-to-all broadcast is also critical

for the performance of so-called direct N-body al

gorithms, where the evaluation of the pairwise in

teractions between all particles form the compu

tational kernel.

An all-to-all broadcast can be accomplished by

each node sending its data to a dedicated node.

This work was carried out while the authors were with

Thinking .'vlachines Corp.

Received Januarv 199.3
Revised April 19.95

© 199S by John Wiley & Sons. Inc.

Scientific Programming, Vol. ''L pp. 2S1-2?3 (199S)

CCC 1 058-9244/93/0402.'"i 1-23

either one source node at a time, or all at once,

followed by a broadcast of the data from the dedi

cated node to all other nodes. All-to-all communi

cation can also be realized by shifting data along a

Hamiltonian cycle (ring of all nodes). For high

degree networks, like binary cubes, this idea can

be extended to the use of multiple Hamiltonian

cycles that balance the communication load and

maximize the bandwidth utilization [L 15]. All

to-all reduction is, in effect, the reverse operation

of a broadcast where combiners such as +, max,

or min replace the copy operation. Figure 1 shows

a single example of all-to-all reduction. The left

part of the figure shows the initial data distribu

tion. Components with the same index are added

together. The result consists of eight components

distributed evenly across all nodes in a consecu

tive (block) [12] manner. All nodes contain initial

as well as final data.

The work reported here considers two forms of

all-to-all communication in multiprocessor, dis-

252 :\1A THCR AND JOH.\"SSO.'\

PO Pl P2 P3
0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3
4 4 4 4

5 5 5 5

6 6 6 6
7 7 7 7

Before reduction After reduction

FIGURE 1 All-to-all reduction on a four-node svs
tem.

tributed memorv architectures. In all-to-all

broadcast, each processing node broadcasts its

content to every other node in the system. In all

to-all reduction, reduction operations are per

formed concurrently on different data sets, each

distributed over all nodes such that the results of

the different reductions are evenlv distributed over

all nodes. Algorithms for all-to-all broadcast and

reduction based on single and multiple Hamilto

nian cycles in binary d-cubes are presented. The

performance of implementations of the Hamilto

nian cycles-based algorithms is compared with

the performance of all-to-all communication

based on edge-disjoint, multiple spanning trees of

minimum height, and the performance of butterfly

network-based algorithms. The primary inteiH of

this article is to make available communication

primitives that make run-time decisions to choose

an optimal algorithm. Such primitives form the

core of scientific libraries on distributed memory

architectures.

In Section 2" we discuss the use of all-to-all

broadcast and reduction in some matrix compu

tations. Section 3 presents the relevant aspects of

the Connection _\1achine svstem C:Vl-200. Section

4 discusses in detail all -to-all communication

based on Hamiltonian cycles for binarv cubes.

Section 5 discusses all-to-all communication

based on spanning tree-based algorithms and

compares the expected performance of the differ

ent approaches. Section 6 gives actual perfor

mance data for all-to-all communication on the

C:onnection \'lachine svstem C\1-200.

2 APPLICATIONS OF ALL-TO-ALL
COMMUNICATION

An efficient implementation of all--to-all broadcast

is of great importance for the performanee of clas

sical, direct N-body algorithms, in which everv

particle interacts with every other particle. In a

distributed memory architecture, each processing

node must communicate the particle information

it stores in its memory to all other nodes. All-to-all

communication is also required in iterative solvers

for the finite element method [17] and in neural

network simulations [25]. In both of these cases,

the source of the all-to-all communication re

quirement is matrix-vector multiplication.

In the case of the direct N-body algorithms for

gravitational calculations, the identity of the parti

cles is not of interest. The coordinate and mass of
eat":h particle suffice, i.e., the array vahws suffiee

(with the particle coordinates stored in separate

arrays). For matrix operations, the indices of array

elements are not stored explicitly but are required

for correct computations. In Section 4, we show

how the indices of the arrav elements can be com

puted locally, thus reducing the need for com

munications bandwidth. Below" we illustrate the

use of all-to-all communication in matrix compu

tations.

The required data motion for matrix-"·ector

and vector-matrix multiplication and for rank-1

updates (outer products; depends on the data al

location. As an example, consider matrix-vector

multiplication, .Y +--- A:r, with the matrix allocated

to a one-dimensional nodal array with partitionin;r

by rows and with the input and output vectors

distributed evenly over all nodes as shown in Fig

ure 2. An all-to-all broadcast of the input vector is

required to carry out the matrix-vector product.

l'\o communication is required for the result vec

tor. The matrix-vector multiplication can be ex

pressed as (1) All-to-all broadcast of the input

vector and (2) Local matrix-vector multiplication.

If, instead, the matrix is allocated to a one-dimen

sional nodal array with partitioning by columns,

as shown in Figure :-3, and the input and output

vectors are distributed evenly over the processing

nodes, then no communication is required for the

input vector, but an all-to-all reduction is re

quired for the result vector. The matrix-vector

PO~O§ ~0 PI Yl· Xl
= X ~

P2 Y2 X2

P3 Y3 L__ X3

A X

XO XI X2 X3

XO Xl X2 X3

XO Xl X2 X3

XO Xl X2 X3

FIGUHE 2 All-to-all broadcast for matrix-vt~ctor

multiplication.

PO Pl P2 P3 PO Pl P2 P3

[il-j x~X~ :~ =
X2 P2

X3 P3

YO YO YO!YO

Yl Yl yr· Y2 Y2 Y2 Y2

Y3 Y3 Y3 Y3

A X

FIGURE 3 All-to-all reduction for
multiplication.

= ~
PO

Pl

P2

P3

y

matrix-vector

multiplication can be expressed as (1) Local ma

tiix-vector multiplication and (2) All-to-all re

duction for the output vector

With the processing nodes configured as a two

dimensional nodal array for the matrix, but as a

one-dimensional nodal array for the vectors, both

all-to-all broadcast and all-to-all reduction are

required in evaluating the matrix-vector product.

Figure 4 illustrates the data allocation for both

row major and column major ordering of the ma

trix allocation. The data allocation shown in Fig

ure 4 is typical on Connection .\1achine systems,

as explained in Section 3.

For a matrix of shape P X Q allocated to a two

dimensional nodal array in column major order

ing, an all-to-all broadcast [8, 15. 19, 21] is re

quired within the columns of the nodes for any

shape of the nodal array and for any length of the

matrix Q-axis.

After the all-to-all broadcast, each node per

forms a local matrix-vector multiplication. After

this operation, each node contains a segment of

the result vector y. The nodes in a row contain

partial contributions to the same segment of y,

while different rows of nodes contain contribu

tions to different segments of y. No communica

tion between rows of nodes is required for the

computation of y. Communication within the rows

of the nodes suffices.

The different segments of y can be computed

by all-to-all reduction within processor rows, re-

0

2

5

6

7

y

0

l

Column Major

2 4 6

3 5 7

--'--

A

X

0

3

4

5

6

X

Row Major

0

I
0 I 2 3

2

3

4

5
4 5 6 7

6

7

y A X

FIGURE 4 Data allocation on a rectangular nodal ar
ray.

ALL-TO-ALL C0~1~1C'\ICATIO:'\ 253

suiting in a row major ordering of y. But, the node

labeling is in column major ordering, and a reor

dering from row to column major ordering is re

quired to establish the final allocation of y. Thus,

for a column major ordering of the matrix ele

ments to the nodes, matrix-vector multiplication

can be expressed as:

1. All-to-all broadcast of the input vector

within columns of nodes

2. Local matrix-vector multiplication

3. All-to-all reduction within rows of nodes to

accumulate partial contributions to the

result vector

4. Reordering of the result vector from row ma

jor to column major order

The reordering from row major ordering to column

major ordering is equivalent to a shuffle or matrix

transposition.

If the elements of the matrix A had been allo

cated in row major order instead of column major

order, then a reordering from row major order to

column major order must be performed prior to

the all-to-all broadcast of the input vector. l\"o re

ordering is required for y. Thus, for a row major

orde1ing of matrix elements to nodes, the se

quence of operations is:

1. Reordering of the input vector from row ma

jor to column major order

2. All-to-all broadcast of the input vector

within columns of nodes

3. Local matrix-vector multiplication All-to

all reduction within rows of nodes to accu

mulate partial contributions to the result

vector

With the matrix uniformlv distributed across all

nodes, the arithmetic is load balanced for both

row major and column major order. The all-to-all

broadcasts and all-to-all reductions are per

formed within the columns of the nodes and

within the rows of the nodes, respectively. The dif

ferent broadcast operations and the different re

duction operations are completely independent of

each other.

The communication requirements for vector

matrix multiplication are similar to those forma

trix-vector multiplication. For outer products,

yx r, where y and x are column vectors, the com

munication issues for :r are the same as in matrix

vector multiplication. For y, the communication

issues are the same as for the input vector in vee-

254 .VIATHCR A.\'D JOff\SSO.\'

tor-matrix multiplication. All-to-all broadcast

and all-to-all reduction are also required in ma

trix-matrix multiplication [2, 6, 14, 18].

3 THE CONNECTION MACHINE SYSTEM
CM-200

The Connection Machine system CM-200 [22]

has up to 2048 nodes each consisting of a float

ing-point process or 4 Mbyte of local memory, and

communication circuitry. The nodes are intercon

nected via a binary d-cube network, with a pair of

bidirectional channels between adjacent nodes. ln

a binary cube network, each node has a neighbor

for each bit in its binarv address. The number of

nodes is N = 2d. There ~xist d edge-disjoint paths

between each pair of nodes. Lsing multiple paths

between nodes for maximum bandwidth utiliza

tion is the objective of the algorithms presented

here. \Ye then compare the performance of these

algorithms with a few alternative implementa

tions.

Each node in a Connection ~lachine system

CM-200 ean communicate concurrentlv on all its

communication channels. The primitive com

munication operation is an exchange. The mem

ory accesses in a node for each communication

step are serialized. Each node supports one 4-

byte wide access at a time to its local memory. The

dock frequency is 10 .\11Hz.

The programming model used for the Connec

tion Machine systems uses a global address space,

and each array is distributed as evenly as possible

across all nodPs. In a eonst>eutive data allocation

[12], a number of successive data elements along

each axis are allocated to a node. For a one-di

mensional data arrav of}/ elements allocawd to /V

nodes, [¥] successi~e elements (a block) are as

signed to the same node. In cyclic data allocation

[12] of a one-dimensional array. elernents {Jii = /

mod N, 0 ::5 j < M} are allocated instead to the

same node. Cyclic data allocation is currently not

supported on the Conneetion :Vhtchine systems

but is included in Fortran D , Vienna Fortran

[5, 26], and the proposed high-performance For

tran (HPF) standard [10]. Cyclic allocation may

yield improved load-balance with respect to

arithmetic [12] or with respect to communication

[16, 24]. In the case of multidimensional mTa~'S, it

is also necessarv to determine how manv elements

along the diffe1:ent axes shall be alloc~ted to the

same processing node., or equiYalently., how the

set of processing nodes shall be configured. The

Connection Machine nm-time system determines

the nodal array shape based on the data array

shape, such that the local subarrays have axes of

lengths as equal as possible. We refer to such a

layout as a canonical layout. In the following, we

assume consecutive, canonical layouts. ~1odifying

the derivations to cyclic allocation is straightfor

ward.

Regular grids are subgraphs of binary d-cubes.

A Gray code has the property that successive inte

gers differ in the code by a single biL which, with a

suitable labeling of the nodes in the binary cube,

corresponds to the traversal of a single edge.

Thus, Gray codes can be used in preserving adja

cency in data arrays when mapped to binary cube

networks. For multidimensional arrays, encoding

each axis separately in a Gray code preserves ad

jacency. But, such an embedding makes efficient

use of the processing nodes only when the data

array axes have lengths equal to powers of 2. For

lengths of other axes, adjacency cannot be pre

served for a node-efficient mapping [3, 4 .. 111. On

the Connection ~lachine system C~1-200. the de

fault mapping of data arrays is based on a binary

reflected Gray code encoding [9, 12, 181 of the

index along each axis separately. Only the part of

the index corresponding to the node address is

encoded in a binary-reflected Gray code. Binary

encoding is always used for local addre~sses.

Ad-bit binary-reflected Gray eode, Gr~, is a se

quence of 2" nonnegative numbers in the range

{0, 1, ... '2d- 1}, Gd = (Gc~(O), Gr~(1 ... '

Gr~(2d- 1)) defined recnrsively [18] by:

(G1(0), G1(1)), where G1(0)

Oi!Gr1(0)

6d+1

OIIGr~(1)

OIIGr~(2d

Oi[Grl(2"

1IIGr~(2rf

liiGr~(2d

1IIGd(1)

1IIGr~(O)

2)

1)

1)

2)

In the following, we refer to this binary-re

flected Gray code simply as Gray code. The ~3-bit

Gray code given in Table 1 dearly shows the re

cursive reflections in the code. It is also casilv seen

Table 1. A Binary-Reflected Gray
Code on 3 Bits

Integer Grav Code

0 000
1 001
2 011
3 010

4 110
;) 111

6 101
7 100

that the Gray code defines a Hamiltonian cycle.

The sequence of bits that change in traversing the

Gray code from beginning to end is known as the

transition sequence. In the example of eight inte

gers, the transition sequence is 0, 1, 0, 2. 0, L 0.

and 2,. with the least significant bit being bit 0.

4 ALL-TO-ALL ALGORITHMS USING
HAMILTONIAN CYCLES

4.1 A Single Hamiltonian Cycle

Figure 5 illustrates the idea of all-to-all broadcast

using a single cycle, whereas Figure 6 shows all

to-all reduction. In these figures, it is implicitly

assumed that node addresses are encoded in Gray

code. such that all communications are nearest

neighbor. By performing the cyclic shifts in Figure

5 as left cyclic shifts. all elements arrive in order in

node PO. In this node. local memory address s

contains array elements. 0 :S s < .\'for ,·V nodes.

The local memory reordering required for node j is

s +-- (s j) mod N, i.e., a cyclic shift on the local

memory addresses.

If the Gray code path is used for node addresses

m binary order, then a local code conversion is

Step PO Pl P2 P3
0 xo Xl X2 X3
1 xo Xl X2 X3

Xl X2 X3 XO
xo Xl X2 X3

2 Xl X2 X3 xo
X2 X3 xo Xl
xo Xl X2 X3

3 Xl X2 X3 xo
X2 X3 xo Xl
X3 xo Xl X2

FIGURE 5 All-to-all broadcast through cyclic rota

tion.

ALL-TO-ALL COYe.'lC\JCA TIO\: 255

Step PO Pl P2 P3
YO YO YO YO

0 Yl Yl Yl Yl

Y2 n Y2 Y2
Y3 \'3 Y3 Y3
YO YO+ YO YO

1 Yl Yl Yl+'{]

Y2+Y2 Y2 Y2
-- Y3+Y3 Y3 Y:l

··--··
YO YO+ YO+ YO

I 2 Yl+YI+Yl Yl

Y:i+YLtn

Y3+Y3+Y3 Y3

I
YO+ YO+ YO+ YO -

3 Yl+Yl+Yl+YI

I
Y2+ \'1+ YH Y2

- - Y:!+YHY:l+Y.1

FIGLRE 6 All-to-all reduction through cyclic rota

tion.

required after the cyclic rotation among nodes has

been completed. Figure 7 illustrates this fact. The

array index in local memory address s of node 0 is

G (s). In generaL let PA be the node addre;;s in

binarv code. Then. local memorY address s in . .
node PA contains the array element with index

C((s + c- 1 (PA)) mode X). For instance. consider

PA = 101 and s = 1. The integer with Gray code

101 is 6. The Grav code of 1 + 6 = 7 i:- 100.

which is the second entn' in the column for node

L>.

I\ote that if each element in the examples in

Figures 5 and 7 represents a block of el(~ments.

then moving these blocks as indicated in the fig

ures results in a final distribution consistent with a

consecutive data allocation. Converselv. a block

partitioning of the data in each node prior to all

to-all reduction also yields a final data distribu

tion consistent with a consecutive allocation.

4.2 Multiple Hamiltonian Cycles

Broadcast

Johnsson and Ho [15j show that d Hamiltonian

cycles fully exploit the communications band-

Node

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

001 Oil 110 010 000 100 111 101
011 010 111 110 001 000 101 100

010 110 101 111 Oll 001 100 000

110 111 100 101 010 011 000 001
111 101 000 100 110 010 001 011
101 100 001 000 lll 110 011 010

100 000 011 001 101 111 010 110

FIGURE 7 The index allocation resultinl' from '2" cy

clic shifts along a Gray code path for binary-encoded

node indices.

256 MATHCR Al\D JOH"'SSO:'\

Step Mem PO P1 P2 P3 P4 P5 P6 P7 Dim

Init. 0 00 01 02 03 04 05 06 07

1 10 11 12 13 14 15 16 17

2 20 21 22 23 24 25 26 27

0 01 00 03 02 05 04 o1 1 o6 0

0 1 12 13 10 11 16 17 14 1 15 1

2 24 25 26 27 20 21 22 23 2

0 03 02 01 00 07 06 05 1 04 1

1 1 16 17 14 15 12 13 10111 2

2 25 24 27 26 21 20 23 1 22 0

0 02 o3 1 oo J o1 1 o6 o1 1 o4 05 0

2 1 14 15 1 16 1 17 1 10 11 1 12 13 1 I
2 21 20 1 23 1 22 1 25 24 1 21 26 2

0 06 07 04 o5 1 o2 o3 1 oo 01 2 I
3 1 15 14 17 16 1 11 10 1 13 12 0 I

2 23 22 L 21 20 L 21 261 25 24 1 J
0 07 06 05 04 03 02 01 00 0

4 1 17 16 15 14 13 12 11 . 10 1

2 27 26 25 24 23 22 21 20 2

0 05 04 07 06 OJ 00 03 02 1

5 I 13 12 11 10 11 1 16 15 14 2

2 26 27 24 25 22 23 20 21 0

0 04 o5 1 o6 L o1 1 oo 01 1 02 03 0 J
6 I 11110 13 1 12 1 15 1 14 1 11 16 1 I I

2 22 1 23 20 1 21 261 27 j_ 24 25j_ 2 J

FIGURE 8 All-to-all broadcast u,.;ing d channels in a

d-cube with nodes labeled in binary order.

width in a binarv d-cube for all-to-all broadcast

and reduction. Figure 8 shows the 2r1 - 1 steps

required to perform an all-to-all broadcast using d

Hamiltonian cycles on a binary d-cube. ln Figure

8, node addresses are in binary order. Figure Y

shows an all-to-all broadcast with node addresses

in Gray code order. Initially. there are d distinct

elements in each node. After the broadcast. each

Step Mem PO P1 P2 P3 P4 P5 P6 P7 Dim

Init. 0 00 OJ 03 02 07 06 04 05

1 10 11 13 12 17 16 14 15

2 20 21 23 22 27 26 24 25

I 0 I OJ I 00 I 02 03 o6 1 01 o5 1 o4 0

0 I I I 13 I 12 1 10 11 14 1 15 17 1 16 I

I 2 1 21 1 26 24 25 20 1 21 23 1 22 1 2

I 0 1 o2 o3 1 o1 oo 1 o5 1 o4 o6 1 o1 1 1

1 I 1 114 15 1 11 16 1 13 12 10111 2

I 2 1 26 21 1 25 24 1 21 20 22 1 23 0

I 0 1 o3 1 02 1 oo 01 04 05 o1 1 o6 0

2 1 117 16 1 14 15 1 10 11 1 13 12 1

2 1 21 2o 1 22 23 1 26 27 25 24 2

I 0 1 o4 o5 1 o1 o6 1 o3 02 oo 1 o1 2

l 3 1 16 11 1 15 14 1 11 10 1 12 13 0 I
2 22 23 1 21 20 1 25 24 1 26 27 1

I
0 05 04 06 07 02 03 01 00 0

4 1 15 14 16 17 12 13 11 10 1

2 25 24 26 27 22 23 21 20 2

0 06 07 05 04 01 00 02 03 1

5 1 12 13 11 10 15 14 16 17 2

2 24 25 27 26 23 22 20 21 0

0 o1 1 o6 o4 1 o5 1 oo o1 1 o3 o2 1 o I
6 1 11110 12 1 13 1 16 11 1 15 14 I 1 I

2 23_1 22 20 _l 21 j 24 25 l 27 26 _l 2 J

FIGURE 9 All-to-all broadcast usinf!: d channels in a

d-cube with nodes labeled in Grav code order.

node has a total of d2d elements. With d channels

per node, this operation requires at least 2r1 - 1

communications, because d element,; are already

present in each node before the broadcast. The

algorithm below [15 ~ requires precisely that many

communications.

For the algorithm uo;ing d Hamiltonian cycles,

each node exchanges d elements concurrently in

each step. When there are J1' > d elements in

each node, the local memory is viewed as rs-·
blocks, of d elements each. The local memory ad

dress s consists of a block index, k (0 ::; k < r';)'l).

and an address, i (0::; i <d). within the block. For

d = 3, the exchange sequence for location zero

(i = 0) within a block is (L L 0, 2, 0. 1. 0. i.e .. the

same as the transition sequence in Table 1. The

exchange sequence for location one is 1. 2. 1. 0.

1. 2, 1; for location two, it is 2, 0, 2. 1. 2. 0. 2. In

generaL if lo. t 1 • . . . , !2"-:!. is the exchange se

quence for location zero. then the exchange se

quence for location i is (to + i) mod d. (t 1 + i)

mode d. (t2 + i) mod d, (lJ.·'-2 + i) mod d.

Clearly. no two exchanges use the same dimen

sion in any step.

For node addresses in binarv code order .. it can

be shown that on completion. the index in local

memory address s = j · :l1' + k · d + i is: PA EB
sh1(G(j)) · lW + k · d + i .. where PAis the node

address in binary code as before. sh (-) is a left

cyclic shift of the bit string representing the argu

ment, and 0 ::; j < 2r1. For node addresses in Gray

code order. the index in memorv location zero ini

tially is c- 1 (PA). On completion of the all-to-all

broadcast, local memory address s = j · Jl' + k ·

d + i in node PA contains data with index

[C- 1 (PA) EB c- 1 (sh1(C(j)))] · Ji' + k · d + i.

l\'ote that the quanunes sh'(G(j)) and

c- 1 (sh1(C(j))) are identical for all nodes. Onlv

PA, the binary address .. and c- 1(PA). the Grav

code address, are unique to each node.

:'\ote further that the index order fori= 0 in the

d cycles algorithm is the same as in the single

Hamiltonian cycle algorithm.

Reduction

The all-to-all broadcast algorithm. using d Hamil

tonian cycles in a binary d-cube. can be adapted

to all-to-all reduction. With d · 2r1 variables in

each node initiallv .. each node in a 2r1 cube accu

mulates d distributed variables. In each commun

ication step, one exchange is performed on all d

channels in each node, as in the broadcast algo

rithm.

Step Mem PO Pl P2 P3 P4 P5 P6 P7 Dim

0 • + 0

0 1 • + 1

2 • + 2

0

I Ia Ia I· Ia j• I. I
+

I
1

I 1 + 2

2 + 0

0

I Ia Ia I~ I a I~ I: I: I
0

I 2 1

2 2

0

I 1~1:1~ I~ I~ 1: I§ I
2

I 3 0

2

0

I I~ 1: li 1~ I~ I; I§ I
0

I 4 1 1

2 2

0

I li ltlg I~ I~ I~ I§ I
1

I 5 2
2 0

0

I
+

lg I~ jg I~ lg lg jg !
0

I 6 + 1

2 + 2

FIGURE 10 All-to-all reduction performed on d dis

tributed variables with all d results resident in node zero

on completion. Local memory addrc~~es and node ad

dresses in binary order.

For the description of the reduction algorithm,

we first cnnsider the accumulation of a single set

of d distributed variables. Each of the d distrib

uted variables has one element per node. Each

distributed variable is accumulated independently

of the others, with the d re,.;ults accumulated to

node zero. The reduction is illustrated in Figure

10. A filled circle denotes a partial sum being sent.

+ denotes a partial sum being received and added

to a local variable, and an unfilled circle denotes

values already added into a partial sum. Compar

ing Figure 10 with Figure 8. we notice that the

data motion in Figure 10 is simply the reversed

data motion of the elements originally in node zero

in Figure 8.

The example in Figure 10 is an all-to-one re

duction. An all-to-all reduction is obtained by

considering an initial data set per node of d · 2r1

elements, instead of d elements. Each block of d
variables distributed across all nodes is accumu

lated to a single node, with different blocks of d

distributed variables accumulated to different

nodes. Each block is accumulated in a wav similar

to the single block of d distributed variables in an

all-to-one reduction. By performing an exclusive

or operation with node address j on all node ad

dresses used in communications for the block with

destination node zero, the destination of the result

of the reduction for the block becomes node) in

stead of node zero. The effect of the exclusive-or

operation for each step is shown in Figures 11

ALL-TO-ALL CO~nHTi\ICAT!O'\ 257

Mem PO P1 P2 P3 P4 P5 P6 P7 Dim

0 • + 0

1 • + 1

2 • + 2

3

I· I I I. I + ,.
I I I

0

I
4 + 1

5 + 2

6

I. I I I· I I I• I
+

I
0

I 7 + 1

8 + 2

9

I I. I· I I I I
+

I• I
0

I 10 +
11 + 2

12

I• I + I I I I· I. I I
0

I 13 + 1

14 + 2

15

I
+ I• I I I· I I I. I

0

I 16 +
17 + 2

18

I I I. I + I. I I I· I
0

I 19 + 1

20 + 2

21

I I I
+ ,.

I I. I· I I
0

I
22 +
23 + 2

FIGURE 11 All-to-all reduction step 0 on a :3-cub(•.

Memory addresses and node addresses in binary order.

through 17. ln eaeh step. each node exchanges

one element on each of its channels. and performs

one addition for each of d distinct sums. The total

number of sums computed in each step is d · 2<~.

The blocking used for the all-to-all reduction is

identical to the blocking for all-to-all broadcast.

This blocking is consistent with a consecutiw data

Mem PO PI P2 P3 P4 P5 P6 P7 Dim

0 0 • + 1

1 0 • + 2

2 a • + 0

3

Ia I I· lo
,. 10 I

+

I. I
1

I 4 + 2

+ 0

6

Ia I· I Ia I. I
+

10 I. I ~j 7 +
8 +
9

I· lo Ia I I
+

I. ,. 10 I
1

I 10 +
11 + 0

12

10 ,. I. I
+

I lo lo I· I I 13 +
14 + 0

15 I• 10 I
+

I. Ia I I· lo I
1

I
16 +
17 + 0

18

I. I
+

10 I• lo I· I lo I
1

I
19 + 2

20 + 0

21

I
+

I. ,. 10 I· lo lo I I
1

I
22 + 2

23 + 0

FIGURE 12 All-to-all reduction step 1 on a :3-cube.

.\1emory addresses and node addrc::;ses in binary order.

258 :VIATIILH A:\"D JOII:\"SSO:\"

Mem PO PI P2 P3 P4 P5 P6 P7 Dim Mem Po P1 P2 P3 P4 P5 P6 P7 Dim
0 0 0 + • 0 0 • + 0 0 0 0 0
1 0 0 + • 1 1 0 _Q _.

0 + 0 1

2 0 + 0 • 2 2 • 0 0 + 0 0 2

I
3

Ia I I~ Ia I~ IQ 1: 1: I

0

I I

3

I~ I
I + I~ I~ I~ I§ I~ I

0

I 4 1 4

5 2 5 ~

I
6

IQ I~ I Ia 1: 1: IQ I~ I

0

I I

6

I~ li I I~ I~ I§ I~ I~ I

0

I
7 1 7 1

8 2 8 2

I
9

I~ IQ Ia I 1: 1: I~ Ia
I

0

I I
9

li I~ I~ I I~ I~ I~ I~ I

0

I
10 10

11 2 11 2

I
12

Ia I~ 1: 1: I Ia IQ I~ I

0

I I

12

~~ I~ I~ I~ I ~~ 1: !i I
0

I
13 1 13

14 2 14 2

I
15

I~ IQ 1: 1: IQ I I~ IQ I

0

I I
15

I~ I~ I~ I~ I~ I li 1: I
0

I
16 16 1

17 2 17 2

I

18

1: 1: IQ I~ Ia I~ I IQ I

0

I I

18

I~ I~ I~ I~ I~ li I I~ I

0

I
19 1 19 1

20 2 20

I
21

1: 1: I~ IQ I~ Ia Ia I I

0

I I

21

lg I~ I~ I~ 1: lg I. Ia I

0

I
22 1 22

23 2 23 2

FIGLHE 1:i All-to-all reduction ~tep 2 on a :3-culw. FIGURE 15 All-to-all reduction step '-± on a :3-cube.

Memorv addresses and node addresses in hinarv order. :Vll'morv addrcsst:'s and node addresses in binary ordt>r. . .

allocation .. i.e .. , d successive sums are allocated to Data Reordering: All Addresses
the same node on completion. Furthermore. with in Binary Code
both mcmorv addresses and node addresses in bi-

narv order. successive blocks have successive The Data Motion for Block Zero. \\'e first con-

nodes in binarv code as tlwir destinations. Thus. sider the data motion for blockj = 0. The transi-

the local block index is the address of the node tion sequence for a binary-reflected Gray code is

where the final sums shall be allocatee!. symmetric with respect to its midpoint. Thus. per-

Mem PO PI P2 P3 P4 P5 P6 P7 Dim Mem PO P1 P2 P3 P4 P5 P6 Pi Dim

0 + _Q_ Q_ • () 2 0 + () • () Q_ 0 0 1

1 Q_ _Q + • () 0 1 0 + 0 0 0 • () 2

2 + () • () () 1 2 0 0 0 + • 0 () 0

I

3

I~ I I~ 1: 1~ I~ I~ I~ I
2

I I
3

IiI I~ I~ I~ I~ I~ I~ I
1

I 4 0 4 2

5 0

I
6

I: I~ I I~ I~ I~ I~ I~ I

2

I I
6

I~ I~ I IiI~ I~ I~ I~ I

I

I
7 0 7

8 8 0

I
9

I~ I: I~ I I~ I~ I~ I~ I I I
9

I~ I~ IiI I~ I~ I~ I~ I

I

I
10 0 10 2

11 I 11 0

I
12

I~ I~ I~ I~ 1~ 1: 1~ I

2

I I
12

I~ I~ I~ I~ I li ~ lg I I
13 0 13

14 I 14 0

I

15

I~
a

I~ I~ I~ I: I
2

I I
15

I~ I~ I~ I~ IiI g I~ I
1

I
16 + a 0 16 2

17 + 17 0

I

18

1: ~ I~ I~ 1: I I~ I
2

I I
18

I~ I~ ~~~~ It I~ I IiI

1

I
19

~
0 19 2

20 20 0

I
21

I~ I~ I~ I~ I~ I: I~ I I

2

I I

21

I~ I~ I~ I~ I g I~ IiI I

1

I
22 0 22 2

23 23 0

FIGUHE 14 All-to-all reduction step 3 for a 3-cube. FIGLRE 16 All-to-all reduction step .=; on a :3-cube.

:VIemorv addre~ses and node addresses in binarv order. Memory addresses and node addre~ses in binary order.

Mem PO P1 P2 P3 P4 P5 P6 P7 Dim

0 + • D 0 0 () () () 0

1 + () • () () () () () 1

2 + 0 0 0 • 0 0 0 2

3

I g I
+

jg I~ !g I~ lg lg I
0

4 + 1

5 + 2

6

I~ I~ I
+

I~ I~ I~ I~ I~ I
0

7 +
8 + 2

9

I~ I~ I g I
+

I~ I~ I~ I~ I
0

10 +
11 + 2

12

I~ I~ I~ I~ I
+

I~ I~ I~ I
0

I 13 + 1

14 + 2

15

lgl~lglglgl
+ I g I~ I

0

I 16 +
17 +
18

I~ I~ I~ I~ I~ I~ I
+

I~ I
0

I 19 +
20 +
21

I~ lg I~ I~ lg I~ I~ I
+

I
0

I 22 +
23 + 2

FIGURE 17 All-to-all reduction ~tep 6 on a 3-('lllw.

,\lemon addresses and node addrps;;es in binan· order. . .

forming the exchanges in reverse order is identical

to the original transition sequence. The exchange

sequence for a given local memot'\' location is the

same in broadcast and rt>duction. However. the

starting location for the reduetion i:o the loeation

where the last copy is to be deposited in the

broadcast algorithm.

From item :.L we see that for local memorY ad

dress zero, the exchanges generate the binary-re

flected Grav code addresses in reverse order. Tbe

addresses for sequt>nce i is obtained by an i step

cyclic rotation of the addresses of sequence zero.

Thus. for blockj = 0 and memory and node ad

dresses in binary code the sending node address

for local memory address i in blockj = 0 in step u

is shi(G(2d- 1 - u)). and the receiving node ad

dress for local memory address i in blockj = 0 in

step u is shi:(;('2d- u;i.

The Data Motion for Block i· The destination

node for block j is node j. The staning node for

blockj is obtained by performing an exclusive-or

operation with j (translation: on the starting ad

dresses for block j = 0. Exchange sequence i is

used for all local memorv addn;sses i relative to

the beginning of the blocks. i.e., all local memory

addresses such that s mode d = i. Thus.

1. the starting address for local memory ad
dress i in hlock j is: j E9 2 d-1 +i 11""lrl.

.\I.L-TO-ALL CO.\l.\ll:'\!C.\T!O'\ 259

2. The exchange sequence for local memory

address i in hlockj as: :to+ n mod d. i/1 + i

mod d. ([1 + i) mod d. /.!."-"2 + i:

mod d.

3. The sending node addres:-? for local memory

address i in block j in step u is: j EB sit'

(G(2rl- 1 - 11

"f. The receiving node addrefis for local mem

OIT location i in block j in step u is: j EB
shi(C:(2d- u)).

The above formulas give the sending and re

ceiving nodes for a given block/ and local memory

address i within the block. However. a! every step

each node onlv sends the contenlti of d lo<'almem

orv addresses and receiv<es d data elenwnts to lw

added into the contentti of d local nwmory ad

dresses, Thus. it is of more direct interest to dett>r

mine for each node which local memory address

of what blocks is participating in communication

step u. !\'ode PA is sendin~ and receiving data

from local memorv address i within block i if P-1 =

j E9 shi(G(2"- 1 ·_ u)) and PA = j E9 sh;(0('2.rl-

respectively. Thus. the block numherj for lo

cal memmT address i within node P-1 in fitep u is

j = PA E9 ,;!zi(C('2rl- 1 - u): for sendin~ andj =

PA EB sh1(G(2ri- u)) for receiving.

Note that the expressions s/l(C(2d - 1 tl),'

and sh1(G(2d u)) are common to all nodt>,.;.

Thus. on the Connection \lachine systems. these

expressions can be evaluated on the front-end.

Data Reordering: Node Addresses in
Gray Code Order

ln the broadcast algorithm. tlw final dt~,.;tirw

tion for local memory address zen1 (j = 0. i = 0.: of

node zero is node 2d-t. with memory and node

addreo;ses in binary code. The exchange sequence

used for thiii memory location i:-J the same as the

transition sequence in a binar~-reHt•cted Gray

code with the dimensions taken in order. Thus.

the final destination is the last addn~ss in tlw GraY

code. with dimension~ in order. i.e .. node 2'1_
1
••

The final destination of local nwmorv address i of
block j 0 within node zero is nodt; '2 rl-t +i n•otl•l.

becau~e the ith exchange sequence is obtained

fron1 the exchange sequence of local addre:-?:' zt~ro

by adding i mod d to the exchange dimension for

local address zero. For instanc<~ .. for cl :) the last

destination of the content of local rrwmory address

zero in node zero is node four. of location one it is

node one. and of location two it is node two, as

seen from Figure 8.

260 YIATHUR AND JOHl'SSO'i

For the all-to-all reduction algorithm with

memory and node addresses in binary code, we

have for block)= 0:

1. Starting address for local memory address i
within block)= 0 is: 2 rl-1+i'modrl.

2. The exchange sequence for local memory

address i in block j = 0 is: (t 0 + i) mod d.

(t1 + i) mod d, (t'2 + i) mod d, . . . , (t2L2 +
i) mod d.

3. The address of the receiving node for local

memory address i in block j = 0 step u is:
2(d-1 +i)modd E£) 2:t,+i)rnodd, U = {0, 1, 2, . . . ,

2d- 1},

4. The sending node in step u 2: 1 is the receiv

ing node in step u - 1.

When the result of the all-to-all reduction is de

sired in Gray code order, then instead of selecting

block) as described above, the block whose Gray

code is j should be selected. For instance, ford =

3, 7 has the Gray code 100. Thus, in every in

stance when block 4 is selected for the result in

binary order, block 7 is selected for the result in

Gray code order. Then, on completion, the reduc

tion on block 7 is available in node 4.

Thus, for the result in Gray code order, the

block index j chosen for local memory address

and exchange sequence i is

1. j = c- 1 (PA EB sh'(G(2" - 1 - s))) =

c- 1 (PA) EB r- 1 (shG(2ri- 1- s))) for send

mg.

2. j = c- 1 (PA EB sh'(C(2ri- s))) = c- 1 (PA) EB
c- 1(sh'(G(2rl- s))) for receiving.

The address c- 1(PA) is the node address in Gray

code. Thus, the operations unique to a node con

sists in determining its Gray code address and an

exclusive-or operation.

All-to-All Reduction on Local Data Sets
of Arbitrary Size

For a local data set of size J1 .. 2" blocks are created

for all-to-all reduction on a binarv d-cube. ·when

M mod 2r1 # 0, then not all blocks have the same

size. On the Connection Machine svstems anv ar-. .
rav with a size that is not divisible bv the number . .
of nodes over which it is distributed is allocated

such that r :lf,l elements are assigned to the first a =

[M If :lf,l] nodes. The remaining M - a f :lf,l 2r1 ele

ments are assigned to a single node, and the re

maining 2d - a - 1 nodes are assigned no ele-

ments. Thus, in blocking a data set for all-to-all

reduction, we first create a + 1 nonempty blocks,

a of which consists of r ~l consecutive memory lo

cations. Each block is further subdivided into 2d

subblocks. For the first a subblocks, the maxi

mum number of elements in a subblock is {3 =

f"
1
i~" l. All elements within a subblock are subject

to the same exchange sequence, while different

subblocks are subject to different exchange se

quences. The number of subblocks with {3 ele

ments each is y = fM/2dl - d({3- 1). The mem

ory partitioning is illustrated in Figure 18.

For each exchange step u, a pair of successive

elements is transmitted from a subblock (j, i) se

lected for transmission in dimension i in that ex

change step. The exchange step u is not com

pleted until all data elements within a subblock

selected for transmission have been transmitted.

The actual transmission can be viewed as con

sisting of three phases:

1. The movement of data to be transmitted in

one exchange to a buffer area, a departure

lounge.

2. An exchange of 2d 32-bit data elements,

with the received data being stored in a

buffer area, an arrival lounge.

3. Reduction on local data, and data in the

arrival lounge.

Successive pairs of elements in the departure

lounge are taken from subblocks with indices i =

{0, 1, 2, ... , d - 1} in blocks j determined by

the expressions given previously. If there are no

more elements in subblock i to be transmitted.

then the buffer location is empty, and the corre

sponding channel not utilized. The number of ex

changes for each step u is fllj'l, where Sis the num

ber of 32-bit words required for the data type (S =

2 for real-8 and complex-8 and S = 4 for com

plex -16). The reduction after each exchange step

is performed by adding the contents of the arrival

lounge for step u to the contents of the departure

lounge for step u + 1. with the elements for the

same exchange sequence i being added together.

5 OTHER ALGORITHMS

A few alternatives to the Hamiltonian cycle-based

algorithms for all-to-all communication are:

1. Each node broadcasts the values directly to

all other nodes (one course node at a time)

Block sub- sub block Block

block size size

0 {3

1 {3

2 {3

{3 fM/2d"J
{3

0 ")'-1 {3

")' 11-1 (fJ = r (M ~2d,n
"Y+1 11-1

.a- 1

11-1
d- 1 .6- 1

0 {3

1 {j

2 {3

!3 fM/2dl
{3

1 ")'-1 f]

")' a-1 ({3 = r [M~2d,n
"Y+1 {3-1

11-1
.a- 1

d- I .a- 1

0 {3

1 {3

2 {3

{3 fM/2dl
{3

a-1 ")'-1 {3

")' {3-l ({3 = r (M ~2d,n
1'+1 f]-1

.6- 1

f]-1
d-1 {3-1

0 6

1 6

2 fj

6 M- afM/2dl
6

a e:-1 {j

e: fj - 1 (s = rM-aSM/2d11)
~+1 s- 1

5-1

8-1
d-1 8-1

FIGURE 18 :Vlemory partitioning.

using multiple spanning trees, each of

which uses all the communication channels

of the binary cube (d edge-disjoint spanning

trees for ad-cube) [15]. .

2. Each node sends its data to a dedicated

node that broadcasts the data to all other

nodes with an algorithm using all channels

of ad-cube.

3. All nodes send their data to a dedicated

ALL-TO-ALL COMMU~ICATIO:'\ 261

node concurrently, followed by a broadcast

from the dedicated node to all other nodes.

4. All nodes send their data to all other nodes

using minimum height spanning trees, such

as d rotated spanning binomial trees [15].

This algorithm is equivalent to a butterfly

network-based algorithm.

Alternatives 1 and 2 use multiple spanning

trees to maximize the bandwidth utilization in

broadcasting the data from a single node . .'\odes

are treated sequentially. Alternative :3 combines a

gather operation (all-to-one personalized com

munication [14]) with a broadcast as in alterna

tive 1, but there is only a single broadcast of all

data to be received by a node. ln all-to-one per

sonalized communication, each node sends data

to one node. (In all-to-all personalized communi

cation, each node sends unique data to every

other node.) Alternatives 1 and 4 both have opti

mum time complexity .. whereas alternatives 2 and

3 require extra data motion. Table 2 summarizes

the performance estimates for the different algo

rithms [15]. For the reduce-and-spread estimate

in Table 2, a subselection is assumed before car

rying out the transpose required for data in

column major order. The transposed data volume

is a factor of 2d less than the data volume in the

reduce-and -spread function.

On the Connection Machine system C\'1-200

fairly well-optimized routines have been imple

mented for broadcast from a single node, shifts

along a single Hamiltonian cycle, shifts along k :5

d Hamiltonian cycles for a d-cube, and reduce

and-spread in d-cubes based on rotated binomial

trees.

The broadcast function currentlv available on

the Connection :Vlachine system C.Yl-200 assumes

that the source for the broadcast operation is the

first node in a segment (first row or column).

Thus, this function can only be used in alterna

tives 2 and 3. The overhead in the spread function

is quite significanL as is apparent from the timings

shown in Table 3. This table shows timings for 2

to 32,768 32-bit elements per node on binary

cubes with 2 to 2048 nodes. Because of the large

overhead, only alternative 3 of the first three tree

based algorithms is considered further.

The first step in alternative 3 is an all-to-one

personalized communication. The optimum time

for this operation is r ~ l [15], where M is the num

her of elements gathered into a node. There is

currently no optimized routine available on the

Connection Machine svstems CM-200 for this

262 MA THLR Al"D JOH:\SSO~

Table 2. Estimated Number of Element Transfers in Sequence for Different Broadcast Algorithms*

Ordering

Column major

Row major

Operation

Broadcast using single Hamiltonian c;.-cle

Broadcast. d Hamiltonian cvcles

Broadcast from one node at a time

(alternative 1)

Gather followed bv broadcast (alternative 3)

Broadcast based (;n rotated bi;wmial trees '

(alternative 4)
Reduce-and-spread, transpose

Transpose, broadcast using single Hamiltonian

cn:le

Tninspose. broadcast using d Hamiltonian

cvcles

Tr~nspose, broadcast from one node at a time

(alternative 1)

Tr~nspose, gatl~eL broadeast (alternative 3)
Reduce-and-spread

Time

1 + r:Hi~ + c1 = 2 + d
1(2<1- 1)

d + f,J1;'T,7'

l + [/~.;i (2 d - 1)

+ (2rl- 1

+(I + c/)2'1

* lf i;; the totaluumher of T2-bit elements prior to tfw broadcast (or r"duction: O(JPration.

communication. Tht> Comwetinn :\'faehint> router

is used instead. For matrix-vector multiplication

with the matrix allocated to a one-dimensional

nodal array through partitioning by rows. and the

vectors distributed evenly across all nodes. the

nodes send their segment of the input vector to

node zero, which tben broadcai'ts the entire input

vector to ever-v node. \\"ith a two-dimensional

nodal array shape in column rnajor order for the

matrix, and a one-dimensional nodal array shape

for the vectors .. all nodes within a node column

send their segment of the input vector to the first

node within the column. Then. this node broad

casts all segments of the input vector within a

node column to all nodes in that node column. ln

row major ordering, the send operation must also

accomplish a transposition from row to column

major order. Although the transposition is implicit

in the send, it has a significant impact nn the rout

ing time for the send, as shown in the performance

measurements in Section 6.

The optimal transpose time for a binary cube

with two channels between each pair of nodes is

f 2 i1

2J [13. 13] _ The optimal time is proportional to

Table a. Time (ms) for Bmadcast of Different Size 32-bit Data Sets and Connection Maehine Systems

Cl\1-200 of Various Sizes

:\umber of
:\umber of :\odes

Elements 2 4 8 16 32 64 128 256 3)12 1024 204R

2 0.0366 0.38:3 0."1:48 (L30:2 0 .. 57 :3 0.640 0.719 0.789 0.878 0.965 L0:36

4 0.0366 0.383 0.448 0.50:2 0.37:1 0.6-±0 (L?19 0.?89 0.878 0.965 1.0:36

8 0.0623 0A16 0.-±80 0.503 0.576 0.6H (L722 0.792 0.881 0.968 1. 0-±0

16 0.1136 0.470 () .513 0 .. ')42 0.61S ()_684 0.76:1 0.798 0.888 0.97;) 1,046

32 0.2162 0.577 0.593 0.600 0.691 0. 7:30 0.811 0.84H 0.939 1.o:n 1.101

64 0.42H 0.793 0.7-±1 0.720 ()_?::3 0.856 0.907 0.947 1.0'±2 1.1::);3 1.168

128 0.8318 1.223 1.055 0.962 CL963 0.984 1.044 1.()45 1.247 1)W5 l.:s-H
256 1.6527 2.084 1.654 1.H3 1.:3'77 1.:332 1.:160 1.3:38 1.410 1,434 1.50:3

512 3.3139 3.805 2_882 2.410 2.20:3 2.0;)4 1_990 1. 92:) 1. 9'±6 j(J53 2.001

1024 6.7319 7.24? .s.:31o 4_:H2 .3.825 :3.491 3.28'? :3.098 3.021 2.991 2.95?

2048 13A530 14.129 10.193 8.204 7 ,06? 6.3:H 5_844 5.445 5.210 5.028 -±.91 0

4096 26.9059 27.895 19.9:31 15.929 1:3.585 12.048 10.960 10.137 9.588 9.102 8."?82

8192 33.8115 55.426 39.4:37 .31.3'79 26,619 2:).444 21.226 19.322 18.34'± 17.288 16.520

16334 107.6210 110.476 '?8.'±15 62.279 52.65"? 'i6.269 'i1 _'?21 :38.291 35.818 :>:3.662 :31. 99?

::32'?68 215.2400 220.577 15(d96 124.070 104.'?2:3 9U37'f 82.'?11 75.829 70.?64 66.:166 62.991

ALL-TO-ALL COYI\ll"JIC\ T!Ol\ 268

S\ep PO PI P2 P3 P4 5 P6 P7 Dim.

00 01 02 03

I
04 05

I
06

I
07

I Init. 10 II 12 13 14 15 16 17

20 21 n 23 24 25 26 27

OOtOI DOt OJ 02t03 02t03

I
04tOS D4t05

I
06t07

I
06t07

I
0

0 10tl2 lltlJ JOtJ2 lltJJ 14tl6 15t17 14t16 l5tl7 1

20t24 2lt25 22t26 23+Zi 20t24 21+25 22t26 23t27 2

~~!~;!~;!~~ I
OOtOl t0Zt03 OOtOJt02t03 ootol t02tO.> I 04tOot06t07 04t05t06t07 I 04t05t06t07 I 04t05t06t07 I l

1 llt13tlStl7 10tl2tl4tl6 llt13tl5tl7 IOtl2tl4tl6 lltl3tl5tl7 10tl2t14tl6 lltl3tl5tl7 2

20t21t24t25 20t21t24t25 22t23t2Ct27 22t23t2Ct27 20t21 t24t25 20t21 t24t25 22t23t26t27 22t23t26t27 0

00 07 00 07 00 - 07 00 - 07

I
00 - Oi 00- 07

I
00 07

I
00 07

I
2

2 10- 17 10- 17 10 - 17 10 - 1 i 10 - 17 10- 17 10- 17 10- 17 0

20- 27 20 - 27 20 - 2i 20 - 27 20 - 27 20 - 27 20 - 27 20 - 27 l

FIGURE 19 Reduce-and-spread through butterfly network emulation

the size of the local data set bnt is independent of

the partitioning of nodes between rows and

columns.

Alternative 4 has been implemented for re

duce-and-spread functionality on the Connection

yfachine svstem CM-200. It uses a constant size

data set in all stages. Exchanges are performed

between pairs of nodes in d stages. as shown in

Figure 19. Each node computes d partial sums.

one for each of d distributed variables. The aceu

mulation and broadcast of distributed variable

zero use the dimensions in increasing order. The

accumulation and broadca:o;t of distributted vari

able i me dimension (u + i) mod din step u. W'ith

1}! elements per node and a double cube, the num

ber of element transfer:o; i;; r :¥/1 d, which is a factor d

higher than an all-to-all reduce using d Hamilto

nian cycles. The reduce-and-spread function

yields 2r1 times a." much local data as is de,;ired for

an all-to-all reduction. The desired data are se

lected from the result of the reduce-and-spread

operation.

With the matrix allocated to a two-dimensional

nodal array in row major ordering. the result of the

all-to-all reduction within rows yields the result in

the desired order. \\1ith a column major orderinf\.

a reordering from row to column major ordering

(transposition) is required after the all-to-all re

duction.

If the node addresses are encoded in a Gray

code instead of a binary code. then the ordering of

the elements in local memory is different. But. ex

cept for local memory operations. all other opera

tions are identical.

6 PERFORMANCE MEASUREMENTS

For all-to-all broadcast, we have implemented al

gorithms based on a single Hamiltonian cycle. d

Hamiltonian cycles. and based on gathering all

column data into a single node followed by broad

cast from that node. For all-to-all reduction. we

implemented the first two algorithms and com

pared them with redure-:cmd-spread. \Ve first

present the results for broadcast. then for reduc

tion.

6.1 All-to-All Broadcast

Tables 4 and 5 summarize measurements for a

256-node Connection Machine system C.\1-200.

Table 4. Execution Times (ms) for All-to-All Broadcast Using Three Different :VIethods on the

Conneetion Machine System CM-200*

All-to-All Broadcast

Words per :\lo. of
Send-and-Spread d-Cvcle~ One Cycle

"Jode Initially ~odes Send Spread Total Transpose :\ddr. Indir. AABC Total lndir. :\ABC Total

4 16 2.20 0.92 3.12 0. 90 1.84 0.57 1.00 4.:31 1.17 1.00 :~.07

8 16 3.82 1.38 5.20 1 .1:3 :3.52 0.62 1.10 6 . .')"' 1.21 1.66 4.00

16 16 8.00 2.30 10.30 1.68 :3.:i6 0.7:3 1.8::. 7.62 1.:31 :3.0:3 6.02

32 16 9 .. 59 4.14 1.3.73 1.80 .3.:39 0.89 3.:35 9.43 1.56 5.76 9.12

64 16 19.19 7.82 27.01 3.:3-i 4.14 1.55 6.41 15.44 2.0:3 11.21 16.58

128 16 38.60 15.1" 53.77 6.;).S 3.24 2.87 12.;')5 27.21 2.98 22.1:3 :31.66

256 16 77.74 29.88 107.62 12.90 8.;:)7 5.52 2'!.82 31.81 4.88 4:3.97 61.7;)

512 16 156.70 59.:31 216.01 25.66 15.44 10.30 49.4:3 101.::3:3 8.68 87.6:3 121.97

102'! 16 315.30 118.20 434.00 .'i1.43 29.07 21.38 93.49 200.37 16.27 17Ed)0 242.?0

* 64-bit precision: row major ordering: node addresses in GraY code.

264 :\1ATHCR Al\D JOH:\'SSOI'\

Table 5. Execution Times (ms) for All-to-All Broadcast Using Three Different Methods on the

Connection Machine System C:\'1-200*

All-to-All Broadeast

Words per :\o. of
Send-and-Spread d-Cn~les One (\de

1'\ode Initiallv !\odes Send Spread Total Transpose Addr. + lndir. A.AHC Total Indir. AABC Total

256 1 3.28 0.1:~ .3.41 4():3 1.32 0.00 6.43 0.:3:3 () ;"),26

256 2 22.41 ().27 28.68 13.39 3.24 S.70 22.5:3 0.63 2.93 17.15

2.56 4 .3.'1.9:3 1:3.46 49.:39 12.98 4.69 9.:3:3 27.00 1.24 8.79 :2:3.01

256 8 49.67 18.98 68.65 13.1:3 8.47 1:').16 :36.76 2.45 2().:)1 :~(). ()()

256 16 77.74 29.88 107.62 12.90 14.02 24.82 ;)1.74 4.88 4:3.9"? 61.7:)

256 32 100.20 50.14 1 so.:~4 12()8 :32.3:) 42.51 8"?.84 9. "'5 90.91 112.64

256 64 165.10 87.50 252.60 12.98 6:~.46 ?4.:38 150.82 19.4-:' 184.80 21:.25

256 128 254.20 156.90 411.10 12.CJ1 131.20 1:31.80 2-:'6.91 38.92 :3:2.80 -t24.6:3

256 2:)6 45-:'.-:'0 286.-:'0 -:'44.40 4.9:3 226.10 228.80 459X3 7-:'.80 "'48.80 8:31 . :);3

* 6'1:-bit precision: row major orderinl-(: node addresocs in GraY cod<'.

In Table 4, the nodes are configured as a 16 X 16

array. The length of the local segment of the vector

to be broadcast varies. In Table 5. the vector

length per node is fixed, while the number of

nodes along an axis is varied. Both tables assume

a row major ordering and node addresses in Gray

code. The column marked ·'totar·, includes the

transpose time. Thus, all columns marked total

correspond to the same functionality.

From Table 5, we first note that the transpose

time is independent of nodal array shape, as pre

dicted for an optimal algorithm. The transposition

is done by the router, which thus shows a very

good performance behavior. The time per 32-bit

data element amounts to about 25.1 JLS.

Fron1 the perforn1ance measuren1ents, we con

clude that both the single cycle and the d-cycles

algorithm are always faster than the send-and-

Table 6. Ratio of Data Motion Rates for the

Three Methods of All-to-All Broadcast on the

Connection Machine System CM-200*

All-to- All Broadcast

"lo. of Send-and-
256 Words/l\ode

:'-lodes Spread d-Cydes One Cycle

2 1 1.:27 1.67

4 1 1.83 2.15

8 1 1.8: 1.90

16 1 2.08 1.74

32 1 1.-:'1 1 . .'33

64 1 1.6-:' 1.16

128 1 1.48 0.9?

256 1 1.62 0.90

spread algorithm for all-to-all broadcast. Table 6

summarizes the relative performance of the cycle

based algorithms over the send-and-spread algo

rithm. The improvement is in the range 1.2"?-

2.08. The measured data motion rate for all-to-all

broadcast on a 256-node Connection :\lachine

system C""I-200 is about 0.:3 Gbyte/s.

To compare the single cycle and d-cycles algo

rithms, we consider the performance characteris

tics of the two algorithms in detail. The execution

time for all-to-all broadcast through a single

Hamiltonian cycle is expected to behave as

TB - (r;);J' . 51) i')d - 1'
1-H.c- a1 + a'2 2 \'- h

where a 1 is the overhead for each step of the algo

rithm and a 2 is the exchange time for two 32-bit

data elements. }\1' is the initial number of ele

ments per node and S is the number of 32-bit

words per data element (5 = 2 for real-8 and com

plex-8). From Table 4. we derive n 1 = 2"1:.3 JLS

and a 2 = 5.69 p.s.

With a Gray code ordering. the indirect ad

dressing required for the reordering on completion

requires a time of

T JJ - + I R + l}.'f·'. C'\')d
1-H./- a:J \a"' a_,,v" o 1- ,

where, fron1 our performance n1easurernents, a:{ =

17.9 p.s, a-+= 50.33 p.s. and a;,= 0.5p.s. Adding

T1-H., and T1-H.I we get the total time for the all

to-all broadcast based on a single Hamiltonian

cycle and nodes in Gray code order:

Tf-H -6.38 - 5.69 · M' · S + 74.6
* 6'1:-bit precision: row major ordering: node addresses in

Grav code. · 2d + 6.19 · il'f' · S · 2'1.

In the d-cycles all-to-all broadcast altrorithnL

the data motion between nodes is expected to

show a performance behavior of the form

T B (b 'b 2 i b ' rM' . Sl) '2 1 1) rf-H.c = 1 + (2 .. C + 3! 2d (' ' - '

where b1 is the overhead for each step of the algo

rithm, b2 is the time for local memory references

for each step, and b:; the time for exchanging d

pairs of 32-bit words between a node and its d

neighbors. From the column labeled d-cycles in

Tables 4 and 5, we derive: 61 = "f1.94 p.,s. b2

0.17 p.,s, and b:; = 24.18 p.,s.

ln addition to the data motion time. a signifi

cant time is also required for local memory opera

tions, even when nodes are labeled in Gray code

order. For the single-cycle algorithm, a node-de

pendent block cyclic shift is required. In the d

cycles algorithm, the reordering at the end, as il

lustrated in Figures 8 and 9, requires full indirect

addressing. In addition, if the array indices are not

moved along with the data, index computation is

required according to the formulas given in "Data

Reordering: All Addresses in Binary Code". For

the index computation, there are 2d - 1 blocks,

one for each remote node, for which index com

putations are needed. Each such block consists of

2d subblocks of elements each, with the final

subarray of size iYI (initial subarrays of size M'
Mf2d elements each). Then, there is a remainder

of d' (M/2") mod 2d elements for each of the

2d - 1 blocks. Thus, the time for index computa

tion Td-Hic behaves as

ALL-TO-ALL COMMC'\ICATIO~ 265

T~-H.ic = b'f

+ [d (b~ + b" f'~~J) + b-M' mod 2d]

(2d- 1).

From our measurements .. we derived: b-+ =

2056.35, b; = 41.08, b6 = 2.02, and b- = 22.24.

all in p.,s. The index computation has a faster

growth rate in the number of nodes rhan the mo

tion of the data. This is clear in Table 7.

The time for local data reordering with indirect

addressing is

T~-Ht = (bs + bl) · J1' · S) · 2',

where the constants derived from our measure

ments are: b3 = 14.78 p.,s and b9 = 0.645 p.,s.

The total time for all-to-all broadcast based on

d-cvcles and local index computation is obtained

T. II TIJ Til TH as d-H - d-H.c + d-Hic + rl-11.1· or

T~-H = 2071.13 + 0.645 · M' · S

+ (56.72 + 0.645. ,H'. s
+ 24.18l(i\l/' · S)/(2d)l

+ d(4L08 + o.34fUv/' · S)/2d)l

+ 2.02fM/(2d)l)

+ ~2.24(ilJ' mod 2d))(2"- 1).

Because the efficiency in the index computa

tion on the GYI-200 is poor, we have also imple-

Table 7. Execution Time (ms) for d-Cydes All-to-All Broadcast with Index Computation and Index

Motion*

d-Cvcles All-to-All Broadcast

Words per :\o. of
Cmnp. Index .\love lndex

~ode Initiallv 'lodes AABC lndir. Comp. Total Ylovp Total

128 2 2.95 0.36 1.:39 4.70 2.05 5.:36

128 4 4.79 0.72 1.85 7.:36 2.97 8.48

128 8 7.90 1.44 3.4:3 12.7":' 'f.56 13.90

128 16 12.64 2.88 ;).:30 20.82 6.96 22.48

128 32 21.64 - 7-
;:J •• ;) 16.83 44.22 11.60 :33.99

123 64 :37.32 11.50 :35.56 34.88 19.93 69.23

128 123 69.90 23.01 60.10 1.'):3,01 :36.49 129.40

128 256 116.50 46.01 119.50 282.01 60.:37 222.88

128 512 282.40 92.05 230.20 604.65 120.80 445.2;)

128 1024 416.40 134.10 727.80 1:328.30 216.90 817.40

128 2048 738.40 370.30 1973.00 :3081.70 :386.00 1494.70

* 64-Bit precision; node addresses in Gray code.

266 YIA THCR Al'\D JOH:\'SSO:\

mented all-to-all broadcast using ad-cycles algo

rithm in which the indices are moved along with

the data. The indices are represented as 32-bit

integers regardless of the type of the array values.

Local reordering is still required and requires the

same time as when the array indices are computed

locally. Table 7 shows the results for a 2048-node

CM-200. As seen in the table, moving indices is

faster than computing indices for 32 or more

nodes. The time for moving indices. Tri-ll.;, is

Td-Him = (610 + (b,, · 2d + b1'2) ~;~~J)

(2rl-1)+b 1 o

where b 10 = 33.61 JLS, b11 = 0.63 JLS. b12 = 16.98

JLS, and bn = 1834.05 JLS and the total time is

Trl-H.c + Trl-ll.im + Trl-H.I

T~-H m = 1848.83 + 0.64.5 · J1' · S

+ (90.:3:3 + 0.645. ;}/'. s

+ (0.34d + 24.18)1 (M' · S)/(2d)

+ (1.26d+ 16.98)f:l:/'/(2d)l)(2rl-1).

Comparing the times for all-to-all broadcast

based on a single cycle and d-cycles with either

local index computation or index motion. we con

clude that the actual communication time for the

d-cycles algorithm is less than that for the single

cycle algorithm for eight or more nodt>s. The gain

is less than a factor of d, because the ,;ingle-cycle

algorithm can use machine instructions that re

quire fewer cycles per word tran,;fer. However. the

performance gain in the communication part of

the d-cycles algorithm is largely lost du<> to the

time required for the index calculations .. and the

full indirect addressing required in the reordering

of the data. From the expressions for the total ex<>

cution time for the single-cycle and d-cycle,; algo

rithms. we can derive the size of the local data set

as a function of d for which the d-cydes algorithm

1.6

1.4

1.2

~
~
Q)

0.8 E
F

0.6

0.4

0.2

0
32 64

one cycle-+
d-cycles comp.index -+--·
d-cycles move index ·D··

128 256
Number of nodes

512

FIGURE 20 All-to-all broadcast time in seconcis for

2.'"i6 64-bit elements.

yields better performance. The results art> sum

marized in Table 8. From the table we conclude

that, in practice, at least 16 nodes (d 2': 4) must he

assigned to an axis before the d-cycles algorithm

performs better than the single-cycle algorithm.

largely due to the expense for index calculation.

This expense grows sufficiently rapidly to mak<>

moving the data indices more efficient than com

puting them locally for :32 or more nodes. despite

the simple operations required for index compu

tation. Figure 20 shows the execution times for

all-to-all broadcast on up to 512 nodes using ei

ther a single-cycle algorithm. or the d-cycles algo

rithm with either index computation or index mo

tion. Table 9 gives the corre,;ponding measured

data.

Remark 1. lt is intere:-;ting to compare the per

formance of the spread function with that of the d

cydes algorithm. Ideally. both should have the

same execution time (see Table 2). From Table,; 4

and 5, the measured performance is comparable

when the address calculation time is excluded. as

expected. The total execution times are compared

in Table 10.

Table 8. Size of the Initial Data Set (J-"1') per Node in 64-Bit Precision for Which the d-Cvcles All-to-All

Broadcast Algorithms with Index Computation (d - H, c) and Index Motion (d - H, m) Yi.eld Better

Performance than a Single-Cycle Algorithm*

:\lo. of :\odes 2 4 8 16 :32 64 128 2.-:i(J .S12 1024 2048

d-1-Lc J/' 2: 240 Jl' 2: 80 Jl' 2: 60 .ll' 2: 48 .\1' 2: .)6 .ll' 2: 48 .W :o> :5-t Jl' 2: 60 .H' 2: 66

d- H. m J/' 2: 55 .VI' ;o. 14 .\1' 2: 12 J/' 2: 14 .\1' 2: 16 .\1' 2: 18 .ll' 2: 20 .\1' 2: 22

*Row major onlPring: node addresses in GraY code.

ALL-TO-ALL COMMC:\lCATlON 267

Table 9. Execution Time (ms) ford-Cycles All-to-All Broadcast with Index Computation and Index

Motion and for the One-Cycle Algorithm*

d-Cvcles

Words per :\o. of
Comp. Index :\love Index One Cycle

'\i ode Initially Nod!Os AABC Indir. Comp.

256 2 5.84 0.69 2.54

256 4 9.47 1 . .38 3.31

256 8 15.31 2.76 5.74

256 16 24.97 5.52 8.59

2.56 32 42.69 11.06 21.58

256 64 74.59 22.11 -+1.98

2;">6 128 1:32.10 44.22 88.:37

2.56 256 229.20 88.41 H0.30

256 512 4:34.00 177.00 369.70

* 64-Bit pr~cision: node addresses in Grav code.

Remark 2. It is also interesting to note that al

though the optimal time for the send and the

spread is the same (Table 2), the measured time

for the send is about 2. 7 times higher than for the

spread in the 16-node case. For the eight-node

case. the ratio is about 2.6 and for the 256-node

case,. the ratio is 1.6. The send (gather) operation

uses the router whereas the spread uses an opti

mized algorithm. Table 10 gives a comparison of

the execution times for send and spread.

The sensitivitv of the send times to row or

column major layout ordering was examined by

measuring the execution times for both orderings.

In a column major ordering, the send is confined

to within subcubes and no transpose is required

for all-to-all communication. Tables 11 and 12

summarize the results. The send is faster by close

Table 10. Relative Execution Times for Spread,

d-Cycles All-to-All Broadcast with Reordering and
Send (Gather)*

:\o. of d-Cycles Send
Nodes Spread AABC (Cather)

2 1 :3.60 :3.57
4 1 2.01 2.67

8 1 1.94 2.62
16 1 1.7'f 2.60

32 1 1.76 2.00

h4 1 l 74 1.89

128 1 1.77 1.62
256 1 1.62 1.60

* 64-bit precision~ row major ordering: node addresses in

Gray code.

Total :\love Total AABC lndir. Total

9.07 :.3.96 10."1:9 2.9:3 0.54 :3."1:7

H.16 ;":')."H) 16.64 8.80 1.09 9.89

23.81 8.7.3 26.80 20.54 2.18 22.72

39.08 18.60 "1:4.09 44.05 4.37 "1:8.42
75.3:3 22.60 76 . .3;3 91.08 8.75 99.8:.3

138.68 38.79 135.49 185.10 1?.49 202.39

264.69 68.05 244.87 c373.40 34.98 -i08.38

-!:57.91 117.10 434.71 750.20 69.98 820.18

980.70 222.00 833.00 1504.00 HO.OO 1644.00

to a factor of 2 for the column major ordering, but

the cycles-based algorithms are also faster for this

ordering. However, the speed advantage is not as

large as for row major ordering.

Finally, we also measured the performance for

all-to-all communication with node addresses in

binary code. The execution times for the d-cyeles

algorithm were almost identical to the times for

node addresses in Gray code order. The single

cycles algorithm would require a different imple

mentation on the Connection ~iaehine svstem

CM-200, because the CSHIFT intrinsic function

used in our implementation uses the general

router for node addresses in binary code. A spe

cial implementation of our single-cyele algorithm

should yield comparable performance for node

addresses in binary and Gray code.

6.2 Reduction

Tables 1.3 and 14 give the measured execution

times for all-to-all reduction based on reduce

and-spread, and the single-cycle and d-cydes al

gorithms.

The reduce-and-spread alternative for all-to

all reduction results in an excessive arnoum of

data in each node, and a subselection is required

to arrive at the final result. This subselection is

performed by a call to the Connection }lachine

router, even though no communication is re

quired. The router is the only general mechanism

currentlv available on the Connection :\lachine

system C:\1-200 for this subselection. Performing

the all-to-all reduction in this manner is always

268 MATHUR AND JOHNSSOI'\

Table 11. Execution Times (ms) for All-to-All Broadcast Using Three Different Methods on the

Connection Machine System CM-200*

All-to-All Broadcast

Words No. of
Send -and -Spread d-Cycles One Cvcle

per Node Nodes Send Spread Total Addr. lndir. AABC Total lndir. AABC Total

4 16 1.23 0.92 2.15 1.8"! 0.57 1.00 :3.41 1.17 1.00 2.17

8 16 2.30 1.38 :3.68 :3.52 0.62 1.10 5.24 1.21 1.66 2.87

16 16 4.79 2.30 7.09 .3.:36 0.73 1.85 5.94 1.31 :3.03 4 .. 34

32 16 5.42 4.14 9.56 3.39 0.89 .3.35 7.63 1.56 5.76 7.32

64 16 10.78 7.82 18.60 4.14 1.55 6.41 12.10 2.0.3 11.21 13.24

128 16 21.59 15.17 .36.76 .5.24 2.87 12.55 20.66 2.98 22.1.3 25.11

256 16 43.42 29.88 73.30 8.57 5.52 2"!.82 38.91 "!.88 43.97 48.85

512 16 87.41 59.31 146.72 15.44 10.80 49.43 75.67 8.68 87.63 96.31

1024 16 176.10 118.20 294.30 29.07 21..38 98.49 148.94 16.27 175.00 191.27

* 64-bit precision: column major ordering: node addresses in GraY code.

Table 12. Execution Times (ms) for All-to-All Broadcast Using Three Different Methods on the

Connection Machine System CM-200*

All-to-All Broadcast

Words
Send-and-Spread d-Cycles One Cycle

per 1\'o. of

Node Nodes Send Spread Total Addr. + lndir. AABC Total lndir. AABC Total

256 1 .3.30 0.1.3 3.45 1.52 0.00 1.52 0.33 0 0.33

256 2 11.97 6.27 18.38 3.24 5.70 8.94 0.63 2.9:3 3.56

256 4 17.69 13.46 31.88 4.69 9.33 14.02 1.24 8.79 10.0:3

256 8 26.67 18.98 46.5"! 8.47 15.16 23.63 2.45 20.51 22.96

256 16 43.42 29.88 74.63 14.02 24.82 38.84 4.88 43.97 49.85

256 32 69.46 50.14 121.82 32.35 42.51 74.86 9.75 90.91 1 00.66

256 64 114.66 87.50 206.33 63.46 74.38 137.84 19.47 184.80 204.27

256 128 225.43 156.90 388.90 131.20 1.31.80 263.00 38.92 372.80 411.72

256 256 286.70 226.10 228.80 454.90 77.80 748.80 826.60

* 64-bit precision: column major ordering: node address<" in Grav code.

Table 13. Execution Times (ms) for All-to-All Broadcast Using Reduce-and-Spread, d-Cycles, and One

Cycle on the Connection Machine System CM-200*

All-to- All Reduction

Reduce-and-Spread

Words ~o. of Reduce-and-
d-Cycles One Cn~le

per ~ode !\'odes Spread Send Total lndir. Arit. Comm. Total lndir. Arit. Comm. Total

4 16 1.17 1.62 3.33 2.43 0.26 1.11 :3.80 0.59 0.26 1.07 1.92

8 16 3.36 3.57 6.93 4.20 0.30 1.22 5.72 0.64 0.30 1.74 2.68

16 16 6.70 8.11 14.81 4.26 0.38 2.03 6.67 0.7:3 0.:38 :no 4.21

32 16 13.39 15.32 28.71 4.32 0.51 3.61 8.44 0.98 0.51 .5.83 7.:32

64 16 26.77 32.74 59.51 5.68 0.87 6.88 13.43 1.45 0.87 11.29 1:3.61

128 16 53.54 67.81 121.30 8.16 1.61 13.48 2.3.25 2.40 1.60 22.20 26.20

256 16 107.10 138.50 245.60 14.26 3.06 26.66 43.98 4 .. 30 3.04 44.03 51.37

512 16 214.10 281.10 495.20 26.29 5.97 5:3.04 85.30 8.09 .5.96 87.70 101.74

1024 16 428.20 568.30 996.50 50.55 11.78 105.70 168.03 15.69 11.74 175.00 202.43

* 64-bit precision: row major ordering: node addresses in Gray code.

ALL-TO-ALL COMMUNICATION 269

Table 14. Execution Times (ms) Data for All-to-All Reduction Using Reduce-and-Spread, d-Cycles, and

One Cycle on the Connection Machine System CM-200*

All-to-All Broadcast

d-Cvcles

Words
Reduce-and-Spread

lndir. +
One Cycle

per No. of Addr. +
~ode !'odes Spread Send Total Arithrn. Comrn. Total Indir. Arithm. Comm. Total

256 2 12.73 22.68 35.41 1.17 11.30 12.4? 0.95 0.20 2.93 4.08

256 4 26.88 44.?7 ?1.65 2.51 12.81 15.:32 1.49 0.61 8.80 10.90

256 8 33.30 80.32 133.62 7 . Ei 17.55 24.70 2.57 1.43 20.54 24.34

256 16 107.00 138.60 245.60 12.74 26.63 39.3? 4.73 3.0? 44.05 51.85

256 32 215.90 2:37.60 453.50 38.68 44.00 82.68 9.04 6.33 91.08 106.45

256 64 436.20 410.90 847.10 78.99 75.65 154.64 1?.67 12.8? 185.10 215.64
256 128 882.90 722.00 1604.90 172.54 133.00 305.54 34.92 25.94 373.40 434.26

256 256 1786.00 1293.00 3079.00 298.95 229.70 528.65 69.42 52.10 750.20 871.72

256 512 138.50 104.40 1304.00 1746.90

* 64-bit precision; row major ord~r; nude addresses in Gray code.

less efficient than using either a single-cycle algo

rithm or the d-cycles algorithm.

For a 16 X 16 nodal array., the single-cycle al

gorithm is more efficient than the d-cycles algo

rithm for a final data set per node of at most 64

elements. The single-cycle all-to-all reduction is

about 6% slower than the corresponding broad

cast operation, whereas the d-cycles all-to-all re

duction is about 12% slower than the correspond

ing all-to-all broadcast. (In these percentage

calculations, we excluded the time for the trans

pose required in all-to-all broadcast for row major

ordering, in order to highlight the difference be

tween broadcast and reduction.) The perfor

mance trade-off between the single-cycle and the

d-cycles algorithms is approximately the same as

for the broadcast.

Table 15 gives a comparison of the total execu

tion times for the three different all-to-all reduc

tion methods: reduce-and-spread followed by a

subselection, a single-cycle algorithm, a d-cycles

algorithm. The cycle-based algorithms yield a

speedup of a factor of 5 or better over the reduce

and-spread function.

Remark

Note that the send (scatter) that follows the re

duce-and-spread may require more time than the

reduce-and-spread function itself. Because all

nodes have all the results after the reduce-and

spread, the desired result can be obtained either

as a local subselection, or as a one-to-all person

alized communication from the first node in a row.

Table 15. Execution Times (ms) and Speedups for Three Methods of Performing an All-to-All Reduction
on the Connection Machine System CM-200*

All-to-All Reduction

Words i'\o. of
d-Cycles One Cvcle

per ~ode :'-Jodes Reduce-and-send Time Speedup Time Speedup

256 2 35.41 12.47 2.84 4.08 8.68
256 4 71.65 15.32 4.68 10.90 6.57
256 8 13.3.62 24.70 5.41 24.54 5.44
256 16 245.60 39.:37 6.24 51.8.') 4.74
256 32 453.50 82.68 5.48 106.45 4.26
256 64 847.10 154.64 .'5.48 215.64 a.9:3
256 128 1604.90 305.54 5.25 434.26 3.70
256 256 3079.00 528.65 5.82 871.72 3.53
256 512 1746.90

* 64-bit precision; row major ordering; node addresses in Grav code.

270 MATHUR Al\'D JOH.'ISSOI\"

Table 16. Execution Time (ms) and Relative

Speeds of All-to-One Personalized

Communication (Gather) and One-to-All

Personalized Communication (Scatter) by the

Connection Machine System CM-200 Router*

Words 1\"o. of All-to-One One-to-All
Gather

per :'>/ode ,\;odes (Gather) (Scatter) Scatter

256 2 22.41 22.68 0.99

256 4 35.9:3 44.77 0.80

256 8 49.6? 80.32 0.62
256 16 77. 7 4 138.60 0.56

256 32 100.20 2.37.60 0.42

256 64 165.10 410.90 0.40

256 128 254.20 ?22.00 0.35

256 256 457."?0 1293.00 0.:35

* 64-bit precision; row major ordering: node addresses in

Gray code.

On the Connection :Machine svstem CM-200.

both methods require approximately the same

time. The latter operation is like a vector trans

pose, with the vector initially stored in the first

node of a row, and stored uniformly across all

nodes in a row after the transpose. This operation

is the reverse communication of the send that

gathers data to a single node before the broadcast

in the send-and-broadcast algorithm for all-to-all

broadcast.

However, the one-to-all personalized commun

ication performed by the router requires consider

ably more time than the all-to-one personalized

communication. 'fable 16 compares the timings

for all-to-one and one-to-all personalized com

munication. Table 17 compares the times for all

to-all reduction using the d-eycles algorithms with

local index computation and index motion. Mov

ing indices is faster than computing them locally

for 64 or more nodes.

7SUMMARY

We have presented detailed schedules for all-to

all communication algorithms for broadcast and

reduction based on Hamiltonian cycles. The cy

cle-based algorithms perform the all-to-all broad

east in 2d - 1 steps. In each step, a pair of succes

sive memorv locations are transmitted in the same

cube dimension, thereby exploiting the fact that

there are two channels between each pair of Con

nection Machine system C~1-200 processing

nodes.

Fur bruadca;;t, both the :-~ingle-cycle and the d

cycles algorithms always yield better performance

than an algorithm using the router for gathering all

data into one node, followed by a spread. The

speedup is in the range 1.5 - 3.2 for four or more

nodes along an axis. The measured peak data

motion rate for the d-cycles algorithm with indices

moved along with the data is 2.54 Cbyte/s on a

2048-node Connection Machine system C:VI-200.

Without the index computations and correspond

ing local data reordering, the mea;;ured all-to-all

broadcast peak rate is 5.4 Gbyte/ s. The measured

peak data motion rates for all-to-all broadcast are

summarized in Table 18. The data motion rate for

spread is included for comparison but does not

represent the time for all-to-all broadcast using

spreads.

For all-to-all reduction. the speedup of our

Hamiltonian cvde-based algorithms is even

Table 17. Execution Time (ms) ford-Cycles All-to-All Reduction with Index Computation and Index

Motion*

Words per :\o. of

~ode lnitiallv :\odes AABC Indir.

256 2 11.41 0.82

256 4 12.93 1 ,;) 1

256 8 17.70 2.89

256 16 26.?9 5.63

256 32 44.20 11.12

2.36 64 75.91 22.12

256 128 13:3.20 44.10

256 256 230.30 88.08

256 512 43.'i.OO 176.00

* 64-bit precision; node addresses in Grav code.

d-Cvcles All-to-All Broadcast

Comp. Index

Arith. Comp. Total

0.22 0.13 12.58

0.61 0.39 15.-H

1.43 2.83 24.85

:1.0? 4.04 39.53

6.33 20.90 82.38

12.91 44.00 154.90

26.03 102.40 305.70

52.2? 158.60 529.::30

104.70

.\love Index

.\love

3.97

5.79

8.74

13.60

2:2.60

33.80

68.10

11?.10

222.00

Total

16.42

20.84

:10.76

49.09

84.27

149."?0

271.40

48"?.80

93"?.70

ALL-TO-ALL COMMUJ\ICATIO::\ 271

Table 18. Data Motion Rates in Mbyte s- 1 per Node on CM-200*
···------

All-to-All Broadcast

Number
l\o Index and Reorder Index and Reorder

of :'-lodes d-Cycles One Cycle d-Cycles :viove Index

2 0.65 0.66 0.33 0.52 0.20 0.18

4 0.61 0.66 0.61 0.57 0.39 o.:H
8 0.87 0.66 0.86 0.59 0.52 0.48

16 1.10 0.66 1.16 0.60 0.68 0.63

:32 1.iH 0.66 1.40 0.60 0.66 0.75

64 1.50 0.66 1.62 0.60 0.70 0.85

128 1.67 0.66 1.77 0.60 0.78 0.92

256 1.87 0.66 2.13 0.60 0.85 1.07

512 0.66 2.14 0.60 0.79 1.07

1024 0.66 2.40 0.60 0.7:3 1.16

2048 0.66 2.70 0.60 0.63 1.27
·-·--·

*All-to-all times computed from 123 clements per node prior to broadcast. The data motion rate for spread is ineluded for

comparison. but does not represent the time for all-to-all brondeast using the spread algorithm.

greater than for broadcast, with the range being

5-8.

The performance for the cycles- based algo

rithms is fairly independent of whether the data

allocation is in row or column major ordering, and

whether the nodal addresses are in binary or Gray

code. However, the router performance depends

significantly on whether the data allocation is in

row or column major ordering.

The d-cycles algorithm offers a good improve

ment in perfonnance over the single-cycle algo

rithm with respect to data motion. However, the

local computation of indices is quite inefficient.

This offset of the gain in communication time

makes the single-cycle algorithm preferable for

moderate size initial data sets, and few nodes as

signed to the axis. For 64 or more nodes assigned

to an axis, it is more efficient in the d-cycles algo-

Table 19. Performance Data for Matrix-Vector and Vector-Matrix Multiplication on Different

Connection Machine System CM-200 Configurations (64-Bit Preeision)

Matrix
Shape

P><P 256

Matrix-vector multiplication

512

1024 304

2048 723

4096 1190

8192 1382

12288

16384

24576

Vector-matrix multiplication

512

1024 344

2048 799

4096 1.370

8192 1846

12288

16384

24576

··--·~·-··--------------

~1flops/s Time (ms)

~o. of :'-lodes :\o. of ~odes

512 1024 2048 256 512 1024 2043

6.90

898 11.6 9 .. ')4

1834 2"!86 28.2 18.:3 13.5
2621 4it"i8 6101 9"7.1 51.2 :30.8 22.0
2796 4992 60.5

5162 983:3 104.0

10785 112.0

6.09

10:37 10.5 3.09

2059 2844 24.5 16.:3 11.8
3093 5103 6991 72.7 4:3.4 26.:3 19.2
:3553 6232 85.0 48.3

6918 11621 77.6 46.2
1:3742 87.9

272 .MATHCR A:\'D JOHl\BSO~

14

12

10

~
8

.Q

a s

4

2

0

2048 nodes -.--
1 024 nodes -+---
512 nodes -o--
256 nodes ··><·····

2K 4K 6K BK 10K 12K 14K 16K 1BK 20K 22K 24K
p

FIGURE 21 Execution rate in Gflop/s for multiplica

tion of a P x P matrix bv a vector on Connection .Ma

chine system CM-200 (64-bit precision).

rithm to move the indices along with the data than

to compute the indices locally for hoth all-to-all

broadcast and all-to-all reduction.

We have incorporated the Hamiltonian cycle

based all-to-all communication routines in the

matrix-vector and vector-matrix multiplication

and rank-1 update routines of the Connection

Machine Scientific Software Library, CMSSL

[23], Version 3.0. A summary of the performance

of the matrix-vector and vector-matrix routines

are given in Table 19 and in Figure 21.

ACKNOWLEDGMENTS

This work was carried out with partial support

from the U.S. Air Force Office of Scientific Re

search under grant F49620-93-1-0480 with Har

vard University and the U.S. Office of 1\aval Re

search under grant N00014-93-1-0192 also with

Harvard lJniversity. The majority of this effort was

supported by Thinking :\1achines Corp. as part of

its Connection Machine Scientific Software Li

brary (CMSSL) development. The software re

ported in this paper is available as part of the

CMSSL.

REFERENCES

[1] J.-P. Brunet and S. L. Johnsson, "All-to-all

broadcast with applications on the Connection

Machine," Int. J. Supercomput. Appl.. vol. 6, pp.

241-256, 1992.

[2] L. E. Cannon, "A cellular computer to implement

the kalman filter algorithm,'' PhD thesis. :Vton

tana State Cniversity, 1969.

[3] M. Y. Chan, "Embeddings of :3-dimensional

grids into optimal hypercubes," in Proc. of the

Fourth Conference on lf.ypercubes, Concurrent

Computers, and Applicatiom. 1990. p. 297.

[4] M. Y. Chan, "Embedding of grids into optimal

hypencuhes," SIAl!,JJ. Comput. vol. 20, pp. 834-

864, 1991.

[5] B. Chapman, P. Mehrotra. and H. Zima, "Pro

gramming in vienna Fortran,'' Sci. Programming.

vol. 1, pp. :31-50, 1992.

[6] E. Dekel, D. ~assimi, and S. Sahni, "Parallel ma

trix and graph algorithms," SikH]. Compu:t ..

vol. 10, pp. 657-67S, 1981.

[7] G. Fox, S. Hiranandani, K. Kennedy. C. Koelbel.

U. Kremer, C. Tseng, and M. Wu, "Fortran D

language specification," Department of Com

puter Science, Rice University, Tech. Rep. TH90-

141, Dec. 1990.

[8] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. \\'.

Otto, J. K. Salmon, and D. W. Walker, Soluirzg

Problems on Concurrent Processors. Englewood

Cliffs, .'J'J: Prentice-Hall, 1988.

[9] E. X Gilbert, "Gray codes and paths on the n

cube," Bell ,~ystems Tech.]., vol. 37, pp. 815-

826, 1958.

[10] "High Performance Fortran Language Specifica

tion, Version 1," Sci. Programming, vol. 2. nos.

1-2,pp. 1-170,1993.

[11] C.-T. Ho and S. L. Johnsson. "Embedding

meshes in Boolean cubes by graph decomposi

tion," J. Parallel Distrib. Comp11t .. vol. 8, pp.

325-339,April 1990.

[12] S. L. Johnsson, "Communication efficient basic

linear algebra computations on hypercube archi

tectures,"]. Parallel Distrib. Comput., vol. 4. pp.

133-172, April 1987.

[13] S. L. Johnsson and C.-T. Ho, "Matrix transposi

tion on Boolean n-cube configured ensemble ar

chitectures," SIAM.!. Matrix Anal. Appl., vol. 9.

pp. 419-454, July 1988.

[14] S. L. Johnsson and C.-T. Ho, "Matrix multiplica

tion on Boolean cubes using generic communica

tion primitives," in Parallel Processing and Me

dium Scale Jvfu:ltiprocessors. SIAY1, 1989. pp.

108-156.

[15] S. L. Johnsson and C.-T. Ho, "Spanning graphs

for optimum broadcasting and personalized com

munication in hypercubes." IEEE Trans. Com

put., vol. 38, pp. 1249-1268, September 1989.

[16] S. L. Johnsson, C.-T. IIo, M. JaequemirL and A.

Ruttenberg, "Computing fast Fourier transforms

on Boolean cubes and related networks:· in Ad

vanced Algorithms and Architectures for Signal

Processing ll, vol. 826. Society of Photo-Optical

Instrumentation Engineers, 198?, pp. 223-2:31.

[17] S. L. Johnsson and K. K. :vtathur. "Data stmc-

tures and algorithms for the finite element method

on a data parallel supercomputer,'" Int. }. Nu

merical Methods Eng., vol. 29. pp. 881-908,

1990.

[18] K. K. Mathur and S. L. Johnsson, "Multiplication

of matrices of arbitrary shape on a data parallel

computer." Parallel Cumput., vol. 20. pp. 919-

95L July 1994.

[19] E . .\1. Reingold, J. :\ievergelc and 'J. Deo, Combi

natorial Algorithms. Englewood Cliffs. ~J: Pren

tice-Hall, 1977.

[20] Q. F. Stout and B. Wagar. ·'Intensive hypercube

communication I: Prearranged communication in

link-bound machines."' Computing Research

Laboratory, Lniversity of ~lichigan, Ann Arbor.

~II. Tech. Rep. CRL-TR-9-87. 1987.

[21] Q. F. Stout and B. Wagar.. "Passing messages in

link-bound hypercubes," in lf.ypercube Jlulti

processors 1987, ~lichael T. Heath, Ed. Phila-

ALL-TO-ALL COMMC~ICATlOl\" 273

delphia, PA: Society for Industrial and Applied

Mathematics, 1987.

[22] Thinking Machines Corp., CH-200 Technical

Summary. Thinking Machines. 1991.

[2.3] Thinking Machines Corp., CUSSL for CM For

tran, Version 3.1. Thinking Machines. 1993.

[24] C. Tong and P. 1'1. Swarztrauber. '·Ordered Fast

Fourier transforms on a massively parallel hyper

cube multiprocessor,"' J. Parallel Distrib. Cum

put., vol. 12, pp. 50-59, May 1991.

[25] X. Zhang, "An efficient implementation of the

backpropagation algorithm on the Connection

Machine C\1-2," Adv. Neural Information Pro

cessing Sxstems, vol. 2, pp. 801-809, 1989.

[26] H. Zima, P. Brezany, B. Chapman, P . .\1ehrotra,

and A. Schwald,'' Vienna Fortran-A languaf!e

specification version 1.1 .. '' Tech. Rep. ICASL

Interim Report 21, March 1 992.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

