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1 Introduction

Tree-level scattering amplitudes in planar N = 4 Super Yang-Mills (SYM) are invariant

under the action of a “hidden” dual superconformal symmetry in addition to the usual

superconformal algebra [1, 2]. At loop level, the dual symmetry is anomalous due to

the presence of infrared singularities and is preserved only by appropriate infrared safe

quantities. One example is the remainder function — the L-loop maximally helicity vio-

lating (MHV) amplitude subtracted of its infrared-divergent piece, in turn captured by the

BDS-ansatz [3]. Since the remainder is infrared finite, dual superconformal symmetry is

manifestly unbroken and it is therefore a function of only the dual conformal cross ratios.

The remainder function has been widely studied using several complementary ap-

proaches. At the heart of many of these results lies the fact that scattering amplitudes in

planar N = 4 SYM are dual to lightlike polygonal Wilson loops [2, 4–12], which can in turn

be computed as an operator product expansion (OPE) near the collinear limit [13–16]. The

collinear OPE was shown to be dual to the exchange of excitations of a flux tube sourced

by the lightlike polygonal frame of the Wilson loop. Through integrability methods, the

spectrum of excitations as well as their S-matrix can be determined for arbitrary values

of the coupling constant [17–25]. Furthermore, using the duality with Wilson loops the

six-point MHV remainder function has been computed analytically at two loops [26–28],

and it has also enabled the determination of the symbols [28–32] and the total differen-

tial of all two-loop remainder functions for arbitrary multiplicity [33, 34]. At two loops
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fully analytic results with more than six points are only known for the seven-point MHV

remainder function [35].

At higher loops the bootstrap program was used to constrain the six-point MHV and

non-MHV amplitudes through six loops [36–42], as well as the symbol of the seven-point

amplitude through three loops [43, 44]. The main idea behind the bootstrap program is

to make an educated guess for the function space in which the amplitude should live (e.g.,

by extrapolating from known lower loop results), and restrict the ansatz for the amplitude

by imposing general constraints coming from the known analytic structure of scattering

amplitudes [15, 33, 45–47], from the conjecture that the symbol alphabet of scattering

amplitudes in planar N = 4 SYM is related to the cluster algebra of certain Grassmannian

spaces [48–54] and the knowledge of the behaviour of amplitudes in certain kinematic

limits. The study of amplitudes in particular kinematic limits is not only interesting as

boundary data for the bootstrap program, but it is often the only way right now to gain

analytic insight into the structure of scattering amplitudes with many loops and legs. In

addition, these limits are often related to certain factorisation theorems, and the knowledge

of the amplitudes in a limit may then allow one to extract the universal quantities (e.g.,

anomalous dimensions) that govern these factorisation theorems.

The aim of this paper is to study scattering amplitudes in multi-Regge kinematics

(MRK). This limit describes scattering processes where the outgoing particles are strongly

ordered in rapidity (or equivalently along the lightcone). In the Euclidean region, where all

Mandelstam invariants are negative, scattering amplitudes in MRK factorise to all orders

in perturbation theory into certain building blocks. These building blocks are described

by resummed effective t-channel propagators (Reggeons) and the resummed emission of

strongly-ordered gluons along the ladder of effective propagators. They are determined to

all orders from four- and five-point amplitudes which are completely fixed by symmetry,

and therefore Euclidean scattering amplitudes in MRK are trivial [55–59]. Starting from

six points, scattering amplitudes in MRK are no longer trivial, if continued to a particular

kinematic region1 before the limit is taken [55, 56]. The discontinuity is described by a

dispersion relation similar to the BFKL equation in QCD [60–65]. To leading logarithmic

accuracy (LLA), scattering amplitudes in MRK can be described by an exchange of two

Reggeons. More generally, the building blocks needed to describe the contributions to

the amplitude from two-Reggeon exchange are known through next-to-leading logarithmic

approximation (NLLA) [56, 63, 66–68], and in the six-point case even to all orders in the ’t

Hooft coupling [69]. Moreover, in refs. [70, 71] it was argued that to all loop orders for any

number of points amplitudes in MRK in planar N = 4 SYM can be expressed in terms of

single-valued multiple polylogarithms [71–75], in agreement with previously known analytic

results [36, 37, 66, 67].

In the particular Mandelstam region where all produced partons but the two most

forward ones have negative energy the amplitude is determined entirely by the exchange

of composite states of two Reggeons even beyond LLA. In particular, we know analytic

1That kinematic region is identified by a specific ordering of the energy signs of the outgoing particles.

We shall term a Mandelstam region any kinematic region with a generic ordering of the energy signs of the

outgoing particles.
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results for all seven- and eight-point three-loop amplitudes at NLLA [68, 76]. In other Man-

delstam regions and for more than seven particles, however, the amplitude is expected to

receive contributions from the exchange of a composite state of three Reggeons. The build-

ing blocks describing these states are much less understood, and consequently not much

is known about amplitudes in these regions. In ref. [77] the symbols of all two-loop MHV

amplitudes in any Mandelstam region where the two most forward particles have positive

energy have been determined. It was however not possible to lift the symbols to function

level, because the unknown three-Reggeon contribution is expected to be proportional to

(2πi)2, and so the symbol is (at least naively at first thinking) blind to three-Reggeon ex-

change. The corresponding three-loop symbols were analysed up to seven points in ref. [78].

In this paper we study two-loop amplitudes in any Mandelstam region, including all

beyond-the-symbol terms. At the heart of our construction is the realisation that the sym-

bol of an MHV remainder function is enough to determine the symbol of terms multiplied

by (2πi)2 in all Mandelstam regions. At two loops we can combine this result with the

single-valuedness of remainder functions in MRK and lift the symbol to a unique function.

We obtain in this way complete analytic results for all two-loop MHV remainder functions

in MRK in all Mandelstam regions. This complements the results of refs. [68, 77] where

only the coefficients multiplying a single power of 2πi have been determined for a subset

of Mandelstam regions. We find that the coefficients of (2πi)2 have a very compact form

and can be represented in terms of a simple combinatorial formula. By analysing explicit

results through nine points, we observe that our results are consistent with the assumption

of a contribution of a three-Reggeon composite state in certain Mandelstam regions, in

agreement with the expectation from Regge theory.

The paper is organised as follows: in section 2 we present the kinematic setup of

our analysis and establish our notation for the multi-Regge limit. In section 3 we discuss

the general structure of the remainder function in the Euclidean region. In section 4 we

parametrise the distinct Mandelstam regions and analyse the phase structure of the dual

conformally-invariant cross ratios. We present a method to compute the symbol of the

coefficient of (2πi)2 in any given Mandelstam region from the symbol of the remainder

function at any loop order. In section 5 we focus on two loops and present explicit results

obtained from analytically continuing the symbol of the two-loop remainder function for

a high number of points. We discuss our findings for the structure and relations of our

results of different Mandelstam regions. In section 6 we analyse our explicit two-loop results

through nine points and we argue that our results are consistent with the assumption of

a contribution of a three-Reggeon composite state in certain Mandelstam regions. Finally,

we summarise our findings in section 7.

2 Preliminaries

In this paper we consider scattering amplitudes in planar N = 4 Super Yang-Mills (SYM)

in multi-Regge kinematics (MRK), i.e., 2→ N −2 scattering processes where the outgoing

particles are strongly ordered in rapidity. If we parametrise the momenta in terms of
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lightcone and transverse coordinates, as defined in appendix A,

pi ≡ (p+
i , p

−
i ,pi) , 1 ≤ i ≤ N , (2.1)

then in MRK the momenta of the outgoing particles 3, . . . , N are ordered as follows,

|p+
3 | � . . .� |p+

N |, |p−3 | � . . .� |p−N | and |p3| ' . . . ' |pN | . (2.2)

The goal of this paper is to compute all MHV remainder functions at two loops in MRK.

In order to achieve this, we start from the study of their symbols in general kinematics

given in ref. [33]. Dual conformal symmetry implies that the symbols are functions of dual

conformal cross ratios,

Uijkl =
x2
ijx

2
kl

x2
ikx

2
jl

, Uij ≡ Ui j+1 j i+1 , (2.3)

where xi are dual variables which parametrise a set of N particles satisfying momentum

conservation,

pi = xi − xi−1 , xij ≡ xi − xj . (2.4)

Due to the strong ordering given in eq. (2.2), in MRK the non-trivial dynamics takes

place in the transverse space with respect to the two incoming high-energy particles. It is

therefore useful to consider transverse dual variables for the N − 2 outgoing particles,

pi = xi−1 − xi−2 , xN−1 ' x1 , i = 3, . . . N . (2.5)

The space of kinematic configurations in the two-dimensional transverse space of a

scattering of N particles in MRK is captured by the moduli space M0,N−2 of Riemann

spheres with N − 2 marked points [71]. Dual conformal transformations act on the trans-

verse space as Möbius transformation for SL(2,C). We can therefore choose a local system

of coordinates where three of the xi variables are set to 0, 1 and ∞. A convenient choice

which we will adopt throughout is {x1,x2, . . . ,xN−2} = {1, 0, ρ1, . . . , ρN−5,∞}, shown in

figure 1 and referred to as simplicial MRK coordinates in ref. [71].

In the following it will be useful to classify the cross ratios Uij into three non-overlapping

classes,

Vi ≡ U1i , 4 ≤ i ≤ N − 2 ,

Ṽj ≡ UjN , 3 ≤ j ≤ N − 3 ,

Wij ≡ Uij , i, j /∈ {1, N} .
(2.6)

If we introduce an operator M corresponding to taking the multi-Regge limit of an

expression,

M [X] ≡ lim
MRK

X , (2.7)

then the multi-Regge limit of the cross ratios above takes the form

M [Vi] = M[Ṽj ] = 0 , M [Wij ] = 1 . (2.8)
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Figure 1. Simplicial MRK coordinates parametrising the transverse space for the scattering of N

particles in MRK.

The cross ratios Uij form a spanning set of all possible cross ratios Uijkl that we can form

out of N points,2 therefore we can derive the multi-Regge limit of a generic cross ratio

from eq. (2.8). We find

M[U1kjl] = 0 , 1 < j < k, 1 < l

M[Uikjl] = 1− |fijkl(ρ)|2
∏
m

τm , 1 < i < j < k and i < l ,
(2.9)

where fijkl(ρ) is a function of the simplicial MRK coordinates ρi whose form depends

on the cross ratio under consideration. The rate at which the cross ratios approach 1 is

parametrised by

τi ≡ ±
√
Vi+3Ṽi+2 , 1 ≤ i ≤ N − 5 . (2.10)

As such, the direction from which they approach 1 depends on the signs of the τi variables,

which in turn depend on the energies of the outgoing particles as follows,

sign(τi) = sign

(
p+
i+4

p+
i+3

)
= %i+3 %i+4 , (2.11)

where

%i ≡ sign(p0
i ) = sign(Ei) , 3 ≤ i ≤ N . (2.12)

3 Remainder functions in the Euclidean region

In this section we study the symbols of MHV remainder functions in MRK in the Euclidean

region where all consecutive Mandelstam variables are negative. The results of this section

are in principle well known. In particular it is well known that the remainder function

vanishes in MRK in the Euclidean region where all consecutive Mandelstam invariants are

negative [55–59]. We recall here in detail the analytic structure of remainder functions

in MRK, because this is the foundation to correctly perform the analytic continuation of

remainder functions to other Mandelstam regions.

2The relations between the cross ratios Uijkl and Uij can be found in appendix A.
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If we take into account the first and second entry conditions [15, 33], we can write the

symbol of the L-loop N -point remainder function R
(L)
N without loss of generality in the form

S
(
R

(L)
N

)
=
∑
i<j<l

(Uij⊗Uil+Uil⊗Uij)⊗Aijil+
∑
i<j
i<k<l

(Uij⊗Ukl+Ukl⊗Uij)⊗Aijkl

+
∑
i<j<k
i<l

Uikjl⊗(1−Uikjl)⊗Bijkl ,
(3.1)

where Aijkl and Bijkl denote integrable tensors of weight 2(L− 1) that involve more com-

plicated letters. Note that with the chosen summation ranges this representation is unique.

Equivalently, we may write the previous equation as a statement about the (2, 1, 1, . . . , 1)

component of the coaction on the remainder function,

∆2,1,...,1

(
R

(L)
N

)
=
∑
i<j<l

(logUij logUil)⊗Aijil +
∑
i<j
i<k<l

(logUij logUkl)⊗Aijkl

−
∑
i<j<k
i<l

Li2(1− Uikjl)⊗Bijkl + ζ2 ⊗ C ,
(3.2)

where C denotes an integrable tensor of weight 2(L − 1) that is not determined from the

knowledge of eq. (3.1) alone.3

We now study the multi-Regge limit of eq. (3.2). It is convenient to write eq. (3.2)

explicitly in terms of the cross ratios Vi, Ṽj and Wij defined in eq. (2.6),

∆2,1,...,1

(
R

(L)
N

)
=
∑
i<j

[
(logVi logVj)⊗A1i1j+(log Ṽi log Ṽj)⊗AiNjN

]
+

∑
1<i,j<N

(logVi log Ṽj)⊗A1ijN+
∑
1<i

1<j<k<N

(logVi logWjk)⊗A1ijk

+
∑

1<i<j
1<i<k<N

(logWij log Ṽk)⊗AijkN+
∑

1<i<j<l<N

(logWij logWil)⊗Aijil

+
∑

1<i<j<N
i<k<l<N

(logWij logWkl)⊗Aijkl−
∑

1<j<k
1<l

Li2(1−U1kjl)⊗B1jkl

−
∑
i<j<k
1<i<l

Li2(1−Uikjl)⊗Bijkl+ζ2⊗C . (3.3)

Using eqs. (2.8) and (2.9) it is now straightforward to obtain the multi-Regge limit of

eq. (3.3). We see that all terms that contain a cross ratio Wij in the first entry of the

3It is constrained though by requiring R
(L)
N to have the correct behaviour in certain limits. Note that C

does not satisfy any obvious first or second entry conditions.
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coaction vanish, and we find

∆2,1,...,1

(
M
[
R

(L)
N

])
=
∑
i<j

[
(log Vi log Vj)⊗M[A1i1j ] + (log Ṽi log Ṽj)⊗M[AiNjN ]

]
+

∑
1<i,j<N

(log Vi log Ṽj)⊗M[A1ijN ] + ζ2 ⊗M
[
C −

∑
1<j<k

1<l

B1jkl

]
.

(3.4)

Note the additional contribution to the ζ2 term due to the vanishing ofM[U1jkl] in the ar-

gument of the dilogarithm. Since the remainder function vanishes in MRK in the Euclidean

region, it follows that the coefficients above must satisfy

M[A1i1j ] =M[A1ijN ] =M[AiNjN ] = 0 and M[C] =
∑

1<j<k
1<l

M[B1jkl] .
(3.5)

Before we extend this discussion to other Mandelstam regions in the next section, let

us make some comments about eq. (3.5). First, we see that the value of C in MRK is

fixed from the symbol in MRK. Second, although eq. (3.5) was derived in the Eucliden

region, these relations hold for symbols in any Mandelstam region, because the symbol of

a function is independent of branch cuts and the region in which the function is evaluated.

These two observations combined have an important consequence, which will be the key to

compute the coefficient of (2πi)2 from the symbol in any Mandelstam region. In general

kinematics, the coefficient of π2 is a beyond-the-symbol term, which is reflected in the fact

that the value of C in eq. (3.2) is not determined by the symbol alone. In MRK, however,

the value of M[C] is uniquely determined, independently of the kinematic region! We can

therefore access the (symbol of the) coefficient of (2πi)2 in the remainder function without

the explicit knowledge of the value of C in general kinematics. In the next section we

show how we can combine this observation with the correct analytic continuation of the

remainder function to determine the symbol of the coefficient of (2πi)2 in MRK.

4 Remainder functions in different Mandelstam regions

4.1 Cross ratios and Mandelstam regions

We now discuss the analytic continuation to kinematic regions where particles 1 and 2 are

incoming with positive energy and the signs of the energies of the remaining particles are

not fixed. Following refs. [77, 79] we define a Mandelstam region by specifying the signs

of the energies of particles 3 to N , labeling them by the sequence % ≡ (%i)3≤i≤N with

%i given in eq. (2.12). The data defining a region does not yet uniquely fix the signs of

the Mandelstam invariants, but only the signs of two-particle invariants are fixed. Since

sij = EiEj(1− cos θij), we have

sign(sij) = sign(Ei) sign(Ej) = %i %j . (4.1)

We thus see that the signs of two-particle invariants are uniquely specified by the signs of

the energies of the produced particles, i.e., each two-particle invariant has a unique sign in

– 7 –
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a given Mandelstam region %. For multi-particle invariants, however, this is in general not

the case. We now show that in MRK the sign of each consecutive invariant x2
ij is uniquely

fixed by the signs of the energies of the external momenta. We start by noting that in

MRK we have

x2
ij

j−1∏
l=i+2

κl = s(i+1)...j

j−1∏
l=i+2

κl '
j−1∏
k=i+1

sk(k+1) , ∀ 2 ≤ i < j ≤ N , (4.2)

with

κj = |pj |2 , 4 ≤ j ≤ N − 1 . (4.3)

Since κj is always a positive number and %2
i = 1, we have

sign(x2
ij) =

j−1∏
k=i+1

sign(sk(k+1)) = %i+1 %j . (4.4)

Note that eq. (4.4) remains valid for two-particle invariants. If in addition we require that

all t-channel invariants are negative, x2
1i < 0, then we see that in MRK the signs of the

multi-particle invariants are fixed. Therefore, in order to study the amplitude in MRK

in the Mandelstam region %, we should first analytically continue the amplitude to the

kinematic region where all invariants have the signs prescribed by eq. (4.4). Then, from

this kinematic region the multi-Regge limit can be reached without any invariants changing

sign. Since we are only interested in MRK, we will from now on always assume that all

invariants take the signs prescribed by eq. (4.4) when talking about the corresponding

region %.

Let us now discuss what happens to the cross ratios when we analytically continue them

from the Euclidean region to a Mandelstam region. The analytic structure of an amplitude

is such that each consecutive Mandelstam invariant has a small positive imaginary part,

x2
jk → x2

jk+iε. Moreover, the amplitude is real in the Euclidean region where all consecutive

Mandelstam invariants are negative and the cross ratios Uijkl have no phase in the Euclidean

region. If the Mandelstam invariants change sign, however, the cross ratios may acquire a

region-dependent phase that can be parametrised as

Uijkl =

∣∣∣∣∣x2
ijx

2
kl

x2
ikx

2
jl

∣∣∣∣∣ exp [−iπ(ϕij + ϕkl − ϕik − ϕjl)] , (4.5)

with

ϕij = θ(x2
ij) =

{
1 , if x2

ij > 0 ,

0 , if x2
ij < 0 .

(4.6)

The phase structure of the cross ratios Uij in a Mandelstam region % can be described

in terms of winding numbers [77], defined by4

Ujk → |Ujk| exp
[
2πi n%jk

]
. (4.7)

The winding numbers n%jk for the cross ratios defined in eq. (2.6) are determined as follows.

4Our winding numbers differ by an overall sign from ref. [77].
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1. For the cross ratios Vi and Ṽj we have

n%1j = −n%(j−1)N = −1

4
(%j − %j+1) =


0 , if %j = %j+1 ,

−1/2 , if %j = −%j+1 = −1 ,

1/2 , if %j = −%j+1 = +1 .

(4.8)

The winding number of any cross ratio Vi or Ṽj is either vanishing or half-integer,

which means that they can acquire at most a phase of ±iπ. Note that depending on

the region they can change sign.

2. For the cross ratios Wjk we have,

n%jk = −1

4
(%j+1 − %j+2) (%k+1 − %k) . (4.9)

The above winding numbers are always 0 or ±1 and thus Wjk cannot change sign.

In a similar fashion, the winding numbers of the cross ratios Uijkl can be determined from

the knowledge of those for the Uij using the expressions found in appendix A.

4.2 Symbols of remainder functions in MRK

In this section we present one of the main results of this paper, namely a method to extract

the symbol of the coefficient of (2πi)2 of the L-loop N -point remainder function R
(L)
N in

MRK in any Mandelstam region just from the knowledge of the symbol of R
(L)
N .

We have to analytically continue R
(L)
N to the Mandelstam region % before taking the

multi-Regge limit. After analytic continuation, the remainder function has the general form

R
(L)%
N =

2L∑
k=0

(2πi)kT
(L)%
k,N . (4.10)

We can then approach the multi-Regge limit, and we obtain

M
[
R

(L)%
N

]
=

2L∑
k=1

(2πi)kX
(L)%
k,N , M

[
T

(L)%
k,N

]
= X

(L)%
k,N , (4.11)

where the X
(L)%
i,N are weight (2L−i) real and single-valued functions of the 3(N−5) variables

{ρi, ρ̄i, τi}, where ρi are the dual variables shown in figure 1 and τi are defined in eq. (2.10).

We have dropped the contribution from k = 0, because the remainder functions vanishes

in MRK in the Euclidean region, and so all non-vanishing terms must be proportional to

at least one power of (2πi). They are symmetric under target-projectile exchange [79, 80],

(ρi, ρ̄i, τi) 7→ (1/ρN−4−i, 1/ρ̄N−4−i, τN−4−i) , 1 ≤ i ≤ N − 5 . (4.12)

Since the single-valued version of 2πi is zero, the single-valuedness of X
(L)%
i,N implies that

the coefficient of each power of 2πi is uniquely defined, and no additional powers of π are

generated when approaching a soft limit. As such, they independently satisfy soft limits,

lim
xj→xj+1

X
(L)%
k,N+1 = X

(L)%′

k,N , 1 ≤ k ≤ 4 , 2 ≤ j ≤ N − 3 , (4.13)

where %′ is obtained from % by deleting %j+2.
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We now discuss how we can extract the symbols of X
(L)%
1,N and X

(L)%
2,N from the symbol of

R
(L)
N . Performing the analytic continuation from the Euclidean region to the Mandelstam

region % in general kinematics is an extremely complicated task, and it is in general not

known how to perform this analytic continuation. Performing the analytic continuation of

∆2,1,...,1

(
R

(L)
N

)
, however, is very simple. Indeed, analytic continuation only acts in the first

entry of the coaction [75, 81]. The first entries of ∆2,1,...,1

(
R

(L)
N

)
are very simple and contain

only logarithms and dilogarithms of the form logUij and Li2 (1− Uijkl) (cf. eq. (3.2)), whose

analytic continuations are well known [82, 83]:

logUij = log |Uij |+ 2πi n%ij ,

Li2 (1− Uijkl) = Re Li2 (1− Uijkl)− 2πi n%ijkl log |1− Uijkl|

− 1

2
(2πi)2(n%ijkl)

2 θ (Uijkl − 1) ,

(4.14)

where the winding numbers are defined in eqs. (4.8) and (4.9). We can thus insert eq. (4.14)

into eq. (3.2) and then take the multi-Regge limit. Note that the contribution from C in

eq. (3.2) drops out in MRK independently of the Mandelstam region once we enforce

eq. (3.5). The symbols of X
(L)%
1,N and X

(L)%
2,N can then easily be read off by collecting the

terms proportional to 2πi and (2πi)2 in the first entry of the coaction.

We see that we can determine the symbols of X
(L)%
1,N and X

(L)%
2,N from the knowledge of

the symbol of R
(L)
N . Crucial in this procedure is the fact that analytic continuation only

acts in the first factor of the coaction on MPLs. The analytic continuation is trivialised

by the fact that the first and second entry conditions on the symbol of R
(L)
N force the first

factor in ∆2,1,...,1

(
R

(L)
N

)
to have a very simple structure. We emphasise that the analytic

continuation is free of any ambiguity and does not rely on any choice of path: the analytic

continuation is entirely fixed by the Feynman +iε prescription, as expected for any physical

scattering amplitude.

Let us conclude this section by commenting on the symbols of X
(L)%
k,N with k > 2.

In principle, the symbols of these functions could be extracted in a similar fashion from

∆k,1,...,1

(
R

(L)
N

)
. In practice, however, it is known that starting from the third entry the

symbol of R
(L)
N involves letters that are not simply Uij or 1 − Uijkl, but more general

algebraic functions of the conformal cross ratios appear. As a consequence, the first factor

in ∆k,1,...,1

(
R

(L)
N

)
will no longer involve only simple functions whose analytic continuation

to arbitrary Mandelstam regions is known in the literature. For example, for N = 6,

it is known that the first factor in ∆3,1,...,1

(
R

(L)
6

)
involves the one-loop hexagon in six

dimensions [38, 84, 85], and it is currently not known how to analytically continue this

function to arbitrary Mandelstam regions.

While in general we cannot constrain the symbols of X
(L)%
k,N with k > 2, we can make

concrete predictions for the cases k = 2L− 1 and k = 2L. First, X%
2L,N must have weight

zero, and so it is a rational number. Equation (4.13) then implies that X
(L)%
2L,N is independent

of N , and it must be equal to X
(L)%
2L,6 (it does depend, at least a priori, on the number of

loops and the Mandelstam region).
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The function X
(L)%
2L−1,N has weight one and is thus no longer forced to be constant. We

now show that the constraints imposed by single-valuedness and eq. (4.13) force X
(L)%
2L−1,N

to vanish. X
(L)%
2L−1,N is a single-valued pure function of weight one on M0,N−5, and as such

can be expanded in a basis of single-valued logarithms,

log |ρi|2, log |1− ρi|2, 1 ≤ i ≤ N − 5 .

log

∣∣∣∣1− ρi
ρj

∣∣∣∣2 , 1 ≤ i < j ≤ N − 5 .
(4.15)

Thus, in general we can write,

X
(L)%
2L−1,N =

N−5∑
i=1

αi log |ρi|2 + βi log |1− ρi|2 +
N−5∑
j=i+1

γij log

∣∣∣∣1− ρi
ρj

∣∣∣∣2
 , (4.16)

for constants αi, βi and γij (their value may still depend on N , L and %). We now show

by induction that X
(L)%
2L−1,N must vanish for all N . The argument is very similar to the

argument in the two-loop case in ref. [68]. The start of the recursion is N = 6, where

eq. (4.16) reduces to

X
(L)%
2L−1,6 = α log |ρ1|2 + β1 log |1− ρ1|2 , (4.17)

As the six-point remainder function must vanish in all soft limits, eq. (4.13) implies

lim
ρ1→0

X
(L)%
2L−1,6 = lim

ρ1→∞
X

(L)%
2L−1,6 = 0 . (4.18)

The only way to satisfy these constraints is that X
(L)%
2L−1,6 vanishes identically. Next, assume

that X
(L)%
2L−1,N ′ vanishes for N ′ < N . We can apply different soft limits to the N -particle

ansatz and derive constraints on the coefficients. Consider first the soft limit ρ1 → 0. Since

X
(L)%
2L−1,N−1 = 0 by induction, all terms in eq. (4.16) that do not vanish in this limit must

appear accompanied by a vanishing coefficient, and so

αi = 0 , 1 ≤ i ≤ N − 5 ,

βi = 0 , 2 ≤ i ≤ N − 5 ,

γij = 0 , i 6= 1 .

(4.19)

Now, consider the soft limit ρ1 → ρ2. From this we derive the additional constraints

β1 = −β2 ⇒ β1 = 0 ,

γ12 = 0 , γ1j = −γ2j , j > 2 ⇒ γ1j = 0 .
(4.20)

Thus we find that all coefficients vanish and conclude that we always have X
(L)%
2L−1,N = 0.
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5 All two-loop remainder functions in MRK

In this section we apply the method described in the previous section to the symbols of

all two-loop remainder functions from ref. [33]. As we will see, the two-loop case is special

because we can not only determine the symbols, but we can lift the symbols to the functions

in a unique way. In the previous section we have seen how to extract the symbols of X
(2)%
1,N

and X
(2)%
2,N and we have given analytic results for X

(2)%
2L−1,N and X

(2)%
2L,N . At two loops the

remainder function in MRK is then completely determined by these quantities,

M
[
R

(2)%
N

]
= (2πi)X

(2)%
1,N + (2πi)2X

(2)%
2,N + (2πi)3X

(2)%
3,N + (2πi)4X

(2)%
4,N

= (2πi)X
(2)%
1,N + (2πi)2X

(2)%
2,N ,

(5.1)

where in the last step we used X
(2)%
3,N = 0 and X

(2)%
4,N = X

(2)%
4,6 = 0. We thus see that at two

loops the remainder function in MRK is completely determined by X%
1,N and X%

2,N , and so

we can determine their symbols using the method from the previous section. As we will

discuss now, we can fix all beyond-the-symbol ambiguities at two loops and completely

determine the functions X
(2)%
1,N and X

(2)%
2,N .

5.1 The functions X
(2)%
1,N

We start by extracting the symbols of X
(2)%
1,N from the symbol of the two-loop remainder

functions in every Mandelstam region %. This was already done in refs. [77, 86] at LLA

and NLLA for the regions where (%3, %N ) = (+1,+1), and we reproduce the results of

refs. [77, 86] for those regions. In refs. [68, 86] the symbols were lifted to functions in those

regions. Here we follow the same reasoning to obtain the functions X
(2)%
1,N , including for

the regions where (%3, %N ) 6= (+1,+1). The final results can be written in the compact

form [77]

X
(2)%
1,N =

∑
k,l∈I%
k<l

(
X

(2)[k,l]
1,N −X(2)[k+1,l]

1,N −X(2)[k,l−1]
1,N +X

(2)[k+1,l−1]
1,N

)
,

(5.2)

where I% denotes the set of elements in % equal to −1 and [k, l] is the Mandelstam region

[k, l] = (+ . . .+
k
− . . .

l
− + . . .+) . (5.3)

Equation (5.2) shows that the functions X
(2)[k,l]
1,N form a spanning set for all the X

(2)%
1,N . The

elements in the spanning set are given by [77] ,

X
(2)[jk]
1,N =

k−1∑
i=j

[
f(ρi) log(τi) + f̃(ρi)

]
+

k−2∑
i=j

g(ρi, ρi+1) . (5.4)
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The functions f and f̃ are the LLA and NLLA six-point amplitudes in MRK in the

Mandelstam region (+−−+) [56, 66, 87],

f(ρi) =
1

2
log

∣∣∣∣1− ρiρi

∣∣∣∣2 log |1− ρi|2 ,

f̃(ρi) = −4P3(ρi)−
1

3
log2 |ρi|2 log |1− ρi|2 +

1

3
log2 |1− ρi|2 log

|ρi|6

|1− ρi|4

− 1

2
log |1− ρi|2 log

∣∣∣∣1− ρiρi

∣∣∣∣2 log
|ρi|2

|1− ρi|4
,

(5.5)

where

Pn(z) = <n
n−1∑
k=0

Bk
k!

logk|z|2 Lin−k(z) (5.6)

is the single-valued generalisation of Lin(z), Bk are the Bernoulli numbers and <n stands

for real part if n is odd or imaginary part otherwise. The function g appears for the first

time in the seven-point amplitude in the Mandelstam region (+ − − − +). It is given

by [68, 77]

g(ρi,ρi+1) =−2

[
P3

(
1− ρi

ρi+1

)
+P3

(
ρi (1−ρi+1)

ρi−ρi+1

)
+P3

(
ρi
ρi+1

)
+P3

(
1−ρi

ρi+1−ρi

)

−P3 (ρi+1)−P3 (ρi)

]
− 1

6
log |1−ρi|2 log

∣∣∣∣1− 1

ρi+1

∣∣∣∣2 log

∣∣∣∣(1−ρi)(1−ρi+1)

ρi

∣∣∣∣2
+

1

6
log

∣∣∣∣1− ρi
ρi+1

∣∣∣∣2 log2

∣∣∣∣ 1−ρi
ρi (1−ρi+1)

∣∣∣∣2− 1

6
log

∣∣∣∣1− ρi
ρi+1

∣∣∣∣2 log |1−ρi+1|2 log |ρi+1|2

+
1

6
log

∣∣∣∣1− ρi
ρi+1

∣∣∣∣2 log

∣∣∣∣1− 1

ρi

∣∣∣∣2 log |ρi|2 . (5.7)

Equation (5.2) reproduces the symbol of X
(2)%
1,N , but a priori it does not determine it com-

pletely, because in general we could add multiple zeta values multiplied by single-valued

polylogarithms of lower weight. In this case the only beyond-the-symbol term that we

need to consider is ζ3 multiplied by an N -dependent rational coefficient, because terms

proportional to ζ2 = π2

6 would be contained in X
(2)%
2,N . It is then easy to check that it is

not possible to add any such term without violating the behaviour of X
(2)%
1,N in soft limits,

cf. eq. (4.13).

We observe that all the functions X
(2)%
1,N can be obtained as linear combinations of

functions from the spanning set X
(2)[k,l]
1,N . We have checked that there are no other relations

among the X
(2)%
1,N except for those in eq. (5.2). These relations were obtained for the first

time in ref. [77] for the subset of regions for which (%3, %N ) = (+,+). Our results show

that the same relations extend to arbitrary regions %.
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Figure 2. Illustration of the diagrammatic method for obtaining the (2πi)2 coefficients of the

remainder function, X
(2)%
2,N .

5.2 The functions X
(2)%
2,N

We now present the main result of this paper, the analytic results for the functions X
(2)%
2,N .

So far we have only discussed the symbols of X
(2)%
2,N . We now argue that we can easily

uplift these symbols to functions. Since X
(2)%
2,N is both single-valued and real, it can only

be a linear combination of products of two logarithms, and it is very easy to uplift the

symbols to functions. The only beyond the symbol terms that we could add is a constant

proportional to ζ2, but such a constant is excluded because it would contribute to X
(2)%
4,N

and not X
(2)%
2,N . We therefore obtain the following compact result,

X
(2)%
2,N =

1

2

∑
Cijkl

(−1)σijkl+1 log |Uijkl|2 log |Ujkli|2 . (5.8)

The different contributions to eq. (5.8) can be neatly obtained using a diagrammatic method

described in the following and illustrated in figure 2.

1. Assemble the transverse dual variables xi on a circle, keeping track of the energies of

the N − 2 particles.

2. Next, draw all possible intersecting segments between four points xi, xj , xk, xl whose

adjacent particles have opposite energies. Each cross Cijkl defines two cross ratios.

3. Assign to each cross a sign (−1)σijkl+1, where σijkl stands for the number of +→ −
segments when going around the circle in the clockwise direction, ignoring all other

xm variables. For the example in figure 2, σijkl = 3.
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The functions obtained using the method above satisfy interesting properties. First of

all, since the X
(2)%
2,N and the leading logarithmic part of X

(2)%
1,N (i.e., the function f in eq. (5.5))

are both products of logarithms, it is natural to ask whether there are any relations that

connect the two sets of functions. Indeed, the first observation we make is that certain

X
(2)%
2,N are identical to the leading logarithmic terms that feature in X

(2)%
1,N , namely

X
(2)+···+−−+···+
1,N

∣∣∣
LL

= −1

2
X

(2)+···+−+−···−
2,N . (5.9)

We now study the relations satisfied among the X
(2)%
2,N alone and arrive at a set of functions

which constitute independent building blocks for arbitrary multiplicity. First, it easy to

see that the X
(2)%
2,N are invariant under the simultaneous reversal of all energies,

X
(2)%
2,N = X

(2)%̄
2,N , (5.10)

where %̄ denotes the region % with all energies reversed. Moreover, since the only dual

variables entering the cross ratios in figure 2 are bounded by particles with opposite ener-

gies, neighbouring particles with the same energy can be collapsed into one, leading to the

simple rule,

X
(2)%3···%i%i+1···%N
2,N (ρ1, . . . , ρN−5) = X

(2)%3···%i···%N
2,N−1 (ρ1, . . . , ρ̂i−3, . . . , ρN−5) ,

if %i = %i+1 and i /∈ {3, N − 1} .
(5.11)

Using explicit results for amplitudes with a high number of external legs, we have searched

for additional linear relations among the X
(2)%
2,N and the leading logarithmic part of the func-

tion X
(2)%
1,N . We have not found any relations among these function other than eqs. (5.9),

(5.10) and (5.11), which leads us to conjecture that these are the only relations among

these objects.

We now present a spanning set for all the X
(2)%
2,N . Without loss of generality, we consider

regions for which particle 3 has positive energy. From the diagrammatic method above, it

is clear that in order for a function X
(2)%
2,N to be non zero, there must be at least two blocks

of consecutive particles with negative energies, e.g. (+ · · · + − · · · − + · · · + − · · · − · · · ).
Moreover, our diagrammatic methods implies that regions with more than two such blocks

are linear combinations of those with exactly two since, according to figure 2, they admit

more than one cross. Taking into account the relations in eq. (5.11), we find that the

independent regions constitute all distinct ways of collapsing neighbouring particles of a

region with two blocks of particles with negative energies. There are eight possible regions

that cannot be collapsed further,

(+−+−) (+−+−+) (+ +−+−) (+−+−−)

(+ +−+−+) (+−+−++) (+ +−+−−) (+ +−+−+ +) .
(5.12)

Therefore, we find that all the X
(2)%
2,N in eq. (5.8) can be expanded in a basis of functions

that arise up to nine points. Using simplicial MRK coordinates (see figure 1), the basis is
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explicitly given by

F+−+−(ρ1) =
1

2
log |1− ρ1|2 log

∣∣∣∣ ρ1

1− ρ1

∣∣∣∣2 ,
F+−+−+(ρ1, ρ2) =

1

2
log |1− ρ12|2 log |ρ12|2 ,

F++−+−(ρ1, ρ2) =
1

2
log

∣∣∣∣1− ρ1

1− ρ2

∣∣∣∣2 log

∣∣∣∣ 1− ρ2

ρ1 − ρ2

∣∣∣∣2 ,
F+−+−−(ρ1, ρ2) = F++−+−(1/ρ2, 1/ρ1) ,

F++−+−+(ρ1, ρ2, ρ3) =
1

2
log

∣∣∣∣1− ρ13

1− ρ23

∣∣∣∣2 log

∣∣∣∣1− ρ21

1− ρ31

∣∣∣∣2 ,
F+−+−++(ρ1, ρ2, ρ3) = F++−+−+(1/ρ3, 1/ρ2, 1/ρ1) ,

F++−+−−(ρ1, ρ2, ρ3) =
1

2
log

∣∣∣∣(1− ρ2)(1− ρ31)

(1− ρ21)(1− ρ3)

∣∣∣∣2 log

∣∣∣∣(1− ρ1)(ρ2 − ρ3)

(1− ρ2)(ρ1 − ρ3)

∣∣∣∣2 ,
F++−+−++(ρ1, ρ2, ρ3, ρ4) =

1

2
log

∣∣∣∣(1− ρ13)(1− ρ24)

(1− ρ14)(1− ρ23)

∣∣∣∣2 log

∣∣∣∣(1− ρ21)(1− ρ34)

(1− ρ31)(1− ρ24)

∣∣∣∣2 ,

(5.13)

with ρij ≡ ρi/ρj .

6 Discussion

In this section we analyse the explicit results for two-loop MHV remainder functions in

MRK and we argue that they are consistent with the prediction from Regge theory that

starting from eight points in certain Mandelstam regions the amplitudes receive contribu-

tions from an exchange of a composite state of three Reggeons [88, 89].

Schematically, we can write

R%N e
iπδ%N ∼ 1 + iπδ%N +W %

2,N +W %
3,N + . . . , (6.1)

where R%N denotes the all-loop MHV remainder function in the Mandelstam region % and δ%N
denotes a phase arising from the part of the BDS ansatz that does not undergo multi-Regge

factorisation [90],

δ%N =
γK
4

N−3∑
i=3

N−1∑
j=i+2

(%i − %i+1)(%j − %j+1) log

∣∣∣∣∣ x2
ijx1i+1xj−11

x1ixii+1xj−1jxj1

∣∣∣∣∣
2

. (6.2)

Here γK = 4a + O(a2) is the cusp anomalous dimension and a is the ’t Hooft coupling.

On the right-hand side, the quantities W %
k,N represent schematically all the contributions

involving the exchange of a composite state of exactly k Reggeons. It is expected that these

quantities admit a representation in terms of a dispersion integral very reminiscent of the
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BFKL equation in QCD [88, 89]. These dispersion integrals take the form of a (multiple)

Fourier-Mellin transform, which is naturally expressed in terms of the cross ratios,

wi = −(1− ρi+1)(ρi − ρi−1)

(1− ρi−1)(ρi − ρi+1)
, (ρ0, ρN−4) = (0,∞) . (6.3)

This is supported by all known results for remainder functions in MRK [55, 56, 66–68,

71, 87, 91, 92] as well as the relation between the OPE in the near collinear limit and

MRK [69].

Here we only focus on the structure of the remainder function in MRK at two loops.

Projecting eq. (6.1) to two loop order, we find

R
(2)%
N + 2 (2πi)2

(
δ%N
)2 ∼W (2)%

2,N +W
(2)%
3,N , (6.4)

where we have dropped terms involving an exchange of more than three Reggeons, because

they are expected to contribute only at higher loop orders. Our goal is to check for small

values of N that our explicit results are consistent with the structure in eq. (6.4). In broad

terms, we start from certain Mandelstam regions free of triple-Reggeon exchanges, which

allows us to gain some information on which analytic structures are associated with the

exchange of a composite state of two Reggeons. We then compare these analytic structures

to the ones that appear in other Mandelstam regions. If two-loop MHV remainder functions

were determined solely by two-Reggeon exchange, then no new analytic structures would

be expected to appear in these regions.

For simplicity, we focus on Mandelstam regions with (%3, %N ) = (+,+). Moreover,

since it is expected that triple-Reggeon exchange only contributes to terms proportional to

(2πi)2, we only focus on that part. More concretely, it is expected that the Mandelstam

regions [k, l] and [k, l,m], where [k, l] is defined in eq. (5.3) and

[k, l,m] = (+ . . .+
k
− . . .−

l
+ − . . .

m
− + . . .+) , (6.5)

do not receive contributions from three-Reggeon exchange. Our strategy is then the

following:

1. Since the dispersion integrals are naturally expressed in terms of the variables wi
rather than the ρi, we rewrite all the results of the previous section in terms of the

wi variables in eq. (6.3).

2. We consider the regions [k, l] and [k, l,m] for a fixed value of N and we classify all

possible products of two logarithms that appear inside Y %
N ≡ X

(2)%
N + 2

(
δ%N
)2

. Note

that Y %
N is always a linear combination of products of two logarithms.

3. For any region % which is not of the type [k, l] or [k, l,m], we set to zero in Y %
N

all products of two logarithms found in the previous step. We denote the resulting

function by Y%N .
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Figure 3. Region %8,1.

In the remainder of this section we summarise the outcome of our analysis for N ≤ 9.

Let us start by discussing the case N = 8. In that case, there is only one Mandelstam

region which is not of the type [k, l] or [k, l,m], shown in figure 3, namely

%8,1 = (+−+ +−+) , (6.6)

and it is expected that this region receives contributions from three-Reggeon exchange.

We find

Y%8,18 (w1, w2, w3) = −3 log |1 + w2 + w1w2|2 log |1 + w3 + w2w3|2

− 4 log |1 + w2|2 log |1 + w3 + w2w3 + w1w2w3|2 .
(6.7)

We interpret the fact that we find a non-zero result as a sign of a non-trivial contribution

from three-Reggeon exchange in this particular region, as expected from Regge theory.

Let us now turn to N = 9. There are six regions that are not of the type [k, l] or

[k, l,m], which we label as

%9,1 = (+−+ +−+ +) ,

%9,2 = (+ +−+ +−+) ,

%9,3 = (+−+ +−−+) ,

%9,4 = (+−−+ +−+) ,

%9,5 = (+−+ + +−+) ,

%9,6 = (+−+−+−+) .

(6.8)

We now discuss each of these in turn. In the regions %9,1 and %9,2 the two negative-energy

particles are separated by exactly two positive-energy particles, just like in eq. (6.6). We

therefore expect that this amplitude is identical to the corresponding eight-point amplitude

(maybe up to a relabelling of the variables). This is indeed exactly what we find,

Y%9,19 (w1, w2, w3, w4) = Y%8,18 (w1, w2, w3) ,

Y%9,29 (w1, w2, w3, w4) = Y%8,18 (w2, w3, w4) .
(6.9)

For the regions %9,3 and %9,4 there is an additional negative-energy particle compared to the

region %8,1. Based on experience from LLA [71], we expect that this amplitude reduces to
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Figure 4. Region %9,5.

an eight-point amplitude with the following relabelling of the simplicial MRK coordinates

for %9,4, (ρ1, ρ2, ρ3)→ (ρ2, ρ3, ρ4). This is indeed what we observe. More precisely, we find

Y%9,39 (w1, w2, w3, w4) = Y%8,18

(
w1, w2,

w3w4

1 + w4

)
,

Y%9,49 (w1, w2, w3, w4) = Y%8,18 ((1 + w1)w2, w3, w4) .

(6.10)

The arguments appearing in the right-hand side seem ad hoc at first, but they have a very

natural interpretation and arise by expressing the cross ratios wi that appear in eight-point

kinematics in terms of those in nine-point kinematics, via the intermediate of the simplicial

MRK coordinates. For example, if w
(N)
i denote the w-variables in N -point kinematics, we

have in the case of the region %9,3,(
w

(8)
1 , w

(8)
2 , w

(8)
3

)
=

(
−(1− ρ2)ρ1

(ρ1 − ρ2)
,−(1− ρ3)(ρ2 − ρ1)

(1− ρ1)(ρ2 − ρ3)
,−ρ3 − ρ2

1− ρ2

)
=

(
w

(9)
1 , w

(9)
2 ,

w
(9)
3 w

(9)
4

1 + w
(9)
4

)
.

(6.11)

We see that our results indicate that the Mandelstam regions %9,i, i ≤ 4, receive the

same three-Reggeon contributions as the eight-point region %8,1, as expected from Regge

theory [88, 89].

Let us now discuss the region %9,5, shown in figure 4.

We find that we cannot express this region in terms of an eight-point contribution only,

but we have

Y%9,59 (w1, w2, w3, w4)

= −4 log |1 + w3 + w2w3|2 log |1 + w4 + w3w4 + w2w3w4 + w1w2w3w4|2

− 3 log |w1w2w3 + w2w3 + w3 + 1|2 log |w2w3w4 + w3w4 + w4 + 1|2 .
(6.12)

The fact that this region contains a new analytic structure is consistent with Regge

theory, because this is the first Mandelstam region sensitive to the central emission vertex

for triple-Reggeon exchange.
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Finally, let us discuss the region %9,6. We find that Y%9,69 does not reduce to either

an eight-point object nor to the function in eq. (6.12), but instead it defines, a priori, a

new analytic structure. This seems to contradict Regge theory, where no new structures

are expected to appear beyond the impact factors and the central emission vertices for

triple-Reggeon exchange (captured by the regions %8,1 and %9,5 respectively). Indeed, we

find that Y%9,69 vanishes modulo the product of two logarithms encountered in Y%9,i9 , i ≤ 5,

and so no new analytic structure appears in %9,6 beyond those already encountered, in

agreement with the expectation.

We see that our results are fully consistent with Regge theory: there are precisely

two new analytic structures that govern all Mandelstam regions at eight and nine-points,

consistent with the picture of an impact factor and a central emission vertex involving a

composite state of three Reggeons. From the BFKL perspective, new building blocks ap-

pearing in scattering amplitudes in MRK related to triple-Reggeon exchanges are expected

to arise up to nine points at two loops. For the region (+ − + + −+) at eight points, a

correction to the impact factor can appear and for the region (+ − + + + − +) at nine

points the central emission block can receive extra contributions. The contributions from

triple-Reggeon exchange are expected to be always accompanied by at least two powers of

(2πi), so that they contribute only to X
(2)%
k,N at two loops. For future reference, we quote

here the results for these two regions (+ −+ +−+) and (+−+ + +−+), which are the

simplest regions where we expect triple-Reggeon exchange to play a role. We present the

results in both the wi and ρi variables,

X
(2)+−++−+
2,8 =

1

2
log

∣∣∣∣1− ρ1

ρ3

∣∣∣∣2 log

∣∣∣∣ρ1

ρ3

∣∣∣∣2 =
1

2
log

∣∣∣∣ w1w2

ω21 ω32

∣∣∣∣2 log

∣∣∣∣ω2 ω321

ω21 ω32

∣∣∣∣2 ,
X

(2)+−+++−+
2,9 =

1

2
log

∣∣∣∣1− ρ1

ρ4

∣∣∣∣2 log

∣∣∣∣ρ1

ρ4

∣∣∣∣2 =
1

2
log

∣∣∣∣ w1w2w3

ω321 ω432

∣∣∣∣2 log

∣∣∣∣ω32 ω4321

ω321 ω432

∣∣∣∣2 ,
(6.13)

where we introduced the shorthands

ωi1 = 1 + wi1 and ωi1i2...im = 1 + wi1 ωi2...im . (6.14)

7 Conclusions

In this paper we have introduced a method to extract the symbol of the coefficient of

(2πi)2 from the symbol of the remainder functions in MRK in any Mandelstam region.

The cornerstone of our approach is the realisation that when the symbol is lifted to the

∆2,1,...,1 component of the coaction on multiple polylogarithms, then the first and second

entry conditions on the symbol translate into very simple polylogarithms of weight two that

can appear in the first factor of the coaction. The analytic continuation of these functions

is known, and so we can easily analytically continue the ∆2,1,...,1 component of the coaction

of the remainder function to any kinematic region, independently of the number of loops

and the number of external legs.

We have applied our method to the symbols of all two-loop MHV amplitudes computed

in ref. [33], and we can uplift the symbols to functions in a unique way. The results for
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the coefficient of (2πi)2 at two loops are particularly simple, and they only consist of

linear combinations of products of two logarithms. We found that the two-loop results

in different Mandelstam regions are not independent but satisfy relations among each

other. These relations are concisely described by a diagrammatic method that allows us

to obtain complete analytic results for all two-loop MHV remainder functions in MRK

in all Mandelstam regions. In particular, we determine a spanning set for all functions

that involve only building blocks with up to nine points. Finally, we have analysed our

results and we observed that they are consistent with the hypothesis of a contribution from

the exchange of a three-Reggeon composite state starting from two loops and eight points

in certain Mandelstam regions. However, we were not able to disentangle completely the

contributions from two- and three-Reggeon exchange. It would be interesting to study if one

can isolate the contribution from three-Reggeon exchange and to compare it to predictions

by Regge theory or the OPE in the near collinear limit. We leave this for future work.
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A MRK and momentum twistors

In this appendix we set our notations and conventions. We consider scattering amplitudes

of N massless particles with momenta pi in MRK. It is convenient to decompose the

momenta of the particles in terms of the lightcone directions and transverse coordinates,

p±j ≡ p
0
j ± pzj , pj ≡ pj⊥ = pxj + ipyj . (A.1)

In terms of these components, the scalar products between two momenta p and q is given by

2(p · q) = p+q− + p−q+ − pq̄− qp̄ . (A.2)

The mass-shell condition, (p0
j )

2 − (pzj )
2 − pjp̄j = 0, which in lightcone components reads

p+
j p
−
j −pjp̄j = 0, implies that for positive-energy states, p0

j > 0, the lightcone components

are positive, p±j > 0, while for negative-energy states, p0
j < 0, they are negative, p±j < 0.

We choose a reference frame such that the incoming particles 1 and 2 lie on the two

lightcone directions,

pj ≡ (p+
j , p

−
j ,pj), p1 = (0, p−1 , 0), p2 = (p+

2 , 0, 0) . (A.3)

In MRK particles 3, . . . , N are strongly ordered in rapidity, which implies the hierarchy

|p+
3 | � . . .� |p+

N |, |p−3 | � . . .� |p−N | and |p3| ' . . . ' |pN | . (A.4)
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Therefore, the non-trivial dynamics in the MRK regime takes place in the transverse space

and particles 1 and 2 can be ignored as their transverse momenta vanish.

A useful parametrisation for quantities displaying dual conformal symmetry is in terms

of momentum twistors [93]. Momentum twistors are obtained as a map from the spinor-

helicity variables of massless momenta using the dual variables (see eq. (2.4)),

µiα̇ = λiαε
αβxiβα̇ , Zi =

(
λiα
µiα̇

)
, (A.5)

where

pi = xi − xi−1 , xij ≡ xi − xj ,
pαα̇ = σµαα̇pµ = λαλ̃α̇ , xαα̇ = σµαα̇xµ .

(A.6)

In terms of the dual variables and momentum twistors, Mandelstam invariants can be

written as

(pi+1 + · · ·+ pj)
2 = x2

ij =
〈i− 1 i j − 1 j〉

〈i− 1 i I〉 〈j − 1 j I〉
, (A.7)

where the brackets above are defined as5

〈ij〉 ≡ εαβλαi λ
β
j , α, β = 1, 2 ,

〈ijkl〉 ≡ εABCDZAi ZBj ZCk ZDl , A,B,C,D = 1, 2, 3, 4 .
(A.8)

Dual conformally invariant quantities are functions of cross ratios, which in terms of mo-

mentum twistors are given by

Uijkl =
x2
ijx

2
kl

x2
ikx

2
jl

=
〈i− 1 i j − 1 j〉 〈k − 1 k l − 1 l〉
〈i− 1 i k − 1 k〉 〈j − 1 j l − 1 l〉

. (A.9)

They obey the relations

Uijkl = Ujilk = Uklij = Ulkji = U−1
ikjl = U−1

jlik = U−1
kilj = U−1

ljki . (A.10)

It is also useful to note that every cross ratio Uijkl can be written as a product of (inverses

of) cross ratios Uij as

Uijkl =

l−1∏
a=i

k−1∏
b=j

U−1
ab , i < j < k and i < l , (A.11)

and the cases outside the range i < j < k and i < l can be worked out using eq. (A.10)

Our strategy to compute the two-loop remainder functions in MRK is to study the

(2, 1, 1) component of their coaction. To this end, we need to write the first two entries

of the symbols as functions of dual conformal cross ratios which can then be integrated

to dilogarithms and products of logarithms, assuming the form given in eq. (3.3) and, in

MRK, eq. (3.4).

5In our conventions ε12 = ε1234 = 1.
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The first two entries of the symbol of ref. [33] are written in terms four-brackets of

momentum twistors and combinations such as

〈i(ab)(cd)(ef)〉 ≡ 〈aicd〉 〈bief〉 − 〈aief〉 〈bicd〉 . (A.12)

We replace the four-brackets involving caps in terms of cross ratios and simple brackets

using:6

〈i(i−1 i+1)(j−1j)(j j+1)〉= 〈i̄〉〈jı̄〉= (1−Uij)〈i−1 ij−1j〉〈i i+1j j+1〉 ,

〈i(i−1 i+1)(j j+1)(kk+1)〉= (1−Ui+1k+1j+1 i)(k+1 i)(i+1j+1) ,

(A.13)

where in the first line we used the notation for dual twistor:

Zi ≡ Zi−1 ∧ Zi ∧ Zi+1 . (A.14)

We now describe a convenient parametrisation of the multi-Regge limit of dual con-

formally invariant quantities in terms of momentum twistors [86].7 Writing a lightlike

momentum in terms of its spinor components as in eq. (A.6), the momentum of particle j

in MRK can be parametrised by:

pj =

(
εj−

n+3
2 p+

j pj

p∗j ε
n+3
2
−jp−j

)
, j = 3, . . . , n ,

p1 = −
n∑
j=3

(
0 0

0 ε
n+3
2
−jp−j

)
,

p2 = −
n∑
j=3

εj−n+3
2 p+

j 0

0 0

 ,

(A.15)

where ε is a parameter that tends to 0 in MRK. It only serves as a bookkeeping device

that can be put to unity once the limit is taken. The spinors associated to these momenta

are then

λ1 = λ̄1 '

(
0√

p−1 ε
−n−3

4

)
, λ2 = λ̄2 '

(√
p+

2 ε
−n−3

4

0

)
, (A.16)

λj =

 √
p+
j ε
−n

4
+ j

2
− 3

4√
p−j ε

n
4
− j

2
+ 3

4

√
pj
p∗j

 , λ̄j =


√
p+
j ε
−n

4
+ j

2
− 3

4√
p−j ε

n
4
− j

2
+ 3

4

√
p∗j
pj

 . (A.17)

These give the dual variables (we fix xn = 0)

xn =

(
0 0

0 0

)
, x1 =

(
0 0

0 −ε−
n−3
2
∑n

j=3 p
−
j ε

n−j

)
, (A.18)

xj =

(
−ε−

n−3
2
∑n

k=j+1 p
+
k ε

k−3
∑j

k=3 p∗k∑j
k=3 pk −ε−

n−3
2
∑n

k=j+1 p
−
k ε

n−k

)
. (A.19)

6Those may be off by a sign which is irrelevant for the symbol.
7We fix a typo when applying the map µiα̇ = λiαε

αβxiαα̇.
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Using µiα̇ = λiαε
αβxiαα̇ and Zi =

(
λiα
µiα̇

)
we find:

Z1 =


0

1

0

0

 , Z2 =


1

0

0

−
∑n

k=3 αkp
∗
kε

n+3
2
−k

 , Zn =


1

αnε
−n−3

2

0

0

 ,

Zj =


1

ε
n+3
2
−jαj∑j

k=3 p∗k + αj
∑n

k=j+1 ε
k−jpk/αk

−ε
n+3
2
−jαj

∑j
k=3 pk −

∑n
k=j+1 ε

n+3
2
−kαkp

∗
k

 , j = 3, . . . , n− 1 ,

(A.20)

where

αj =

√√√√p−j pj

p+
j p∗j

=
pj

p+
j

. (A.21)

Note that the last two components of Zj in eq. (A.20) are different from ref. [86].

We would like now to parametrise the multi-Regge limit using the variables

δi ≡
k+
i+1

k+
i

, ki ≡ pi+3 , i = 0, . . . n− 3 , δn−3 ≡ 1 . (A.22)

Noting that
αi
αi+1

=
pi

pi+1
δi−3 , (A.23)

we can trade α variables for δ’s as

αj = αn
pj
pn

n−4∏
k=j−3

δk . (A.24)

Setting ε to 1 in eq. (A.20) and using eq. (A.24) we find:

Z1 =


0

1

0

0

 , Z2 =


1

0

0

− 1
p+n

∑n
k=3 |pk|2

∏n−4
`=k−3 δ`

 , Zn =


1
pn
p+n

0

0

 ,

Zj =


1

pj
p+n

∏n−4
`=j−3 δ`

pj
∏n−4
`=j−3 δ`

∑n
k=j+1

(∏n−4
`=k−3 δ`

)−1
+
∑j

k=3 p∗k

− pj
p+n

∑j
k=3 pk

∏n−4
`=j−3 δ` −

1
p+n

∑n
k=j+1 |pk|2

∏n−4
`=j−3 δ`

 .

(A.25)
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