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ABSTRACT 

Detailed algorithms for all-to-all broadcast and reduction are given for arrays mapped 

by binary or binary-reflected Gray code encoding to the processing nodes of binary 

cube networks. Algorithms are also given for the local computation of the array indices 

for the communicated data, thereby reducing the demand for the communications band

width. For the Connection Machine system CM-200, Hamiltonian cycle-based all-to-all 

communication algorithms yield a performance that is a factor of 2 to 10 higher than the 

performance offered by algorithms based on trees, butterfly networks, or the Connec

tion Machine router. The peak data rate achieved for all-to-all broadcast on a 2,048-

node Connection Machine system CM-200 is 5.4 Gbyte/s. The index order of the data in 

local memory depends on implementation details of the algorithms, but it is well de

fined. If a linear ordering is desired, then including the time for local data reordering 

reduces the effective peak data rate to 2.5 Gbyte/s. © 1995 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

All-to-all broadcast and reduction on distributed 

memory architectures are fundamental operations 

in several important linear algebra computations, 

such as matrix-vector and vector-matrix multi

plication, rank-1 updates, and matrix-matrix 

multiplication. All-to-all broadcast is also critical 

for the performance of so-called direct N-body al

gorithms, where the evaluation of the pairwise in

teractions between all particles form the compu

tational kernel. 

An all-to-all broadcast can be accomplished by 

each node sending its data to a dedicated node. 

This work was carried out while the authors were with 
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either one source node at a time, or all at once, 

followed by a broadcast of the data from the dedi

cated node to all other nodes. All-to-all communi

cation can also be realized by shifting data along a 

Hamiltonian cycle (ring of all nodes). For high

degree networks, like binary cubes, this idea can 

be extended to the use of multiple Hamiltonian 

cycles that balance the communication load and 

maximize the bandwidth utilization [L 15]. All

to-all reduction is, in effect, the reverse operation 

of a broadcast where combiners such as +, max, 

or min replace the copy operation. Figure 1 shows 

a single example of all-to-all reduction. The left 

part of the figure shows the initial data distribu

tion. Components with the same index are added 

together. The result consists of eight components 

distributed evenly across all nodes in a consecu

tive (block) [12] manner. All nodes contain initial 

as well as final data. 

The work reported here considers two forms of 

all-to-all communication in multiprocessor, dis-
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PO Pl P2 P3 
0 0 0 0 

1 1 1 1 

2 2 2 2 

3 3 3 3 
4 4 4 4 

5 5 5 5 

6 6 6 6 
7 7 7 7 

Before reduction After reduction 

FIGURE 1 All-to-all reduction on a four-node svs
tem. 

tributed memorv architectures. In all-to-all 

broadcast, each processing node broadcasts its 

content to every other node in the system. In all

to-all reduction, reduction operations are per

formed concurrently on different data sets, each 

distributed over all nodes such that the results of 

the different reductions are evenlv distributed over 

all nodes. Algorithms for all-to-all broadcast and 

reduction based on single and multiple Hamilto

nian cycles in binary d-cubes are presented. The 

performance of implementations of the Hamilto

nian cycles-based algorithms is compared with 

the performance of all-to-all communication 

based on edge-disjoint, multiple spanning trees of 

minimum height, and the performance of butterfly 

network-based algorithms. The primary inteiH of 

this article is to make available communication 

primitives that make run-time decisions to choose 

an optimal algorithm. Such primitives form the 

core of scientific libraries on distributed memory 

architectures. 

In Section 2" we discuss the use of all-to-all 

broadcast and reduction in some matrix compu

tations. Section 3 presents the relevant aspects of 

the Connection _\1achine svstem C:Vl-200. Section 

4 discusses in detail all -to-all communication 

based on Hamiltonian cycles for binarv cubes. 

Section 5 discusses all-to-all communication 

based on spanning tree-based algorithms and 

compares the expected performance of the differ

ent approaches. Section 6 gives actual perfor

mance data for all-to-all communication on the 

C:onnection \'lachine svstem C\1-200. 

2 APPLICATIONS OF ALL-TO-ALL 
COMMUNICATION 

An efficient implementation of all--to-all broadcast 

is of great importance for the performanee of clas

sical, direct N-body algorithms, in which everv 

particle interacts with every other particle. In a 

distributed memory architecture, each processing 

node must communicate the particle information 

it stores in its memory to all other nodes. All-to-all 

communication is also required in iterative solvers 

for the finite element method [ 17] and in neural 

network simulations [25]. In both of these cases, 

the source of the all-to-all communication re

quirement is matrix-vector multiplication. 

In the case of the direct N-body algorithms for 

gravitational calculations, the identity of the parti

cles is not of interest. The coordinate and mass of 
eat":h particle suffice, i.e., the array vahws suffiee 

(with the particle coordinates stored in separate 

arrays). For matrix operations, the indices of array 

elements are not stored explicitly but are required 

for correct computations. In Section 4, we show 

how the indices of the arrav elements can be com

puted locally, thus reducing the need for com

munications bandwidth. Below" we illustrate the 

use of all-to-all communication in matrix compu

tations. 

The required data motion for matrix-"·ector 

and vector-matrix multiplication and for rank-1 

updates (outer products; depends on the data al

location. As an example, consider matrix-vector 

multiplication, .Y +--- A:r, with the matrix allocated 

to a one-dimensional nodal array with partitionin;r 

by rows and with the input and output vectors 

distributed evenly over all nodes as shown in Fig

ure 2. An all-to-all broadcast of the input vector is 

required to carry out the matrix-vector product. 

l'\o communication is required for the result vec

tor. The matrix-vector multiplication can be ex

pressed as (1) All-to-all broadcast of the input 

vector and (2) Local matrix-vector multiplication. 

If, instead, the matrix is allocated to a one-dimen

sional nodal array with partitioning by columns, 

as shown in Figure :-3, and the input and output 

vectors are distributed evenly over the processing 

nodes, then no communication is required for the 

input vector, but an all-to-all reduction is re

quired for the result vector. The matrix-vector 

PO~O§ ~0 PI Yl· Xl 
= X ~ 

P2 Y2 X2 

P3 Y3 L__ X3 

A X 

XO XI X2 X3 

XO Xl X2 X3 

XO Xl X2 X3 

XO Xl X2 X3 

FIGUHE 2 All-to-all broadcast for matrix-vt~ctor 

multiplication. 
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FIGURE 3 All-to-all reduction for 
multiplication. 
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matrix-vector 

multiplication can be expressed as (1) Local ma

tiix-vector multiplication and (2) All-to-all re

duction for the output vector 

With the processing nodes configured as a two

dimensional nodal array for the matrix, but as a 

one-dimensional nodal array for the vectors, both 

all-to-all broadcast and all-to-all reduction are 

required in evaluating the matrix-vector product. 

Figure 4 illustrates the data allocation for both 

row major and column major ordering of the ma

trix allocation. The data allocation shown in Fig

ure 4 is typical on Connection .\1achine systems, 

as explained in Section 3. 

For a matrix of shape P X Q allocated to a two

dimensional nodal array in column major order

ing, an all-to-all broadcast [8, 15. 19, 21] is re

quired within the columns of the nodes for any 

shape of the nodal array and for any length of the 

matrix Q-axis. 

After the all-to-all broadcast, each node per

forms a local matrix-vector multiplication. After 

this operation, each node contains a segment of 

the result vector y. The nodes in a row contain 

partial contributions to the same segment of y, 

while different rows of nodes contain contribu

tions to different segments of y. No communica

tion between rows of nodes is required for the 

computation of y. Communication within the rows 

of the nodes suffices. 

The different segments of y can be computed 

by all-to-all reduction within processor rows, re-
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FIGURE 4 Data allocation on a rectangular nodal ar
ray. 

ALL-TO-ALL C0~1~1C'\ICATIO:'\ 253 

suiting in a row major ordering of y. But, the node 

labeling is in column major ordering, and a reor

dering from row to column major ordering is re

quired to establish the final allocation of y. Thus, 

for a column major ordering of the matrix ele

ments to the nodes, matrix-vector multiplication 

can be expressed as: 

1. All-to-all broadcast of the input vector 

within columns of nodes 

2. Local matrix-vector multiplication 

3. All-to-all reduction within rows of nodes to 

accumulate partial contributions to the 

result vector 

4. Reordering of the result vector from row ma

jor to column major order 

The reordering from row major ordering to column 

major ordering is equivalent to a shuffle or matrix 

transposition. 

If the elements of the matrix A had been allo

cated in row major order instead of column major 

order, then a reordering from row major order to 

column major order must be performed prior to 

the all-to-all broadcast of the input vector. l\"o re

ordering is required for y. Thus, for a row major 

orde1ing of matrix elements to nodes, the se

quence of operations is: 

1. Reordering of the input vector from row ma

jor to column major order 

2. All-to-all broadcast of the input vector 

within columns of nodes 

3. Local matrix-vector multiplication All-to

all reduction within rows of nodes to accu

mulate partial contributions to the result 

vector 

With the matrix uniformlv distributed across all 

nodes, the arithmetic is load balanced for both 

row major and column major order. The all-to-all 

broadcasts and all-to-all reductions are per

formed within the columns of the nodes and 

within the rows of the nodes, respectively. The dif

ferent broadcast operations and the different re

duction operations are completely independent of 

each other. 

The communication requirements for vector

matrix multiplication are similar to those forma

trix-vector multiplication. For outer products, 

yx r, where y and x are column vectors, the com

munication issues for :r are the same as in matrix

vector multiplication. For y, the communication 

issues are the same as for the input vector in vee-
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tor-matrix multiplication. All-to-all broadcast 

and all-to-all reduction are also required in ma

trix-matrix multiplication [2, 6, 14, 18]. 

3 THE CONNECTION MACHINE SYSTEM 
CM-200 

The Connection Machine system CM-200 [22] 

has up to 2048 nodes each consisting of a float

ing-point process or 4 Mbyte of local memory, and 

communication circuitry. The nodes are intercon

nected via a binary d-cube network, with a pair of 

bidirectional channels between adjacent nodes. ln 

a binary cube network, each node has a neighbor 

for each bit in its binarv address. The number of 

nodes is N = 2d. There ~xist d edge-disjoint paths 

between each pair of nodes. Lsing multiple paths 

between nodes for maximum bandwidth utiliza

tion is the objective of the algorithms presented 

here. \Ye then compare the performance of these 

algorithms with a few alternative implementa

tions. 

Each node in a Connection ~lachine system 

CM-200 ean communicate concurrentlv on all its 

communication channels. The primitive com

munication operation is an exchange. The mem

ory accesses in a node for each communication 

step are serialized. Each node supports one 4-

byte wide access at a time to its local memory. The 

dock frequency is 10 .\11Hz. 

The programming model used for the Connec

tion Machine systems uses a global address space, 

and each array is distributed as evenly as possible 

across all nodPs. In a eonst>eutive data allocation 

[12], a number of successive data elements along 

each axis are allocated to a node. For a one-di

mensional data arrav of}/ elements allocawd to /V 

nodes, [ ¥] successi~e elements (a block) are as

signed to the same node. In cyclic data allocation 

[12] of a one-dimensional array. elernents {Jii = / 

mod N, 0 ::5 j < M} are allocated instead to the 

same node. Cyclic data allocation is currently not 

supported on the Conneetion :Vhtchine systems 

but is included in Fortran D , Vienna Fortran 

[5, 26], and the proposed high-performance For

tran (HPF) standard [10]. Cyclic allocation may 

yield improved load-balance with respect to 

arithmetic [ 12] or with respect to communication 

[16, 24]. In the case of multidimensional mTa~'S, it 

is also necessarv to determine how manv elements 

along the diffe1:ent axes shall be alloc~ted to the 

same processing node., or equiYalently., how the 

set of processing nodes shall be configured. The 

Connection Machine nm-time system determines 

the nodal array shape based on the data array 

shape, such that the local subarrays have axes of 

lengths as equal as possible. We refer to such a 

layout as a canonical layout. In the following, we 

assume consecutive, canonical layouts. ~1odifying 

the derivations to cyclic allocation is straightfor

ward. 

Regular grids are subgraphs of binary d-cubes. 

A Gray code has the property that successive inte

gers differ in the code by a single biL which, with a 

suitable labeling of the nodes in the binary cube, 

corresponds to the traversal of a single edge. 

Thus, Gray codes can be used in preserving adja

cency in data arrays when mapped to binary cube 

networks. For multidimensional arrays, encoding 

each axis separately in a Gray code preserves ad

jacency. But, such an embedding makes efficient 

use of the processing nodes only when the data 

array axes have lengths equal to powers of 2. For 

lengths of other axes, adjacency cannot be pre

served for a node-efficient mapping [3, 4 .. 111. On 

the Connection ~lachine system C~1-200. the de

fault mapping of data arrays is based on a binary

reflected Gray code encoding [9, 12, 181 of the 

index along each axis separately. Only the part of 

the index corresponding to the node address is 

encoded in a binary-reflected Gray code. Binary 

encoding is always used for local addre~sses. 

Ad-bit binary-reflected Gray eode, Gr~, is a se

quence of 2" nonnegative numbers in the range 

{0, 1, ... '2d- 1}, Gd = (Gc~(O), Gr~(1 ... ' 

Gr~(2d- 1)) defined recnrsively [18] by: 

(G1(0), G1(1)), where G1(0) 

Oi!Gr1(0) 

6d+1 

OIIGr~(1) 

OIIGr~(2d 

Oi[Grl(2" 

1IIGr~(2rf 

liiGr~(2d 

1IIGd(1) 

1IIGr~(O) 

2) 

1) 

1) 

2) 

In the following, we refer to this binary-re

flected Gray code simply as Gray code. The ~3-bit 

Gray code given in Table 1 dearly shows the re

cursive reflections in the code. It is also casilv seen 



Table 1. A Binary-Reflected Gray 
Code on 3 Bits 

Integer Grav Code 

0 000 
1 001 
2 011 
3 010 

4 110 
;) 111 

6 101 
7 100 

that the Gray code defines a Hamiltonian cycle. 

The sequence of bits that change in traversing the 

Gray code from beginning to end is known as the 

transition sequence. In the example of eight inte

gers, the transition sequence is 0, 1, 0, 2. 0, L 0. 

and 2,. with the least significant bit being bit 0. 

4 ALL-TO-ALL ALGORITHMS USING 
HAMILTONIAN CYCLES 

4.1 A Single Hamiltonian Cycle 

Figure 5 illustrates the idea of all-to-all broadcast 

using a single cycle, whereas Figure 6 shows all

to-all reduction. In these figures, it is implicitly 

assumed that node addresses are encoded in Gray 

code. such that all communications are nearest 

neighbor. By performing the cyclic shifts in Figure 

5 as left cyclic shifts. all elements arrive in order in 

node PO. In this node. local memory address s 

contains array elements. 0 :S s < .\'for ,·V nodes. 

The local memory reordering required for node j is 

s +-- (s j) mod N, i.e., a cyclic shift on the local 

memory addresses. 

If the Gray code path is used for node addresses 

m binary order, then a local code conversion is 

Step PO Pl P2 P3 
0 xo Xl X2 X3 
1 xo Xl X2 X3 

Xl X2 X3 XO 
xo Xl X2 X3 

2 Xl X2 X3 xo 
X2 X3 xo Xl 
xo Xl X2 X3 

3 Xl X2 X3 xo 
X2 X3 xo Xl 
X3 xo Xl X2 

FIGURE 5 All-to-all broadcast through cyclic rota

tion. 
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Step PO Pl P2 P3 
YO YO YO YO 

0 Yl Yl Yl Yl 

Y2 n Y2 Y2 
Y3 \'3 Y3 Y3 
YO YO+ YO YO 

1 Yl Yl Yl+'{] 

Y2+Y2 Y2 Y2 
-- Y3+Y3 Y3 Y:l 

··--·· 
YO YO+ YO+ YO 

I 2 Yl+YI+Yl Yl 

Y:i+YLtn 

Y3+Y3+Y3 Y3 

I 
YO+ YO+ YO+ YO -

3 Yl+Yl+Yl+YI 

I 
Y2+ \'1+ YH Y2 

- - Y:!+YHY:l+Y.1 

FIGLRE 6 All-to-all reduction through cyclic rota

tion. 

required after the cyclic rotation among nodes has 

been completed. Figure 7 illustrates this fact. The 

array index in local memory address s of node 0 is 

G (s ). In generaL let PA be the node addre;;s in 

binarv code. Then. local memorY address s in . . 
node PA contains the array element with index 

C((s + c- 1 (PA)) mode X). For instance. consider 

PA = 101 and s = 1. The integer with Gray code 

101 is 6. The Grav code of 1 + 6 = 7 i:- 100. 

which is the second entn' in the column for node 

L>. 

I\ote that if each element in the examples in 

Figures 5 and 7 represents a block of el(~ments. 

then moving these blocks as indicated in the fig

ures results in a final distribution consistent with a 

consecutive data allocation. Converselv. a block 

partitioning of the data in each node prior to all

to-all reduction also yields a final data distribu

tion consistent with a consecutive allocation. 

4.2 Multiple Hamiltonian Cycles 

Broadcast 

Johnsson and Ho [15j show that d Hamiltonian 

cycles fully exploit the communications band-

Node 

0 1 2 3 4 5 6 7 

000 001 010 011 100 101 110 111 

001 Oil 110 010 000 100 111 101 
011 010 111 110 001 000 101 100 

010 110 101 111 Oll 001 100 000 

110 111 100 101 010 011 000 001 
111 101 000 100 110 010 001 011 
101 100 001 000 lll 110 011 010 

100 000 011 001 101 111 010 110 

FIGURE 7 The index allocation resultinl' from '2" cy

clic shifts along a Gray code path for binary-encoded 

node indices. 
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Step Mem PO P1 P2 P3 P4 P5 P6 P7 Dim 

Init. 0 00 01 02 03 04 05 06 07 

1 10 11 12 13 14 15 16 17 

2 20 21 22 23 24 25 26 27 

0 01 00 03 02 05 04 o1 1 o6 0 

0 1 12 13 10 11 16 17 14 1 15 1 

2 24 25 26 27 20 21 22 23 2 

0 03 02 01 00 07 06 05 1 04 1 

1 1 16 17 14 15 12 13 10111 2 

2 25 24 27 26 21 20 23 1 22 0 

0 02 o3 1 oo J o1 1 o6 o1 1 o4 05 0 

2 1 14 15 1 16 1 17 1 10 11 1 12 13 1 I 
2 21 20 1 23 1 22 1 25 24 1 21 26 2 

0 06 07 04 o5 1 o2 o3 1 oo 01 2 I 
3 1 15 14 17 16 1 11 10 1 13 12 0 I 

2 23 22 L 21 20 L 21 261 25 24 1 J 
0 07 06 05 04 03 02 01 00 0 

4 1 17 16 15 14 13 12 11 . 10 1 

2 27 26 25 24 23 22 21 20 2 

0 05 04 07 06 OJ 00 03 02 1 

5 I 13 12 11 10 11 1 16 15 14 2 

2 26 27 24 25 22 23 20 21 0 

0 04 o5 1 o6 L o1 1 oo 01 1 02 03 0 J 
6 I 11110 13 1 12 1 15 1 14 1 11 16 1 I I 

2 22 1 23 20 1 21 261 27 j_ 24 25j_ 2 J 

FIGURE 8 All-to-all broadcast u,.;ing d channels in a 

d-cube with nodes labeled in binary order. 

width in a binarv d-cube for all-to-all broadcast 

and reduction. Figure 8 shows the 2r1 - 1 steps 

required to perform an all-to-all broadcast using d 

Hamiltonian cycles on a binary d-cube. ln Figure 

8, node addresses are in binary order. Figure Y 

shows an all-to-all broadcast with node addresses 

in Gray code order. Initially. there are d distinct 

elements in each node. After the broadcast. each 

Step Mem PO P1 P2 P3 P4 P5 P6 P7 Dim 

Init. 0 00 OJ 03 02 07 06 04 05 

1 10 11 13 12 17 16 14 15 

2 20 21 23 22 27 26 24 25 

I 0 I OJ I 00 I 02 03 o6 1 01 o5 1 o4 0 

0 I I I 13 I 12 1 10 11 14 1 15 17 1 16 I 

I 2 1 21 1 26 24 25 20 1 21 23 1 22 1 2 

I 0 1 o2 o3 1 o1 oo 1 o5 1 o4 o6 1 o1 1 1 

1 I 1 114 15 1 11 16 1 13 12 10111 2 

I 2 1 26 21 1 25 24 1 21 20 22 1 23 0 

I 0 1 o3 1 02 1 oo 01 04 05 o1 1 o6 0 

2 1 117 16 1 14 15 1 10 11 1 13 12 1 

2 1 21 2o 1 22 23 1 26 27 25 24 2 

I 0 1 o4 o5 1 o1 o6 1 o3 02 oo 1 o1 2 

l 3 1 16 11 1 15 14 1 11 10 1 12 13 0 I 
2 22 23 1 21 20 1 25 24 1 26 27 1 

I 
0 05 04 06 07 02 03 01 00 0 

4 1 15 14 16 17 12 13 11 10 1 

2 25 24 26 27 22 23 21 20 2 

0 06 07 05 04 01 00 02 03 1 

5 1 12 13 11 10 15 14 16 17 2 

2 24 25 27 26 23 22 20 21 0 

0 o1 1 o6 o4 1 o5 1 oo o1 1 o3 o2 1 o I 
6 1 11110 12 1 13 1 16 11 1 15 14 I 1 I 

2 23_1 22 20 _l 21 j 24 25 l 27 26 _l 2 J 

FIGURE 9 All-to-all broadcast usinf!: d channels in a 

d-cube with nodes labeled in Grav code order. 

node has a total of d2d elements. With d channels 

per node, this operation requires at least 2r1 - 1 

communications, because d element,; are already 

present in each node before the broadcast. The 

algorithm below [ 15 ~ requires precisely that many 

communications. 

For the algorithm uo;ing d Hamiltonian cycles, 

each node exchanges d elements concurrently in 

each step. When there are J1' > d elements in 

each node, the local memory is viewed as rs-· 
blocks, of d elements each. The local memory ad

dress s consists of a block index, k (0 ::; k < r';)'l). 

and an address, i (0::; i <d). within the block. For 

d = 3, the exchange sequence for location zero 

(i = 0) within a block is (L L 0, 2, 0. 1. 0. i.e .. the 

same as the transition sequence in Table 1. The 

exchange sequence for location one is 1. 2. 1. 0. 

1. 2, 1; for location two, it is 2, 0, 2. 1. 2. 0. 2. In 

generaL if lo. t 1 • . . . , !2"-:!. is the exchange se

quence for location zero. then the exchange se

quence for location i is (to + i) mod d. (t 1 + i) 

mode d. (t2 + i) mod d, .... (lJ.·'-2 + i) mod d. 

Clearly. no two exchanges use the same dimen

sion in any step. 

For node addresses in binarv code order .. it can 

be shown that on completion. the index in local 

memory address s = j · :l1' + k · d + i is: PA EB 
sh1(G(j)) · lW + k · d + i .. where PAis the node 

address in binary code as before. sh (-) is a left 

cyclic shift of the bit string representing the argu

ment, and 0 ::; j < 2r1. For node addresses in Gray 

code order. the index in memorv location zero ini

tially is c- 1 (PA). On completion of the all-to-all 

broadcast, local memory address s = j · Jl' + k · 

d + i in node PA contains data with index 

[C- 1 (PA) EB c- 1 (sh1(C(j)))] · Ji' + k · d + i. 

l\'ote that the quanunes sh'(G(j)) and 

c- 1 (sh1(C(j))) are identical for all nodes. Onlv 

PA, the binary address .. and c- 1(PA). the Grav 

code address, are unique to each node. 

:'\ote further that the index order fori= 0 in the 

d cycles algorithm is the same as in the single 

Hamiltonian cycle algorithm. 

Reduction 

The all-to-all broadcast algorithm. using d Hamil

tonian cycles in a binary d-cube. can be adapted 

to all-to-all reduction. With d · 2r1 variables in 

each node initiallv .. each node in a 2r1 cube accu

mulates d distributed variables. In each commun

ication step, one exchange is performed on all d 

channels in each node, as in the broadcast algo

rithm. 



Step Mem PO Pl P2 P3 P4 P5 P6 P7 Dim 

0 • + 0 

0 1 • + 1 

2 • + 2 

0 

I Ia Ia I· Ia j• I. I 
+ 

I 
1 

I 1 + 2 

2 + 0 

0 

I Ia Ia I~ I a I~ I: I: I 
0 

I 2 1 

2 2 

0 

I 1~1:1~ I~ I~ 1: I§ I 
2 

I 3 0 

2 

0 

I I~ 1: li 1~ I~ I; I§ I 
0 

I 4 1 1 

2 2 

0 

I li ltlg I~ I~ I~ I§ I 
1 

I 5 2 
2 0 

0 

I 
+ 

lg I~ jg I~ lg lg jg ! 
0 

I 6 + 1 

2 + 2 

FIGURE 10 All-to-all reduction performed on d dis

tributed variables with all d results resident in node zero 

on completion. Local memory addrc~~es and node ad

dresses in binary order. 

For the description of the reduction algorithm, 

we first cnnsider the accumulation of a single set 

of d distributed variables. Each of the d distrib

uted variables has one element per node. Each 

distributed variable is accumulated independently 

of the others, with the d re,.;ults accumulated to 

node zero. The reduction is illustrated in Figure 

10. A filled circle denotes a partial sum being sent. 

+ denotes a partial sum being received and added 

to a local variable, and an unfilled circle denotes 

values already added into a partial sum. Compar

ing Figure 10 with Figure 8. we notice that the 

data motion in Figure 10 is simply the reversed 

data motion of the elements originally in node zero 

in Figure 8. 

The example in Figure 10 is an all-to-one re

duction. An all-to-all reduction is obtained by 

considering an initial data set per node of d · 2r1 

elements, instead of d elements. Each block of d 
variables distributed across all nodes is accumu

lated to a single node, with different blocks of d 

distributed variables accumulated to different 

nodes. Each block is accumulated in a wav similar 

to the single block of d distributed variables in an 

all-to-one reduction. By performing an exclusive

or operation with node address j on all node ad

dresses used in communications for the block with 

destination node zero, the destination of the result 

of the reduction for the block becomes node) in

stead of node zero. The effect of the exclusive-or 

operation for each step is shown in Figures 11 
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Mem PO P1 P2 P3 P4 P5 P6 P7 Dim 

0 • + 0 

1 • + 1 

2 • + 2 

3 

I· I I I. I + ,. 
I I I 

0 

I 
4 + 1 

5 + 2 

6 

I. I I I· I I I• I 
+ 

I 
0 

I 7 + 1 

8 + 2 

9 

I I. I· I I I I 
+ 

I• I 
0 

I 10 + 
11 + 2 

12 

I• I + I I I I· I. I I 
0 

I 13 + 1 

14 + 2 

15 

I 
+ I• I I I· I I I. I 

0 

I 16 + 
17 + 2 

18 

I I I. I + I. I I I· I 
0 

I 19 + 1 

20 + 2 

21 

I I I 
+ ,. 

I I. I· I I 
0 

I 
22 + 
23 + 2 

FIGURE 11 All-to-all reduction step 0 on a :3-cub(•. 

Memory addresses and node addresses in binary order. 

through 17. ln eaeh step. each node exchanges 

one element on each of its channels. and performs 

one addition for each of d distinct sums. The total 

number of sums computed in each step is d · 2<~. 

The blocking used for the all-to-all reduction is 

identical to the blocking for all-to-all broadcast. 

This blocking is consistent with a consecutiw data 

Mem PO PI P2 P3 P4 P5 P6 P7 Dim 

0 0 • + 1 

1 0 • + 2 

2 a • + 0 

3 

Ia I I· lo 
,. 10 I 

+ 

I. I 
1 

I 4 + 2 

+ 0 

6 

Ia I· I Ia I. I 
+ 

10 I. I ~j 7 + 
8 + 
9 

I· lo Ia I I 
+ 

I. ,. 10 I 
1 

I 10 + 
11 + 0 

12 

10 ,. I. I 
+ 

I lo lo I· I I 13 + 
14 + 0 

15 I• 10 I 
+ 

I. Ia I I· lo I 
1 

I 
16 + 
17 + 0 

18 

I. I 
+ 

10 I• lo I· I lo I 
1 

I 
19 + 2 

20 + 0 

21 

I 
+ 

I. ,. 10 I· lo lo I I 
1 

I 
22 + 2 

23 + 0 

FIGURE 12 All-to-all reduction step 1 on a :3-cube. 

.\1emory addresses and node addrc::;ses in binary order. 
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Mem PO PI P2 P3 P4 P5 P6 P7 Dim Mem Po P1 P2 P3 P4 P5 P6 P7 Dim 
0 0 0 + • 0 0 • + 0 0 0 0 0 
1 0 0 + • 1 1 0 _Q _. 

0 + 0 1 

2 0 + 0 • 2 2 • 0 0 + 0 0 2 

I 
3 

Ia I I~ Ia I~ IQ 1: 1: I 

0 

I I 

3 

I~ I 
I + I~ I~ I~ I§ I~ I 

0 

I 4 1 4 

5 2 5 ~ 

I 
6 

IQ I~ I Ia 1: 1: IQ I~ I 

0 

I I 

6 

I~ li I I~ I~ I§ I~ I~ I 

0 

I 
7 1 7 1 

8 2 8 2 

I 
9 

I~ IQ Ia I 1: 1: I~ Ia 
I 

0 

I I 
9 

li I~ I~ I I~ I~ I~ I~ I 

0 

I 
10 10 

11 2 11 2 

I 
12 

Ia I~ 1: 1: I Ia IQ I~ I 

0 

I I 

12 

~~ I~ I~ I~ I ~~ 1: !i I 
0 

I 
13 1 13 

14 2 14 2 

I 
15 

I~ IQ 1: 1: IQ I I~ IQ I 

0 

I I 
15 

I~ I~ I~ I~ I~ I li 1: I 
0 

I 
16 16 1 

17 2 17 2 

I 

18 

1: 1: IQ I~ Ia I~ I IQ I 

0 

I I 

18 

I~ I~ I~ I~ I~ li I I~ I 

0 

I 
19 1 19 1 

20 2 20 

I 
21 

1: 1: I~ IQ I~ Ia Ia I I 

0 

I I 

21 

lg I~ I~ I~ 1: lg I. Ia I 

0 

I 
22 1 22 

23 2 23 2 

FIGLHE 1:i All-to-all reduction ~tep 2 on a :3-culw. FIGURE 15 All-to-all reduction step '-± on a :3-cube. 

Memorv addresses and node addresses in hinarv order. :Vll'morv addrcsst:'s and node addresses in binary ordt>r. . . 

allocation .. i.e .. , d successive sums are allocated to Data Reordering: All Addresses 
the same node on completion. Furthermore. with in Binary Code 
both mcmorv addresses and node addresses in bi-

narv order. successive blocks have successive The Data Motion for Block Zero. \\'e first con-

nodes in binarv code as tlwir destinations. Thus. sider the data motion for blockj = 0. The transi-

the local block index is the address of the node tion sequence for a binary-reflected Gray code is 

where the final sums shall be allocatee!. symmetric with respect to its midpoint. Thus. per-

Mem PO PI P2 P3 P4 P5 P6 P7 Dim Mem PO P1 P2 P3 P4 P5 P6 Pi Dim 

0 + _Q_ Q_ • () 2 0 + () • () Q_ 0 0 1 

1 Q_ _Q + • () 0 1 0 + 0 0 0 • () 2 

2 + () • () () 1 2 0 0 0 + • 0 () 0 

I 

3 

I~ I I~ 1: 1~ I~ I~ I~ I 
2 

I I 
3 

IiI I~ I~ I~ I~ I~ I~ I 
1 

I 4 0 4 2 

5 0 

I 
6 

I: I~ I I~ I~ I~ I~ I~ I 

2 

I I 
6 

I~ I~ I IiI~ I~ I~ I~ I 

I 

I 
7 0 7 

8 8 0 

I 
9 

I~ I: I~ I I~ I~ I~ I~ I I I 
9 

I~ I~ IiI I~ I~ I~ I~ I 

I 

I 
10 0 10 2 

11 I 11 0 

I 
12 

I~ I~ I~ I~ 1~ 1: 1~ I 

2 

I I 
12 

I~ I~ I~ I~ I li ~ lg I I 
13 0 13 

14 I 14 0 

I 

15 

I~ 
a 

I~ I~ I~ I: I 
2 

I I 
15 

I~ I~ I~ I~ IiI g I~ I 
1 

I 
16 + a 0 16 2 

17 + 17 0 

I 

18 

1: ~ I~ I~ 1: I I~ I 
2 

I I 
18 

I~ I~ ~~~~ It I~ I IiI 

1 

I 
19 

~ 
0 19 2 

20 20 0 

I 
21 

I~ I~ I~ I~ I~ I: I~ I I 

2 

I I 

21 

I~ I~ I~ I~ I g I~ IiI I 

1 

I 
22 0 22 2 

23 23 0 

FIGUHE 14 All-to-all reduction step 3 for a 3-cube. FIGLRE 16 All-to-all reduction step .=; on a :3-cube. 

:VIemorv addre~ses and node addresses in binarv order. Memory addresses and node addre~ses in binary order. 



Mem PO P1 P2 P3 P4 P5 P6 P7 Dim 

0 + • D 0 0 () () () 0 

1 + () • () () () () () 1 

2 + 0 0 0 • 0 0 0 2 

3 

I g I 
+ 

jg I~ !g I~ lg lg I 
0 

4 + 1 

5 + 2 

6 

I~ I~ I 
+ 

I~ I~ I~ I~ I~ I 
0 

7 + 
8 + 2 

9 

I~ I~ I g I 
+ 

I~ I~ I~ I~ I 
0 

10 + 
11 + 2 

12 

I~ I~ I~ I~ I 
+ 

I~ I~ I~ I 
0 

I 13 + 1 

14 + 2 

15 

lgl~lglglgl 
+ I g I~ I 

0 

I 16 + 
17 + 
18 

I~ I~ I~ I~ I~ I~ I 
+ 

I~ I 
0 

I 19 + 
20 + 
21 

I~ lg I~ I~ lg I~ I~ I 
+ 

I 
0 

I 22 + 
23 + 2 

FIGURE 17 All-to-all reduction ~tep 6 on a 3-('lllw. 

,\lemon addresses and node addrps;;es in binan· order. . . 

forming the exchanges in reverse order is identical 

to the original transition sequence. The exchange 

sequence for a given local memot'\' location is the 

same in broadcast and rt>duction. However. the 

starting location for the reduetion i:o the loeation 

where the last copy is to be deposited in the 

broadcast algorithm. 

From item :.L we see that for local memorY ad

dress zero, the exchanges generate the binary-re

flected Grav code addresses in reverse order. Tbe 

addresses for sequt>nce i is obtained by an i step 

cyclic rotation of the addresses of sequence zero. 

Thus. for blockj = 0 and memory and node ad

dresses in binary code the sending node address 

for local memory address i in blockj = 0 in step u 

is shi(G(2d- 1 - u)). and the receiving node ad

dress for local memory address i in blockj = 0 in 

step u is shi:(;('2d- u;i. 

The Data Motion for Block i· The destination 

node for block j is node j. The staning node for 

blockj is obtained by performing an exclusive-or 

operation with j (translation: on the starting ad

dresses for block j = 0. Exchange sequence i is 

used for all local memorv addn;sses i relative to 

the beginning of the blocks. i.e., all local memory 

addresses such that s mode d = i. Thus. 

1. the starting address for local memory ad
dress i in hlock j is: j E9 2 d-1 +i 11""lrl. 
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2. The exchange sequence for local memory 

address i in hlockj as: :to+ n mod d. i/1 + i 

mod d. ([1 + i) mod d. . . .. /.!."-"2 + i: 

mod d. 

3. The sending node addres:-? for local memory 

address i in block j in step u is: j EB sit' 

(G(2rl- 1 - 11 

"f. The receiving node addrefis for local mem

OIT location i in block j in step u is: j EB 
shi(C:(2d- u)). 

The above formulas give the sending and re

ceiving nodes for a given block/ and local memory 

address i within the block. However. a! every step 

each node onlv sends the contenlti of d lo<'almem

orv addresses and receiv<es d data elenwnts to lw 

added into the contentti of d local nwmory ad

dresses, Thus. it is of more direct interest to dett>r

mine for each node which local memory address 

of what blocks is participating in communication 

step u. !\'ode PA is sendin~ and receiving data 

from local memorv address i within block i if P-1 = 

j E9 shi(G(2"- 1 ·_ u)) and PA = j E9 sh;(0('2.rl-

respectively. Thus. the block numherj for lo

cal memmT address i within node P-1 in fitep u is 

j = PA E9 ,;!zi(C('2rl- 1 - u): for sendin~ andj = 

PA EB sh1(G(2ri- u)) for receiving. 

Note that the expressions s/l(C(2d - 1 tl),' 

and sh1(G(2d u)) are common to all nodt>,.;. 

Thus. on the Connection \lachine systems. these 

expressions can be evaluated on the front-end. 

Data Reordering: Node Addresses in 
Gray Code Order 

ln the broadcast algorithm. tlw final dt~,.;tirw

tion for local memory address zen1 (j = 0. i = 0.: of 

node zero is node 2d-t. with memory and node 

addreo;ses in binary code. The exchange sequence 

used for thiii memory location i:-J the same as the 

transition sequence in a binar~-reHt•cted Gray 

code with the dimensions taken in order. Thus. 

the final destination is the last addn~ss in tlw GraY 

code. with dimension~ in order. i.e .. node 2'1_
1
•• 

The final destination of local nwmorv address i of 
block j 0 within node zero is nodt; '2 rl-t +i n•otl•l. 

becau~e the ith exchange sequence is obtained 

fron1 the exchange sequence of local addre:-?:' zt~ro 

by adding i mod d to the exchange dimension for 

local address zero. For instanc<~ .. for cl :) the last 

destination of the content of local rrwmory address 

zero in node zero is node four. of location one it is 

node one. and of location two it is node two, as 

seen from Figure 8. 
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For the all-to-all reduction algorithm with 

memory and node addresses in binary code, we 

have for block)= 0: 

1. Starting address for local memory address i 
within block)= 0 is: 2 rl-1+i'modrl. 

2. The exchange sequence for local memory 

address i in block j = 0 is: ( t 0 + i) mod d. 

(t1 + i) mod d, (t'2 + i) mod d, . . . , (t2L2 + 
i) mod d. 

3. The address of the receiving node for local 

memory address i in block j = 0 step u is: 
2(d-1 +i)modd E£) 2:t,+i)rnodd, U = {0, 1, 2, . . . , 

2d- 1}, 

4. The sending node in step u 2: 1 is the receiv

ing node in step u - 1. 

When the result of the all-to-all reduction is de

sired in Gray code order, then instead of selecting 

block) as described above, the block whose Gray 

code is j should be selected. For instance, ford = 

3, 7 has the Gray code 100. Thus, in every in

stance when block 4 is selected for the result in 

binary order, block 7 is selected for the result in 

Gray code order. Then, on completion, the reduc

tion on block 7 is available in node 4. 

Thus, for the result in Gray code order, the 

block index j chosen for local memory address 

and exchange sequence i is 

1. j = c- 1 (PA EB sh'(G(2" - 1 - s))) = 

c- 1 (PA) EB r- 1 (shG(2ri- 1- s))) for send

mg. 

2. j = c- 1 (PA EB sh'(C(2ri- s ))) = c- 1 (PA) EB 
c- 1(sh'(G(2rl- s))) for receiving. 

The address c- 1(PA) is the node address in Gray 

code. Thus, the operations unique to a node con

sists in determining its Gray code address and an 

exclusive-or operation. 

All-to-All Reduction on Local Data Sets 
of Arbitrary Size 

For a local data set of size J1 .. 2" blocks are created 

for all-to-all reduction on a binarv d-cube. ·when 

M mod 2r1 # 0, then not all blocks have the same 

size. On the Connection Machine svstems anv ar-. . 
rav with a size that is not divisible bv the number . . 
of nodes over which it is distributed is allocated 

such that r :lf,l elements are assigned to the first a = 

[ M If :lf,l] nodes. The remaining M - a f :lf,l 2r1 ele

ments are assigned to a single node, and the re

maining 2d - a - 1 nodes are assigned no ele-

ments. Thus, in blocking a data set for all-to-all 

reduction, we first create a + 1 nonempty blocks, 

a of which consists of r ~l consecutive memory lo

cations. Each block is further subdivided into 2d 

subblocks. For the first a subblocks, the maxi

mum number of elements in a subblock is {3 = 

f"
1
i~" l. All elements within a subblock are subject 

to the same exchange sequence, while different 

subblocks are subject to different exchange se

quences. The number of subblocks with {3 ele

ments each is y = fM/2dl - d({3- 1). The mem

ory partitioning is illustrated in Figure 18. 

For each exchange step u, a pair of successive 

elements is transmitted from a subblock (j, i) se

lected for transmission in dimension i in that ex

change step. The exchange step u is not com

pleted until all data elements within a subblock 

selected for transmission have been transmitted. 

The actual transmission can be viewed as con

sisting of three phases: 

1. The movement of data to be transmitted in 

one exchange to a buffer area, a departure 

lounge. 

2. An exchange of 2d 32-bit data elements, 

with the received data being stored in a 

buffer area, an arrival lounge. 

3. Reduction on local data, and data in the 

arrival lounge. 

Successive pairs of elements in the departure 

lounge are taken from subblocks with indices i = 

{0, 1, 2, ... , d - 1} in blocks j determined by 

the expressions given previously. If there are no 

more elements in subblock i to be transmitted. 

then the buffer location is empty, and the corre

sponding channel not utilized. The number of ex

changes for each step u is fllj'l, where Sis the num

ber of 32-bit words required for the data type ( S = 

2 for real-8 and complex-8 and S = 4 for com

plex -16). The reduction after each exchange step 

is performed by adding the contents of the arrival 

lounge for step u to the contents of the departure 

lounge for step u + 1. with the elements for the 

same exchange sequence i being added together. 

5 OTHER ALGORITHMS 

A few alternatives to the Hamiltonian cycle-based 

algorithms for all-to-all communication are: 

1. Each node broadcasts the values directly to 

all other nodes (one course node at a time) 
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0 {3 

1 {3 

2 {3 

{3 fM/2d"J 
{3 

0 ")'-1 {3 

")' 11-1 (fJ = r (M ~2d,n 
"Y+1 11-1 

.a- 1 

11-1 
d- 1 .6- 1 

0 {3 

1 {j 

2 {3 

!3 fM/2dl 
{3 

1 ")'-1 f] 

")' a-1 ({3 = r [M~2d,n 
"Y+1 {3-1 

11-1 
.a- 1 

d- I .a- 1 

0 {3 

1 {3 

2 {3 

{3 fM/2dl 
{3 

a-1 ")'-1 {3 

")' {3-l ({3 = r (M ~2d,n 
1'+1 f]-1 

.6- 1 

f]-1 
d-1 {3-1 

0 6 

1 6 

2 fj 

6 M- afM/2dl 
6 

a e:-1 {j 

e: fj - 1 (s = rM-aSM/2d11 ) 
~+1 s- 1 

5-1 

8-1 
d-1 8-1 

FIGURE 18 :Vlemory partitioning. 

using multiple spanning trees, each of 

which uses all the communication channels 

of the binary cube (d edge-disjoint spanning 

trees for ad-cube) [15]. . 

2. Each node sends its data to a dedicated 

node that broadcasts the data to all other 

nodes with an algorithm using all channels 

of ad-cube. 

3. All nodes send their data to a dedicated 
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node concurrently, followed by a broadcast 

from the dedicated node to all other nodes. 

4. All nodes send their data to all other nodes 

using minimum height spanning trees, such 

as d rotated spanning binomial trees [ 15]. 

This algorithm is equivalent to a butterfly 

network-based algorithm. 

Alternatives 1 and 2 use multiple spanning 

trees to maximize the bandwidth utilization in 

broadcasting the data from a single node . .'\odes 

are treated sequentially. Alternative :3 combines a 

gather operation (all-to-one personalized com

munication [14]) with a broadcast as in alterna

tive 1, but there is only a single broadcast of all 

data to be received by a node. ln all-to-one per

sonalized communication, each node sends data 

to one node. (In all-to-all personalized communi

cation, each node sends unique data to every 

other node.) Alternatives 1 and 4 both have opti

mum time complexity .. whereas alternatives 2 and 

3 require extra data motion. Table 2 summarizes 

the performance estimates for the different algo

rithms [15]. For the reduce-and-spread estimate 

in Table 2, a subselection is assumed before car

rying out the transpose required for data in 

column major order. The transposed data volume 

is a factor of 2d less than the data volume in the 

reduce-and -spread function. 

On the Connection Machine system C\'1-200 

fairly well-optimized routines have been imple

mented for broadcast from a single node, shifts 

along a single Hamiltonian cycle, shifts along k :5 

d Hamiltonian cycles for a d-cube, and reduce

and-spread in d-cubes based on rotated binomial 

trees. 

The broadcast function currentlv available on 

the Connection :Vlachine system C.Yl-200 assumes 

that the source for the broadcast operation is the 

first node in a segment (first row or column). 

Thus, this function can only be used in alterna

tives 2 and 3. The overhead in the spread function 

is quite significanL as is apparent from the timings 

shown in Table 3. This table shows timings for 2 

to 32,768 32-bit elements per node on binary 

cubes with 2 to 2048 nodes. Because of the large 

overhead, only alternative 3 of the first three tree

based algorithms is considered further. 

The first step in alternative 3 is an all-to-one 

personalized communication. The optimum time 

for this operation is r ~ l [ 15], where M is the num

her of elements gathered into a node. There is 

currently no optimized routine available on the 

Connection Machine svstems CM-200 for this 
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Table 2. Estimated Number of Element Transfers in Sequence for Different Broadcast Algorithms* 

Ordering 

Column major 

Row major 

Operation 

Broadcast using single Hamiltonian c;.-cle 

Broadcast. d Hamiltonian cvcles 

Broadcast from one node at a time 

(alternative 1) 

Gather followed bv broadcast (alternative 3) 

Broadcast based (;n rotated bi;wmial trees ' 

(alternative 4) 
Reduce-and-spread, transpose 

Transpose, broadcast using single Hamiltonian 

cn:le 

Tninspose. broadcast using d Hamiltonian 

cvcles 

Tr~nspose, broadcast from one node at a time 

(alternative 1) 

Tr~nspose, gatl~eL broadeast (alternative 3) 
Reduce-and-spread 

Time 

1 + r:Hi~ + c1 = 2 + d 
1(2<1- 1) 

d + f,J1;'T,7' 

l + [ /~.;i (2 d - 1) 

+ (2rl- 1 

+(I + c/)2'1 

* lf i;; the totaluumher of T2-bit elements prior to tfw broadcast (or r"duction: O(JPration. 

communication. Tht> Comwetinn :\'faehint> router 

is used instead. For matrix-vector multiplication 

with the matrix allocated to a one-dimensional 

nodal array through partitioning by rows. and the 

vectors distributed evenly across all nodes. the 

nodes send their segment of the input vector to 

node zero, which tben broadcai'ts the entire input 

vector to ever-v node. \\"ith a two-dimensional 

nodal array shape in column rnajor order for the 

matrix, and a one-dimensional nodal array shape 

for the vectors .. all nodes within a node column 

send their segment of the input vector to the first 

node within the column. Then. this node broad

casts all segments of the input vector within a 

node column to all nodes in that node column. ln 

row major ordering, the send operation must also 

accomplish a transposition from row to column 

major order. Although the transposition is implicit 

in the send, it has a significant impact nn the rout

ing time for the send, as shown in the performance 

measurements in Section 6. 

The optimal transpose time for a binary cube 

with two channels between each pair of nodes is 

f 2 i1

2J [ 13. 13] _ The optimal time is proportional to 

Table a. Time (ms) for Bmadcast of Different Size 32-bit Data Sets and Connection Maehine Systems 

Cl\1-200 of Various Sizes 

:\umber of 
:\umber of :\odes 

Elements 2 4 8 16 32 64 128 256 3)12 1024 204R 

2 0.0366 0.38:3 0."1:48 (L30:2 0 .. 57 :3 0.640 0.719 0.789 0.878 0.965 L0:36 

4 0.0366 0.383 0.448 0.50:2 0.37:1 0.6-±0 (L?19 0.?89 0.878 0.965 1.0:36 

8 0.0623 0A16 0.-±80 0.503 0.576 0.6H (L722 0.792 0.881 0.968 1. 0-±0 

16 0.1136 0.470 () .513 0 .. ')42 0.61S ()_684 0.76:1 0.798 0.888 0.97;) 1,046 

32 0.2162 0.577 0.593 0.600 0.691 0. 7:30 0.811 0.84H 0.939 1.o:n 1.101 

64 0.42H 0.793 0.7-±1 0.720 ()_?::3 0.856 0.907 0.947 1.0'±2 1.1::);3 1.168 

128 0.8318 1.223 1.055 0.962 CL963 0.984 1.044 1.()45 1.247 1)W5 l.:s-H 
256 1.6527 2.084 1.654 1.H3 1.:3'77 1.:332 1.:160 1.3:38 1.410 1,434 1.50:3 

512 3.3139 3.805 2_882 2.410 2.20:3 2.0;)4 1_990 1. 92:) 1. 9'±6 j(J53 2.001 

1024 6.7319 7.24? .s.:31o 4_:H2 .3.825 :3.491 3.28'? :3.098 3.021 2.991 2.95? 

2048 13A530 14.129 10.193 8.204 7 ,06? 6.3:H 5_844 5.445 5.210 5.028 -±.91 0 

4096 26.9059 27.895 19.9:31 15.929 1:3.585 12.048 10.960 10.137 9.588 9.102 8."?82 

8192 33.8115 55.426 39.4:37 .31.3'79 26,619 2:).444 21.226 19.322 18.34'± 17.288 16.520 

16334 107.6210 110.476 '?8.'±15 62.279 52.65"? 'i6.269 'i1 _'?21 :38.291 35.818 :>:3.662 :31. 99? 

::32'?68 215.2400 220.577 15(d96 124.070 104.'?2:3 9U37'f 82.'?11 75.829 70.?64 66.:166 62.991 
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S\ep PO PI P2 P3 P4 5 P6 P7 Dim. 
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FIGURE 19 Reduce-and-spread through butterfly network emulation 

the size of the local data set bnt is independent of 

the partitioning of nodes between rows and 

columns. 

Alternative 4 has been implemented for re

duce-and-spread functionality on the Connection 

yfachine svstem CM-200. It uses a constant size 

data set in all stages. Exchanges are performed 

between pairs of nodes in d stages. as shown in 

Figure 19. Each node computes d partial sums. 

one for each of d distributed variables. The aceu

mulation and broadcast of distributed variable 

zero use the dimensions in increasing order. The 

accumulation and broadca:o;t of distributted vari

able i me dimension (u + i) mod din step u. W'ith 

1}! elements per node and a double cube, the num

ber of element transfer:o; i;; r :¥/1 d, which is a factor d 

higher than an all-to-all reduce using d Hamilto

nian cycles. The reduce-and-spread function 

yields 2r1 times a." much local data as is de,;ired for 

an all-to-all reduction. The desired data are se

lected from the result of the reduce-and-spread 

operation. 

With the matrix allocated to a two-dimensional 

nodal array in row major ordering. the result of the 

all-to-all reduction within rows yields the result in 

the desired order. \\1ith a column major orderinf\. 

a reordering from row to column major ordering 

(transposition) is required after the all-to-all re

duction. 

If the node addresses are encoded in a Gray 

code instead of a binary code. then the ordering of 

the elements in local memory is different. But. ex

cept for local memory operations. all other opera

tions are identical. 

6 PERFORMANCE MEASUREMENTS 

For all-to-all broadcast, we have implemented al

gorithms based on a single Hamiltonian cycle. d 

Hamiltonian cycles. and based on gathering all 

column data into a single node followed by broad

cast from that node. For all-to-all reduction. we 

implemented the first two algorithms and com

pared them with redure-:cmd-spread. \Ve first 

present the results for broadcast. then for reduc

tion. 

6.1 All-to-All Broadcast 

Tables 4 and 5 summarize measurements for a 

256-node Connection Machine system C.\1-200. 

Table 4. Execution Times (ms) for All-to-All Broadcast Using Three Different :VIethods on the 

Conneetion Machine System CM-200* 

All-to-All Broadcast 

Words per :\lo. of 
Send-and-Spread d-Cvcle~ One Cycle 

"Jode Initially ~odes Send Spread Total Transpose :\ddr. Indir. AABC Total lndir. :\ABC Total 

4 16 2.20 0.92 3.12 0. 90 1.84 0.57 1.00 4.:31 1.17 1.00 :~.07 

8 16 3.82 1.38 5.20 1 .1:3 :3.52 0.62 1.10 6 . .')"' 1.21 1.66 4.00 

16 16 8.00 2.30 10.30 1.68 :3.:i6 0.7:3 1.8::. 7.62 1.:31 :3.0:3 6.02 

32 16 9 .. 59 4.14 1.3.73 1.80 .3.:39 0.89 3.:35 9.43 1.56 5.76 9.12 

64 16 19.19 7.82 27.01 3.:3-i 4.14 1.55 6.41 15.44 2.0:3 11.21 16.58 

128 16 38.60 15.1" 53.77 6.;).S 3.24 2.87 12.;')5 27.21 2.98 22.1:3 :31.66 

256 16 77.74 29.88 107.62 12.90 8.;:)7 5.52 2'!.82 31.81 4.88 4:3.97 61.7;) 

512 16 156.70 59.:31 216.01 25.66 15.44 10.30 49.4:3 101.::3:3 8.68 87.6:3 121.97 

102'! 16 315.30 118.20 434.00 .'i1.43 29.07 21.38 93.49 200.37 16.27 17Ed)0 242.?0 

* 64-bit precision: row major ordering: node addresses in GraY code. 
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Table 5. Execution Times (ms) for All-to-All Broadcast Using Three Different Methods on the 

Connection Machine System C:\'1-200* 

All-to-All Broadeast 

Words per :\o. of 
Send-and-Spread d-Cn~les One (\de 

1'\ode Initiallv !\odes Send Spread Total Transpose Addr. + lndir. A.AHC Total Indir. AABC Total 

256 1 3.28 0.1:~ .3.41 4():3 1.32 0.00 6.43 0.:3:3 () ;"),26 

256 2 22.41 ().27 28.68 13.39 3.24 S.70 22.5:3 0.63 2.93 17.15 

2.56 4 .3.'1.9:3 1:3.46 49.:39 12.98 4.69 9.:3:3 27.00 1.24 8.79 :2:3.01 

256 8 49.67 18.98 68.65 13.1:3 8.47 1:').16 :36.76 2.45 2().:)1 :~(). ()() 

256 16 77.74 29.88 107.62 12.90 14.02 24.82 ;)1.74 4.88 4:3.9"? 61.7:) 

256 32 100.20 50.14 1 so.:~4 12()8 :32.3:) 42.51 8"?.84 9. "'5 90.91 112.64 

256 64 165.10 87.50 252.60 12.98 6:~.46 ?4.:38 150.82 19.4-:' 184.80 21:.25 

256 128 254.20 156.90 411.10 12.CJ1 131.20 1:31.80 2-:'6.91 38.92 :3:2.80 -t24.6:3 

256 2:)6 45-:'.-:'0 286.-:'0 -:'44.40 4.9:3 226.10 228.80 459X3 7-:'.80 "'48.80 8:31 . :);3 

* 6'1:-bit precision: row major orderinl-(: node addresocs in GraY cod<'. 

In Table 4, the nodes are configured as a 16 X 16 

array. The length of the local segment of the vector 

to be broadcast varies. In Table 5. the vector 

length per node is fixed, while the number of 

nodes along an axis is varied. Both tables assume 

a row major ordering and node addresses in Gray 

code. The column marked ·'totar·, includes the 

transpose time. Thus, all columns marked total 

correspond to the same functionality. 

From Table 5, we first note that the transpose 

time is independent of nodal array shape, as pre

dicted for an optimal algorithm. The transposition 

is done by the router, which thus shows a very 

good performance behavior. The time per 32-bit 

data element amounts to about 25.1 JLS. 

Fron1 the perforn1ance measuren1ents, we con

clude that both the single cycle and the d-cycles 

algorithm are always faster than the send-and-

Table 6. Ratio of Data Motion Rates for the 

Three Methods of All-to-All Broadcast on the 

Connection Machine System CM-200* 

All-to- All Broadcast 

"lo. of Send-and-
256 Words/l\ode 

:'-lodes Spread d-Cydes One Cycle 

2 1 1.:27 1.67 

4 1 1.83 2.15 

8 1 1.8: 1.90 

16 1 2.08 1.74 

32 1 1.-:'1 1 . .'33 

64 1 1.6-:' 1.16 

128 1 1.48 0.9? 

256 1 1.62 0.90 

spread algorithm for all-to-all broadcast. Table 6 

summarizes the relative performance of the cycle

based algorithms over the send-and-spread algo

rithm. The improvement is in the range 1.2"?-

2.08. The measured data motion rate for all-to-all 

broadcast on a 256-node Connection :\lachine 

system C""I-200 is about 0.:3 Gbyte/s. 

To compare the single cycle and d-cycles algo

rithms, we consider the performance characteris

tics of the two algorithms in detail. The execution 

time for all-to-all broadcast through a single 

Hamiltonian cycle is expected to behave as 

TB - ( r;);J' . 51) i')d - 1' 
1-H.c- a1 + a'2 2 \'- h 

where a 1 is the overhead for each step of the algo

rithm and a 2 is the exchange time for two 32-bit 

data elements. }\1' is the initial number of ele

ments per node and S is the number of 32-bit 

words per data element (5 = 2 for real-8 and com

plex-8). From Table 4. we derive n 1 = 2"1:.3 JLS 

and a 2 = 5.69 p.s. 

With a Gray code ordering. the indirect ad

dressing required for the reordering on completion 

requires a time of 

T JJ - + I R + l}.'f·'. C'\')d 
1-H./- a:J \a"' a_,,v" o 1- , 

where, fron1 our performance n1easurernents, a:{ = 

17.9 p.s, a-+= 50.33 p.s. and a;,= 0.5p.s. Adding 

T1-H., and T1-H.I we get the total time for the all

to-all broadcast based on a single Hamiltonian 

cycle and nodes in Gray code order: 

Tf-H -6.38 - 5.69 · M' · S + 74.6 
* 6'1:-bit precision: row major ordering: node addresses in 

Grav code. · 2d + 6.19 · il'f' · S · 2'1. 



In the d-cycles all-to-all broadcast altrorithnL 

the data motion between nodes is expected to 

show a performance behavior of the form 

T B (b 'b 2 i b ' rM' . Sl) '2 1 1) rf-H.c = 1 + ( 2 .. C + 3! 2d (' ' - ' 

where b1 is the overhead for each step of the algo

rithm, b2 is the time for local memory references 

for each step, and b:; the time for exchanging d 

pairs of 32-bit words between a node and its d 

neighbors. From the column labeled d-cycles in 

Tables 4 and 5, we derive: 61 = "f1.94 p.,s. b2 

0.17 p.,s, and b:; = 24.18 p.,s. 

ln addition to the data motion time. a signifi

cant time is also required for local memory opera

tions, even when nodes are labeled in Gray code 

order. For the single-cycle algorithm, a node-de

pendent block cyclic shift is required. In the d

cycles algorithm, the reordering at the end, as il

lustrated in Figures 8 and 9, requires full indirect 

addressing. In addition, if the array indices are not 

moved along with the data, index computation is 

required according to the formulas given in "Data 

Reordering: All Addresses in Binary Code". For 

the index computation, there are 2d - 1 blocks, 

one for each remote node, for which index com

putations are needed. Each such block consists of 

2d subblocks of elements each, with the final 

subarray of size iYI (initial subarrays of size M' 
Mf2d elements each). Then, there is a remainder 

of d' (M/2") mod 2d elements for each of the 

2d - 1 blocks. Thus, the time for index computa

tion Td-Hic behaves as 

ALL-TO-ALL COMMC'\ICATIO~ 265 

T~-H.ic = b'f 

+ [ d ( b~ + b" f'~~J) + b-M' mod 2d] 

(2d- 1). 

From our measurements .. we derived: b-+ = 

2056.35, b; = 41.08, b6 = 2.02, and b- = 22.24. 

all in p.,s. The index computation has a faster 

growth rate in the number of nodes rhan the mo

tion of the data. This is clear in Table 7. 

The time for local data reordering with indirect 

addressing is 

T~-Ht = (bs + bl) · J1' · S) · 2', 

where the constants derived from our measure

ments are: b3 = 14.78 p.,s and b9 = 0.645 p.,s. 

The total time for all-to-all broadcast based on 

d-cvcles and local index computation is obtained 

T. II TIJ Til TH as d-H - d-H.c + d-Hic + rl-11.1· or 

T~-H = 2071.13 + 0.645 · M' · S 

+ (56.72 + 0.645. ,H'. s 
+ 24.18l(i\l/' · S)/(2d)l 

+ d(4L08 + o.34fUv/' · S)/2d)l 

+ 2.02fM/(2d)l) 

+ ~2.24(ilJ' mod 2d))(2"- 1 ). 

Because the efficiency in the index computa

tion on the GYI-200 is poor, we have also imple-

Table 7. Execution Time (ms) for d-Cydes All-to-All Broadcast with Index Computation and Index 

Motion* 

d-Cvcles All-to-All Broadcast 

Words per :\o. of 
Cmnp. Index .\love lndex 

~ode Initiallv 'lodes AABC lndir. Comp. Total Ylovp Total 

128 2 2.95 0.36 1.:39 4.70 2.05 5.:36 

128 4 4.79 0.72 1.85 7.:36 2.97 8.48 

128 8 7.90 1.44 3.4:3 12.7":' 'f.56 13.90 

128 16 12.64 2.88 ;).:30 20.82 6.96 22.48 

128 32 21.64 - 7-
;:J •• ;) 16.83 44.22 11.60 :33.99 

123 64 :37.32 11.50 :35.56 34.88 19.93 69.23 

128 123 69.90 23.01 60.10 1.'):3,01 :36.49 129.40 

128 256 116.50 46.01 119.50 282.01 60.:37 222.88 

128 512 282.40 92.05 230.20 604.65 120.80 445.2;) 

128 1024 416.40 134.10 727.80 1:328.30 216.90 817.40 

128 2048 738.40 370.30 1973.00 :3081.70 :386.00 1494.70 

* 64-Bit precision; node addresses in Gray code. 
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mented all-to-all broadcast using ad-cycles algo

rithm in which the indices are moved along with 

the data. The indices are represented as 32-bit 

integers regardless of the type of the array values. 

Local reordering is still required and requires the 

same time as when the array indices are computed 

locally. Table 7 shows the results for a 2048-node 

CM-200. As seen in the table, moving indices is 

faster than computing indices for 32 or more 

nodes. The time for moving indices. Tri-ll.;, is 

Td-Him = ( 610 + (b,, · 2d + b1'2) ~;~~J) 

(2rl-1)+b 1 o 

where b 10 = 33.61 JLS, b11 = 0.63 JLS. b12 = 16.98 

JLS, and bn = 1834.05 JLS and the total time is 

Trl-H.c + Trl-ll.im + Trl-H.I 

T~-H m = 1848.83 + 0.64.5 · J1' · S 

+ (90.:3:3 + 0.645. ;}/'. s 

+ (0.34d + 24.18)1 (M' · S)/(2d) 

+ (1.26d+ 16.98)f:l:/'/(2d)l)(2rl-1). 

Comparing the times for all-to-all broadcast 

based on a single cycle and d-cycles with either 

local index computation or index motion. we con

clude that the actual communication time for the 

d-cycles algorithm is less than that for the single

cycle algorithm for eight or more nodt>s. The gain 

is less than a factor of d, because the ,;ingle-cycle 

algorithm can use machine instructions that re

quire fewer cycles per word tran,;fer. However. the 

performance gain in the communication part of 

the d-cycles algorithm is largely lost du<> to the 

time required for the index calculations .. and the 

full indirect addressing required in the reordering 

of the data. From the expressions for the total ex<>

cution time for the single-cycle and d-cycle,; algo

rithms. we can derive the size of the local data set 

as a function of d for which the d-cydes algorithm 
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FIGURE 20 All-to-all broadcast time in seconcis for 

2.'"i6 64-bit elements. 

yields better performance. The results art> sum

marized in Table 8. From the table we conclude 

that, in practice, at least 16 nodes (d 2': 4) must he 

assigned to an axis before the d-cycles algorithm 

performs better than the single-cycle algorithm. 

largely due to the expense for index calculation. 

This expense grows sufficiently rapidly to mak<> 

moving the data indices more efficient than com

puting them locally for :32 or more nodes. despite 

the simple operations required for index compu

tation. Figure 20 shows the execution times for 

all-to-all broadcast on up to 512 nodes using ei

ther a single-cycle algorithm. or the d-cycles algo

rithm with either index computation or index mo

tion. Table 9 gives the corre,;ponding measured 

data. 

Remark 1. lt is intere:-;ting to compare the per

formance of the spread function with that of the d

cydes algorithm. Ideally. both should have the 

same execution time (see Table 2). From Table,; 4 

and 5, the measured performance is comparable 

when the address calculation time is excluded. as 

expected. The total execution times are compared 

in Table 10. 

Table 8. Size of the Initial Data Set (J-"1') per Node in 64-Bit Precision for Which the d-Cvcles All-to-All 

Broadcast Algorithms with Index Computation (d - H, c) and Index Motion (d - H, m) Yi.eld Better 

Performance than a Single-Cycle Algorithm* 

:\lo. of :\odes 2 4 8 16 :32 64 128 2.-:i(J .S12 1024 2048 

d-1-Lc J/' 2: 240 Jl' 2: 80 Jl' 2: 60 .ll' 2: 48 .\1' 2: .)6 .ll' 2: 48 .W :o> :5-t Jl' 2: 60 .H' 2: 66 

d- H. m J/' 2: 55 .VI' ;o. 14 .\1' 2: 12 J/' 2: 14 .\1' 2: 16 .\1' 2: 18 .ll' 2: 20 .\1' 2: 22 

*Row major onlPring: node addresses in GraY code. 
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Table 9. Execution Time (ms) ford-Cycles All-to-All Broadcast with Index Computation and Index 

Motion and for the One-Cycle Algorithm* 

d-Cvcles 

Words per :\o. of 
Comp. Index :\love Index One Cycle 

'\i ode Initially Nod!Os AABC Indir. Comp. 

256 2 5.84 0.69 2.54 

256 4 9.47 1 . .38 3.31 

256 8 15.31 2.76 5.74 

256 16 24.97 5.52 8.59 

2.56 32 42.69 11.06 21.58 

256 64 74.59 22.11 -+1.98 

2;">6 128 1:32.10 44.22 88.:37 

2.56 256 229.20 88.41 H0.30 

256 512 4:34.00 177.00 369.70 

* 64-Bit pr~cision: node addresses in Grav code. 

Remark 2. It is also interesting to note that al

though the optimal time for the send and the 

spread is the same (Table 2), the measured time 

for the send is about 2. 7 times higher than for the 

spread in the 16-node case. For the eight-node 

case. the ratio is about 2.6 and for the 256-node 

case,. the ratio is 1.6. The send (gather) operation 

uses the router whereas the spread uses an opti

mized algorithm. Table 10 gives a comparison of 

the execution times for send and spread. 

The sensitivitv of the send times to row or 

column major layout ordering was examined by 

measuring the execution times for both orderings. 

In a column major ordering, the send is confined 

to within subcubes and no transpose is required 

for all-to-all communication. Tables 11 and 12 

summarize the results. The send is faster by close 

Table 10. Relative Execution Times for Spread, 

d-Cycles All-to-All Broadcast with Reordering and 
Send (Gather)* 

:\o. of d-Cycles Send 
Nodes Spread AABC (Cather) 

2 1 :3.60 :3.57 
4 1 2.01 2.67 

8 1 1.94 2.62 
16 1 1.7'f 2.60 

32 1 1.76 2.00 

h4 1 l 74 1.89 

128 1 1.77 1.62 
256 1 1.62 1.60 

* 64-bit precision~ row major ordering: node addresses in 

Gray code. 

Total :\love Total AABC lndir. Total 

9.07 :.3.96 10."1:9 2.9:3 0.54 :3."1:7 

H.16 ;":')."H) 16.64 8.80 1.09 9.89 

23.81 8.7.3 26.80 20.54 2.18 22.72 

39.08 18.60 "1:4.09 44.05 4.37 "1:8.42 
75.3:3 22.60 76 . .3;3 91.08 8.75 99.8:.3 

138.68 38.79 135.49 185.10 1?.49 202.39 

264.69 68.05 244.87 c373.40 34.98 -i08.38 

-!:57.91 117.10 434.71 750.20 69.98 820.18 

980.70 222.00 833.00 1504.00 HO.OO 1644.00 

to a factor of 2 for the column major ordering, but 

the cycles-based algorithms are also faster for this 

ordering. However, the speed advantage is not as 

large as for row major ordering. 

Finally, we also measured the performance for 

all-to-all communication with node addresses in 

binary code. The execution times for the d-cyeles 

algorithm were almost identical to the times for 

node addresses in Gray code order. The single

cycles algorithm would require a different imple

mentation on the Connection ~iaehine svstem 

CM-200, because the CSHIFT intrinsic function 

used in our implementation uses the general 

router for node addresses in binary code. A spe

cial implementation of our single-cyele algorithm 

should yield comparable performance for node 

addresses in binary and Gray code. 

6.2 Reduction 

Tables 1.3 and 14 give the measured execution 

times for all-to-all reduction based on reduce

and-spread, and the single-cycle and d-cydes al

gorithms. 

The reduce-and-spread alternative for all-to

all reduction results in an excessive arnoum of 

data in each node, and a subselection is required 

to arrive at the final result. This subselection is 

performed by a call to the Connection }lachine 

router, even though no communication is re

quired. The router is the only general mechanism 

currentlv available on the Connection :\lachine 

system C:\1-200 for this subselection. Performing 

the all-to-all reduction in this manner is always 
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Table 11. Execution Times (ms) for All-to-All Broadcast Using Three Different Methods on the 

Connection Machine System CM-200* 

All-to-All Broadcast 

Words No. of 
Send -and -Spread d-Cycles One Cvcle 

per Node Nodes Send Spread Total Addr. lndir. AABC Total lndir. AABC Total 

4 16 1.23 0.92 2.15 1.8"! 0.57 1.00 :3.41 1.17 1.00 2.17 

8 16 2.30 1.38 :3.68 :3.52 0.62 1.10 5.24 1.21 1.66 2.87 

16 16 4.79 2.30 7.09 .3.:36 0.73 1.85 5.94 1.31 :3.03 4 .. 34 

32 16 5.42 4.14 9.56 3.39 0.89 .3.35 7.63 1.56 5.76 7.32 

64 16 10.78 7.82 18.60 4.14 1.55 6.41 12.10 2.0.3 11.21 13.24 

128 16 21.59 15.17 .36.76 .5.24 2.87 12.55 20.66 2.98 22.1.3 25.11 

256 16 43.42 29.88 73.30 8.57 5.52 2"!.82 38.91 "!.88 43.97 48.85 

512 16 87.41 59.31 146.72 15.44 10.80 49.43 75.67 8.68 87.63 96.31 

1024 16 176.10 118.20 294.30 29.07 21..38 98.49 148.94 16.27 175.00 191.27 

* 64-bit precision: column major ordering: node addresses in GraY code. 

Table 12. Execution Times (ms) for All-to-All Broadcast Using Three Different Methods on the 

Connection Machine System CM-200* 

All-to-All Broadcast 

Words 
Send-and-Spread d-Cycles One Cycle 

per 1\'o. of 

Node Nodes Send Spread Total Addr. + lndir. AABC Total lndir. AABC Total 

256 1 .3.30 0.1.3 3.45 1.52 0.00 1.52 0.33 0 0.33 

256 2 11.97 6.27 18.38 3.24 5.70 8.94 0.63 2.9:3 3.56 

256 4 17.69 13.46 31.88 4.69 9.33 14.02 1.24 8.79 10.0:3 

256 8 26.67 18.98 46.5"! 8.47 15.16 23.63 2.45 20.51 22.96 

256 16 43.42 29.88 74.63 14.02 24.82 38.84 4.88 43.97 49.85 

256 32 69.46 50.14 121.82 32.35 42.51 74.86 9.75 90.91 1 00.66 

256 64 114.66 87.50 206.33 63.46 74.38 137.84 19.47 184.80 204.27 

256 128 225.43 156.90 388.90 131.20 1.31.80 263.00 38.92 372.80 411.72 

256 256 286.70 226.10 228.80 454.90 77.80 748.80 826.60 

* 64-bit precision: column major ordering: node address<" in Grav code. 

Table 13. Execution Times (ms) for All-to-All Broadcast Using Reduce-and-Spread, d-Cycles, and One 

Cycle on the Connection Machine System CM-200* 

All-to- All Reduction 

Reduce-and-Spread 

Words ~o. of Reduce-and-
d-Cycles One Cn~le 

per ~ode !\'odes Spread Send Total lndir. Arit. Comm. Total lndir. Arit. Comm. Total 

4 16 1.17 1.62 3.33 2.43 0.26 1.11 :3.80 0.59 0.26 1.07 1.92 

8 16 3.36 3.57 6.93 4.20 0.30 1.22 5.72 0.64 0.30 1.74 2.68 

16 16 6.70 8.11 14.81 4.26 0.38 2.03 6.67 0.7:3 0.:38 :no 4.21 

32 16 13.39 15.32 28.71 4.32 0.51 3.61 8.44 0.98 0.51 .5.83 7.:32 

64 16 26.77 32.74 59.51 5.68 0.87 6.88 13.43 1.45 0.87 11.29 1:3.61 

128 16 53.54 67.81 121.30 8.16 1.61 13.48 2.3.25 2.40 1.60 22.20 26.20 

256 16 107.10 138.50 245.60 14.26 3.06 26.66 43.98 4 .. 30 3.04 44.03 51.37 

512 16 214.10 281.10 495.20 26.29 5.97 5:3.04 85.30 8.09 .5.96 87.70 101.74 

1024 16 428.20 568.30 996.50 50.55 11.78 105.70 168.03 15.69 11.74 175.00 202.43 

* 64-bit precision: row major ordering: node addresses in Gray code. 
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Table 14. Execution Times (ms) Data for All-to-All Reduction Using Reduce-and-Spread, d-Cycles, and 

One Cycle on the Connection Machine System CM-200* 

All-to-All Broadcast 

d-Cvcles 

Words 
Reduce-and-Spread 

lndir. + 
One Cycle 

per No. of Addr. + 
~ode !'odes Spread Send Total Arithrn. Comrn. Total Indir. Arithm. Comm. Total 

256 2 12.73 22.68 35.41 1.17 11.30 12.4? 0.95 0.20 2.93 4.08 

256 4 26.88 44.?7 ?1.65 2.51 12.81 15.:32 1.49 0.61 8.80 10.90 

256 8 33.30 80.32 133.62 7 . Ei 17.55 24.70 2.57 1.43 20.54 24.34 

256 16 107.00 138.60 245.60 12.74 26.63 39.3? 4.73 3.0? 44.05 51.85 

256 32 215.90 2:37.60 453.50 38.68 44.00 82.68 9.04 6.33 91.08 106.45 

256 64 436.20 410.90 847.10 78.99 75.65 154.64 1?.67 12.8? 185.10 215.64 
256 128 882.90 722.00 1604.90 172.54 133.00 305.54 34.92 25.94 373.40 434.26 

256 256 1786.00 1293.00 3079.00 298.95 229.70 528.65 69.42 52.10 750.20 871.72 

256 512 138.50 104.40 1304.00 1746.90 

* 64-bit precision; row major ord~r; nude addresses in Gray code. 

less efficient than using either a single-cycle algo

rithm or the d-cycles algorithm. 

For a 16 X 16 nodal array., the single-cycle al

gorithm is more efficient than the d-cycles algo

rithm for a final data set per node of at most 64 

elements. The single-cycle all-to-all reduction is 

about 6% slower than the corresponding broad

cast operation, whereas the d-cycles all-to-all re

duction is about 12% slower than the correspond

ing all-to-all broadcast. (In these percentage 

calculations, we excluded the time for the trans

pose required in all-to-all broadcast for row major 

ordering, in order to highlight the difference be

tween broadcast and reduction.) The perfor

mance trade-off between the single-cycle and the 

d-cycles algorithms is approximately the same as 

for the broadcast. 

Table 15 gives a comparison of the total execu

tion times for the three different all-to-all reduc

tion methods: reduce-and-spread followed by a 

subselection, a single-cycle algorithm, a d-cycles 

algorithm. The cycle-based algorithms yield a 

speedup of a factor of 5 or better over the reduce

and-spread function. 

Remark 

Note that the send (scatter) that follows the re

duce-and-spread may require more time than the 

reduce-and-spread function itself. Because all 

nodes have all the results after the reduce-and

spread, the desired result can be obtained either 

as a local subselection, or as a one-to-all person

alized communication from the first node in a row. 

Table 15. Execution Times (ms) and Speedups for Three Methods of Performing an All-to-All Reduction 
on the Connection Machine System CM-200* 

All-to-All Reduction 

Words i'\o. of 
d-Cycles One Cvcle 

per ~ode :'-Jodes Reduce-and-send Time Speedup Time Speedup 

256 2 35.41 12.47 2.84 4.08 8.68 
256 4 71.65 15.32 4.68 10.90 6.57 
256 8 13.3.62 24.70 5.41 24.54 5.44 
256 16 245.60 39.:37 6.24 51.8.') 4.74 
256 32 453.50 82.68 5.48 106.45 4.26 
256 64 847.10 154.64 .'5.48 215.64 a.9:3 
256 128 1604.90 305.54 5.25 434.26 3.70 
256 256 3079.00 528.65 5.82 871.72 3.53 
256 512 1746.90 

* 64-bit precision; row major ordering; node addresses in Grav code. 
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Table 16. Execution Time (ms) and Relative 

Speeds of All-to-One Personalized 

Communication (Gather) and One-to-All 

Personalized Communication (Scatter) by the 

Connection Machine System CM-200 Router* 

Words 1\"o. of All-to-One One-to-All 
Gather 

per :'>/ode ,\;odes (Gather) (Scatter) Scatter 

256 2 22.41 22.68 0.99 

256 4 35.9:3 44.77 0.80 

256 8 49.6? 80.32 0.62 
256 16 77. 7 4 138.60 0.56 

256 32 100.20 2.37.60 0.42 

256 64 165.10 410.90 0.40 

256 128 254.20 ?22.00 0.35 

256 256 457."?0 1293.00 0.:35 

* 64-bit precision; row major ordering: node addresses in 

Gray code. 

On the Connection :Machine svstem CM-200. 

both methods require approximately the same 

time. The latter operation is like a vector trans

pose, with the vector initially stored in the first 

node of a row, and stored uniformly across all 

nodes in a row after the transpose. This operation 

is the reverse communication of the send that 

gathers data to a single node before the broadcast 

in the send-and-broadcast algorithm for all-to-all 

broadcast. 

However, the one-to-all personalized commun

ication performed by the router requires consider

ably more time than the all-to-one personalized 

communication. 'fable 16 compares the timings 

for all-to-one and one-to-all personalized com

munication. Table 17 compares the times for all

to-all reduction using the d-eycles algorithms with 

local index computation and index motion. Mov

ing indices is faster than computing them locally 

for 64 or more nodes. 

7SUMMARY 

We have presented detailed schedules for all-to

all communication algorithms for broadcast and 

reduction based on Hamiltonian cycles. The cy

cle-based algorithms perform the all-to-all broad

east in 2d - 1 steps. In each step, a pair of succes

sive memorv locations are transmitted in the same 

cube dimension, thereby exploiting the fact that 

there are two channels between each pair of Con

nection Machine system C~1-200 processing 

nodes. 

Fur bruadca;;t, both the :-~ingle-cycle and the d

cycles algorithms always yield better performance 

than an algorithm using the router for gathering all 

data into one node, followed by a spread. The 

speedup is in the range 1.5 - 3.2 for four or more 

nodes along an axis. The measured peak data 

motion rate for the d-cycles algorithm with indices 

moved along with the data is 2.54 Cbyte/s on a 

2048-node Connection Machine system C:VI-200. 

Without the index computations and correspond

ing local data reordering, the mea;;ured all-to-all 

broadcast peak rate is 5.4 Gbyte/ s. The measured 

peak data motion rates for all-to-all broadcast are 

summarized in Table 18. The data motion rate for 

spread is included for comparison but does not 

represent the time for all-to-all broadcast using 

spreads. 

For all-to-all reduction. the speedup of our 

Hamiltonian cvde-based algorithms is even 

Table 17. Execution Time (ms) ford-Cycles All-to-All Reduction with Index Computation and Index 

Motion* 

Words per :\o. of 

~ode lnitiallv :\odes AABC Indir. 

256 2 11.41 0.82 

256 4 12.93 1 ,;) 1 

256 8 17.70 2.89 

256 16 26.?9 5.63 

256 32 44.20 11.12 

2.36 64 75.91 22.12 

256 128 13:3.20 44.10 

256 256 230.30 88.08 

256 512 43.'i.OO 176.00 

* 64-bit precision; node addresses in Grav code. 

d-Cvcles All-to-All Broadcast 

Comp. Index 

Arith. Comp. Total 

0.22 0.13 12.58 

0.61 0.39 15.-H 

1.43 2.83 24.85 

:1.0? 4.04 39.53 

6.33 20.90 82.38 

12.91 44.00 154.90 

26.03 102.40 305.70 

52.2? 158.60 529.::30 

104.70 

.\love Index 

.\love 

3.97 

5.79 

8.74 

13.60 

2:2.60 

33.80 

68.10 

11?.10 

222.00 

Total 

16.42 

20.84 

:10.76 

49.09 

84.27 

149."?0 

271.40 

48"?.80 

93"?.70 
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Table 18. Data Motion Rates in Mbyte s- 1 per Node on CM-200* 
···------

All-to-All Broadcast 

Number 
l\o Index and Reorder Index and Reorder 

of :'-lodes d-Cycles One Cycle d-Cycles :viove Index 

2 0.65 0.66 0.33 0.52 0.20 0.18 

4 0.61 0.66 0.61 0.57 0.39 o.:H 
8 0.87 0.66 0.86 0.59 0.52 0.48 

16 1.10 0.66 1.16 0.60 0.68 0.63 

:32 1.iH 0.66 1.40 0.60 0.66 0.75 

64 1.50 0.66 1.62 0.60 0.70 0.85 

128 1.67 0.66 1.77 0.60 0.78 0.92 

256 1.87 0.66 2.13 0.60 0.85 1.07 

512 0.66 2.14 0.60 0.79 1.07 

1024 0.66 2.40 0.60 0.7:3 1.16 

2048 0.66 2.70 0.60 0.63 1.27 
·-·--· 

*All-to-all times computed from 123 clements per node prior to broadcast. The data motion rate for spread is ineluded for 

comparison. but does not represent the time for all-to-all brondeast using the spread algorithm. 

greater than for broadcast, with the range being 

5-8. 

The performance for the cycles- based algo

rithms is fairly independent of whether the data 

allocation is in row or column major ordering, and 

whether the nodal addresses are in binary or Gray 

code. However, the router performance depends 

significantly on whether the data allocation is in 

row or column major ordering. 

The d-cycles algorithm offers a good improve

ment in perfonnance over the single-cycle algo

rithm with respect to data motion. However, the 

local computation of indices is quite inefficient. 

This offset of the gain in communication time 

makes the single-cycle algorithm preferable for 

moderate size initial data sets, and few nodes as

signed to the axis. For 64 or more nodes assigned 

to an axis, it is more efficient in the d-cycles algo-

Table 19. Performance Data for Matrix-Vector and Vector-Matrix Multiplication on Different 

Connection Machine System CM-200 Configurations (64-Bit Preeision) 

Matrix 
Shape 

P><P 256 

Matrix-vector multiplication 

512 

1024 304 

2048 723 

4096 1190 

8192 1382 

12288 

16384 

24576 

Vector-matrix multiplication 

512 

1024 344 

2048 799 

4096 1.370 

8192 1846 

12288 

16384 

24576 

··--·~·-··--------------

~1flops/s Time (ms) 

~o. of :'-lodes :\o. of ~odes 

512 1024 2048 256 512 1024 2043 

6.90 

898 11.6 9 .. ')4 

1834 2"!86 28.2 18.:3 13.5 
2621 4it"i8 6101 9"7.1 51.2 :30.8 22.0 
2796 4992 60.5 

5162 983:3 104.0 

10785 112.0 

6.09 

10:37 10.5 3.09 

2059 2844 24.5 16.:3 11.8 
3093 5103 6991 72.7 4:3.4 26.:3 19.2 
:3553 6232 85.0 48.3 

6918 11621 77.6 46.2 
1:3742 87.9 
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FIGURE 21 Execution rate in Gflop/s for multiplica

tion of a P x P matrix bv a vector on Connection .Ma

chine system CM-200 (64-bit precision). 

rithm to move the indices along with the data than 

to compute the indices locally for hoth all-to-all 

broadcast and all-to-all reduction. 

We have incorporated the Hamiltonian cycle

based all-to-all communication routines in the 

matrix-vector and vector-matrix multiplication 

and rank-1 update routines of the Connection 

Machine Scientific Software Library, CMSSL 

[23], Version 3.0. A summary of the performance 

of the matrix-vector and vector-matrix routines 

are given in Table 19 and in Figure 21. 
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