All-to-All Communication on the Connection

Machine CM-200

KAPIL K. MATHUR! AND 2S. LENNART JOHNSSON

'David Shaw & Co., New York, NY 10036; e-mail: Mathur@deshaw.com
2Computer Science, Mathematics, and Electrical Engineering, University of Houston, 4800 Calhoun Rd., Houston, TX 77204-3475;

e-mail: johnsson@ecs.uh.edu

ABSTRACT

Detailed algorithms for all-to-all broadcast and reduction are given for arrays mapped
by binary or binary-reflected Gray code encoding to the processing nodes of binary
cube networks. Algorithms are also given for the local computation of the array indices
for the communicated data, thereby reducing the demand for the communications band-
width. For the Connection Machine system CM-200, Hamiltonian cycle-based all-to-all
communication algorithms yield a performance that is a factor of 2 to 10 higher than the
performance offered by algorithms based on trees, butterfly networks, or the Connec-
tion Machine router. The peak data rate achieved for all-to-all broadcast on a 2,048-
node Connection Machine system CM-200 is 5.4 Gbyte/s. The index order of the data in
local memory depends on implementation details of the algorithms, but it is well de-
fined. If a linear ordering is desired, then including the time for local data reordering

reduces the effective peak data rate 1o 2.5 Gbyte/s. © 1995 by John Wiley & Sons, Inc.

1 INTRODUCTION

All-to-all broadcast and reduction on distributed
memory architectures are fundamental operations
in several important linear algebra computations,
such as matrix—vector and vector—matrix multi-
plication, rank-1 updates, and matrix—matrix
multiplication. All-to-all broadcast is also critical
for the performance of so-called direct N-body al-
gorithms, where the evaluation of the pairwise in-
teractions between all particles form the compu-
tational kernel.

An all-to-all broadcast can be accomplished by
each node sending its data to a dedicated node.

This work was carried out while the authors were with
Thinking Machines Corp.
Received January 1993
Revised April 1995
© 1995 by John Wiley & Sons, Inc.
Scientific Programming, Vol. 4, pp. 251-273 (1995)
CCC 1058-9244/95/040251-23

either one source node at a time, or all at once,
followed by a broadcast of the data from the dedi-
cated node to all other nodes. All-to-all communi-
cation can also be realized by shifting data along a
Hamiltonian cycle {ring of all nodes). For high-
degree networks, like binary cubes, this idea can
be extended to the use of multiple Hamiltonian
cycles that balance the communication load and
maximize the bandwidth utilization [1, 15]. All-
to-all reduction is, in effect, the reverse operation
of a broadcast where combiners such as +, max,
or min replace the copy operation. Figure 1 shows
a single example of all-to-all reduction. The left
part of the figure shows the initial data distribu-
tion. Components with the same index are added
together. The result consists of eight components
distributed evenly across all nodes in a consecu-
tive (block) [12] manner. All nodes contain initial
as well as final data.

The work reported here considers two forms of
all-to-all communication in multiprocessor, dis-

252 MATHUR AND JOHNSSON

PO|PL|P2]|P3 Po{P1|P2]|P3
01246
1131517

-G e W b D
3 OB L e Lo BD = OO
3O OF B L B WD
- D O W L W = D

Before reduction After reduction

FIGURE 1 All-to-all reduction on a four-node sys-

tem.

tributed memorv architectures. In all-to-all
broadeast, each processing node broadcasts its
content to every other node in the system. In all-
to-all reduction, reduction operations are per-
formed concurrently on different data sets, each
distributed over all nodes such that the resulis of
the different reductions are evenly distributed over
all nodes. Algorithms for all-to-all broadeast and
reduction based on single and multiple Hamilo-
nian cycles in binary d-cubes are presented. The
performance of implementations of the Hamilto-
nian eycles-based algorithms is compared with
the performance of all-to-all communication
based on edge-disjoint, multiple spanning trees of
minimum height, and the performance of butterfly
network-based algorithms. The primary intent of
this article is to make available communication
primitives that make run-time decisions to choose
an optimal algorithm. Such primitives form the
core of scientific libraries on distributed memory
architectures.

In Section 2, we discuss the use of all-1o-all
broadcast and reduction in some matrix compu-
tations. Section 3 presents the relevant aspects of
the Connection Machine system CM-200. Secton
4 discusses in detail all-to-all communication
based on Hamiltonian cveles for binarv cubes.
Section 5 discusses all-to-all communication
based on spanning tree-based algorithms and
compares the expected performance of the differ-
ent approaches. Section 6 gives actual perfor-
mance data for all-to-all communication on the
Connection Machine svstem CM-200.

2 APPLICATIONS OF ALL-TO-ALL
COMMUNICATION

An efficient implementation of all-to-all broadceast
is of great importance for the performance of clas-
sical, direct N-body algorithms, in which every

particle interacts with every other particle. In a
distributed memory architecture, each processing
node must communicate the particle information
it stores in its memory to all other nodes. All-to-all
communication is also required in iterative solvers
for the finite element method {17] and in neural
network simulations [25]. In both of these cases,
the source of the all-to-all communication re-
guirement is matrix—vector multiplication.

In the case of the direct /V-body algorithms for
gravitational calculations, the identity of the parti-
cles is not of interest. The coordinate and mass of
each particle suffice, i.e., the array values suffice
(with the particle coordinates stored in separate
arrays). For matrix operations. the indices of array
elements are not stored explicitly but are required
for correct computations. In Section 4, we show
how the indices of the array elements can be com-
puted locally, thus reducing the need for com-
munications bandwidih. Below, we illustrate the
use of all-to-all communication in matrix compu-
tations.

The required data moton for matrix—vector
and vector—matrix multiplication and for rank-1
updates (outer products) depends on the data al-
location. As an example, consider matrix—vector
multiplication, y <~ Az, with the matwrix allocated
10 a one-dimensional nodal array with partitioning
by rows and with the input and output vectors
distributed evenly over all nodes as shown in Fig-
ure 2. An all-to-all broadcast of the input vector is
required to carry out the matrix—vector product.
No communication is required for the result vec-
tor. The matrix-vector muldplication can be ex-
pressed as (1) All-to-all broadcast of the input
vector and (2) Local matrix—vector multiplication.
If, instead, the matrix is allocated to a one-dimen-
sional nodal array with partitioning by columns,
as shown in Figure 3, and the input and output
vectors are distributed evenly over the processing
nodes, then no communication is required for the
input vector. but an all-to-all reduction is re-
quired for the result vector. The matrix—vector

2] X0 X1 X2 X3
P1{Y1| X0 X1 X2 X3
P2 |2 | X0 X1 X2 X3
P3 X0 X1 X2 X3

FIGURE 2 All-to-all broadcast for matrix—vector

multiplication.

PO P1 P2 P3 PO P1 P2 P3
Po [Yo[yolvolyo PO
Pl lY1vlYlY! P1

X = ESd
P2 1Y2|Y2]Y2]Y?2 P2
P3 |Y3[Y3/Y3]Y3 Y3|P3

A X Y

FIGURE 3 All-to-all reduction for matrix—vector
multiplication.

multiplication can be expressed as (1) Local ma-
trix—vector multiplication and (2} All-to-all re-
duction for the output vector

With the processing nodes configured as a two-
dimensional nodal array for the matrix, but as a
one-dimensional nodal array for the vectors, both
all-to-all broadcast and all-to-all reduction are
required in evaluating the matrix—vector product.
Figure 4 illustrates the data allocation for both
row major and column major ordering of the ma-
trix allocation. The data allocation shown in Fig-
ure 4 is typical on Connection Machine systems,
as explained in Section 3.

For a matrix of shape P X (allocated to a two-
dimensional nodal array in column major order-
ing, an all-to-all broadcast [8, 15, 19, 21] is re-
quired within the columns of the nodes for any
shape of the nodal array and for any length of the
matrix (J-axis.

After the all-to-all broadcast, each node per-
forms a local matrix—vector multiplication. After
this operation, each node contains a segment of
the result vector y. The nodes in a row contain
partial contributions to the same segment of y,
while different rows of nodes contain conuibu-
tions to different segments of y. No communica-
tionn between rows of nodes is required for the
computation of y. Communication within the rows
of the nodes suffices.

The different segments of y can be computed
by all-to-all reduction within processor rows, re-

Column Major Row Major
0 0 0 0
1 1 1 1
™ 0 2 4 [H 1 0 1 2 3 -
2 2 2 2
E. = xi E = Xi
i 4 4 4
5 5 5 5
1 1 3 3 7 H = 4 5 6 7 —
6 6 6 6
7 7 7 7
y A x y A b

FIGURE 4 Data allocation on a rectangular nodal ar-
ray.

ALL-TO-ALL COMMUNICATION 253

sulting in a row major ordering of y. But, the node
labeling is in column major ordering, and a reor-
dering from row to column major ordering is re-
quired to establish the final allocation of y. Thus,
for a column major ordering of the matrix ele-
ments to the nodes, matrix—vector multiplication
can be expressed as:

1. Ali-to-all broadcast of the input vector
within columns of nodes

2. Local matrix—vector multiplication

3. All-to-all reduction within rows of nodes to
accumulate partial contributions to the
result vector

4. Reordering of the result vector from row ma-
jor to column major order

The reordering from row major ordering to column
major ordering is equivalent to a shuffle or matrix
transposiuaon.

If the elements of the matrix 4 had been allo-
cated in row major order instead of column major
order, then a reordering from row major order to
column major order must be performed prior to
the all-to-all broadcast of the input vector. No re-
ordering is required for y. Thus, for a row major
ordering of mauix elements to nodes, the se-
quence of operations is:

1. Reordering of the input vector from row ma-

jor to column major order

All-to-all broadcast of the input vector

within columns of nodes

3. Local matrix—~vector multiplication All-to-
all reduction within rows of nodes to accu-
mulate partial conuibutions to the result
vector

X

With the matrix uniformly distributed across all
nodes, the arithmetic is load balanced for both
row major and column major order. The all-to-all
broadcasts and all-to-all reductions are per-
formed within the columns of the nodes and
within the rows of the nodes, respectively. The dif-
ferent broadcast operations and the different re-
duction operations are completely independent of
each other.

The communication requirements for vector—
matrix multiplication are similar to those for ma-
trix—vector multiplication. For outer products,
ya T, where y and x are column vectors, the com-
munication issues for x are the same as in matrix—
vector multiplication. For y, the communication
issues are the same as for the input vector in vec-

254 MATHUR AND JOHNSSON

tor—matrix multiplication. All-to-all broadcast
and all-to-all reduction are also required in ma-
trix—matrix multiplication [2, 6, 14, 18].

3 THE CONNECTION MACHINE SYSTEM
CM-200

The Connection Machine systern CM-200 [22]
has up to 2048 nodes each consisting of a float-
ing-point process or 4 Mbyte of local memory, and
communication circuitry. The nodes are intercon-
nected via a binary d-cube network, with a pair of
bidirectional channels between adjacent nodes. In
a binary cube network, each node has a neighbor
for each bit in its binary address. The number of
nodes is N = 27 There exist d edge-disjoint paths
between each pair of nodes. Using multple paths
between nodes for maximum bandwiddth utiliza-
tion is the objective of the algorithms presented
here. We then compare the performance of these
algorithms with a few alternative implementa-
tions.

Each node in a Connection Machine system
CM-200 can communicate concurrently on all its
communication channels. The primilive com-
munication operation is an exchange. The mem-
ory accesses it a node for each communication
step are serialized. Fach node supports one 4-
bvte wide access at a time to its local memory. The
clock frequency is 10 MHz.

The programming model used for the Connec-
tion Machine svstems uses a global address space,
and each array is distributed as evenly as possible
across all nodes. In a consecutive data allocation
[12], a number of successive data elements along
each axis are allocated to a node. For a one-di-
mensional data array of M elements allocated to N
nodes, [¥] successive elements (a block) are as-
51gned to the same node. In cyclic data allocation
{12] of a one-dimensional array. elements {li=j
mod N, 0 = j < M} are allocated instead to the
same node. Cyclic data allocation is currently not
supported on the Connection Machine systems
but is included in Fortran D [7]. Vienna Fortran
[5, 26], and the proposed high-performance For-
tran (HPF) standard [10]. Cyclic allocation may
yield improved load—balance with respect to
arithmetic {12] or with respect to communication
[16, 24]. In the case of mulddimensional arravs, it
is also necessary to determine how many elements
along the different axes shall be allocated 10 the
same processing node. or equivalently, how the
set of processing nodes shall be configured. The

Connection Machine run-time system determines
the nodal array shape based on the data arrav
shape. such that the local subarrays have axes of
lengths as equal as possible. We refer to such a
layout as a canonical lavout. In the following, we
assume consecutive, canonical layouts. Modifving
the derivations to cyelic allocation is straightfor-
ward.

Regular grids are subgraphs of binarv d-cubes.
A Gray code has the property that successive inte-
gers differ in the code by a single bit, which. with a
suitable labeling of the nodes in the bmar\ cube,
corresponds to the traversal of a smgie er}ge.
Thus, Gray codes can be used in preserving adja-
cency in data arrays when mapped to binary cube
networks. For mulidimensional arravs, encoding
each axis separately in a Gray code preserves ad-
jacency. But, such an embedding makes efficient
use of the processing nodes only when the data
array axes have lengths equal 1o powers of 2. For
lengths of other axes, adjacency cannot be pre-
served for a node-efficient mapping {3, 4. 11}. On
the Connection Machine system CM-200. the de-
fault mapping of data arrays is based on a binary-
reflected Gray code encoding [9, 12, 18] of the
index along each axis separately. Only the part of
the index corresponding to the node address is
encoded in a binarv-reflected Gray code. Binary
encoding is alwavs used for local dddresse

A d-bit binary-reflected Gray code, G, is a se-
quence of 2 nonnegau\e numbers in lhe range
0.1,21= 1% Gy = (6,00 G,

(1(2‘1 - 1)) deﬁned recursively [18] by:

= (G1(0), G4(1)), where G1(0) = G4(1) = 1.
0l1G.4(0)
0l1G4(1)

o

olG (24 —
||, (24 —
16,24 -
1G4 (24

Gd’+1 =

[R

16, (1
1G4 (0)

In the following, we refer to this binary-re-
flected Gray code simply as Gray code. The 3-bit
Gray code given in Table 1 cle: 1r1\ shows the re-
cursive reflections in the code. Tt is also casily seen

Table 1.

A Binary-Reflected Gray
Code on 3 Bits

Integer

Gray Code

000
001
011
010
110

ALL-TO-ALL COMMUNICATION

255

111

101

Step PO 3 P2]
Y0 bY] A1 0
o Y1 Y1 Y1 Y1
Y2 Y2 Y2 Y2
Y3 Y3 Y3 Y3
YO YO+Y0 Yo
1 Y1 Yi Y1+Y1
Yi+Y2 Y2 ¥2 -
- Y3+Y3 Y3 Y3
Y0 - YO+ Yi+Y0
2 Yi+Y14Y1 Y1 . -
Y24+Y2Z4Y2 Y2 -
- Y3+Y3+Y3 Y3
YO+Y0+Y0+Y0 -
3 - YIHYI4+YI4YL -
- Y24+Y2+V2+Y2
- - YI+Y34Y3+Y3

3OS Ut b W DD e D

100

that the Gray code defines a Hamiltonian cyele.
The sequence of bits that change in traversing the
Gray code from beginning o end is known as the
transition sequence. In the example of eight inte-
gers, the transition sequenceis 0, 1,0,2.0, 1, 0.
and 2, with the least significant bit being bit 0.

4 ALL-TO-ALL ALGORITHMS USING
HAMILTONIAN CYCLES

4.1 A Single Hamiltonian Cycle

Figure 5 illustrates the idea of all-to-all broadcast
using a single cvcle, whereas Figure 6 shows all-
to- aﬂ reduction. In these figures, it is implicitly
assumed that node addresses are encoded in Gray
code, such that all communications are nearest
ncxghbor By performing the evclic shifts in Figure
5 as left CV(‘hc shifts, all elements arrive in order in
node PO. In this node. local memory address s
contains array element s. 0 = s < N for N nodes,
The local memory reordering required for node j is
s« {s — j) mod N.ie., a cvelic shift on the local
memory addresses.

If the Gray code path is used for node addresses
in binarv order, then a local code conversion is

FIGURE 6 All-to-all reduction through evelic rota-
tion.

required after the cvelie rotation among nodes has
been completed. Figure 7 illustrates this fact. The
array index in local memory address s of node 0 is
G\Sﬁ In general. let P4 be the node address in
binarv code. Then. local memory address s in
node PA contains the array element with index
G((s + G PA)) mode N}. For instance. consider
PA = 101 and s = 1. The integer with Gray code
101 is 6. The Gray code of 1 + 6 = 7 is 100,
which is the second entry in the column for node
5.

Note that if each element in the examples in
Figures 5 and 7 represents a block of elements.
then moving these blocks as indicated in the fig-
ures results in a final distribution consistent with a
consecutive data allocation. Converselv, a block
partitioning of the data in each node prior to all-
to-all reduction also yields a final data disuibu-
tion consistent with a consecutive allocation.

4.2 Multiple Hamiltonian Cycles

Broadcast

Johnsson and Ho [13] show that d Hamilionian
cycles fully exploit the communications band-

Node

0

1

2

3

4

3

6

7

000
001
011
010
110
i
101
100

Q01
011
010
110
111
101
100
000

010
110
111
101
100
000
001
011

011
010
110
111
101
100
000
001

100
000
001
011
010
110
111
101

101
100
000
001
011
010
110

i

110
111
101
100
000
001
011
010

111
101
100
000
001
011
010
110

Step | PO | P1| P2 | P3
0 X0 | X1 X2]X3
1 X0 X1| X2 X8
X1]X2]X31X0
X0} X1 | X2} X3
2 X1 X2 X3! X0
X2 | X3;X0|X1
X0 X1 | X2} X3
3 X1 | X2 | X3 | X0
X2 | X3 | X0 X1
X3 X0 X1]X2
FIGURE 5 All-to-all broadcast through cyclic rota-
tion.

FIGURE 7 The index allocation resulting from 29 cy-
clic shifts along a Gray code path for binarv-encoded
node indices.

256 MATHUR AND JOHNSSON

Step [Mem | PO P1 | P2 P3| P4 | Ps | P6| P7 | Dim

Init. 0 00 01 02 03 04 05 06 07
1 10 11 12 13 14 15 16 17
2 20 21 22 23 24 25 26 27

0 01 00 03 02 05 04 07 06 0

0 1 12 13 10 11 16 17 14 15 1

2 24 25 26 27 20 21 22 23 2

0 03 02 01 00 07 06 05 04 1

1 1 16 17 14 15 12 13 10 11 2

2 25 24 27 26 21 20 23 22 0

0 02 03 00 01 06 07 04 05 0

2 1 14 15 16 17 10 11 12 13 1

2 21 20 23 22 25 24 27 26 2

0 06 07 04 05 02 03 00 01 2

3 1 15 14 17 16 11 10 13 12 0

2 23 22 21 20 27 26 25 24 1

o 07 06 05 04 03 02 01 00 Q

4 1 17 16 15 14 13 12 11 {.10 1

2 27 26 25 24 23 22 21 20 2

0 05 04 07 06 01 00 03 02 1

5 1 13 12 11 10 17 16 15 14 2

2 26 27 24 25 22 23 20 21 0

0 04 05 06 07 00 01 02 03 o]

6 1 11 10 13 12 15 14 17 16 1

2 22 23 20 21 26 27 24 25 2

FIGURE 8 All-to-all broadcast using d channels in a
d-cube with nodes labeled in binary order.

width in a binarv d-cube for all-to-all broadcast
and reduction. Figure 8 shows the 27 — 1 steps
required to perform an all-to-all broadecast using d
Hamiltonian cycles on a binary d-cube. In Figure
8, node addresses are in binary order. Flrrure 9
shows an all-to-all broadcast with node addresses
in Gray code order. Initially, there are d distinct
elements in each node. After the broadcast. each

Step [Mem { PO [P1 [P2 [P3| P4] P5 | P6 | P7 | Dim
Init. 0 00 01 03 02 07 06 04 05
1 10 11 13 12 17 16 14 15
2 20 21 23 22 27 26 24 25
0 01 00 02 03 06 07 05 04 0
0 1 13 12 10 11 14 15 17 16 1
2 27 26 24 25 20 21 23 22 2
o 02 03 01 00 05 04 06 o7 1
1 1 14 15 17 16 13 12 10 11 2
2 26 27 25 24 21 20 22 23 0
0 03 02 00 01 04 05 07 06 4]
2 1 17 16 14 15 10 11 13 12 1
2 21 20 22 23 26 27 25 24 2
0 04 05 07 06 03 02 00 01 2
3 1 16 17 15 14 11 10 12 13 0
2 22 23 21 20 25 24 26 27 1
0 05 04 06 Q7 02 03 01 00 0
4 1 15 14 16 17 12 13 11 10 1
27 |25 | 24|26 |27 |22 3 [2120 2 |
0 06 07 05 04 01 00 02 03 1
5 1 12 13 11 10 15 14 16 17 2
2 24 25 27 26 23 22 20 21 0 |
0 o7 06 04 05 00 01 03 02 0
6 1 11 10 12 13 16 17 15 14 1
2 23 22 20 21 24 25 27] .26 2

FIGURE 9 All-to-all broadcast using d channels in a
d-cube with nodes labeled in Gray code order.

node has a total of d29 elements. With d channels
per node, this operation requires at least 27 — 1
communications, because d elements are already
present in each node before the broadcast. The
algorithm below [15] requires precisely that many
communications.

For the algorithm using d Hamiltonian cvcles.
each node exchanges d elements concurrenly in
each step. When there are M' > d elements in
each node, the local memory is viewed as [%
blocks, of d elements each. The local memorv ad-
dress s consists of a block index, & (0 = &k < [},
and an address, i (0 = { < d). within the block. For
d = 3, the exchange sequence for location zero
(i = 0) within a blockis 0,1, 0,2, 0.1, 0, i.e.. the
same as the transition sequence in Table 1 The
exchange sequence for location one is 1, 2. 1, 0,
1, 2, 1; for location two, itis 2, 0, 2, 1, 2 0.2.In
general, i ty. 4, . . lpi_y is Lhe exchdnge se-
quence for location zero, then the exchange se-
quence lor location / is (ty +) mod d. (¢, + ()
mode d, {tz + i) mod d, (t2—9 + i) mod d.
Clearly. no two exchanges use the same dimen-
sion in any step.

For node addresses in binary code order, it can
be shown that on completion, the index in local
memory address s =7 - M' + k- d + iis: PA®
shi(G{j))-M' + k-d + i where P4 is the node
address in binary code as before. sh{-) is a left
cyclic shift of the bit string representing the argu-
ment, and 0 = < 279 For node addresses in Gray
code order. the index in memory location zero ini-
tally is G~1(PA). On completion of the all-to-all
broadcast, local memory address s = ;- W' + k-
d + i in node PA contains data with index
(G YPAYD G sG] - M +k-d+ 0

Note that the quantides sh{(G{/)} and
G Yshi(G(;))) are identical for all nodes. Only
PA, the binary address, and G~'{PA). the Gray
code address, are unique to each node.

Note further that the index order for i = 0 in the
d cycles algorithm is the same as in the single
Hamiltonian cycle algorithm.

Reduction

The all-to-all broadcast algorithm. using Hamil-
tonian cvcles in a binary d-cube. can be adapted
to all-to-all reduction. With d - 27 variables in
each node iniiially, each node in a 27 cube accu-
mulates d distributed variables. In each commun-
ication step, one exchange is performed on all d
channels in each node, as in the broadcast algo-
rithm.

Step | Mem PO PL I P2} P3iP4|P5|P6I P7| Dim
O . + o
1] 1 ® + 1
2 T p)
4] fe) . + 1
1 1 a . + Z
2 o + 0
0 o o) + r . 4]
2 1 Je) O + . 1
2 o |+ o le 2
0 + o lo |le o 2
3 1 o) O + e Q 0
2 Q (ol o] !
0 e |+t 10 lolo o | ©
4 1 Q O le o + 1o 1
2 e 1o lo tio o 2
o +1lo le 1o lo o lo 1
5 1 ol t+tlolo lo e 0O 2
2 o lo lo |+ e lo o 0
0 + |le lolo o o lo lo 0
6 1 + o le [0 1o lo lo o 1
2 tlolo o le lolo o 2

FIGURE 10 All-to-all reduction performed on d dis-
tributed variables with all d results resident in node zero
on completion. Local memory addresses and node ad-
dresses in binary order.

For the description of the reduction algorithm,
we first consider the accumulation of a single set
of d distributed variables. Each of the d distrib-
uted variables has one element per node. Each
distributed variable is accumulated independently
of the others. with the results accumulated to
node zero, The reduction is illustrated in Figure
10. A filled circle denotes a partial sum being sent.
+ denotes a partial sum being received and added
to a local variable, and an unfilled circle denotes
values already added into a partial sum. Compar-
ing Figure 10 with Figure 8. we notice that the
data motion in Figure 10 is simply the reversed
data motion of the elements originally in node zero
in Figure 8.

The example in Figure 10 is an all-to-one re-
duction. An all-to-all reduction is obtained by
considering an initial data set per node of d - 2¢
elements, instead of d elements. Each block of d
variables distributed across all nodes is accumu-
lated to a single node. with different blocks of d
distributed variables accumulated to different
nodes. Each block is accumulated in a way similar
to the single block of d distributed variables in an
all-to-one reduction. By performing an exclusive-
or operation with node address j on all node ad-
dresses used in communications for the block with
destination node zero, the destination of the result
of the reduction for the block becomes node j in-
stead of node zero. The effect of the exclusive-or
operation for each step is shown in Figures 11

ALL-TO-ALL COMMUNICATION 2

i
¥

Mem | PO Pl | P2 PBI P4 P5|P6| P7T | Dim
0 'Y + Q
1 'Y + 1
2 + 2
3 + [¥ 3]
4 + 1
5 [) + 2
6 ® + 0
7 + ® 1
8 r'y + 2
9 + ® 1]
10 + e 1
11 . 4 2
12 I 4+ 4]
13 . + 1
14 + [y 2
15 +le 0
16 | 'Y + i
17 + 2
18 ® + 4]
19 -+ ® 1
20 + ® 2
21 + | @ 0
22 + ® 1
23 + P 2

FIGURE 11 All-to-all reduction step 0 on a 3-cube.
Memory addresses and node addresses in binary order.

through 17. In each step. each node exchanges
one element on each of its channels. and performs
one addition for each of distinet sums. The total
number of sums computed in each step is d - 24,

The blocking used for the all-to-all reduction is
identical to the blocking for all-to-all broadcast.
This blocking is consistent with a consecutive data

Mem | PO P1 [P2 P3| P4} P5P6| P7T | Dim
g o) . + 1
1 o » T 2
2 o ° -+ 0
3 Iy le) + 1
4 o) ° + 2
5 o) + . 0
6 b o) * 1
7 ¥) 0 + 2
8 lo e |+ Y
9 + o) 1
10 ® o + 2
11 O + . 1]
12 o) () + 1
13 o+ o) ® 2
14 Y + o ¢
15 P + 1
16 + o PY 2
17 + | o 0
18 + O 1
19 + Py O 2
20 Py + o 0
21 + . o 1
27 |+ ° o Z
23 + o [¢]

FIGURE 12 All-to-all reduction step 1 on a 3-cube.

Memory addresses and node addresses in binary order.

258 MATIIUR AND JOHNSSON

Mem | PO[P1 | P2 P3| P4] P5|[P6] P7] Dim
0 o) O + ° 0
1 O o) + 'Y 1
2 o) + O ° 2
3 o lo + 0
4 o) fo) + 1
5 + ® o) 2
6 + o) o) 4]
7 o) o) +] 1
8 lo | + o le 2
9 I + fo) o 0
10 1o 0] + 1
Hl+1o e o 2
12 o) + Y 0
13 + 0 0 1
14 o le o |+] 2
35]| o e | + 0
16 + Y ol o) 1
17 @ + 2
18 + o 1o 4]
15 T = 1
20 o o + 2
21 + o lo 0
22 + o o) 1
2L le lo tlo 2

FIGURE 13 All-to-all reduction step 2 on a 3-cube.

Memory addresses and node addresses in binary order.

allocation. i.e., d successive sums are allocated 1o
the same node on completion. Furthermore. with
both memory addresses and node addresses in bi-
narv order. successive blocks have successive
nodes in binary code as their destnations. Thus.
the local block index is the address of the node
where (he final sums shall be allocated.

Mem | PO [Pl [P2 [P3| Pi]| P5 [P6 | P7 [Dim
0 + olo e o | 2
L oltle o | 0
2 + o le o lo 1
3 t 10 1o |O 2
4 lo 0 o |+t 10 0
5 + e loO o lo 1
6 + o lo lo 2
7 o) o |+ | e | O
8 lo le t1lo lo !
9 + o le lolo 2
10 1o o 0 o |+ 1 0
11 e + o lo !
12 o lo + 2
13 | + | o) 0 0
14 o lo tlo | | !
15 1o lolo le i
16 + o) o o) 0
17 o o + 1
18 ‘e lolo |o |+ 2
19 o) +t e Q Y
20]o o le + 1 1
21 o o + 2
22 1o e |t 10 ol 0
B o lo o [* !

FIGURE 14 All-to-all reduction step 3 for a 3-cube.

Memory addresses and node addresses in binary order.

Mem | PO] P1 | P2 | P3| Pa| P5] P6 | P7 | Dim
0 +lolo lo o o
1 Q o o) + o 1
2 e lo lo +1lo lo 2
3 tle o o {o 0
4 o) /o) O e {0 + 1
N) o 1o [% o 10 2
6 + o lo Jlo lo 0
7 o o) tl1o |e |O 1
8 Q 1o e o o + 2
2 tle o lo lo lo o
10 o [} ol+tjlo e 1
11 |ogloje o lo | + 2
12 oo |loilo + 9
13 e lo | +t]lo Q Q 1
14 + o) o o) 2
15 lololo lo + o
16 o) o) + o 1
7 | + o lo le o lo 2
18 loflololo (e |+ 0
19 + o) ® o o) o) 1
20 jo lo +lo [0 2
21 o Jlololo [+le 9
22 lol+ 10 |e o | 0 1
23 1o |9 + o o 2

FIGURE 15 All-to-all reduction step 4 on a 3-cube,

Memory addresses and node addresses in binary order.

Data Reordering: All Addresses
in Binary Code

The Data Motion for Block Zero. We first con-
sider the data motion for block j = 0. The transi-
tion sequence for a binary-reflected Grav code is
svmmetric with respect to its midpoint. Thus. per-

Mem | PO | P1 | P2 | P3| P4 | P5 | P6 | P7 | Dim
Y t1o e Jo |lo o 1o 1
1 ol +tlo [0 o Q 2
2 o lo lo + o3l o) 0
3 + e o Jo o Jlo Jlo 1
4 lo o) +lolo o 2
5 o) 0 1o le |l +]o lo 0
6 Q + {0 o0 o {o 1
7 + 1o e _|O o) 2
8 o lo o o lo [+ 0
S |e o | + 0 o |o 1
10 |o [+ 10 o) o lo 2
11 lolo lo o lo le | + 0
12 lojolo o tlo e 1
13 1o {0 o} o |+ 1lo 2
14 | + o lo o lo io 0
15 o lo lo + Q 1
1 lolo lo |e lo o) + 2
17 e | + {0 fol o lo 0
8 o to lo O _le + {1
19 e Jolo fo |+ 0 2
20 Jo Jo I+ e lo lo o 0
21 1o olo le o |+ 1
2 1o o lolo |+t 1o 2
2 o lo le l+lolo [o o

FIGURE 16 All-to-all reduction step 5 on a 3-cube.

Memory addresses and node addresses in binary order.

Mem | PG| P1 | P2 | P3| P4] P5 | P6 | P7 | Dim
g + e lolololo lo lo o
1 + 10 o jo lo 1o o 1
2 +lo o io e lo o lo 2
3 e |+t 1o o to o lo o o
4 ol tio e lo lo lo o i
5 ol +lo lo lo o lo 2
6 lojlo | +|e o lo lo o 0
7 e to ltig jlo o lo 1o i
8 [oNiE M) tlo jo lo ie lo 2
9 O lo le +lo lo lo lo 0
0 |lolelol+loilo lo |lo 1
1 lololol+jiololo le 2
12 lolo o ilo + e jo 1o 9
1B 1o lo lo lo + o le [0 1
4 @ 10 lo o +lo lo 1o 2
15 lolololo lel*+lolo 0
8 jolojolojoi+io |e 1
17 lo le lololol+tlo lo 2
18 lolololo jolo |+ e o
19 ipolololo e lo | +1o 1
20 jolo ledo joio [+ 1o 2
21 lolo lojo lojo le + 0
2 o lololo lo le o |+ 1
28 loio lo o lo 1o + 2

FIGURE 17 All-to-all reduction step 6 on a 3-cube.

Memory addresses and node addresses in binary order.

forming the exchanges in reverse order is identical
to the original wansition sequence. The exchange
sequence for a given local memory location is the
same in broadeast and reducdon. However, the
starting location for the reduction is the location
where the last copy is to be deposited in the
broadeast algorithm.

From item 3. we see that for local memory ad-
dress zero, the exchanges generate the bmdn -re-
flected Grayv code addr@x >5 in reverse order. The
addresses for sequence { is obtained by an / step
cyclic rotation of the addresses of sequence zero.
Thus. for block j = 0 and memory and node ad-
dresses in binary code the sending node address
for local memory address i in blockj = 0 in step u
is shi{G (29 — 1 = u}). and the receiving node ad-
dress for local memory address i/ in block j = 0 in
step w is sh'(G (27 — u)).

The Data Motion for Block |. The destination
node for block j is node j. The starting node for
block ; is obtained by performing an exclusive-or
operation with j {translation) on the starting ad-
dresses for block j = 0. Exchange sequence ¢ is
used for all local memorv addresses { relative to
the beginning of the blocks. i.e.. all local memory
addresses such that s mode d = i. Thus,

1. the starting address for local memory ad-
dress i in block jis: j @ 271 +imodd,

'PA D shilG;

ALL-TO-ALL COMMUNICATION 259

2. The exchange sequence for local memory
address {inblockjas: (tp + i mod d. {4y + i}
mod d. (ta + i) mod d. Ly + (]
mod d.

3. The sending node address [or local memory
address ¢ in block j in step u is: j @ sh’
(G21 =1 = u)).

4. The receiving node address for local mem-
orv location ¢ in block j in step w is: j @
sh! (G20 — u).

The above formulas give the sending and re-
ceiving nodes for a given block j and local memory
address { within the block. However. at every step
each node only sends the contents of d local mem-
ory addresses and reccives data elements to be
added into the contents of d local memory ad-
dresses. Thus, it is of more direct interest to deter-
mine for each node which local memory address
of what blocks is participating in communication
step u. Node PA is sending and receiving data
from local memorv address { within block jif P4 =
JB shi(G(2' — 1 —)y and PA = j & sh(G(27 —

w)), respectivelyv. Thus, the block number / for lo-
CaI memory address / within node P4 in step u is

= PA® shi (G(29 = 1 — u)) for sending and j =
(24 — 1)} for receiving.

Note that the exprmsmna shi x‘(;!\iﬁd -1 - up
and sA’ (G127 — u)) are common 1o all nodes.
Thus. on the Connection Machine systems. these
expressions can be evaluated on the front-end.

Data Reordering: Node Addresses in
Gray Code Order

In the broadeast algorithm. the final destina-
tion for local memory address zero {f=0.7/= 0} of
node zero is node 2771, with memory and node
addresses in binary code. The exe hanne sequence
used for this memory location is the same as the
transition sequence in a binarv-reflecied Gray
code with the dimensions taken in order. Thus.
the final destination is the last address in the Gray
code. with dimensions in order, i.e.. node 277!
The final destination of local memory address { of
block j = 0 within node zero is node 2 471 Hmodd,
because the ith exchange sequence is obtained
from the exchange sequence of local address zero
by adding { mod d' to the exchange dimension for
local address zero. For instanc e, fnr d = 3 the last
destination of the content of local memory address
zero in node zero is node {our, of location one it is
node one. and of location two It is node two. as
seen from Figure 8.

260 MATHUR AND JOHNSSON

For the all-to-all reduction algorithm with
memory and node addresses in binary code, we

have for block j = 0:

1. Starting address for local memory address i
within block j = 0 is: Qid=1+imodd

2. The exchange sequence for local memory
address i in block j = 0 is: {t, + {) mod d.
(t1+ i)modd, (ts + i)y mod d,. . ., (tya_o +
{) mod d.

3. The address of the receiving node for local
memory address ¢ in block j = 0 step wu is:
2((1—1+i)m0d(169 21{[,,+i)rnf)(i(17 u= {0, 1, 27 C
24 — 1},

4. The sending node in step u = 1 is the receiv-
ing node in step u — 1.

When the result of the all-to-all reduction is de-
sired in Gray code order, then instead of selecting
block j as described above, the block whose Gray
code is j should be selected. For instance, for d =
3, 7 has the Gray code 100. Thus, in every in-
stance when block 4 is selected for the result in
binary order, block 7 is selected for the result in
Gray code order. Then, on completion, the reduc-
tion on block 7 is available in node 4.

Thus, for the result in Gray code order, the
block index j chosen for local memory address
and exchange sequence 7 is

1.7 = G " (PA @ shi(G24 — 1 — s))) =
G PAYD T '(shG (21~ 1 — 5))) for send-
ing.

2. j= GV PADshi(G(27 - 5))) = G (PA)D
G shi(G (2 - s))) for receiving.

The address G ~1(PA) is the node address in Gray
code. Thus, the operations unique to a node con-
sists in determining its Grav code address and an
exclusive-or operation.

All-to-All Reduction on Local Data Sets
of Arbitrary Size

For a local data set of size M, 29 blocks are created
for all-to-all reduction on a binarv d-cube. When
M mod 29 # 0, then not all blocks have the same
size. On the Connection Machine systems any ar-
ray with a size that is not divisible by the number
of nodes over which it is distributed is allocated
such that [£] elements are assigned to the first o =
(M/[%]] nodes. The remaining M — a [3}] 27 ele-
ments are assigned to a single node, and the re-
maining 29 — o — 1 nodes are assigned no ele-

ments. Thus, in blocking a data set for all-to-all
reduction, we first create & + 1 nonempty blocks.
a of which consists of [{] consecutive memory lo-
cations. Each block is further subdivided into 2d
subblocks. For the first @ subblocks, the maxi-
mum number of elements in a subblock is 8 =
[“24]. All elements within a subblock are subject
to the same exchange sequence, while different
subblocks are subject to different exchange se-
quences. The number of subblocks with 8 ele-
ments each is y = [M/27] — d(8 — 1). The mem-
ory partitioning is illustrated in Figure 18.

For each exchange step u, a pair of successive
elements is transmitted from a subblock (J, 7) se-
lected for transmission in dimension { in that ex-
change step. The exchange step u is not com-
pleted until all data elements within a subblock
selected for transmission have been transmitted.

The actual transmission can be viewed as con-
sisting of three phases:

1. The movement of data to be transmitted in
one exchange to a buffer area. a departure
lounge.

2. An exchange of 2d 32-bit data elements.
with the received data being stored in a
buffer area, an arrival lounge.

3. Reduction on local data, and data in the
arrival lounge.

Successive pairs of elements in the departure
lounge are taken from subblocks with indices i =
{0,1,2,. . .., d — 1} in blocks j determined by
the expressions given previously. If there are no
more elements in subblock { to be transmitted.
then the buffer location is empty, and the corre-
sponding channel not utilized. The number of ex-
changes for each step w is [47], where S is the num-
ber of 32-bit words required for the data type (S =
2 for real-8 and complex-8 and S = 4 for com-
plex-16). The reduction after each exchange step
is performed by adding the contents of the arrival
lounge for step u to the contents of the departure
lounge for step u + 1. with the elements for the
same exchange sequence i being added together.

5 OTHER ALGORITHMS

A few alternatives to the Hamiltonian eycle-based
algorithms for all-to-all communication are:

1. Each node broadcasts the values directly to
all other nodes {one course node at a time)

Block | sub- | subblock Block
block size size
a i
1 [

2 B
- 8 [M/29)
g
0 y—-1 J¢]
d
v | 8-t | (=M
v+1 =1
- 8-1
. G-1
d-1 3-1
0 g8
1 8
2 8
- 3 [M/29
[E]
1 4 =1 Fél
4
v | -1 | (=)
v+1 B-1
N B—1
. 8-1
d~1 8-1
0 B
1 [£]
2 E]
B [M/24]
: [
a—-1}1 -1 g
d
v | 8- (6 = [
v+1 3-1
. 8-1
- B8-1
d-1 B-1
0 §
1 6
2 b
& M - afM[29
5

a £—1 H
c 51 | (5= [M=alM/2y)
e+ 1 §-1
- F—1
. §-1
d-1 5—1

FIGURE 18 Memory partitioning.

using multiple spanning trees, each of
which uses all the communication channels
of the binary cube (d edge-disjoint spanning
trees for a d-cube) [15].

Each node sends its data to a dedicated
node that broadcasts the data 1o all other
nodes with an algorithm using all channels
of a d-cube.

All nodes send their data to a dedicated

ALL-TO-ALL COMMUNICATION 261

node concurrently, followed by a broadcast
from the dedicated node to all other nodes.

4. All nodes send their data to all other nodes
using minimum height spanning wees, such
as d rotated spanning binomial trees [15].
This algorithm is equivalent to a butterfly
network-based algorithm.

Alternatives 1 and 2 use muliple spanning
trees to maximize the bandwidth utilization in
broadcasting the data from a single node. Nodes
are treated sequentially. Alternative 3 combines a
gather operation (all-to-one personalized com-
munication [14]) with a broadcast as in alterna-
tive 1, but there is only a single broadcast of all
data to be received by a node. In all-to-one per-
sonalized communication, each node sends data
to one node. {In all-to-all personalized communi-
cation, each node sends unique data to every
other node.) Alternatives 1 and 4 both have opti-
mum time complexity, whereas alternatives 2 and
3 require extra data motion. Table 2 summarizes
the performance estimates for the different algo-
rithms [15]. For the reduce-and-spread estimate
in Table 2, a subselection is assumed before car-
rying out the transpose required for data in
column major order. The transposed data volume
is a factor of 27 less than the data volume in the
reduce-and-spread function.

On the Connection Machine system CM-200
fairly well-optimized routines have been imple-
mented for broadcast from a single node. shifts
along a single Hamiltonian cvcle, shifts along & =
d Hamiltonian cvcles for a d-cube, and reduce-
and-spread in d-cubes based on rotated binomial
trees.

The broadcast function currenty available on
the Connection Machine system CM-200 assumes
that the source for the broadcast operation is the
first node in a segment (first row or column).
Thus, this function can only be used in alterna-
tives 2 and 3. The overhead in the spread function
is quite significant, as is apparent [rom the timings
shown in Table 3. This table shows timings for 2
to 32,768 32-bit elements per node on binary
cubes with 2 to 2048 nodes. Because of the large
overhead, only alternative 3 of the first three tree-
based algorithms is considered further.

The first step in alternative 3 is an all-to-one
personalized communication. The optimum time
for this operation is [} {15], where M is the num-
ber of elements gathered into a node. There is
currently no optimized routine available on the
Connection Machine systems CM-200 for this

262 MATHUR AND JOHNSSON

Table 2. Estimated Number of Element Transfers in Sequence for Different Broadcast Algorithms*

Ordering Operation

Time

Column major

{alternative 1)

Gather followed by broadcast {alternative 3)
Broadcast based on rowated binomial trees

{alternative 4)
Reduce-and-spread. wranspose

w »i}
Row major Transpose. broadeast using single Hamiltonian e
cvele
Transpose. broadcast using d Hamiltonian Ir i
cveles
Transpose, broadcast from one node at a time [z,
{alternaiive 1)
Transpose. gather. broadcast (alternative 3) 551 s
Reduce-and-spread [31d

Broadcast using single Hamiltonian evele
Broadcast, d Hamllmnldn cvcles
Broadcast from one node at a time

r:~_7 i,‘) 1. 1\
[l (27 = 1)

f (TTI‘J + d\){[

* M is the total number of 32-bit elements prior to the broadcast {or reduction’ operation.

communication.
is used instead. For matrix—vector multiplication
with the matrix allocated to a one-dimensional
nodal array through parttioning by rows. and the
vectors distributed evenly across all nodes, the
nodes send their segment of the input vector to
node zero. which then broadecasts the entire input
vector to every node. With a two-dimensional
nodal array shape in column major order for the
matrix, and a one-dimensional nodal array shape
for the veectors, all nodes within a node column
send their segment of the input vector to the first

Table 3.
CM-200 of Various Sizes

The Connection Machine router

node within the column. Then. this node broad-
casts all segmenis of the input vector within a
node column to all nodes in that node column. In
row major ordering, the send operation must also
accomplish a wansposition from row to column
major order. Although the wransposition is implicit
in the send, it has a significant impact on the rout-
ing time for the send. as shown in the performance
measurements in Section 6.

The optimal tanspose time for a binary cube
with two channels between each pair of nodes is
[3351113. 15]. The optimal time is proportional to

Time (ms) for Broadcast of Different Size 32-bit Data Sets and Connection Machine Systems

Number of

Number of Nodes

Elements 2 4 8 16 32 64 128 256 312 1024 2048
2 0.0366 0.383 0.448 0.502 0.573 .640 0.719 0.789 0.878 0.965 1.036

4 0.0366 0.383 0.448 0.502 0573 0.640 0.719 0.789 0.878 0.965 1.036

8 0.0623 0.416 0.480 0.505 0.576 0.644 0.722 0.792 0.881 0.968 1.040

16 0.1136 0.470 0.515 0.542 0.615 0.684 0.763 0798 0.888 0.975 1.046

32 0.2162 0.577 0.598 0.600 0.691 0.730 0811 0.848 0.939 1.027 1.101

64 0.4214 0.793 0.741 0.720 0773 0.856 0907 0947 1.042 1.133 1.168
128 0.8318 1.223 1.055 0.962 0.963 0984 1.044 1.045 1.247 1.305 1.344
256 1.6527 2.084 1.654 1.445 1.377 1352 1360 1.338 1.410 1.434 1.503
512 3.3139 3.805 2.882 2.410 2203 2.034 1.990 1.925 1946 1.953 2.001
1024 6.7319 7.247 2.310 4.342 3.825 3.491 3.287 3.098 3.021 2991 2957
2048 13.4530 14.129 10193 8.204 T7.067 6331 5844 544> 5210 5.028 4.910
4096 26,9059 27.895 19931 15,929 13.585 12.048 10.960 10.137 9.5388 9.102 8.782
8192 33.8115 55.426 39.437 31.379 26.619 23.4494 21.226 19.522 18.344 17.288 16.520
16384 107.6210 110.476 78.415 62.279 52.657 46.269 41.721 38.291 35.818 33.662 31.997
32768 215.2400 220.577 156.396 124.070 104.723 91.874 82.711 75.829 70.764 66.366 62.991

ALL-TO-ALL COMMUNICATION 2603

Step PO Pi P2 73 P4 5 P6 P7 Dirn
00 01 03 03 G4 05 06 07
Init. 10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
00401 00401 02403 02+03 04405 04405 06+07 06407]
0 10412 11413 10412 11413 14416 15417 14416 15417 1
20424 21425 22426 23427 20424 21425 22426 23427 2
00F01402+03 | 00401403403 | 00401402403 | 00401402403 | 04405F06+07 | 04405406407 | O4A+05+06+407 | 04-+05+06+07 T
1 10412414416 | 11413418417 | 10412414416 | 11413415417 | 10412414416 | 11413415417 | 10412414416 | 11413415417 2
20421424425 | 20421424425 | 22423426427 | 22423426427 | 20421424425 | 20421424425 | 22423426427 | 22423426427 0
00 — 07 GG - 07 00 - 07 00 - 07 G0 - 07 00 - 07 00 = 07 00 - 07 2
2 10 - 17 10 - 17 10 - 17 10 - 17 10 - 17 10 - 17 10 - 17 10 - 17 0
20 - 27 20 - 27 20 - 27 20 - 27 20 - 27 20 - 27 20 - 27 20 - 27 1

FIGURE 19

the size of the local data set but is independent of
the partitioning of nodes between rows and
columns.

Alternative 4 has been implemented for re-
duce-and-spread functonality on the Connection
Machine system CM-200. It uses a constant size
data set in all stages. Exchanges are performed
between pairs of nodes in d stages. as shown in
Figure 19. Each node computes d partial sums,
one for each of d distributed variables. The accu-
mulation and broadcast of distributed variable
zero use the dimensions in increasing order. The
accumulation and broadcast of distributed vari-
able { use dimension (¢ + {) mod d in step u. With
M elements per node and a double cube, the num-
ber of element transfers is [¥] d, which is a factor d
higher than an all-to-all reduce using d Hamilto-
nian cvcles. The reduce-and-spread function
vields 29 times as much local data as is desired for
an all-to-all reduction. The desired data are se-
lected from the result of the reduce-and-spread
operation.

With the matrix allocated 10 a two-dimensional
nodal array in row major ordering. the result of the
all-to-all reduction within rows vields the result in
the desired order. With a column major ordering.

Reduce-and-spread through butterlly nerwork emulation.

a reordering from row (o column major ordering
(transposition) is required after the all-to-all re-
duction.

If the node addresses are encoded in a Gray
code instead of a binarv code. then the ordering of
the elements in local memory is different. But, ex-
cept for local memory operations, all other opera-
tions are identical.

6 PERFORMANCE MEASUREMENTS

For all-to-all broadcast. we have implemented al-
gorithms based on a single Hamiltonian cyele, d
Hamiltonian cveles. and based on gathering all
column data into a single node followed by broad-
cast from that node. For all-to-all reduction. we
implemented the first two algorithms and com-
pared them with reduce-and-spread. We first
present the results for broadcast. then for reduc-
tion.

6.1 All-to-All Broadcast

Tables 4 and 5 summarize measurements for a
256-node Connection Machine system CM-200.

Table 4. Execution Times (ms) for All-to-All Broadeast Using Three Different Methods on the

Connection Machine System CM-200%

All-to-All Broadeast

Words per No. of Send-and-Spread d-Cycles One Cyele
Node Initially Nodes Send Spread Total Transpose Addr. Indir. AABC Total lIndir. AABC Touwl
4 16 220 092 312 0.90 1.84 057 1.00 431 1.17 1,00 3.07
8 16 3.82 1.38 5.20 1.13 3.52 062 110 657 1.21 1.66 4.00
16 16 8.00 2.30 10.30 1.68 336 073 185 7.62 131 3.03 6,02
32 16 9.59 4.14 13.73 1.80 3.39 089 335 943 156 576 912
04 16 19.19 7.82 27.01 3.54 414 1.55 641 1544 203 11.21 16.58
128 16 38.60 1517 53.77 6.55 5.24 287 1255 27.21 298 2213 31.66
256 16 77.74 29.88 107.62 1290 857 552 24.82 51.81 4.88 4397 61.75
512 16 156.70 59.31 216.01 25.66 15.44 10.80 49.43 101.33 8.68 87.63 121.97
1024 16 31580 118.20 434.00 51.43 29.07 21.38 98.49 200.37 16.27 175.00 242.70

* 64-hit precision: row major ordering: node addresses in Gray code.
] g)

264 MATHUR AND JOHNSSON

Table 5.
Connection Machine System CM-200%

Execution Times {ms) for All-to-All Broadeast Using Three Different Methods on the

All-to-All Broadcast

Send-and-Spread

d-Cycles One Cycle

Words per No. of

Node Initially Nodes Send Spread Total Transpose Addr. + Indir. AABC Total Indir. AABC Total
256 1 3.28 013 3.41 4.93 1.52 0.00 645 0.33 0 526
256 2 22,41 627 2868 1359 3.24 570 2253 063 293 17.15
256 4 3593 13.46 4939 1298 4.69 933 27.00 124 879 23.01
256 8 49.67 18.98 68.65 13.13 3.47 15,16 36,76 2.45 2051 306.09
256 16 7774 2988 107.62 1290 14.02 24.82 5174 4.88 4397 61.75
256 32 100.20 50.14 150.34 12,98 32.35 4251 87.84 9.75 90.91 112.64
256 64 16510 87.50 252.60 12.98 63.46 74.38 150.82 19.47 184.80 217.25
256 128 254.20 156.90 411.10 1291 131.20 131.80 276.91 38.92 372.80 424.63
256 256 457.70 286.70 T44.40 4.93 226.10 228.80 459.83 77.80 748.80 831.53

* 64-bit precision; row major ordering: node addresses in Gray code.

In Table 4, the nodes are configured as a 16 X 16
array. The length of the local segment of the vector
to be broadcast varies. In lable 2. the vector
length per node is fixed, while the number of
nodes along an axis is varied. Both tables assume
a row major ordering and node addresses in Gray
code. The column markf*d “total”” includes the
transpose time. Thus, all columns marked total
correspond to the same functionality.

From Table 5, we first note that the transpose
time is independent of nodal array shape, as pre-
dicted for an optimal algorithm, The wransposition
is done by the router, which thus shows a very
good performance behavior. The time per 32-bit
data element amounts to abour 25.1 us.

From the performance measurements, we con-
clude that both the single cvele and the d-cveles
algorithm are always faster than the send-and-

Table 6. Ratio of Data Motion Rates for the
Three Methods of All-to-All Broadcast on the
Connection Machine System CM-200%

All-to-All Broadcast
256 Words/Node

No. of Send-and-

Nodes Spread d-Cycles One Cycle

2 1 1.27 1.67

4 1 1.83 215

8 1 1.87 1.90

16 1 2.08 1.74

32 1 1.71 1.33

64 1 1.67 1.16

128 1 1.48 0.97

256 1 1.62 0.90

* 64-bit precision; row major ordering: node addresses in
Grav code.

spread algorithm for all-to-all broadcast. Table 6
summarizes the relative performance of the cycle-
based algorithms over the send-and-spread algo-
rithm. The improvement is in the range 1.27-
2.08. The measured data motion rate for all-to-all
broadcast on a 256-node Connection Machine
system CM-200 is about 0.3 Gbyte/s.

To compare the single cycle and d- -cvcles algo-
rithms, we consider the performance characteris-
tics of the two algorithms in detail. The execution
time for all-to-all broadcast through a single
Hamiltonian cvcle is expected to hehdve as

3/1” : S -
T?fj-[‘p = (Clq + ay {) 1) ‘(2([- 1)k

where ay is the overhead for each step of the algo-
rithm and ay is the exchange time for two 32-bit
data elements. M’ is the initial number of ele-
ments per node and S is the number of 32-bit
words per data element (S = 2 for real-8 and com-
plex-8). From Table 4, we derive a1 = 24.3 us
and a3 = 5.69 us.

With a Gray code ordering. the indirect ad-
dressing required for the reordering on completion
requires a time of

Tijj_ﬁ_g = a3 + <(l§ + (1%};’1/[; : S;)Q([,

where, from our performance measurements, az =
17.9 us, a, = 50.33 us, and a3 = 0.5 ps. Adding
T8 11 cand T 4 we get the total time for the all-
to-all broadcast based on a single Hamiltonian
cvele and nodes in Gray code order:

T = —6.38 =569 -M' S+ 74.6
24 + 6.19-M'-§- 21

In the d-cycles all-to-all broadcast algorithm,
the data motion between nodes is expected to
show a performance behavior of the form

where b4 is the overhead for each step of the algo-
rithm, b is the time for local memoryv references
for each step, and b3 the time for exchanging d
pairs of 32-bit words between a node and its
neighbors. From the column labeled d-cveles in
Tables 4 and 5, we derive: by = 41.94 us, b, =
0.17 us, and bz = 24.18 us.

in addidon to the data motion time. a signifi-
cant time is also required for local memory opera-
tions, even when nodes are labeled in Gray code
order. For the single-cycle algorithm, a node-de-
pendent block cvelic shift is required. In the d-
cveles algorithm, the reordering at the end. as il-
lustrated in Figures 8 and 9, requires [ull indirect
addressing. In addition, if the arrav indices are not
moved along with the data, index computation is
required according to the formulas given in “*Data
Reordering: All Addresses in Binary Code™. For
the index computation, there are 2d — 1 blocks
one for each remote node, for which index com-

putations are needed. Each such block consists of

2d subblocks of [elements each, with the final
subarray of size M (initial subarravs of size M’ =
M/724 elements each). Then, there is a remainder
of d’ = (M/2) mod 2d elements for each of the
24 — 1 blocks. Thus, the time for index computa-
tion Ty-p .- behaves as

ALL-TO-ALL COMMUNICATION 265

B _
T{I*HA ic — b-!

-+ i:d (b", + by lr%}) + b6-M' mod 2d}

(24— 1).

From our measurements, we derived: b6, =
2056.35, b; = 41.08, by, = 2.02, and b, = 22.24.
all in us. The index computation has a faster
growth rate in the number of nodes than the mo-
tion of the data. This is clear in Table 7

The time for local data reordering m{h indirect
addressing is

TE = (bg+ by-M -S)-2°,

where the constants derived from our measure-
ments are: by = 14.78 us and by = 0.645 us.
The total time for all-to-all broadcast based on
d-cycles and local index (‘ompulduon is obtained
as Ty — Th oy o+ Therric + Thop, or
T8, =2071.13 + 0645 -M'-S
+ (56.72 + 0.645-M' - S
+ 24.181HM’ - SY/ (2d)]
+ d(41.08 + 0.34[(M' -
+ 2.02[M/(2d)])
+ 22.24(M’ mod 2d))(27 - 1).

S)/2d)}

Because the efficiency in the index computa-
tion on the CM-200 is poor, we have also imple-

Table 7. Execution Time (ms) for d-Cycles All-to-All Broadcast with Index Computation and Index

Motion*
d-Cycles All-to-All Broadcast
Words per No. of Comp. Index Move Index

Node Initially Nodes AABC Indir. Comp. Total Move Total
128 2 2.95 0.36 1.39 4.70 2.05 5.36
128 4 4.79 0.72 1.85 7.36 2.97 8.48
128 8 7.90 1.44 3.43 12.77 4.56 13.90
128 16 12.64 2.88 5.30 20.82 6.96 22.48
128 32 21.64 5.75 16.83 44.22 11.60 38.99
128 64 37.82 11.50 35.56 84.88 19.93 69.25
128 128 69.90 23.01 60.10 153.01 36.49 129.40
128 256 116.30 46.01 119.50 282.01 60.37 222.88
128 512 232.40 92.05 280.20 604.65 120.80 445.25
128 1024 416.40 184.10 727.80 1328.30 216.90 817.40
128 2048 738.40 370.30 1973.00 3081.70 386.00 1494.70

* 64-Bit precision: node addresses in Gray code.

266 MATHUR AND JOHNSSON

mented all-to-all broadcast using a d-cvcles algo-
rithm in which the indices are moved along with
the data. The indices are represented as 32-bit
integers regardless of the type of the array values.
Local reordering is stll required and requires the
same time as when the arrav indices are computed
locally. Table 7 shows the results for a 2048-node
CM-200. As seen in the table, moving indices is
faster than computing indices for 32 or more
nodes. The time for moving indices, Ty—s/ im is

M’
Tatim= <b10 + (by1 - 2d + byo) [ED

(29— 1) + by

where b1y = 33.61 us, b1y = 0.63 us. b1y = 16.98
us, and b3 = 1834.05 ws and the total time is
Ti-tiiet Tompriim + Ty

TH 4. =1848.83+0.645-M'-S
+(90.33 + 0.645-M'-S
+(0.34d + 24.18)[(M"-S)/(2d)
+{1.26d + 16.98)[M'/(2d)])(27 = 1).

Comparing the times for all-to-all broadcast
based on a single cvcle and d-cveles with either
local index computation or index motion, we con-
clude that the actual communication time for the
d-cvcles algorithm is less than that for the single-
cvele algorithm for eight or more nodes. The gain
is less than a factor of d, because the single-cycle
algorithm can use machine instructions that re-
quire fewer cycles per word transfer. However. the
performance gain in the communication part of
the d-cvcles algorithm is largely lost due to the
time required for the index calculations. and the
full indirect addressing required in the reordering
of the data. From the expressions for the total exe-
cution time for the single-cvcle and d-cvcles algo-
rithms, we can derive the size of the local data set
as a function of d for which the d-cycles algorithm

T T T T T
1.6 |
one cycle —o—
14 F d-cycles comp.index -+- 4
d-cycles move index -B--
1.2 4
5T 1F i
g o
@ | e N
£ 0.8)
E .
0.6 | 4
04 | e
_::Q)'.T:""'.
02| g N
-k 1 1 1

32 64 128 256 512
Number of nodes

FIGURE 20 All-to-all broadcast time in seconds for
256 64-bit elements.

yvields better performance. The results are sum-
marized in Table 8. From the table we conclude
that, in practice, at least 16 nodes (d = 4) must be
assigned to an axis before the d-cycles algorithm
performs better than the single-cvcle algorithm,
largely due to the expense for index calculation.
This expense grows sullicienty rapidly to make
moving the data indices more efficient than com-
puting them locally for 32 or more nodes, despirte
the simple operations required for index compu-
tation. Figure 20 shows the execution times for
all-to-all broadcast on up 10 512 nodes using ei-
ther a single-cvcle algorithm. or the d-cvcles algo-
rithm with either index computation or index mo-
tion. Table 9 gives the corresponding measured
data.

Remark 1. It is interesting to compare the per-
formance of the spread function with that of the d-
cveles algorithm. Ideally, both should have the
same execution time (see Table 2). From Tables 4
and 5, the measured performance is comparable
when the address calculation time is excluded. as
expected. The total execution times are compared

in Table 10.

Table 8. Size of the Initial Data Set (M') per Node in 64-Bit Precision for Which the d-Cycles All-to-All
Broadcast Algorithms with Index Computation (d — H, ¢) and Index Motion (d — H, m) Yield Better

Performance than a Single-Cycle Algorithm*

No. of Nodes 2 4 8 16 32

128 256 512 1024 2048

d-—H.c M' =240 M’

=80 W =60 MW
d—H m M =55 M'=14 M’

=48 M =56 W =48 M =54 M =60 M =66
= =

12 W=14 M =16 M =18 M' =20 M =22

* Row major ordering: node addresses in Grav code.
| g A

ALL-TO-ALL COMMUNICATION 267

Table 9. Execution Time (ms} for d-Cycles All-to-All Broadcast with Index Computation and Index

Motion and for the One-Cycle Algorithm*

d-Cycles
Words per No. of Comp. Index Move Index One Cycle
Node Initially Nodes AABC Indir. Comp. Total Move Total AABC Indir. Total
256 2 5.84 0.69 2.54 9.07 3.96 10,49 2.93 0.54 3.47
256 4 9.47 1.38 3.31 14.16 3.79 16.64 8.80 1.09 9.89
256 8 15.31 2.76 5.74 23.81 873 26.80 20.54 2.18 22.72
256 16 24.97 5.52 8.59 3908 13.60 42.09 44.05 4.37 48.42
256 32 42,69 11.06 2158 75.33 22,60 76.35 91.08 8.75 99.83
256 64 74.59 2211 41.98 138.68 38,79 13549 185,10 17.49 20259
256 128 132,10 44.22 88.37 2064.69 68.05 24437 373.40 3498 408.38
256 256 22920 88.31 140.30 43791 11710 434.71 75020 6998 820.18
256 512 434.00 177.00 369.70 930.70 22200 833.00 1504.00 140.00 1644.00

* 64-Bit precision: node addresses in Gray code.

Remark 2. It is also interesting to note that al-
though the optimal time for the send and the
spread is the same {Table 2}, the measured 1ime
for the send is about 2.7 times higher than for the
spread in the 16-node case. For the eight-node
case, the ratio is about 2.6 and for the 256-node
case, the ratio is 1.6, The send {gather) operation
uses the router whereas the spread uses an opt-
mized algorithm. Table 10 gives a comparison of
the execution times for send and spread.

The sensitivity of the send times to row or
column major lavout ordering was examined by
measuring the execution times for both orderings.
In a column major ordering, the send is confined
to within subcubes and no transpose is required
for all-to-all communication. Tables 11 and 12
summarize the results. The send is faster by close

Table 10. Relative Execution Times for Spread,
d-Cycles All-to-All Broadcast with Reordering and
Send (Gather)®

No. of d-Cycles Send
Nodes Spread AABC {Gather)

2 1 3.60 3.57

4 1 2.01 2.67

8 1 1.94 2.62

16 1 1.74 2.60

32 1 1.76 2.00

64 1 1.74 1.89

128 1 1.77 1.62

256 1 1.62 1.60

* 64-bit precision: row major ordering; node addresses in
Gray code.

o a factor of 2 for the column major ordering, but
the cycles-based algorithms are also faster for this
ordering. However, the speed advantage is not as
large as for row major ordering.

Finally, we also measured the performance for
all-to-all communicaton with node addresses in
binary code. The execution times for the d-cvcles
algorithm were almost identical to the times for
node addresses in Gray code order. The single-
cvcles algorithm would require a different imple-
mentation on the Connection Machine system
CM-200, because the CSHIFT intrinsic function
used in our implementation uses the general
router for node addresses in binarv code. A spe-
cial implementation of our single-cycle algorithm
should yield comparable performance for node
addresses in binary and Gray code.

6.2 Reduction

Tables 13 and 14 give the measured execution
times for all-to-all reduction based on reduce-
and-spread. and the single-cvcle and d-cycles al-
gorithms.

The reduce-and-spread alternative for all-to-
all reduction resulis in an excessive amount of
data in each node, and a subselection is required
to arrive at the final result. This subselection is
performed by a call 1o the Connection Machine
router, even though no communication is re-
quired. The router is the only general mechanism
currently available on the Connection Machine
svstern CM-200 for this subselection. Performing
the all-to-all reduction in this manner is always

268 MATHUR AND JOHNSSON

Table 11

. Execution Times (ms) for All-to-All Broadcast Using Three Different Methods on the
Connection Machine System CM-200*

All-to-All Broadcast

W . Send-and-Spread d-Cycles One Cycle

ords No. of

per Node Nodes Send Spread Total Addr. Indir. AABC Total Indir. AABC Total

4 16 1.23 0.92 2.15 1.84 0.57 1.00 3.41 1.17 1.00 217
8 16 2.30 1.38 3.68 3.52 0.62 1.10 5.24 1.21 1.66 2.87
16 16 4.79 2.30 7.09 3.36 0.73 1.85 5.94 1.31 3.03 4.34
32 16 5.42 4.14 9.56 3.39 0.89 3.35 7.63 1.56 5.76 7.32
64 16 10.78 7.82 18.60 4.14 1.55 6.41 12.10 2.03 11.21 13.24
128 16 21.59 15.17 36.76 5.24 2.87 1255 20.66 2.98 2213 25.11
256 16 43.42 29.88 73.30 8.57 5.52 24.82 38.91 4.88 43.97 48.85
512 16 87.41 59.31 146.72 15.44 10.80 49.43 75.67 8.68 87.63 96.31
1024 16 176.10 118.20 294.30 29.07 21.38 98,49 148.94 16.27 175.00 191.27
* 64-bit precision; column major ordering: node addresses in Gray code.
Table 12. Execution Times (ms) for All-to-All Broadcast Using Three Different Methods on the
Connection Machine System CM-200%
All-to-All Broadcast

Words : Send-and-Spread d-Cycles One Cycle
per No. of : :

Node Nodes Send Spread Total Addr. + Indir. AABC Total Indir. AABC Total
256 1 3.30 0.13 3.45 1.52 0.00 1.52 0.33 0 0.33
256 2 11.97 6.27 18.38 3.24 5.70 8.94 0.63 2.93 3.56
256 4 17.69 13.46 31.88 4.69 9.33 14.02 1.24 8.79 10.03
256 8 26.67 18.98 46.54 8.47 15.16 23.63 2.45 20.51 22.96
256 16 43.42 29.88 74.63 14.02 24.82 38.84 4.88 43.97 49.85
256 32 69.46 50.14 121.82 32.35 42.51 74.86 9.75 90.91 100.66
256 64 114.66 87.50 206.33 63.46 74.38 137.84 19.47 184.80 204.27
256 128 225.43 156.90 388.90 131.20 131.80 263.00 3892 372.80 411.72
256 256 — 286.70 — 226.10 228.80 454.90 77.80 748.80 826.60

* 64-bit precision: column major ordering: node addresses in Gray code.

Table 13. Execution Times (ms) for All-to-All Broadcast Using Reduce-and-Spread, d-Cycles, and One
Cycle on the Connection Machine System CM-200%

All-to-All Reduction

Reduce-and-Spread

Words No. of Reduce-and- d-Cyeles One Cycle
per Node Nodes Spread Send Total Indir. Arit. Comm. Total Indir. Arit. Comm. Total
4 16 1.17 1.62 3.33 243 0.26 1.11 3.80 0.59 0.26 1.07 1.92
8 16 3.36 3.57 6.93 4.20 0.30 1.22 5.72 0.64 0.30 1.74 2.68
16 16 6.70 8.11 14.81 4.26 0.38 2.03 6.67 0.73 0.38 3.10 4.21
32 16 13.39 15.32 28.71 4.32 0.51 3.601 8.44 0.98 0.51 5.83 7.32
64 16 26.77 32.74 59.51 5.68 0.87 6.88 13.43 145 0.87 11.29 13.61
128 16 53.54 67.81 121.30 8.16 1.61 1348 2325 240 1.60 2220 26.20
256 16 107.10 138.50 245.60 14.26 3.06 26.66 4398 4.30 3.04 44.03 51.37
512 16 214.10 281.10 495.20 26.29 597 53.04 85.30 8.09 596 87.70 101.74
1024 16 428.20 568.30 996.50 50.55 11.78 105.70 168.03 15.69 11.74 175.00 202.43

* 64-bit precision; row major ordering: node addresses in Gray code.

ALL-TOG-ALL COMMUNICATION 269

Table 14. Execution Times (ms) Data for All-to-All Reduction Using Reduce-and-Spread, d-Cycles, and
One Cycle on the Connection Machine System CM-200%

All-to-All Broadcast
d-Cycles
Words Indir. + .
.. _Spres » Cycele

per No. of Reduce-and-Spread Addr. + One Cycle

Node Nodes Spread Send Total Arithm. Comm. Total Indir. Arithm. Comm. Total
256 2 12.73 22.68 35.41 1.17 11.30 1247 0.95 0.20 2.93 4.08
256 4 26.88 44.77 71.65 2.51 12.81 15.32 1.49 0.61 8.80 10.90
256 8 53.30 80.32 133.62 715 17.55 24.70 2.57 1.43 20.54 24.54
256 16 107.00 138.60 24560 1274 26.63 39.37 4.73 3.07 44.05 51.85
256 32 215.90 237.60 453.50 38.68 44.00 82.68 9.04 6.33 91.08 106.45
256 64 436.20 410.906 847.10 78.99 75.65 154.64 17.67 1287 185.10 215.64
256 128 882.90 722.00 1604.90 172.54 133.00 30554 34.92 2594 37340 434.26
256 256 1786.00 1293.00 3079.00 29895 229.70 528.65 69.42 52.10 750.20 871.72
256 512 — — — — — — 138.50 104.40 1504.00 1746.90

* 64-hit precision; row major order; node addresses in Gray code.

less efficient than using either a single-cycle algo-
rithm or the d-cyeles algorithm.

For a 16 x 16 nodal array, the single-cvcle al-
gorithm is more efficient than the d-cyeles algo-
rithm for a final data set per node of at most 64
elements. The single-cycle all-to-all reduction is
about 6% slower than the corresponding broad-
cast operation, whereas the d-~cveles all-to-all re-
duction is about 12% slower than the correspond-
ing all-to-all broadcast. (In these percentage
calculations, we excluded the time for the trans-
pose required in all-to-all broadcast for row major
ordering, in order to highlight the difference be-
tween broadcast and reduction.) The perfor-
mance trade-off between the single-cvcle and the
d-cycles algorithms is approximately the same as
for the broadcast.

Table 15 gives a comparison of the total execu-
tion times for the three different all-to-all reduc-
tion methods: reduce-and-spread followed by a
subselection, a single-cycle algorithm, a d-cycles
algorithm. The cycle-based algorithms vyield a
speedup of a factor of 5 or better over the reduce-
and-spread function.

Remark

Note that the send (scatter) that follows the re-
duce-and-spread may require more time than the
reduce-and-spread function itself. Because all
nodes have all the results after the reduce-and-
spread, the desired result can be obtained either
as a local subselection, or as a one-to-all person-
alized communication from the first node in a row.

Table 15. Execution Times (ms) and Speedups for Three Methods of Performing an All-to-All Reduction

on the Connection Machine System CM-200%

All-to-All Reduction

Words No. of d-Cycles One Cycle
per Node Nodes Reduce-and-send Time Speedup Time Speedup

256 2 35.41 12.47 2.84 4.08 8.68
256 4 71.65 15.32 4.68 10.90 6.57
256 8 133.62 24.70 5.41 24.54 5.44
256 16 245.60 39.37 6.24 51.85 4.74
256 32 453.50 82.68 5.48 106.45 4.26
256 64 847.10 154.64 5.48 215.64 3.93
256 128 1604.90 305.54 5.25 434.26 3.70
256 256 3079.00 528.65 5.82 871.72 3.53
256 512 — — — 1746.90 —

* 64-bit precision; row major ordering; node addresses in Gray code.

270 MATHUR AND JOHNSSON

Table 16. Execution Time (ms) and Relative
Speeds of All-to-One Personalized
Communication (Gather) and One-to-All
Personalized Communication (Scatter) by the
Connection Machine System CM-200 Router*

Words No.of All-to-One Onec-to-All C20eT

per Node Nodes (Gather) {Scatter) Scatter
256 2 22 41 22.68 0.99
256 4 35.93 44.77 0.80
256 8 49.67 80.32 0.62
256 16 77.74 138.60 0.56
256 32 100.20 237.60 0.42
256 64 165.10 410.90 0.40
256 128 254.20 722.00 0.35
256 256 457.70 1293.00 0.35

* 64-bit precision; row major ordering; node addresses in
Gray code.

On the Connection Machine system CM-200,
both methods require approximately the same
time. The laiter operation is like a vector trans-
pose, with the vector inidally stored in the first
node of a row, and stored uniformly across all
nodes in a row after the transpose. This operation
is the reverse communication of the send that
gathers data to a single node before the broadcast
in the send-and-broadcast algorithm for all-to-all
broadcast.

However, the one-to-all personalized commun-
ication performed by the router requires consider-
ably more time than the all-to-one personalized
communication. Table 16 compares the timings
for all-to-one and one-to-all personalized com-
munication. Table 17 compares the tmes for all-
to-all reduction using the d-cvcles algorithms with

local index computation and index motion. Mov-
ing indices is faster than computing them locally
for 64 or more nodes.

7 SUMMARY

We have presented detailed schedules for all-to-
all communication algorithms for broadcast and
reduction based on Hamiltonian cycles. The cy-
cle-based algorithms perform the all-to-all broad-
castin 29 — 1 steps. In each step, a pair of succes-
sive memory locations are transmitted in the same
cube dimension, thereby exploiting the fact that
there are two channels between each pair of Con-
nection Machine system CM-200 processing
nodes.

For broadcast, both the single-cyele and the d-
cvcles algorithms always vield better performance
than an algorithm using the router for gathering all
data into one node, followed by a spread. The
speedup is in the range 1.5 — 3.2 for four or more
nodes along an axis. The measured peak data
motion rate for the d-cvcles algorithm with indices
moved along with the data is 2.54 Cbyle/s on a
2048-node Connection Machine system CM-200.
Without the index computations and correspond-
ing local data reordering, the measured all-to-all
broadcast peak rate is 5.4 Gbvie/s. The measured
peak data motion rates for all-to-all broadcast are
summarized in Table 18. The data motion rate for
spread is included for comparison but does not
represent the time for all-to-all broadcast using
spreads.

For all-to-all reduction. the speedup of our
Hamiltonian cvcle-based algorithms is even

Table 17. Execution Time (ms) for d-Cycles All-to-All Reduction with Index Computation and Index

Motion™

d-Cvcles All-to-All Broadeast

Comp. Index Move Index

Words per No. of
Node Initially Nodes AABC Indir. Arith. Comp. Total Move Total
256 2 11.41 0.82 0.22 0.13 12.58 3.97 16.42
256 4 12.93 1.51 0.61 0.39 15 .44 5.79 20.84
256 8 17.70 2.89 1.43 2.83 24.85 8.74 30.76
256 16 26.79 5.63 3.07 4.04 39.53 13.60 49.09
256 32 44.20 11.12 6.35 20.90 82.88 22.60 84.27
256 64 75.91 2212 12.91 44.00 154.90 38.80 149.70
256 128 133.20 44.10 26.03 102.40 305.70 68.10 271.40
256 256 230.30 88.08 52.27 158.60 529.30 117.10 487.80
256 512 435.00 176.00 104.70 o - 222.00 937.70

* 64-bit precision; node addresses in Gray code.

ALL-TO-ALL COMMUNICATION 271

Table 18. Data Motion Rates in Mbyte s ! per Node on CM-200%

All-to-All Broadeast

No Index and Reorder

Index and Reorder

Number

of Nodes Spread One Cycle d-Cycles One Cycle d-Cyeles Move Index

2 0.65 0.66 0.33 0.52 0.20 0.18

4 0.61 0.66 0.61 0.57 0.39 0.34

8 0.87 0.66 0.86 0.59 0.52 0.48

16 1.10 0.66 1.16 0.60 0.68 0.63

32 1.31 0.66 1.40 0.60 0.66 0.75

64 1.50 0.66 1.62 0.60 0.70 0.85

128 1.67 0.66 1.77 0.60 0.78 0.92

256 1.87 0.66 2.13 0.60 0.85 1.07

512 —— 0.66 2.14 0.60 0.79 1.07

1024 e 0.66 2.40 0.60 0.73 1.16

2048 — 0.66 2.70 0.60 0.63 1.27

* All-to-all times computed from 128 elements per node prior to broadeast. The data motion rate for spread is included for

comparison, but does not represent the time for all-to-all broadcast using the spread algorithm,

greater than for broadcast, with the range being
5-8.

The performance for the cycles-based algo-
rithms is fairly independent of whether the data
allocation is in row or column major ordering, and
whether the nodal addresses are in binarv or Gray
code. However, the router performance depends
significantly on whether the data allocation is in
row or column major ordering.

The d-cycles algorithm offers a good improve-
ment in performance over the single-cycle algo-
rithm with respect to data motion. However, the
local computation of indices is quite inefficient.
This offset of the gain in communication time
makes the single-cycle algorithm preferable for
moderate size initial data sets, and few nodes as-
signed to the axis. For 64 or more nodes assigned
to an axis, it is more efficient in the d-cycles algo-

Table 19, Performance Data for Matrix—Vector and Vector—Matrix Multiplication on Dilferent
Connection Machine System CM-200 Configurations (64-Bit Precision)

Mflops/s Time (ms)
i}jlatr1x No. of Nodes No. of Nodes
Shape
Pxp 256 512 1024 2048 256 512 1024 2048
Matrix—vector muliplication
312 e — . —— e — — —_
1024 304 — — — 6.90 — — —
2048 723 898 e e 11.6 9.34 — —
4096 1190 1834 2486 — 28.2 18.3 13.5 —
8192 1382 2621 4358 6101 97.1 51.2 30.8 220
12288 — 2796 4992 — e — 60.5 —
16384 — — 5162 9833 — — 104.0 —
24576 e — — 10785 o — — 112.0
Vector—matrix multplication
512 e — — — — — — —
1024 344 — — — 6.09 — — —
2048 799 1037 — — 10.5 §.09 — —
4096 1370 2059 2844 — 24.3 16.3 11.8 —
8192 1846 3093 5103 6991 727 43.4 26.3 19.2
12288 — 3553 6252 — e 85.0 48.3 —
16384 — — 6918 11621 — — 7.6 46.2
24576 - — e 13742 — — — 87.9

272 MATHUR AND JOHNSSON

14 i H H H i i T

12 + 2048 nodes —o—
1024 nodes -+

512 nodes -8--
10 256 nodes -]
o 8 4
a
s . -+
G 5t /,»‘*"_—« .
/‘k()
4L A
....... ta}
+ -8
2t B x &

Xy L i i) 3 1L i L : 1

2K 4K 6K 8K 10K 12K 14K 16K 18K 20K 22K 24K
)

FIGURE 21 Execution rate in Gflop/s for multiplica-
tion of a P X P matrix by a vector on Connection Ma-~
chine system CM-200 (64-bit precision).

rithm to move the indices along with the data than
to compute the indices locally for both all-to-all
broadcast and all-to-all reduction.

We have incorporated the Hamiltonian cycle-
based all-to-all communication routines in the
matrix—vector and vector—matrix multiplication
and rank-1 update routines of the Connection
Machine Scientific Software Library, CMSSL
[23], Version 3.0. A summary of the performance
of the matrix—vector and vector-matrix routines
are given in Table 19 and in Figure 21.

ACKNOWLEDGMENTS

This work was carried out with partial support
from the U.S. Air Force Office of Scientific Re-
search under grant F49620-93-1-0480 with Har-
vard University and the U.S. Office of Naval Re-
search under grant N00014-93-1-0192 also with
Harvard University. The majority of this effort was
supported by Thinking Machines Corp. as part of
its Connection Machine Scientific Software Li-
brary (CMSSL) development. The software re-
ported in this paper is available as part of the
CMSSL.

REFERENCES

[1} J.-P. Brunet and 8. L. Johnsson, ““All-to-all
broadcast with applications on the Connection
Machine.”” Int. J. Supercomput. Appl., vol. 6, pp.
241-256, 1992.

[2] L. E. Cannon, “A cellular computer to implement
the kalman filter algorithm.”” PhD thesis, Mon-
tana State University, 1969,

[3] M. Y. Chan, “Embeddings of 3-dimensional
grids into optimal hypercubes,” in Proc. of the
Fourth Conference on Hypercubes, Concurrent
Computers, and Applications, 1990. p. 297.

[4] M. Y. Chan, “Embedding of grids into optimal
hvpercubes,”” SIAM J. Comput. vol. 20, pp. 834~
864, 1991.

[5] B. Chapman, P. Mehrotra, and H. Zima, “Pro-
gramming in vienna Fortran,”" Sei. Programming.
vol. 1, pp. 3150, 1992.

6] E.Dekel, D. Nassimi, and S. Sahni, **Parallel ma-
trix and graph algorithms,”” SIAM J. Comput.,
vol. 10, pp. 657-673, 1981.

[71 G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel.
U. Kremer, C. Tseng, and M. Wu, ““Fortran D
language specification,” Department of Com-
puter Science, Rice University, Tech. Rep. TR90-
141, Dec. 1990.

[8] G. C. Fox, M. A. Johnson, G. A. Lvzenga, 5. W.
Ouo, J. K. Salmon, and D. W. Walker, Solving
Problems on Concurrent Processors. Englewood
Cliffs, NJ: Prentice-Hall, 1988.

[9] E. N. Gilbert, “Gray codes and paths on the n-
cube,” Bell Systems Tech. J., vol. 37, pp. 815~
826, 1958.

[10] ““High Performance Fortran Language Specifica-
tion, Version 1,”” Sci. Programming. vol. 2, nos.
1-2, pp. 1-170, 1993.

(11] C.-T. Ho and S. L. Johnsson, “Embedding
meshes in Boolean cubes by graph decomposi-
tion,”” J. Parallel Distrib. Comput., vol. 8. pp.
325-339, April 1990.

[12] 8. L. Johnsson, ““Communication efficient basic
linear algebra computations on hypercube archi-
tectures,”” J. Parallel Distrib. Comput., vol. 4. pp.
133-172, April 1987.

[13] 8. L. Johnsson and C.-T. Ho, ““Matrix transposi-
tion on Boolean n-cube configured ensemble ar-
chitectures,”” SIAM J. Matriz Anal. Appl., vol. 9.
pp. 419—454, July 1988.

[14] 8.L. Johnsson and C.-T. Ho, “*Matrix multiplica-
tion on Boolean cubes using generic communica-
tion primitives,”” in Parallel Processing and Me-
dium Scale Multiprocessors. SIAM, 1989. pp.
108—-156.

[15] 8. L. Johnsson and C.-T. Ho. “*‘Spanning graphs
for optimum broadcasting and personalized com-
munication in hypercubes,” IEFE Trans. Com-
put., vol. 38, pp. 1249-1268, September 1989.

[16] S. L. Johnsson, C.-T. Ho, M. Jacquemin, and A.
Ruttenberg, ““Computing fast Fourier transforms
on Boolean cubes and related networks.”” in Ad-
vanced Algorithms and Architectures for Signal
Processing 11, vol. 826. Society of Photo-Optical
Instrumentation Engineers, 1987, pp. 223-231.

[17] 8. L. Johnsson and K. K. Mathur, “*Data struc-

[19]

[20]

[21]

tures and algorithms for the finite element method
on a data parallel supercomputer,”” Int. J. Nu-
merical Methods Eng., vol. 29. pp. 881-908,
1990.

} K. K. Mathur and S. L. Johnsson, ““Multiplication

of matrices of arbitrary shape on a data parallel
computer.”” Parallel Comput., vol. 20, pp. 919—
951, July 1994.

E. M. Reingold, J. Nievergelt, and N. Deo, Combi-
natorial Algorithms. Englewood Cliffs, NJ: Pren-
tice-Hall, 1977.

Q. F. Stout and B. Wagar, “‘Intensive hypercube
communication I: Prearranged communication in
link-bound machines.”” Computing Research
Laboratory, University of Michigan, Ann Arbor,
ML, Tech. Rep. CRL-TR-9-87, 1987.

Q. F. Stout and B. Wagar, “"Passing messages in
link-bound hypercubes,”” in Hypercube Multi-
processors 1957, Michael T. Heath, Ed. Phila-

[22]

(23]

[24]

[25]

[26]

ALL-TO-ALL COMMUNICATION 273

delphia. PA: Society for Industrial and Applied
Mathematics, 1987.

Thinking Machines Corp., CM-200 Technical
Summary. Thinking Machines, 1991.

Thinking Machines Corp., CMSSL for CM For-
tran, Version 3.1. Thinking Machines. 1993.

C. Tong and P. N. Swarztrauber, **Ordered Fast
Fourier transforms on a massively parallel hyper-
cube multiprocessor,”” J. Parallel Distrib. Com-
put., vol. 12, pp. 50-59. May 1991.

X. Zhang, ““An efficient implementation of the
backpropagation algorithm on the Connection
Machine CM-2.”” Adv. Neural Information Pro-
cessing Systems, vol. 2, pp. 801-809, 1989,

H. Zima, P. Brezany, B. Chapman, P. Mehrotra,
and A. Schwald,” Vienna Fortran—A language
specification version 1.1.."" Tech. Rep. ICASE,
Interim Report 21. March 1992.

Journal of))
Industrial Engineering

Applied
Computational
Intelligence and Soft
Computing—

. A International Journal of
The Scientific Dictione. S
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Ll T Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networkhs
and Communications /1 Advances in

Artificia
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, = Neural Systems
- 2 \ i

International Journal of
Computer Games . in
Technology re Engineering

Reconfigurable
Computing

e Computational L g
Journal of Human-Computer Intelligence and Electrical and Computer
Robotics Interaction Neuroscience Engineering

