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Abstract
In diploid mammals, allele-speci�c three-dimensional (3D) genome architecture may lead to imbalanced
gene expression. Through ultradeep in situ Hi-C sequencing of three representative somatic tissues (liver,
skeletal muscle, and brain) from hybrid pigs generated by reciprocal crosses of phenotypically and
physiologically divergent Berkshire and Tibetan pigs, we uncover extensive chromatin reorganization
between homologous chromosomes across multiple scales. Haplotype-based interrogation of multi-
omics data revealed the tissue-dependence of 3D chromatin conformation, suggesting that parent-of-
origin-speci�c conformation may drive gene imprinting. We quantify the effects of genetic variations and
histone modi�cations on allelic rewiring of long-range promoter-enhancer contacts, which likely
contribute to the dramatic phenotypic differences between the parental pig breeds. This study also
provides de�nitive evidence of structured homolog pairing in the pig genome which could facilitate
regulatory interactions between homologous chromosomes. This work illustrates how allele-speci�c
chromatin architecture facilitates concomitant shifts in allele-biased gene expression, and consequently
phenotypic changes in mammals.

Introduction
It is well understood that the vast majority of somatic cells in mammals inherit two haploid genomes that
unequally contribute to cellular function. Substantial differences have been identi�ed between
homologous chromosomes (homologs) in gene transcription1, DNA methylation2, and chromatin
accessibility3,4. In addition, higher-order chromatin structure is now emerging as an important regulator of
gene expression5. Advances in high-throughput chromatin conformation capture (Hi-C) and its derivatives
have led to revelations in the full scope of three-dimensional (3D) chromatin dynamics during
mammalian development and lineage speci�cation6. However, conventional Hi-C data cannot generally
distinguish between different allelic copies, and most previous studies infer an average chromatin
architecture that incorporates the diploid genome without considering possible differences between
homologs7. Variability in multi-level chromatin architecture between homologs remains largely
unexplored; characterizing the 3D genome organization of a mammalian diploid genome remains
challenging8–11.

Sus scrofa (i.e., pig or swine) is a primary source of calories for humans; the world’s pig population
reached almost 1 billion, with China alone accounting for 49 percent12 Moreover, pig is rapidly emerging
as a versatile and informative biomedical model for human developmental processes13,14 and complex
diseases15,16, in addition to its utility in vaccine17 and drug design18 due to the relatively close
anatomical19,20, physiological21,22, immunological23 and genetic 24–26 similarities with humans. The
ability to generate genome-editing mutations in pig combined with somatic nuclear cloning procedures
has resulted in a number of new models for various human diseases27 and suggests the potential use of
pigs as a source for xenotransplantation28. Extensive genomic divergence is known to have occurred
between European and Asian pigs, attributable to the relative isolation of European and Asian lineages (at
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least one million years ago and their independent domestication in multiple locations across Eurasia in
the past ∼10,000 years25. Since animal breeding became more organized in the 18th century, and
especially the strong genetic selection of inbred commercial lines within the last 70 years25, many of
these breeds exhibit remarkable phenotypic diversity and genetic adaptations that provide a su�cient
number segregating sites to distinguish allele-speci�c information29.

To reveal the role of allelic bias in chromatin architecture in transcriptional regulation, we introduce a pig
model generated by reciprocal cross of highly selected European Berkshire and Asian aboriginal Tibetan
pigs. Using these F1 hybrid progenies, we reconstructed the haplotype-resolved 3D structures of 14
diploid genomes using ultra-deep in situ Hi-C sequencing (Fig. 1a and Supplementary Fig. 1a). These Hi-C
maps are then used to characterize the 3D nuclear organization of the diploid genomes and highlight
features of the spatial organization of homologs. Further analysis of the haplotype-resolved Hi-C maps
enabled systematic investigation of the tissue-, parent-of-origin-, and parental breed-speci�c differences
in chromatin architecture at multiple scales. We also performed a genome-wide, allele-speci�c survey of
the effects of genetic variations and histone modi�cations on the allelic reorganization of promoter-
enhancer interactions (PEIs) linked to allelic imbalances in gene expression in these hybrid pigs.
Ultimately, this study uncovers de�nitive evidence of the colocalization of homologs (known as ‘homolog
pairing’) in the genome of somatic tissues, which is correlated with genomic compartmentalization and
which represents a likely additional layer of transcriptional regulation between homologs.

Results

Construction of high-resolution diploid Hi-C contact maps
To generate chromosome-span haplotypes for use in assigning ‘omics’ data from diploid genomes to
their parental origins, we carried out reciprocal crosses of two genetically distinct pig breeds (three
families of Tibetan [ ] × Berkshire [ ], and three families of Berkshire [ ] × Tibetan [ ]) and sequenced the
whole-genomes of six parent-child trios (~ 122.25 × coverage for each individual, n = 18) (Fig. 1a).

To understand the 3D structural basis of transcriptional control in a diploid genome, we performed in situ
Hi-C for three tissues from newborn female �lial 1 (F1), representing the three germ layers: the liver
(endoderm, n = 6), the brain (ectoderm, n = 4), and skeletal muscle (mesoderm, n = 4). In total, ~ 48.95
billion valid Hi-C contacts (dataset 1: ~3.50 billion for each sample, n = 14) were generated, and the
transcriptional pro�les of corresponding samples were obtained using RNA-seq (Fig. 1a, Supplementary
Fig. 1a and Supplementary Fig. 2). Data from X chromosomes were excluded from further analyses to
avoid confounding factors related to the ‘mosaic’ 3D structural features of active and inactive X
chromosomes in tissues with highly heterogeneous cell populations (i.e., different cell populations have
different, random, X chromosome inactivation)30.

Combining trio-based genomic and Hi-C data from F1 hybrids enabled construction of chromosome-span
haplotypes that included 99.33% of all heterozygous single nucleotide variants (SNVs; ~4.54 per kb) for
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each F1 hybrid (Supplementary Fig. 3; see Methods). Through SNV phasing combined with local
imputation (Supplementary Fig. 4; see Methods), we built diploid Hi-C maps for 14 samples based on the
unambiguous maternal and paternal contacts, each containing ~ 1.04 billion intra-chromosomal contacts
(with maximum resolution of 2-kb), and ~ 100.13 million [M] inter-chromosomal contacts (~ 4.37%
occurring between homologs) (Fig. 1b and Supplementary Fig. 5). The allelic expression of ~ 11,430
protein coding genes (59.14% of the autosomal genes) was estimated using Allelome.PRO31

(Supplementary Fig. 5; see Methods).

We then reconstructed the 3D genome structures of the 14 diploid samples from their haplotype-resolved
Hi-C maps at 20-kb resolution (Fig. 1c). Pig genome contained full sets of functional condensin II
subunits (a determinant of architecture type)32 (Supplementary Fig. 1b); its 3D structures had
characteristically uneven mass distribution (i.e., nucleotides were concentrated in the nucleus interior,
except in the hollow nucleolus) (Fig. 1d) and displayed distinct chromosomal territories (Fig. 1e).
Chromosomes preferred the centromere-facing-out (no Rabl-like) con�guration (Fig. 1f) and sequence-
dependent spatial organization of chromatin (Supplementary Fig. 1c–h). These �ndings agreed with
human and rodent studies8,9,11,33. Additionally, homolog pairs were nearly equidistant from the center of
the 3D nucleus (Fig. 1g and Supplementary Fig. 1i) and in closer spatial proximity (Fig. 1h–j), with highly
similar intra- and inter-chromosomal contact patterns (indicated by multiple-chromosomal intermingling
intensity; Supplementary Fig. 1f), compared to non-homologous chromosomes (heterologs).

Haplotype-resolved analyses of Hi-C maps revealed that different tissues displayed more distinct
differences in 3D genome architecture than that between the same tissue in either parent-of-origin or
between parental breeds (Table 1 and Supplementary Fig. 1j–l), which was recapitulated by allelic
expression data (Supplementary Fig. 1m,n).
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Table 1
Summary of allelic chromatin reorganization at multiple scales

Haplotype-
resolved
characteristicsa

Measurements Paired

tissues

Parent-of-origin Parental breed

Liver Muscle Brain Liver Muscle Brain

Hi-C contact
map

Similarity
(QuASAR)b

~ 0.86 0.98 0.98 0.98 0.97 0.98 0.98

Compartment A/B switched
regions (Mb)c

~ 
224.51

4.52 6.90 12.50 18.86 12.52 17.20

A/B variable
regions (Mb)d

/ 4.52 4.88 4.22 61.42 29.30 14.80

TAD No. of shifted
boundaries

~ 184 1 2 2 0 0 0

PEI No. of genes
with

differential
RPSe

~ 4865 397 327 242 532 538 489

a See also Supplementary Data 1–9.

b. Correlations of haplotype-resolved Hi-C maps were determined using QuASAR scores. See
Supplementary Fig. 1j–v for similarity measurements in GenomeDISCO and HiCRep.

c. Regions exhibiting distinct compartment status (i.e., from A [positive value of A-B index] to B
[negative value of A-B index], or from B to A) as A/B switched regions.

d Regions exhibiting the same compartment status but with the variable compartment scores (|ΔA-B
index| > 0.5 and P < 0.05, paired Student’s t-test) as A/B variable regions.

e. Signi�cant RPS changes in genes between pairwise tissues (|ΔRPS| > 3) and between parent-of-
origins (|ΔRPS| > 0.3), or between breeds (|ΔRPS| > 0.3) were determined by paired Student’s t-test (P 
< 0.05) and |ΔRPS|.

 

Allelically compartmental rearrangements
In total, ~ 9.91% of the genome (~ 224.51 Mb regions) was found to have different compartmental status
between tissues (i.e., A/B switches; Fig. 2a, Table 1 and Supplementary Data 1). Genes located in tissue-
restricted A compartment regions showed generally higher expression than the same genes in the B
compartment in other tissues (Supplementary Figs. 6 and 7a). These tissue-dependent transcriptionally
active genes were mainly involved in specialized functions of their respective tissue (Supplementary
Fig. 7b,c).
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Given the rarity of regions that show compartment switching between parent-of-origin (~ 0.35% of the
genome; ~7.97 Mb) and between parental breeds (~ 0.71% of the genome; ~16.19 Mb), we compared
scores (i.e., A-B index values) between alleles with regions in same compartment and found that these
regions had signi�cantly different compartment scores (termed as A/B variables; P < 0.05, paired
Student’s t-test, and |ΔA-B index| > 0.5; Fig. 2a). This analysis showed that ~ 0.55% (~ 12.51 Mb) of the
genome regions displayed allelic differences in compartmentalization (including A/B switches and A/B
variables) between parents-of-origin (Table 1 and Supplementary Data 2), which were enriched with 126
known, imprinted, mammalian genes (P ≤ 0.002, Chi-square test; Supplementary Fig. 8a,b and 9).
However, genomic regions containing known, imprinted genes also had subtle but signi�cantly higher
variability in compartment scores between alleles (Supplementary Fig. 8c). These results indicated that
parent-of-origin-speci�c compartmentalization could serve as an underlying mechanism for genome
imprinting34,35.

After comparing compartment switching in parents, we examined compartment switching between
breeds and found that ~ 2.27% (~ 51.37 Mb) of the genome had allele-speci�c variable or switched
compartments between the parental breeds (Table 1 and Supplementary Data 3). These regions had
characteristically higher sequence divergence between alleles (i.e., higher density of SNVs and short
InDels, and thus lower pairwise similarity between haplotype identity score [IDS], see Methods;
Supplementary Fig. 8d). Genes located in these regions showed agreement in their allelic bias between
compartmentalization and expression (Fig. 2b). Although separating sequence variations from other
confounding factors affecting compartmentalization remains challenging, genes located in breed-
restricted A compartment regions potentially re�ected some of the dramatic phenotypic differences
between the parental breeds (Supplementary Fig. 8e). Notably, genes located in the Tibetan-restricted A
compartment regions (more accessible and relatively active) were enriched for annotations associated
with the non-shivering thermogenesis to resist cold stress (‘brown fat cell differentiation’, three genes),
disease resistance (‘adaptive immune response’, 13 genes; ‘immunoglobulin production’, four genes), and
resistance to intensive solar ultraviolet radiation-induced DNA damage (‘regulation of DNA-dependent
DNA replication’, four genes)36,37. These results suggest that the compartmentation in hybrid pigs are
separately inherited from their parents which exhibited the different adaption of parental breeds to their
local environments.

Allelically variable TAD boundaries
To identify allelic differences in 3D genome architecture that led to imbalanced expression at a �ner scale
than compartments, we partitioned the haploid genomes into ~ 3956 topologically associating domains
(TADs; Supplementary Fig. 6). Pairwise comparison between tissues identi�ed ~ 3.93% (~ 184) that had
shifted boundaries between tissues (indicated by changes in boundary position with signi�cantly
different local boundary scores [LBS10, see Methods; Fig. 2c, Table 1 and Supplementary Data 4). In
addition, tissue-restricted boundaries showed substantial differences in compartmentalization, whereas
boundaries that were the same between tissues did not (Supplementary Fig. 10). Genes near these tissue-
restricted boundaries also showed greater differences in expression than those near boundaries that were
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the same between tissue, and included critical marker genes associated with core functions of that tissue
(Supplementary Fig. 10). These results highlight the function of TADs in facilitating local interactions and
establishing regulatory context for their respective genes38.

In total, three TAD boundaries were found to be altered between parent-of-origin across tissues that
contained or were near to known imprinted genes (Table 1 and Supplementary Data 5). Two of these
were paternal-speci�c boundaries, including one in brain and muscle that affected three imprinted genes
(NDN, MAGEL2 and MKRN3; Fig. 2d and Supplementary Fig. 8f), and the other in brain and liver affecting
two imprinted genes (CASD1 and SGCE; Supplementary Fig. 8g,h). One maternal-speci�c boundary was
identi�ed in muscle that in�uenced seven imprinted genes (ASCL2, CD81, H19, IGF2, INS, TH and TSSC4;
Supplementary Fig. 8i). These imprinted genes around allele-speci�c boundaries generally showed
increased transcriptional activity, supporting the possibility that parent-of-origin-speci�c TAD organization
provides a structural context conducive to activation of imprinted genes39.

Although no altered boundary positions were detected between haplotypes of the two parental breeds, ~ 
190.97 Mb (~ 8.43%) of genomic regions had allelic differences in boundary strength (LBS; P < 0.05,
paired Student’s t-test, see Methods; Table 1 and Supplementary Data 6) and exhibited signi�cantly
higher sequence divergence among alleles than other regions (P ≤ 3.2×10–12, Wilcoxon rank-sum test;
Fig. 2e).

Haplotype-resolved interrogation of tissue- and imprinting-
speci�c PEI organizations in gene expression control
The information necessary for regulating transcription is conveyed through long-range physical
interactions between promoters and enhancers40,41. To compile an extensive but reliable genome-wide
catalog of PEIs in the diploid pig genome, we conducted additional in situ Hi-C assays (dataset 2) for 12
of the 14 aforementioned samples (three tissues from four F1 hybrids, two F1 from the initial and two F1
from reciprocal crosses; Fig. 1a,b and Supplementary Fig. 1a). By combining both Hi-C datasets, we built
diploid Hi-C maps for each of the 12 samples, including ~ 2.28 billion intra-chromosomal contacts (a
maximum resolution of 1-kb), and ~ 239.91 M inter-chromosomal contacts (4.11% between homologs)
per map (Fig. 1b and Supplementary Figs. 2 and 5). We identi�ed 29,352 enhancers assigned to 7399
promoters (38.28% of the autosomal genes) across 24 haploid genomes at 5-kb resolution
(Supplementary Fig. 11a–f).

To elucidate how this observed extensive rewiring of PEIs may contribute to the transcriptomic divergence
across haploid genomes, we calculated the regulatory potential score (RPS, a spatial proximity-based
index of the combined regulatory effects of multiple enhancers for a given gene) for each promoter using
a uni�ed set of PEIs from all haplotypes of a given tissue27,42; see Methods). As expected, genes with
larger RPS had higher expression within haplotypes (Supplementary Fig. 11g). Beyond characterizing the
spatial proximity of enhancers and promoters, we also measured allelic imbalances in the activity of
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enhancers and promoters by generating H3K27ac and H3K4me3 ChIP-seq signal enrichment pro�les43,44

(Supplementary Fig. 1a, 2g and 11h–o).

Examination of the haplotype-resolved Hi-C maps revealed extensive rewiring of PEIs between tissues
(Supplementary Fig. 11p–r). A total of 4865 genes exhibited signi�cantly different RPS between pairs of
tissues (Table 1, Supplementary Data 7 and Supplementary Fig. 12a); the majority of which were also
differentially transcribed between tissues (Supplementary Fig. 12b). These sets of tissue-speci�c active
genes were enriched in annotations related to their respective core functions (Supplementary Fig. 12c).
Representative examples are shown in Supplementary Fig. 13. Notably, examination of individual tissue-
speci�c markers indicated that high RPS was a prevalent feature of germ layer markers and their
expression was elevated in tissues originating from their respective germ layers (Supplementary
Fig. 12d–f), which supported the hypothesis that transcriptional programming (as well as spatial
proximity of genes and their enhancers) retains lineage- or differentiation-speci�c memory11,45,46.
Representative examples are shown in Supplementary Fig. 14.

Genome imprinting represents a phenotypically consequential outcome of allele-speci�c expression47. By
comparing data from F1 hybrids produced by reciprocal crosses, we were able to survey genome-wide
allelic differences in chromatin conformation for 126 known imprinted genes (downloaded from
https://geneimprint.com/site/home; Supplementary Data 8), which nearly half of which are located
adjacently to each other as previously reported48. This analysis identi�ed a set of 101 testable imprinted
genes with informative SNVs and enhancer interactions in at least one tissue (Fig. 3a and Supplementary
Data 8), among which 12 had strongly signi�cant parent-of-origin-speci�c PEI organization (highly
consistent between replicates) and generally corresponding parental expression bias in two or three
tissues (Fig. 3b and Supplementary Fig. 15). Visual examination of a representative case showed the
lower deviations of parent-of-origin-speci�c 3D structure for the region around the promoter (paternally-
expressed MAGEL2) across replicates and different tissues (Fig. 3c). These results highlighted the
mechanistic contribution of chromatin architecture in imprinting phenomenon9,39.

Effects of genetic variations and histone modi�cations on
allelic PEI rewiring
Since both genetic and epigenetic regulation shape gene expression patterns, we next explored whether
and how inherited sequence variation and histone modi�cations (the environmentally-induced
transgenerational epigenetic inheritance)49 impacted allelic PEI rewiring in F1 hybrids. Considering the
functional impacts of sequence variations on the genome, we comprehensively surveyed the SNVs, short
and large InDels (i.e., structural variants, SVs) to determine their effects on allelic PEI formation. For this
analysis, we generated long-read sequence data for the four F1 hybrids (~ 125.22 × coverage per
individual) using the Oxford Nanopore Technology (ONT) platform and identi�ed their sequence-resolved
large InDel alleles (Supplementary Fig. 16; see Methods). As expected, higher divergence between the
alleles of promoters or enhancers was linked to more dramatic differences in PEI intensity between
parental alleles (Fig. 4a,b). We then estimated the probability of long-range interactions for each PEI in
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light of their respective, speci�c variants using the PEP algorithm50. We found that PEIs with higher
intensity had a higher probability of interaction within alleles (Supplementary Fig. 17a) and between
alleles (Supplementary Fig. 17b), supporting that genetic variations can affect dynamic PEI
formation51,52. A representative example of the potential for PEI disruption by multiple SNVs and InDels
are shown for SMAD4 in Fig. 4c–e.

Additionally, comparison of allelic differences in the bridging distance between promoter and enhancer
supported our general hypothesis that closer linear chromosomal proximity between a promoter and
enhancer is associated with closer proximity in 3D nuclear space, and thus with higher PEI intensity, and
vice versa (Fig. 4f). Simulation of PEI intensities based on the allelic variations in bridging distances
using Huynh’s algorithm53 further supported this likelihood (Supplementary Fig. 17c,d). Moreover, the
signi�cantly greater activity of H3K4me3-enriched promoters or H3K27ac-enriched enhancers generally
resulted in allele-speci�c increases in PEI intensity (Supplementary Fig. 17e–h).

Remarkably, we found that allele-speci�c PEIs was occurred more frequently in genes that contacted
multiple enhancers (Fig. 4g), providing validation for the idea that enhancer function in a redundant
manner; i.e., the ubiquitous presence of multiple enhancers could serve as a mechanism to reinforce local
regulatory circuitry necessary to buffer environmental stresses and genetic disruption, ultimately resulting
in phenotypical robustness54,55. Importantly, these allele-speci�c PEIs exert relatively mild effects on RPS
between parental alleles (Fig. 4h). In addition, we identi�ed the allele-speci�c loss of two CCCTC-binding
factor [CTCF]-mediated loops in a Tibetan allele in the diploid Hi-C maps of liver. In these cases, the CTCF
binding motifs of the loop anchor were effectively disrupted by a 1-bp deletion (‘G’, chromosome 2:
57822013) and a SNV (‘G’ > ‘T’, chromosome 8: 53792054), respectively, but which only resulted in subtle
impacts on the expression of genes within these loops (Supplementary Fig. 18). These results are
analogous with �ndings in human cancers that 3D genome organization is strikingly disrupted by
somatic genomic rearrangements, typically resulting in the fusion of discrete TADs, the gain or loss of
CTCF-mediated loops, and enhancer ‘hijacking’ 53,56, whereas known SV polymorphisms in healthy
human populations have signi�cantly less impact on 3D organization57.

Allelic differences in PEIs associated with phenotypic
differences between parental breeds
We next asked whether the allelic rewiring of PEIs in F1 hybrids could contribute to phenotypic divergence
between the parental breeds36,58,59. In total, ~ 520 genes were identi�ed that showed differential RPS
between the Berkshire and Tibetan alleles across tissues (Fig. 5a, Table 1 and Supplementary Data 9),
which potentially could be an effect of breed-speci�c genetic variations. Population-level analysis of the
82 purebred diploid pig genomes (Berkshire [n = 21] and Tibetan [n = 61]) further suggested that variants
in promoter and enhancers were almost �xed in the more genetically homogeneous Berkshire pigs
(Fig. 5a), which could re�ect an effect of rigorous selection during breeding58,59, although functional
analyses are required to validate the non-neutrality of these genes. Below, we examine some genes with
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highly signi�cant differential RPS between parental breeds that are likely candidates responsible for
functional divergence in different tissues between parental breeds.

Liver
Since the liver is the metabolic hub for nutrient homeostasis60, its function may contribute to major
phenotypic differences between Tibetan (long-standing survived in highland at a free-range farming
state)36 and Berkshire pigs (enhanced, high e�ciency energy storage under high calorie diets in
captivity)58,59. As expected, a large suite of genes (254) with higher RPS in the Berkshire allele showed
enrichment for ‘maintenance of location’ (six genes: CAV1, INSIG2, LTBP1, PFN4, PLIN3 and SPOUT1)
(Fig. 5a and Supplementary Fig. 19), which is necessary for proper subcellular localization of protein
complexes or organelles and is therefore essential for lipid transport61. Among these genes, CAV1 is
known to function as a protective factor against non-alcoholic fatty liver disease by modulating lipid
metabolism under high-fat diet conditions62; knockout of this gene in mice is associated with severe
hepatic steatosis63. Notably, we found that the Berkshire allele had co-enhanced RPS along with the
expression of C12ORF29 (an anti-obesity factor that inhibits fatty acid uptake into hepatocytes)64 and
CAV2 (a functionally similar CAV1 paralog)65 compared with that in Tibetan liver tissue (Supplementary
Fig. 20). These results suggested a possible protective mechanism for Berkshire pigs against the
deleterious effects of a ‘diabetogenic’ environment, i.e., one that favors inactivity and energy
abundance66.

Conversely, Tibetan pigs are known to exhibit relatively high sensitivity to induction of obesity-related
comorbidities (such as development of hepatic metabolic stress) when given excessive dietary energy in
pig farms36,67. Our analysis identi�ed 278 Tibetan alleles with higher RPS than the Berkshire alleles that
could contribute to in�ammatory processes, including ‘chemokine signaling pathway’ (seven genes:
CCL24, GNGT2, GRK3, GSK3B, SOS1, SOS2 and STAT5B) and ‘positive regulation of cell-substrate
adhesion’ (six genes: COL8A1, GSK3B, MAP4K4, MYADM, VEGFA and WNT4; Fig. 5a and Supplementary
Fig. 19). Of these, VEGFA reportedly plays essential roles in promoting angiogenesis and hypoxia-
response under in�ammation68, while MAP4K4 is a mediator of oxidative stress-induced cell death69. In
addition, three typical in�ammatory markers also displayed greater RPS and expression levels in the
Tibetan allele compared to that of the Berkshire allele, as well as greater sequence divergence between
alleles, including ABI3 and ITGA6 (two hypoxia-induced regulators)70,71, and CEBPD (a hepatic lipogenic
transcription factor that potentiates macrophage in�ammatory response)72 (Supplementary Fig. 20).

Skeletal muscle
Skeletal muscles represent the largest tissue (by weight) in the pig body (~ 63.50% carcass weight for
Berkshire and ~ 41.68% for Tibetan)73 and include the most economically valuable products. In muscle
tissue, our analysis uncovered 265 Berkshire alleles with larger RPS than their Tibetan counterpart alleles
that are involved in energy metabolism and muscle growth (e.g., six genes related to ‘insulin secretion’:
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ADCY6, ATF2, CREB3, GCG, KCNU1 and PLCB2; Fig. 5a and Supplementary Fig. 19). Nonetheless, 273
genes were found with greater RPS in the Tibetan allele that are involved in ‘mitochondrial �ssion’ (�ve
genes: CARMIL1, DCN, MIEF1, PINK1 and SPIRE1). Among these genes, MIEF1 and CARMIL1 are well-
characterized positive regulators of mitochondrial �ssion, defects in which may cause muscle wasting in
adult mammals74. These �ndings re�ected a consequence of 200 years of arti�cial selection in Berkshire
pigs for faster growth (daily weight gain during 2–6 months of age, ~ 594.67 g·day–1) and greater meat
yield (myo�ber cross-sectional area, ~ 5231.84 µm2); in contrast to Tibetan pigs (~ 269.35 g·day–1 and ~ 
2574.05 µm2)73 (Fig. 5b), which only recently attracted focused breeding attention for pork production at
high altitudes.

The plasticity of skeletal muscle in mammals is largely attributable to myo�ber heterogeneity (including
two main types) which vary in metabolic capacity and contractive functionality20. In comparison to
glycolytic type II, oxidative type I myo�bers are more resistant to fatigue and rich in triglyceride and fatty
droplets75. In muscle of our F1 hybrids, we observed that genes involved in lipid metabolism, such as
‘regulation of fat cell differentiation’ (six genes: AAMDC, C1QL4, FERMT2, GPER1, SIRT2 and ZBTB16)
were more structurally active (i.e., greater PEI intensity) in the Tibetan allele compared to that in the
Berkshire allele (Fig. 5a and Supplementary Fig. 19). This �nding was consistent with a marked increase
in the proportion of lipid-rich type I myo�bers in muscle of Tibetan pigs (~ 26.26%) compared to that in
Berkshire pigs (~ 12.05%; Fig. 5c and Supplementary Fig. 21). Consistent, with these data, three speci�c
regulators of type II myo�ber, i.e., ATL276, DDIT4L and KCNC477 had lower RPS and expression in the
Tibetan allele (Fig. 5a, d–f). In particular, DDIT4L (also known as REDD2 or SMHS1) is essential for highly
active glycolytic energy metabolism in specialized type II myo�bers78. The triglycerides accumulating
between or within myo�bers represent a substantial energy source (contributing up to 20% of total energy
turnover during physical exercise in humans)79. The higher proportion of type I myo�bers in Tibetan pigs
compared to that in Berkshire pigs may be both an effect of selection and husbandry practices as well as
a contributing factor in the enhanced athletic performance of grazing Tibetan pigs compared to that of
Berkshire pigs raised in limited space for activity in pig farms.

Brain
Given the essential contribution 3D genome organization regulating brain development80, we also
identi�ed genes with differential RPS in brain that are involved in functional and behavioral differences
between Berkshire and Tibetan pigs. In total, we identi�ed 253 genes with differentially higher RPS in the
Berkshire allele which were notably enriched in ‘cellular response to nutrient’ (three genes: FES, LPL and
SFRP1; Fig. 5a and Supplementary Fig. 19), indicating a functional role in the control of appetite and food
intake. Further, in the Berkshire allele, CCK, which is known to play essential roles in promoting satiety in
the brain81, had particularly high RPS and expression levels. In the Tibetan allele, 236 genes were found
with signi�cantly higher RPS that were enriched in ‘response to carbohydrate’ (seven genes: ADIPOQ,
MAP2K3, PFKL, PNPLA3, PTPRN2, SMAD4 and TXN2; Fig. 5a and Supplementary Fig. 19). Among these,
PFKL reportedly evokes higher rates of glucose utilization in mice brain82 (Supplementary Fig. 20).
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These �ndings together show the distinct effects on central nervous system control of metabolism
accomplished through breeding selection (i.e., in the commercial Berkshire pig) versus the effects of
natural selection in Tibetan pig (which is more similar to wild boar phenotypically and physiologically) in
the absence of arti�cial selection36. To protect Berkshire against the deleterious effects of an extremely
high-calorie concentrated diet, the central nervous system triggers a reduction in food intake upon
sensing dietary excess83. By contrast, Tibetan pigs require high e�ciency utilization of low-calorie
carbohydrates to adapt to the limited nutritional resources typical of highland grazing36,67. This adaptive
response potentially facilitates maintenance of brain homeostasis through a ‘competent brain-pull’
mechanism84, which is indispensable to maintain high energy levels in the brain despite food deprivation.

Intriguingly, we also found four genes involved in ‘peptide transport’ (ABCC4, DISP1, PTPRN2 and VIP)
that were more active in 3D structure and transcription in the brain of the Tibetan allele compared to that
in the Berkshire allele. These genes are responsible for synaptic transmission and plasticity, and learning
and memory processes85. In particular, VIP is a regulatory peptide, the loss of which impairs recall ability
and responses to fearful or dangerous conditions in mice86. The high RPS and expression of this gene is
consistent with empirical observations that wild boars and Tibetan pigs exhibit a pugnacious and wild
temperament, suggesting greater mental vigilance and responsiveness conducive to survival in the wild,
compared to the relatively sluggish and docile Berkshire pigs, which are thus well-suited for growth in
con�nement typical of industrial pig production36. In addition, FXN and SLC4A7 also had higher RPS and
expression in the Tibetan allele (Supplementary Fig. 20), both of which have well-established roles in
locomotor activity. Mutations in FXN have been causatively linked to Friedreich’s ataxia in humans,
characterized by progressive loss of coordination and balance, as well as ataxic gait in mice87,88. SLC4A7
participates in visual and auditory sensory transmission, and its knockout negatively affects emotional
response and exploratory behaviors89.

These collective observations of differential RPS between Tibetan and Berkshire pigs in genes that are
well-established to participate in metabolism, muscle development, and behavior provide strong evidence
linking phenotype in pigs with regulatory control of development mediated by 3D chromatin architecture.

Structured homolog pairing in pig genome
Experimental evidence from �ies and mammals suggests communication between homologs, which can
contribute to transcriptional regulation90. Using ultra-deep Hi-C data obtained from 12 diploid samples,
each containing ~ 9.86 M inter-homolog contacts (Fig. 1b), we assessed the extent of homolog proximity
in pig genomes. The Hi-C maps revealed apparent inter-homolog interactions across the entire length of
each autosome at 1-Mb resolution (Fig. 6a), and observed structurally coordinated inter-homolog and
intra-chromosome interactions (Supplementary Fig. 22a–d). These results were consistent with �ndings
in �ies91,92, which suggested similarity or conservation in the mechanisms of contact formation. Further,
enhanced allelic pairing was evident in active A compartment regions, implying a likely functional role for
homolog pairing in compartmentalization (Supplementary Fig. 22e–g). These results were recapitulated
by analyses at 100-kb resolution that showed higher density of contacts (a 5.92-fold increase in inter-



Page 16/52

homolog contacts in genomic bins from 20-kb to 100-kb), which suggested greater reliability
(Supplementary Fig. 23).

We next investigated the infrequent homologous interactions in which an enhancer may act on the
homolog of its corresponding promoter in an inter-chromosomal, trans-manner93. Examination of PEIs
between enhancers and promoters from homologs showed that covariation between allelic expression
and RPS decreased for genes located in tightly-paired loci with their enhancers (~ 74.35 Mb, or ~ 3.28% of
the genome, see Methods; Fig. 6b and Supplementary Fig. 22h–k), indicating that RPS only re�ects intra-
chromosomal regulatory effects of PEI. This result suggests that although rare, tightly organized
homolog pairing may result in an additional layer transcriptional regulation (Fig. 6c).

In one representative case, we found unbalanced inter-homolog interactions for the extremely tightly
paired PHOSPHO1 gene (top 0.53–0.59%) across the three tissues examined here (Fig. 6b). PHOSPHO1
catalyzes hydrolysis of the lipid precursor phosphocholine into choline, which is highly abundant in
brown adipose tissue and induced by cold exposure in mice94,95. Although the RPS of PHOSPHO1 in the
Tibetan allele was higher than that in the Berkshire allele in all three tissues, PHOSPHO1 expression levels
were lower than that predicted by RPS in the Tibetan allele and were actually down-regulated compared
to its expression in the Berkshire allele (0.44-fold in brain, 0.43-fold in muscle, and TPM < 0.5 in liver)
(Fig. 6d–f).

Analysis of inter-homolog interactions for the two copies of PHOSPHO1 in the hybrid progeny revealed
that Tibetan allele enhancers were spatially closer to Berkshire allele promoters on the paired homolog
than the Berkshire enhancers were to the Tibetan promoter (mean FC of PEI intensities = 4.07, P < 0.26,
paired Student’s t-test; Fig. 6d–f). These �ndings suggested that enhancers located on one homolog
could regulate the transcription of a target gene on the other homolog93,96, which may explain the
reduced correlation between intra-chromosomal contact-based RPS and expression of genes located in
tightly paired regions. It is worth noting that although the activity of the PHOSPHO1 promoter and its
enhancers are allelically comparable (Fig. 6d–f), the divergence in their sequences and their bridging
intervals was relatively larger than that of other genes in all three tissues (Fig. 6g). Similar scenarios were
also identi�ed in B4GALNT2 and GNGT2 (Supplementary Figs. 24 and 25), which can be pursued in
future hypothesis-driven investigations. Taken together, these observations clearly demonstrate that non-
mitotic homolog pairing occurs in mammalian somatic tissues and tight pairing may participate in
modulating gene transcription via inter-homologous PEIs (known as ‘transvection’ or intragenic
complementation93).

Discussion
Many long-standing, fundamental biological questions are linked to diploid 3D genome architecture in
mammals97,98. Here, we generated high-resolution Hi-C diploid maps (at 1-kb maximum resolution) for
three porcine tissues that represent distinct embryonic germ layers. These data were then used for in
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depth, genome-wide, functional examination of haplotypic changes in 3D chromatin organizations at
multiple scales between tissues, parents-of-origin, and parental breeds.

We found that 3D organization was different between tissues, and was highly correlated with the
expression of genes involved in the specialized functions of each tissue and in the development of their
respective germ layers. This study provides an allele-speci�c survey of 126 known imprinted genes, and
con�rms a parent-of-origin-speci�c 3D conformation for at least 12 of them. The results of this work
show that homologs are differentially organized in 3D structures and that this organization is strongly
correlated with widespread allelic imbalance in gene expression. This differential 3D organization thus
likely contributes to both genetic and epigenetic regulation of phenotypic divergence among pig breeds.
These observations expand our current understanding of the critical role of diploid genome architecture in
allele-speci�c gene expression7. Homolog pairing was �rst described in Drosophila nearly a century
ago90. Nonetheless, the detailed structures, the extent of pairing, and pairing-dependent gene regulation in
mammals remains largely uncharacterized91,92. Using diploid Hi-C maps with unprecedented high
resolution, homolog pairing could be obviously detected in porcine somatic tissues and pairing-
dependent gene regulation could be observed at individual loci.

Considering that our bulk Hi-C data were obtained from cell population-scale assays, we cannot rule out
that cellular heterogeneity may, to some extent, contribute to the observed allelic differences in chromatin
features. Thus, single-cell analyses may be used to validate these scenarios in future studies9,11,99. In
addition, although the allelic choice of X chromosome inactivation takes place individually in cells early
in female development, the random choice between alleles is followed by a stable mitotic
transmission1,100. Further analyses of clonal cells are required to decipher the dynamics of 3D
organization between X chromosomes in females, which presents the most striking example of
architectural differences between two homologs101,102.

In recent decades, pigs, and miniature pig breeds in particular, have recently emerged as an attractive
biomedical model for humans19. Over 730 genetically distinct pig breeds have been recognized
worldwide (two thirds of which reside in Europe and China), and thus understanding the control of
phenotype between genetically similar breeds is of enormous signi�cance to animal husbandry29,103.
Indeed, the F1 progeny of these breeding lines are known to exhibit remarkable phenotypic changes25,103.
These progenies also contain a large number of segregating sites that can be used to distinguish
parental haploids; the heterozygous SNP density of F1 hybrids in our pig model is ~ 4.54 per kb, but ~ 1
per kb in humans, ~ 5 per kb in fruit �ies, and ~ 7.69 per kb in mice91,104.

Our haplotype-based interrogation of PEI organization greatly expands the annotation of regulatory DNA
elements (enhancers) currently available in the pig reference genome. Using the NHGRI-EBI GWAS catalog
and the LiftOver tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver), we found that DNA sequence
variations (human noncoding SNPs) associated with speci�c traits or diseases were enriched in
enhancers in the pig genome (mean SNP enrichment scores in enhancers vs. non-enhancer regions: 1.34
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vs. 0.97, P = 0.002, paired Student’s t-test, Supplementary Fig. 26a), con�rming the functional importance
of enhancers105,106. Supporting our �ndings of allele-speci�c PEIs between tissues associated with
tissue-speci�c gene regulation related to core functions, we observed that SNPs associated with
cholesterol level are enriched in metabolically active liver, SNPS linked to oxygen supply are enriched in
high oxygen-consuming muscle, and Alzheimer’s disease associated SNPs are enriched in neuron-rich
brain tissue (Supplementary Fig. 26b). These results, combined with the preponderance of physiological
similarities between pigs and humans, strongly support the use of pigs as a model for human
disease20,26,107.

Recent studies in humans have revealed that most disease- and phenotype-associated variants do not
affect protein coding sequences but instead lie in non-coding regulatory regions (~ 98% of the
genome)108,109. Nonetheless, establishing causal links between phenotypes in humans and the rapidly
expanding list of non-coding variants poses an increasingly large challenge51,52,110. Our allele-speci�c
survey of the impacts of (epi-)genetic variations on PEI rewiring between parental breeds in the F1 hybrid
progeny greatly expands our knowledge of how 3D chromatin organization affects phenotype through
transcriptional programming and assigns previously unrecognized function to large parts of the non-
coding genome.

Methods

Pig breed crosses
We performed reciprocal crosses (parent-child trios, n = 6) of two pig breeds and generated trios of
Tibetan ( ) × Berkshire ( ) (n = 3) and Berkshire ( ) × Tibetan ( ) (n = 3). Ear tissues from the two parental
pigs of the six trios were collected (n = 12). A total of 14 samples comprising liver (n = 6), skeletal muscle
(n = 4) and brain (n = 4) of new-born F1 females were collected and snap-frozen in liquid nitrogen for
subsequent assays (see Fig. 1a and Extended Data Fig. 1a for details). All research involving living pigs
were conducted according to the Regulations for the Administration of Affairs Concerning Experimental
Animals (Ministry of Science and Technology, China, revised in March 2017), and approved by the Animal
Ethical and Welfare Committee of Sichuan Agricultural University under permit No. 20220194. The
animals were humanely euthanized as necessary to prevent suffering.

Whole-genome sequencing
Genomic DNA was exacted from ear (F0, n = 12) and liver tissues (F1, n = 6) using the TIANamp Genomic
DNA Kit (TIANGEN, DP304). Sequencing libraries were generated and sequenced on the Illumina HiSeq X
ten platform with 150-bp paired-end reads, or on the BGISEQ-500 platform with 100-bp paired-end reads.

In situ Hi-C library preparation and sequencing
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We constructed 8–15 in situ Hi-C libraries (technical replicates) for each of the 14 samples, with minor
modi�cations from previously described method111. Brie�y, the tissues were homogenized and �xed with
a 4% formaldehyde solution at room temperature for 30 min. The chromatin was digested with 200 U of
DpnII enzyme (R0543S, NEB, USA) at 37°C for 90 min, 65°C for 20 min and 25°C for 5 min. Nucleotide �ll-
in was conducted with 0.4 mM Biotin-14-dATP (19524-016, Invitrogen), 10 mM dCTP, 10 mM dGTP, 10
mM dTTP and 5 U·µL− 1 Klenow Fragment (M0210L, NEB) at 37°C for 45 min. Ligation was performed by
a T4 DNA ligase (L6030-HC-L, Enzymatics, USA) at 20°C for 30 min. DNA was sheared to the length of
300 to 500 bp and washed using M280 beads at 20°C for 20 min. The Hi-C libraries were ampli�ed with
10 PCR cycles and sequenced with 150-bp paired-end reads on the Illumina HiSeq X ten platform or 100-
bp paired-end reads on the BGISEQ-500 platform.

rRNA-depleted RNA-seq library preparation and sequencing
Total RNA was extracted from 14 samples used for in situ Hi-C assay using the RNeasy Mini Kit (Qiagen).
We used an rRNA depletion protocol (Ribo-Zero kit, Epicentre) coupled with the Illumina TruSeq RNA-seq
library protocol to construct the strand-speci�c RNA-seq libraries. All libraries were quanti�ed using the
Qubit dsDNA High Sensitivity Assay Kit (Invitrogen) and sequenced with 150-bp paired-end reads on the
Illumina HiSeq X Ten or 100-bp paired-end reads on the BGISEQ-500 platform.

ChIP-seq library preparation and sequencing
We performed ChIP-seq using antibodies against H3K27ac (a canonical histone marker of active
enhancers) and H3K4me3 (a histone marker of promoter activation) for 12 samples (liver, skeletal
muscle, and brain from each of four F1 hybrids). The ChIP-seq experiments were performed as previously
described112. Brie�y, the chromatin was prepared from formaldehyde �xed tissues and fragmented with a
sonicator to an average fragment size of 200–500 bp. Half of the soluble chromatin was stored at − 20°C
as input for DNA sequencing and the remaining was used for immunoprecipitation reaction with
H3K27ac (ab4729, Abcam) and H3K4me3 (9751, CST) antibodies. For both input DNA and
immunoprecipitated DNA, each ChIP-seq library was sequenced on an Illumina HiSeq X Ten platform to
generate 150-bp paired-end reads. We also carried out ChIP-seq using antibodies against CTCF (the most
characterized insulator-binding protein) for liver samples from the four F1 hybrids.

Long-read DNA sequencing
We performed long-read sequencing (Oxford Nanopore Technologies) on four F1 hybrids. The genomic
DNA from the liver was isolated using the phenol-chloroform extraction method. The DNA library was
prepared by DNA repair and end-prep, followed by sequencing adapter ligation and clean-up. The
PromethION platform was used for sequencing according to the effective concentration of the DNA
library and data output requirements.

4C-seq library preparation and sequencing
Circular chromosome conformation capture sequencing (4C-seq) was performed for livers from the
purebred Berkshire and Tibetan pigs (newborn females) as described previously113,114 with minor
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modi�cations. Brie�y, frozen livers were crushed into powder in liquid nitrogen using pre-chilled mortar
and pestle. The tissue powder was suspended in PBS and then �ltered through 40 µm strainers to obtain
single-cell suspensions. The cells were �xed with fresh 2% formaldehyde for 10 min at room temperature.
The �xation was quenched with cold glycine at a �nal concentration of 125 mM, and the cells lysed and
incubated in 1 mL cold lysis buffer (50 mM Tris, 150 mM NaCl, 5 mM EDTA, 0.5% NP-40, 1% Triton X-100,
1× protease inhibitors) for 10 min on ice. The nuclei were pelleted by centrifugation and washed twice
with PBS. Primary digestion of Nuclear DNA was performed overnight at 37˚C with DpnII or NlaIII (New
England Biolabs). DNA fragments were ligated with T4 DNA ligase overnight at 16˚C. Reverse
crosslinking was carried out at 65˚C for 12 h with proteinase K, followed by RNaseA digestion and
phenol/chloroform extraction precipitation. DNA was further digested using Csp6I (New England Biolabs)
overnight, followed by proximity ligation and puri�cation to prepare for the 4C library generation. The 4C
libraries were obtained by performing a two-step PCR strategy. For each viewpoint, PCR was performed
using Phusion DNA polymerase (Thermo Scienti�c) with 3.2 µg of the 4C template, and 16 individual PCR
reactions performed on 200 ng of 4C template each. PCR products were pooled and puri�ed using the
QIAquick PCR Puri�cation Kit (Qiagen), and run on a 4–20% gradient TBE Gel (Thermo Fisher Scienti�c).
DNA smears from 200-bp to 800-bp were extracted and subjected to VAHTS DNA Clean Beads (Vazyme,
China) using a bead-to-DNA ratio of 0.8 before high-throughput sequencing on the Illumina NovaSeq
6000 system was performed.

H & E and SDH staining of skeletal muscles
The longissimus dorsi muscle from purebred Berkshire and Tibetan pigs (6-month-old, n = 2 for each
breed) were collected and �xed in a 10% neutral buffered formalin solution, embedded in para�n using
TP1020 semi-enclosed tissue processor (Leica), sliced at a thickness of 6 µm using RM2135 rotary
microtome (Leica), and �nally stained with hematoxylin and eosin (H & E). The myo�ber cross-sectional
area was measured as an average of 100 �bers in randomly selected �elds.

The proportion of types I (dark staining) and II (light staining) myo�bers was assessed using the
succinate dehydrogenase (SDH) staining. Brie�y, the isolated samples were embedded with the OCT
solution (TissueTek, Japan), and then frozen in − 80°C. The 10 µm frozen sections were made with a
Leica frozen microtome, and stained with a SDH staining kit (Beijing Solarbio Science & Technology Co.,
Ltd.).

Spatial transcriptomic assays
To verify the classi�cation of types I and II myo�bers in longissimus dorsi muscle using the
histochemical SDH staining approach, we dissected the transcriptional differences of myo�ber-speci�c
markers (MYH7 for type I) using spatial transcriptomics (ST) (10X Genomics) as previously described20.
Brie�y, fresh muscle tissues were sliced into roughly 6.5 mm × 6.5 mm × 1 cm pieces and snap-frozen in
liquid nitrogen. Tissue samples were embedded using OCT media at − 80°C. For the ST analysis, the
samples were sectioned on a cryostat at a thickness of 15 µm, and each section was placed within a
capture area on a Visium Spatial slide, which was permeabilized according to the protocol provided by
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10X Genomics for 18 min. Fragmented and barcoded RNA was used as the carrier material. The spike-in
constituted approximately 25% of the libraries. ST cDNA libraries were diluted to 4 nM and sequenced on
the Illumina NovaSeq 6000 platform with paired-end sequencing reads.

Whole-genome sequencing data processing
High-quality whole-genome sequencing data were aligned to the pig reference genome (Sscrofa 11.1)
using the Burrows-Wheeler Aligner (BWA, v 0.7.8) 115. Optical and PCR duplicates were removed using
Picard MarkDuplicates (v 2.0.1, http://broadinstitute.github.io/picard). SNVs and InDels were called using
the Genome Analysis Toolkit (GATK, v 3.8)116 HaplotypeCaller and stored in genomic variant call format
(gVCF). For each trio, variant data from single sample gVCF �les were aggregated into a multi-sample
VCF �le using GVCFGenotyper. Low-quality variants or genotypes were excluded using GATK, with the
arguments ‘QD < 10.0 || FS > 60.0 || MQ < 40.0 || MQRankSum < − 12.5 || ReadPosRankSum < − 8.0 || GQ < 
30’. Unplaced scaffolds, sex chromosomes and the mitochondrial genome were removed from further
analyses. For each trio, we discarded variants with the lowest (bottom ~ 1%) and highest (top ~ 1%)
coverage depth (depth-based Z-score < − 2.58 and > 2.58, respectively). We merged the SNV data for all
individuals, and performed PCA using the GCTA software (v 1.93.2)117, and genetic structure inference
using Structure (v 2.3.4)118.

Hi-C data processing
The heterozygous SNVs of each F1 hybrid were masked by converting them to ‘N’ bases to reduce
reference biases and mapping artifacts, in order to accurately distinguish allele-speci�c contacts8. High-
quality Hi-C reads were aligned to the variant masked pig reference genome (Sscrofa 11.1), and
sequences representing experimental Hi-C artefacts and other uninformative di-tags were removed, using
the standard pipeline provided by HiC-Pro (v 2.9.0)119. Consequently, we obtained ~ 7.72 billion contacts
for each of the 14 samples (dataset 1), and additional ~ 9.27 billion contacts for each of 12 samples
(dataset 2; Extended Data Fig. 1a).

Construction Of Chromosomal-span Haplotypes
We generated two parental haplotypes for each autosome by combining the information of heterozygous
SNVs obtained from whole-genome sequencing, and the Hi-C contacts. For each trio, we �rst phased the
heterozygous SNVs of F1 hybrids when at least one parental genotype was homozygous (Supplementary
Fig. 2e). We also phased heterozygous variants of unknown parental origin based on Hi-C contacts using
HapCUT2 (v 1.3.1)120 (Supplementary Fig. 2f). We constructed chromosomal-span haplotypes for each
F1 hybrid by combining the results of the two strategies, incorporating the vast majority of all
heterozygous SNVs. This generated two haplotypes for each chromosome, one for the maternal and
another for the paternal alleles.
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Reconstruction Of Haplotype-resolved Hi-c Maps
We reconstructed haplotype-resolved Hi-C maps for 14 diploid F1 pig samples using SNPsplit (v 0.3.4)121,
HaploHiC (v 0.32)4 and the Juicer Tools122 (Supplementary Fig. 3). The reconstruction analysis was
separately applied to dataset 1 and the aggregation of datasets 1 and 2 (Extended Data Fig. 1a). For a
diploid sample, we employed the SNPsplit (v 0.3.4) to classify Hi-C contacts into three categories, which
were termed informative (both reads containing haplotype-resolved SNVs), partial-informative (either read
containing haplotype-resolved SNVs) and non-informative (neither read containing haplotype-resolved
SNVs). The informative contacts provide the most accurate information to reconstruct a haplotype-
resolved Hi-C map, but their application is limited by their relatively low proportion (8.19–12.03%;
Supplementary Fig. 3a).

According to their parental origins, the informative contacts can be classi�ed into six categories
(Supplementary Fig. 3b). Notably, we observed that only a small fraction (1.65–2.82%) of unphased intra-
chromosomal contacts (including actual intra- and inter-homologous contacts) is inter-homologous. This
indicates that for any given intra- or inter-homologous contact, the probability of it originating from intra-
maternal or intra-paternal category ranged from 97.18–98.35%. This allowed us to directly classify the
partial-informative intra- or inter-homologous contacts to either the intra-maternal or intra-paternal
category with acceptable misclassi�cation rates (1.65–2.82%). Nonetheless, these haplotype-resolved
intra-chromosomal contacts were highly correlated with SNV density (Spearman’s r = 0.93, P < 2.2×10–16)
due to non-uniform SNV distribution. To address this, we employed HaploHiC (v 0.32)4 to phase the
parental origin of non-informative intra- or inter-homologous contacts with local imputation based on the
distribution of informative and partial-informative intra-chromosomal contacts. This allowed us to
generate 28 nearly complete haplotype-resolved intra-chromosomal Hi-C maps (comprising ~ 99.37%
intra- or inter-homologous contacts for each sample). In contrast, inter-heterologs contacts occupy ~ 
50.20% of nonhomologous contacts. Accordingly, the partial-informative and non-informative
nonhomologous contacts cannot be assigned due to a high misclassi�cation rate, with only ~ 9.63% of
nonhomologous contacts were successfully assigned to their parental origins. Consequently, we
reconstructed haploid maternal and paternal Hi-C maps at a maximum resolution of 2-kb resolution for a
total of 14 F1 samples (Hi-C dataset 1) and 1-kb resolution for 12 F1 samples (Hi-C datasets 1 and 2).

The Juicer Tools121 software was used to generate Knight-Ruiz (KR) matrix balancing normalized123

contact matrices for haplotype-resolved intra- (at 20-kb and 100-kb resolution) and inter-chromosomal (at
1-Mb resolution) Hi-C maps. Notably, normalized intra- and inter-chromosomal contact matrices (36 × 36)
were generated for 18 pairs of homologous autosomes for each sample. After this, the intra- and inter-
chromosomal matrices were further normalized across haplotypes using the quantile method124 across
samples using the counts per million (CPM, normalized to the average abundance across all samples)
strategy.
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Quantitation Of Allele-speci�c Gene Expression
We quanti�ed the allelic expression of ~ 11,430 protein coding genes that were covered by informative
SNVs and had evidence of transcription (transcripts per million [TPM] ≥ 0.5 in at least one allele) using
the Allelome.PRO31. The Kallisto (v 0.44.0) software125 was used to quantify the total gene-level
expression for both alleles of 19,328 autosomal protein-coding genes as transcripts per million (TPM).
Brie�y, high-quality RNA-seq reads were aligned to the pig reference genome (Sscrofa 11.1) using STAR (v
2.6.0c)126 with parameters ‘--outSAMattributes NH HI NM MD --alignEndsType EndToEnd’. We sought to
quantify the allele-speci�c expression of 19,328 autosomal genes, ~ 88.35% of which contain haplotype-
resolved exonic SNVs for each F1 hybrid. We employed the Allelome.PRO31 to distinguish the parental
origin of uniquely mapped reads that covered haplotype-resolved exonic SNVs. For each diploid sample,
we measured the number of reads assigned to each haplotype of a gene, and calculated the allelic ratio
for the maternal or paternal haplotype, when the total number of reads assigned to a gene was larger
than 10. We obtained allele-speci�c TPM by multiplying the maternal against paternal allelic ratios and
the total TPM for both alleles. In addition, the TPM of non- and low-expressed (TPM < 0.5) genes was
divided by 2 and assigned to each haplotype.

Similarities in gene expression were assessed by Spearman’s correlation coe�cients among haplotypes
(n = 28). The combined similarities in gene expression (‘function’) and chromatin architecture (‘form’)
among haplotypes (n = 28) were estimated using a chromosome phase portrait approach127.

Analysis Of Haplotype-resolved Hi-c Maps

Correlations between intra-chromosomal matrices
We used HiCRep128, GenomeDISCO129, and QuASR-Rep130 with default parameters to assess the
reproducibility of normalized intra-chromosomal contact matrices (at 100-kb resolution) across all
haplotypes (n = 28).

3D modelling of diploid pig genomes
We reconstructed 3D genome organization for each sample based on the normalized intra- (at 20-kb
resolution) and inter-chromosomal (at 1-Mb resolution) contact matrices for 18 pairs of homologous
autosomes using an approximation of multidimensional scaling (MDS) method implemented in the
miniMDS131 program. The software PYMOL (The PyMOL Molecular Graphics System, v 2.5.2
Schrödinger, LLC.) was used for visualization. This analysis was applied to the Hi-C dataset 1 (Extended
Data Fig. 1a).

Identi�cation of A/B compartments
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Haplotype-resolved A/B compartments at 20-kb resolution were identi�ed using both principal component
analysis (PCA) and A-B index, as previously described132. Brie�y, PCA was performed to generate PC1
vectors for each autosome per sample at 100-kb resolution. Spearman’s r between PC1 and genomic
characteristics including gene density and GC content were then calculated. Bins with positive
Spearman’s r were de�ned as compartments A, and the remainder as compartments B. The A-B index was
then calculated as previously described132 at 20-kb resolution, which represents the likelihood of a
genomic segment interacting with the A or B compartments de�ned at 100-kb resolution, as described
above. Bins of 20-kb length with positive or negative A-B index were considered as either A or B
compartments, respectively. The reproducibility of A/B compartments between the two alleles was
assessed using Pearson’ r correlation based on the A-B index values. This analysis was applied to the Hi-
C dataset 1 (Extended Data Fig. 1a).

A/B compartment switches and variables
To identify the distinct compartment status (i.e., A/B switches) between haplotypes in different categories
(i.e., tissues, parental-of-origins, and parental breeds), we de�ned a set of common A/B compartments
(with more than 75% of haplotypes exhibiting the same chromatin status) for each category. For each
tissue, the common A/B compartments were de�ned if the same chromatin status was presented in more
than 9 haplotypes for liver, and more than 6 haplotypes for skeletal muscle and brain. For categories of
parental-of-origin and paternal breeds, the common A/B compartments were de�ned if the same
chromatin status was present in more than 5 haplotypes for liver, and at least 3 haplotypes for both
skeletal muscle and brain tissues. Thus, A/B switches referred to the genomic regions with different
common compartment status between haplotypes in different categories. In addition, we recognized
regions with the same compartment status between haplotypes but have statistically signi�cant
differences in compartment scores (i.e., the A-B index values) (|ΔA-B index| > 0.5 and P < 0.05, paired
Students’ t-test) between parent-of-origins and paternal breeds (termed as A/B variables). Both analyses
were applied to the Hi-C dataset 1 (Extended Data Fig. 1a).

Topologically associated domains (TAD) calling
Haplotype-resolved TADs were identi�ed at 20-kb resolution using the Directionality Index (DI)132,133 and
the Insulation Index (IS)101 as previously described. Brie�y, the DI value of each 20-kb bin was calculated
using the number of reads that map from a given bin to the upstream and downstream 2-Mb regions133.
A hidden Markov model (HMM) was then applied to the DI values to infer domains and anchors. In
addition, the IS value was calculated and normalized for each 20-kb bin101. Bins with minimal IS along
the normalized IS vector were interpreted as the TAD anchors. Finally, large TADs identi�ed by DI were
further split into small TADs based on IS, and then the two sets of TADs were merged for further
analyses. This analysis was applied to the Hi-C dataset 1 (Extended Data Fig. 1a).

Measurement of TAD concordance
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MoC (assessment of the overlap between each pair of TADs by measuring in number of base pairs and
considering the overall size of both TADs)134 and VI (measurement of the similarity of all subsets of the
two TAD structures using a dynamic programming algorithm to compute the VI metrics)135 were
calculated to access the reproducibility of TADs between haplotypes.

Identi�cation of TAD boundary shifts
TAD boundary was de�ned as the anchor bin along with its 60-kb �anking segments and two boundaries
were merged as a larger boundary if they were overlapped. We identi�ed the shifts of haplotype-resolved
TAD boundaries between tissues, parent-of-origin and parental breeds as the bins containing changed
boundary positions that exhibited signi�cantly different local boundary scores (LBS10; quantitatively
re�ecting the strength of TAD boundary).

Speci�cally, 15 continuous 20-kb bins formed a locus (locus = 300 kb). For a given bin, the interactions
within its up- and downstream loci (represented as 300 kb × 300 kb triangles in the contact matrix) and
right loci were de�ned as its intra-loci interactions. The interactions between these two loci (300 kb × 300
kb diamonds in the contact matrix) are inter-loci iterations. The log2-transformed ratio of intra- to inter-
loci interactions was calculated as LBS of the bin.

We further used a custom method modi�ed from our previous work136 to identify regions with
statistically differential LBS (D-LBS). Brie�y, we scanned the genome from 5’ to 3’ and, if the difference
between the two haplotype groups for a 20-kb bin was signi�cant (P < 0.05, paired Students’ t-test), then
that bin was considered as the seed site of a candidate D-LBS region. After this, a 3’ downstream
adjacent 20-kb bin was concatenated to this seed site, and the average LBS of these two sites was
subjected to another round of paired Students’ t-test. The same process was repeated for the next 20-kb
bin until a low-variance 20-kb bin was identi�ed (P > 0.05). In order to eliminate ‘trailing smear’ (i.e., a low
variance bin being incorporated into a D-LBS region due to very high variance of its preceding bins), we
repeated the above test procedures from 3’ to 5’ across the genome. If a genomic region containing three
or more bins have statistically signi�cant (P < 0.05) different LBS across the haplotypes, then this region
was considered as a D-LBS region. This analysis was applied to the Hi-C dataset 1 (Extended Data
Fig. 1a).

Identi�cation of promoter-enhancer interactions
To reliably identify haplotype-resolved promoter-enhancer interactions (PEIs), we performed additional in
situ Hi-C assays (dataset 2) for 12 of the 14 aforementioned samples (three tissues from four F1 pigs,
Fig. 1b and Extended Data Fig. 1a). By combining both Hi-C datasets 1 and 2, we obtained very high-
resolution diploid Hi-C maps (a maximum resolution of 1-kb; Supplementary Fig. 4h,i). We generated KR-
normalized intra-chromosomal contact maps at 5-kb resolution for each haplotype, and further quantile
normalized them across 24 haplotypes. The promoter regions of genes were de�ned as the 5-kb bin
covering the transcription start site (TSS). The normalized contact maps at 5-kb resolution were split into
smaller matrices (20 Mb × 20 Mb) with a step size of 10 Mb to accelerate the identi�cation of PEIs using
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the PSYCHIC algorithm137 with default parameters. We reserved high-con�dence haplotype-resolved PEIs
using the following parameters: (i) FDR ≤ 10–4; (ii) interaction distances ≥ 25-kb; (iii) for each tissue,
more than two occurrences identi�ed in the same parental breed or parent-of-origin; (iv) for each tissue,
more than three occurrences identi�ed across all haplotypes.

Calculation of regulatory potential scores
To explore the regulatory effects of multiple enhancers on a gene, we calculated regulatory potential
score (RPS) for each gene as previously reported138. The RPS was calculated as,

where In is the distance-normalized interaction intensity of the nth enhancer (i.e., the observed contacts
minus the expected contacts). If a promoter does not interact with an enhancer, then the RPS is set to
zero. This analysis was applied to aggregation of the Hi-C datasets 1 and 2 (Extended Data Fig. 1a).

Quanti�cation of promoter and enhancer activity

ChIP-seq data processing
High-quality ChIP-seq data were aligned to the pig reference genome (Sscrofa 11.1) using BWA (v 0.7.8)
and the potential PCR duplicates removed using Picard’s MarkDuplicates (v 2.0.1). The aligned single
sample ChIP-seq data were aggregated into a multi-sample �le for each tissue, and the H3K27ac,
H3K4me3 and CTCF peaks identi�ed using MACS2139 (Q-value < 0.05). Highly and moderately active
enhancers were identi�ed using the standard ROSE algorithm140,141. Brie�y, neighboring H3K27ac peak
regions within 12.5-kb of one another were stitched together, ranked by increasing H3K27ac signal and
visualized as a curve (with x-axis representing the rank and y-axis representing the signal; Extended Data
Fig. 3h); We identi�ed the x-axis point for which a line with a slope of 1 was tangent to the curve, and this
in�ection point split all enhancers to highly active enhancers (above the point) and moderately active
enhancers (below the point). IGV (v 2.3.91)142 was used to visualize the ChIP-seq signals, gene
expression data and gene locations.

Allele-speci�c activity of promoters and enhancers
The allele-speci�c activity of promoters and enhancers for each sample were quali�ed by separately
assigning the parental origin of H3K4me3 and H3K27ac reads. Speci�cally, we �rst identi�ed ~ 12,772
active promoters (5-kb bins containing TSS) for each tissue. We then employed the Allelome.PRO
algorithm31 to distinguish the parental origin of the uniquely mapped H3K4me3 reads that covered
haplotype-resolved SNVs. We measured the number of reads assigned to each haplotype of a promoter,
and calculated the allelic ratio for the maternal or paternal haplotype (estimated as maternal or paternal
against the total read count), when the total number of reads assigned to a promoter was larger than 10.

∑
N

n=1
log10(In + 1)
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All putative enhancers (5-kb in length) involved in PEIs were classi�ed into three categories, including ~ 
2380 highly active enhancers (covered by the H3K27ac peak), ~ 7476 moderate active enhancers
(covered by the H3K27ac peak) and ~ 26,538 lower active enhancers (not covered by the H3K27ac peak)
for each tissue. For each highly and moderately active enhancer, we employed Allelome.PRO31 to
distinguish the parental origin of the uniquely mapped H3K27ac reads that covered haplotype-resolved
SNVs. We measured the number of reads assigned to each haplotype of an enhancer, and calculated the
allelic ratio for the maternal or paternal haplotype, when the total number of reads assigned to an
enhancer was larger than 10.

Effects of genetic variants on PEIs

Large-scale InDel calling using long-read DNA sequencing
High-quality long-read DNA sequencing data was obtained by removal of low-quality or short reads (< 1-
kb). For each F1 hybrid, the high-quality reads were assigned to each parental haplotype using the
parental reads of whole-genome sequencing data, based on a trio binning algorithm143 as implemented
in the the Canu software (v 1.8). The haplotype-resolved long reads were �rst error-corrected using the
NECAT software (v 0.0.1)144 and then aligned to the pig reference genome using minimap2 (v 2.17)145.
We used a local assembly strategy to identify large-scale InDels. Brie�y, the reference genome regions
were split into 60-kb sliding windows with 20-kb increments. For each 60-kb bin, the aligned reads were
retrieved and assembled using the NECAT software144. The assembled contigs were then mapped to the
reference genome using NGMLR (v 0.2.7)146 and the high-con�dence large-scale InDels were identi�ed
using Sni�es (v 1.0.11)146 with at least two supporting contigs.

Calculation of the identify score (IDS) and identity-by-state
(IBS) distance
To measure the degree of sequence divergence among haplotypes, we calculated the identify score (IDS)
to assess the pairwise similarity between haplotypes. For a given genomic region (e.g., 20-kb or 5-kb bin),
we estimated

where the Diffnuc was de�ned as the number of different nucleotides (combining the number of SNVs and
the length of InDels) between the two haplotypes, and Totalnuc was de�ned as the total nucleotide
number for a given region. Notably, insertions occurring in either haplotype increased the value of
Totalnuc, whereas deletions occurring in both haplotypes had an opposite effect.

Degree of sequence similarity for promoters and enhancers in pairwise comparisons among the Berkshire
and Tibetan purebred pigs (n = 82) was measured by pairwise identity-by-state (IBS) distances147. In this

IDS = 1 − (Diffnuc/Totalnuc)
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population-level analysis, 12 are from the six trios in this study (Berkshire [n = 6] and Tibetan [n = 6]) and
70 are publicly available (Berkshire [n = 15] and Tibetan [n = 55]). Publicly available SNVs were retrieved
from the ISwine database (http://iswine.iomics.pro/pig-iqgs/iqgs/index)148.

Prediction of PEIs based on sequence features alone
To quantitatively measure the disruptive effects of variants embedded in enhancers and promoters on the
formation of PEIs, we assessed the probability of allelic PEIs based solely on their respective sequence
features using the PEP algorithm with minor modi�cations50. Speci�cally, we �rst built a supervised
classi�cation model based on gradient tree boosting to predict promoter-enhancer interactions using only
sequences for each haplotype-resolved PEI dataset. We included the 24 haplotype-resolved PEI dataset of
eight haplotypes derived from four F1 hybrids for liver, skeletal muscle, and brain. For each positive
dataset, we generated a set of non-interacting promoter-enhancer pairs by randomly pairing putative
promoters and enhancers, and sampled a negative set with the same size as the positive samples from
these simulated non-interacting pairs. We also ensured that the selected non-interacting pairs were not
detected by Hi-C and followed the same distance constraints between the positive pairs149. Supplied with
the reference genome assembly and the relevant genetic variants (SNVs, short- and large-scale InDels) for
each haplotype, we �rst reconstructed a haplotype-speci�c genome (termed as ‘pseudogenome’). We then
created a map from each 5-kb enhancer or 2.7-kb promoter region of the reference genome to the
haplotype-speci�c pseudogenome. The haplotype-resolved interacting and non-interacting promoter-
enhancer pairs with both ends aligned from the reference genome to the respective haplotype-speci�c
pseudogenome were retained for further analyses. We applied FIMO150 for scanning motifs along the
pseudogenome sequences of promoters and enhancers with the PWMs from HOCOMOCO Human v10
database151. This allowed us to identify motif matches using a P-value threshold of 1 × 10–4. For a
certain motif, we calculated the normalized motif occurrences for each of the enhancer or promoter
sequences, used these frequencies for all motifs as feature vectors, and concatenated the feature vectors
of the enhancer region and the paired promoter region to form the feature representation of an enhancer-
promoter pair152.

We used XGBoost153, a scalable and highly accurate implementation of gradient boosting154, as a
predicting algorithm to predict PEIs based on feature representation generated by motif occurrences
using the R package XGBoostExplainer (v 0.1), which makes XGBoost as transparent as a single decision
tree. We obtained the predicted classi�cation represented as a 0–1 probability of samples with known
labels by performing one-fold cross validations. Samples with unknown labels were classi�ed based on a
complete model built from all the samples with known labels.

Simulation of PEI intensity based on interval lengths
To test the hypothesis promoters and enhancers in closer proximity on the linear genome tend to be
spatially closer (thus with the elevated PEI intensity), and vice versa, we simulated the PEI intensities of
24 haplotypes based on the allelically variable bridging distance between promoter and enhancer
(consequence of incorporating short- and large-scale InDels) using the Huynh’s algorithm155. Speci�cally,
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we used the opposite haplotype within the same individual as reference (termed ‘H matrix’), to predict a
new Hi-C contact matrix for the haplotype of interest (termed ‘G matrix’). To this end, we �rst modeled
contact frequencies of the H matrix by introducing the parameters β, α and r, and the following equation

where α captures the genomic properties (e.g., GC content, mappability) of each bin; β models the power-
law scaling of contact frequencies based on the genomic distance; r represents the putative existence of
an insulator within the speci�c bin;  indicates the simulated contact frequency between bini and binj;
and denotes the linear genomic distance between bini and binj in the pig reference genome. The
unknown parameters were estimated through optimization. We assumed that deletions and insertions
either decrease or increase the genomic distances, eliminate or add insulators, and do not alter the α, β, or
r values. We thus estimated the contact frequency of the G matrix as follows:

where  (n = 1 ~ N) denotes the start and end coordinates (in the unit of bin number) for N deletions
between bini and binj in the haplotype of interest relative to the pig reference genome;  represents
the linear genomic distance between bini and binj considering the effects of all deletions and insertions in
the haplotype of interest relative to the reference haplotype. It should be noted that insertions in the
reference haplotype relative to the reference genome were considered as deletions in the haplotype of
interest relative to the reference haplotype, and vice versa. Since we were not able to estimate r values for
inserted sequences with respect to the reference genome, we set r values to zero in these bins.

Calculation of inter-homolog pairing scores
To measure the strength of interactions between homologs, we generated inter-chromosomal normalized
Hi-C maps at 20-kb resolution and calculated inter-homolog pairing scores (HPS) for each 20-kb bin. The
PS of a 20-kb bin is the log2 transformed average contact frequency between homologs within a window

of W bins up- and downstream of the speci�c 20-kb bin91. PS is de�ned as:

where m and n correspond to the i − W-th and i + W-th bins. The intra-chromosomal score (ICS) was
calculated using the intra-chromosomal Hi-C maps. This analysis was applied to aggregation of the Hi-C
datasets 1 and 2 (Extended Data Fig. 1a).

ST data processing and analysis
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The spatial transcriptomics sequencing data of skeletal muscle were analyzed as previously described20.
Brie�y, we �rst manually aligned the image to the slide area and removed unreliable spots using the 10X
Genomics Loupe Browser (v 4.1.0). Sample demultiplexing and expression quanti�cation were carried out
using Space Ranger (v 1.1) according to the 10X Genomics spatial gene expression analysis pipeline. We
retrieved the reference genome sequence and gene annotation �le (GTF) from Ensembl Sscrofa 11.1
(Release 102). Read alignment and gene expression quanti�cation was performed using Space Ranger.
We further applied the Seurat (v 3.2)156 package for removing low-quality spots or non-expressed genes,
normalization (regularized negative binomial regression, ‘SCTransform’ function) of gene expression
data157, and spatial visualization of features. To avoid sparsity and greatly increase unique molecular
index (UMI) coverage of genes, we performed a ‘pseudo-bulk’ approach. We manually grouped spots into
types I and II muscle �ber clusters according to the SDH staining results, summed the UMI counts for 100
randomly sampled spots from each myo�ber cluster, and generated four replicates of ‘pseudo-bulk’
expression matrices for each cluster. The normalization and differential expression analysis of the
pseudo-bulk data was performed as previously described158 using scater (v 1.24.0)159 and limma (v
3.52.0)160.

Functional enrichment analysis
Functional enrichment analysis was performed using the Metascape tool161 with default parameters.
Genes in the pig genome were converted to human orthologs, which were used as inputs for the
enrichment analysis. Human (Homo sapiens) was chosen as the target species, and enrichment analysis
was performed against all genes in the genome as the background set, with Gene Ontology-biological
processes (GO-BP) and KEGG as the test sets. The statistically signi�cant terms were selected as outputs.

Phylogenetic relationship of mammals estimated using
condensin II subunits
The topological relationships of each of the �ve condensin II subunits (SMC2, SMC4, CAP-H2, CAP-G2,
and CAP-D3)162 across several mammals were constructed based on protein sequences using the
multiple sequence alignment program Clustal Omega tool (v.1.2.1). This software uses seeded guide
trees and HMM pro�le-pro�le techniques to generate the alignments163. The protein sequences used to
generate the trees were downloaded from Uniprot (https://www.uniprot.org/)164.

Trait-associated SNP enrichment analysis
We downloaded 146,690 unique human trait-associated SNPs from the NHGRI-EBI GWAS Catalog
(https://www.ebi.ac.uk/gwas/, last access on June 1, 2021)165. These SNPs were assigned to 77,917 loci
in the pig reference genome (Sscrofa 11.1) using the UCSC LiftOver tool (https://genome.ucsc.edu/cgi-
bin/hgLiftOver). A total of 73,363 noncoding SNPs (or 94.16%) linked to 4,514 traits or diseases were
used for subsequent analyses. We compared the enrichment scores (i.e., relative density) of noncoding
SNPs between enhancers and other regions105. The signi�cance of the enrichment score was calculated
using a χ2 test for each trait or disease that contained more than 50 SNPs.
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Information related to statistical analysis
Statistical details were described in Fig. legends and the Results section. No methods were used to
determine whether the data met the speci�c assumptions of each statistical approach.

Declarations
Code availability

All the code used for data analysis is available at https://github.com/QianZiTang/linyu.

Competing interests

The authors declare no competing interests.

Acknowledgments

We thank Dr. Isaac V. Greenhut for valuable discussion and feedback on the manuscript. We thank the
High-Performance Computing Platform of Sichuan Agricultural University and the Ya’an Big Data
Industrial Park for providing computing resources and support that have contributed to this research.

This work was supported by the National Key R & D Program of China (2020YFA0509500 to M.L.,
2021YFA0805903 to L.J. and 2021YFD1300800 to L.L.), the Sichuan Science and Technology Program
(2021ZDZX0008 and 2022JDJQ0054 to L.J. and Q.T., 2021YFYZ0009 to M.L., 2021YFYZ0030 to Y.G.,
2021YFH0033 to J.M. and 2021YFS0008 to L.L.), the National Natural Science Foundation of China
(U19A2036 to M.L., 32102507 to J.L., 32102512 to K.L. and 31872335 to X.W.L.), the China Agriculture
Research System (CARS-35-01A to X.W.L.), the Ya’an Science and Technology Program (21SXHZ0022 to
L.J.), the Post-doctoral Program of China (2020M683648XB to J.L. and 2021M692329 to L.L.), and the
Foundation of Key Laboratory of Pig Industry Sciences (22519C to F.K.).

Author contributions

Conceptualization, M.L. and Y.G.; methodology, Y.L. and Q.T.; validation, Y.L., J.L., L.J., Y.Z., X.K.L.; formal
analysis, Y.L., J.L., L.J., J.B., and J.Z.; investigation, Y.W., P.L., K.L., M.H., D.L., C.L., Z.H., B.Z., L.L., and F.K.;
resources, Y.G., Y.S., Y.F., X.W., T.W., A.J., J.M., J.W., and L.G.; data curation, L.S., L.Z., Y.J., and G.T.; writing,
M.L., J.L, L.J., and Q.T.; visualization, Q.L., H.L., and X.W.L.; supervision, M.L., Q.T., and J.L.; project
administration, M.L.; funding acquisition, M.L.

References
1. Reinius, B. & Sandberg, R. Random monoallelic expression of autosomal genes: stochastic

transcription and allele-level regulation. Nat. Rev. Genet. 16, 653–664 (2015).



Page 32/52

2. Xie, W. et al. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation
in the mouse genome. Cell 148, 816–831 (2012).

3. Rivera-Mulia, J. C. et al. Allele-speci�c control of replication timing and genome organization during
development. Genome Res. 28, 800–811 (2018).

4. Lindsly, S. et al. Functional organization of the maternal and paternal human 4D Nucleome. iScience
24, 103452 (2021).

5. Oudelaar, A. M. & Higgs, D. R. The relationship between genome structure and function. Nat. Rev.
Genet. 22, 154–168 (2021).

�. Akgol Oksuz, B. et al. Systematic evaluation of chromosome conformation capture assays. Nat.
Methods 18, 1046–1055 (2021).

7. Li, J., Lin, Y., Tang, Q. & Li, M. Understanding three-dimensional chromatin organization in diploid
genomes. Comput. Struct. Biotechnol. J. 19, 3589–3598 (2021).

�. Du, Z. et al. Allelic reprogramming of 3D chromatin architecture during early mammalian
development. Nature 547, 232–235 (2017).

9. Tan, L. et al. Changes in genome architecture and transcriptional dynamics progress independently
of sensory experience during post-natal brain development. Cell 184, 741–758.e717 (2021).

10. Han, Z. et al. Diploid genome architecture revealed by multi-omic data of hybrid mice. Genome Res.
30, 1097–1106 (2020).

11. Tan, L., Xing, D., Chang, C. H., Li, H. & Xie, X. S. Three-dimensional genome structures of single diploid
human cells. Science 361, 924–928 (2018).

12. FAO. The Second Report on the State of the World’s Animal Genetic Resources for Food and
Agriculture. (FAO Commission on Genetic Resources for Food and Agriculture Assessments, Rome;
2015).

13. Zhu, Q. et al. Speci�cation and epigenomic resetting of the pig germline exhibit conservation with the
human lineage. Cell Rep. 34, 108735 (2021).

14. Liu, T. et al. Cross-species single-cell transcriptomic analysis reveals pre-gastrulation developmental
differences among pigs, monkeys, and humans. Cell Discov. 7, 1–17 (2021).

15. Yan, S. et al. A Huntingtin Knockin Pig Model Recapitulates Features of Selective Neurodegeneration
in Huntington's Disease. Cell (2018).

1�. Moretti, A. et al. Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and
human models of Duchenne muscular dystrophy. Nat. Med. 26, 207–214 (2020).

17. Decaro, N. & Lorusso, A. Novel human coronavirus (SARS-CoV-2): A lesson from animal
coronaviruses. Vet. Microbiol. 244, 108693 (2020).

1�. Schelstraete, W., Devreese, M. & Croubels, S. Comparative toxicokinetics of Fusarium mycotoxins in
pigs and humans. Food Chem. Toxicol. 137, 111140 (2020).

19. Lunney, J. K. et al. Importance of the pig as a human biomedical model. Sci. Transl. Med. 13,
eabd5758 (2021).



Page 33/52

20. Jin, L. et al. A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary
dynamics of transcription. Nat. Commun. 12, 3715 (2021).

21. Karlsson, M. et al. Genome-wide annotation of protein-coding genes in pig. BMC Biol. 20, 25 (2022).

22. Sjöstedt, E. et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science
367, eaay5947 (2020).

23. Dawson, H. D. et al. Structural and functional annotation of the porcine immunome. BMC Genom. 14,
332 (2013).

24. Warr, A. et al. An improved pig reference genome sequence to enable pig genetics and genomics
research. Gigascience 9, giaa051 (2020).

25. Groenen, M.A. et al. Analyses of pig genomes provide insight into porcine demography and evolution.
Nature 491, 393–398 (2012).

2�. Zhao, Y. et al. A compendium and comparative epigenomics analysis of cis-regulatory elements in
the pig genome. Nat. Commun. 12, 1–17 (2021).

27. Zhi, M. et al. Generation and characterization of stable pig pregastrulation epiblast stem cell lines.
Cell Res, 32, 383–400 (2021).

2�. Yue, Y. et al. Extensive germline genome engineering in pigs. Nat. Biomed. Eng. 5, 134–143 (2021).

29. Li, M. et al. Comprehensive variation discovery and recovery of missing sequence in the pig genome
using multiple de novo assemblies. Genome Res. 27, 865–874 (2017).

30. Deng, Q., Ramsköld, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random
monoallelic gene expression in mammalian cells. Science 343, 193–196 (2014).

31. Andergassen, D. et al. Allelome.PRO, a pipeline to de�ne allele-speci�c genomic features from high-
throughput sequencing data. Nucleic Acids Res. 43, e146 (2015).

32. Hoencamp, C. et al. 3D genomics across the tree of life reveals condensin II as a determinant of
architecture type. Science 372, 984–989 (2021).

33. Stevens, T. J. et al. 3D structures of individual mammalian genomes studied by single-cell Hi-C.
Nature 544, 59–64 (2017).

34. Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518,
331–336 (2015).

35. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of
chromatin looping. Cell 159, 1665–1680 (2014).

3�. Li, M. et al. Genomic analyses identify distinct patterns of selection in domesticated pigs and
Tibetan wild boars. Nat. Genet. 45, 1431–1438 (2013).

37. Witt, K. E. & Huerta-Sánchez, E. Convergent evolution in human and domesticate adaptation to high-
altitude environments. Philos. Trans. Roy. Soc. B 374, 20180235 (2019).

3�. Beagan, J. A. & Phillips-Cremins, J. E. On the existence and functionality of topologically associating
domains. Nat. Genet. 52, 8–16 (2020).



Page 34/52

39. Monk, D., Mackay, D. J., Eggermann, T., Maher, E. R. & Riccio, A. Genomic imprinting disorders:
lessons on how genome, epigenome and environment interact. Nat. Rev. Genet. 20, 235–248 (2019).

40. Song, W., Sharan, R. & Ovcharenko, I. The �rst enhancer in an enhancer chain safeguards subsequent
enhancer-promoter contacts from a distance. Genome Biol. 20, 197 (2019).

41. Oh, S. et al. Enhancer release and retargeting activates disease-susceptibility genes. Nature 595,
735–740 (2021).

42. Li, D. et al. Dynamic transcriptome and chromatin architecture in granulosa cells during chicken
folliculogenesis. Nat. Commun. 13, 1–14 (2022).

43. Villar, D. et al. Enhancer evolution across 20 mammalian species. Cell 160, 554–566 (2015).

44. Pérez-Rico, Y. A. et al. Comparative analyses of super-enhancers reveal conserved elements in
vertebrate genomes. Genome Res. 27, 259–268 (2017).

45. Hon, G. C. et al. Epigenetic memory at embryonic enhancers identi�ed in DNA methylation maps
from adult mouse tissues. Nat. Genet. 45, 1198–1206 (2013).

4�. Javierre, B. M. et al. Lineage-Speci�c genome architecture links enhancers and non-coding disease
variants to target gene promoters. Cell 167, 1369–1384 e1319 (2016).

47. Tucci, V., Isles, A. R., Kelsey, G. & Ferguson-Smith, A. C. Genomic imprinting and physiological
processes in mammals. Cell 176, 952–965 (2019).

4�. Santini, L. et al. Genomic imprinting in mouse blastocysts is predominantly associated with
H3K27me3. Nat. Commun. 12, 1–16 (2021).

49. Fitz-James, M. H. & Cavalli, G. Molecular mechanisms of transgenerational epigenetic inheritance.
Nat. Rev. Genet. (2022).

50. Yang, Y., Zhang, R., Singh, S. & Ma, J. Exploiting sequence-based features for predicting enhancer-
promoter interactions. Bioinformatics 33, i252–i260 (2017).

51. Kvon, E. Z. et al. Comprehensive in vivo interrogation reveals phenotypic impact of human enhancer
variants. Cell 180, 1262–1271. e1215 (2020).

52. Spielmann, M., Lupiáñez, D. G. & Mundlos, S. Structural variation in the 3D genome. Nat. Rev. Genet.
19, 453–467 (2018).

53. Huynh, L. & Hormozdiari, F. TAD fusion score: discovery and ranking the contribution of deletions to
genome structure. Genome Biol. 20, 1–13 (2019).

54. Kvon, E. Z., Waymack, R., Gad, M. & Wunderlich, Z. Enhancer redundancy in development and
disease. Nat. Rev. Genet. 22, 324–336 (2021).

55. Laverré, A., Tannier, E. & Necsulea, A. Long-range promoter-enhancer contacts are conserved during
evolution and contribute to gene expression robustness. Genome Res. 32, 280–296 (2022).

5�. Weischenfeldt, J. et al. Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and
IGF2 in enhancer hijacking. Nat. Genet. 49, 65–74 (2017).

57. Akdemir, K. C. et al. Disruption of chromatin folding domains by somatic genomic rearrangements in
human cancer. Nat. Genet. 52, 294–305 (2020).



Page 35/52

5�. Li, M. et al. Whole-genome sequencing of Berkshire (European native pig) provides insights into its
origin and domestication. Sci. Rep. 4, 4678 (2014).

59. Jeong, H. et al. Exploring evidence of positive selection reveals genetic basis of meat quality traits in
Berkshire pigs through whole genome sequencing. BMC Genet. 16, 104 (2015).

�0. Ben-Moshe, S. & Itzkovitz, S. Spatial heterogeneity in the mammalian liver. Nat. Rev. Gastroenterol.
Hepatol. 16, 395–410 (2019).

�1. Wong, L. H., Gatta, A. T. & Levine, T. P. Lipid transfer proteins: the lipid commute via shuttles, bridges
and tubes. Nat. Rev. Mol. Cell Biol. 20, 85–101 (2019).

�2. Han, M. et al. Hepatocyte caveolin-1 modulates metabolic gene pro�les and functions in non-
alcoholic fatty liver disease. Cell Death Dis. 11, 1–14 (2020).

�3. Li, M. et al. Caveolin1 protects against diet induced hepatic lipid accumulation in mice. PLoS ONE 12,
e0178748 (2017).

�4. Wang, L., Tran, A., Lee, J. & Belsham, D. D. Palmitate differentially regulates Spexin, and its receptors
Galr2 and Galr3, in GnRH neurons through mechanisms involving PKC, MAPKs, and TLR4. Mol. Cell.
Endocrinol. 518, 110991 (2020).

�5. Yang, X. et al. Twist1-induced miR-199a-3p promotes liver �brosis by suppressing caveolin-2 and
activating TGF-beta pathway. Signal Transduct. Target. Ther. 5, 75 (2020).

��. Gerstein, H. C. & Waltman, L. Why don't pigs get diabetes? Explanations for variations in diabetes
susceptibility in human populations living in a diabetogenic environment. Can. Med. Assoc. J. 174,
25–26 (2006).

�7. Zhu, L. et al. Distinct expression patterns of genes associated with muscle growth and adipose
deposition in tibetan pigs: a possible adaptive mechanism for high altitude conditions. High Alt.
Med. Biol. 10, 45–55 (2009).

��. Apte, R. S., Chen, D. S. & Ferrara, N. VEGF in signaling and disease: beyond discovery and
development. Cell 176, 1248–1264 (2019).

�9. Roth Flach, R.J. et al. Map4k4 impairs energy metabolism in endothelial cells and promotes insulin
resistance in obesity. Am. J. Physiol. Endocrinol. Metab. 313, E303–E313 (2017).

70. Richter, M. et al. Single-nucleus RNA-seq2 reveals functional crosstalk between liver zonation and
ploidy. Nat. Commun. 12, 1–16 (2021).

71. Verma, P. et al. Transcriptome analysis of circulating PBMCs to understand mechanism of high
altitude adaptation in native cattle of Ladakh region. Sci. Rep. 8, 1–15 (2018).

72. Spek, C. A., Aberson, H. L., Butler, J. M., de Vos, A. F. & Duitman, J. CEBPD potentiates the
macrophage in�ammatory response but CEBPD knock-out macrophages fail to identify cebpd-
dependent pro-in�ammatory transcriptional programs. Cells 10, 2233 (2021).

73. Wang, L. Y. et al. Animal genetic resources in China: pigs (ed. China National Commission of Animal
Genetic Resources). (China Agricultural Press, 2011).



Page 36/52

74. Kraus, F., Roy, K., Pucadyil, T. J. & Ryan, M. T. Function and regulation of the divisome for
mitochondrial �ssion. Nature 590, 57–66 (2021).

75. Malenfant, P. et al. Fat content in individual muscle �bers of lean and obese subjects. Int. J. Obes.
Relat. Metab. Disord. 25, 1316–1321 (2001).

7�. Murgia, M. et al. Protein pro�le of �ber types in human skeletal muscle: a single-�ber proteomics
study. Skelet. Muscle 11, 1–19 (2021).

77. Miranda, D.R. et al. Mechanisms of altered skeletal muscle action potentials in the R6/2 mouse
model of Huntington’s disease. Am. J. Physiol. Cell Physiol. 319, C218–C232 (2020).

7�. Pisani, D. F., Leclerc, L., Jarretou, G., Marini, J. F. & Dechesne, C. A. SMHS1 is involved in
oxidative/glycolytic-energy metabolism balance of muscle �bers. Biochem. Biophys. Res. Commun.
326, 788–793 (2005).

79. Roepstorff, C., Vistisen, B. & Kiens, B. Intramuscular triacylglycerol in energy metabolism during
exercise in humans. Exerc. Sport Sci. Rev. 33, 182–188 (2005).

�0. Won, H. et al. Chromosome conformation elucidates regulatory relationships in developing human
brain. Nature 538, 523–527 (2016).

�1. Cawthon, C. R. & Claire, B. The critical role of CCK in the regulation of food intake and diet-induced
obesity. Peptides 138, 170492 (2021).

�2. Dienel, G.A. Brain glucose metabolism: integration of energetics with function. Physiol. Rev. 99, 949–
1045 (2019).

�3. Mancini, G. & Horvath, T. L. Viral vectors for studying brain mechanisms that control energy
homeostasis. Cell Metab. 27, 1168–1175 (2018).

�4. Herhaus, B., Ullmann, E., Chrousos, G. & Petrowski, K. High/low cortisol reactivity and food intake in
people with obesity and healthy weight. Transl. Psychiatry 10, 1–8 (2020).

�5. Goff, K. M. & Goldberg, E. M. A role for vasoactive intestinal peptide interneurons in
neurodevelopmental disorders. Dev. Neurosci. 43, 168–180 (2021).

��. Stack, C. M. et al. De�cits in social behavior and reversal learning are more prevalent in male
offspring of VIP de�cient female mice. Exp. Neurol. 211, 67–84 (2008).

�7. Savelieff, M. G. & Feldman, E. L. Lessons for clinical trial design in Friedreich's ataxia. Lancet Neurol.
20, 330–332 (2021).

��. Chandran, V. et al. Inducible and reversible phenotypes in a novel mouse model of Friedreich’s ataxia.
Elife 6, e30054 (2017).

�9. Choi, I. et al. Sodium bicarbonate cotransporter NBCn1/Slc4a7 affects locomotor activity and
hearing in mice. Behav. Brain Res. 401, 113065 (2021).

90. Child, M. B. 6th. et al. Live imaging and biophysical modeling support a button-based mechanism of
somatic homolog pairing in Drosophila. Elife 10 (2021).

91. AlHaj Abed, J. et al. Highly structured homolog pairing re�ects functional organization of the
Drosophila genome. Nat. Commun. 10, 4485 (2019).



Page 37/52

92. Erceg, J. et al. The genome-wide multi-layered architecture of chromosome pairing in early
Drosophila embryos. Nat. Commun. 10, 4486 (2019).

93. Galouzis, C. C. & Prud'homme, B. Transvection regulates the sex-biased expression of a �y X-linked
gene. Science 371, 396–400 (2021).

94. Jiang, M., Chavarria, T. E., Yuan, B., Lodish, H. F. & Huang, N. J. Phosphocholine accumulation and
PHOSPHO1 depletion promote adipose tissue thermogenesis. Proc. Natl. Acad. Sci. U.S.A. 117,
15055–15065 (2020).

95. Gliniak, C. M. & Scherer, P. E. PHOSPHO1 puts the breaks on thermogenesis in brown adipocytes.
Proc. Natl. Acad. Sci. 117, 16726–16728 (2020).

9�. Lim, B., Heist, T., Levine, M. & Fukaya, T. Visualization of transvection in living Drosophila embryos.
Mol. Cell 70, 287–296. e286 (2018).

97. Zhang, D., Lam, J. & Blobel, G.A. Engineering three-dimensional genome folding. Nat. Genet. 53, 602–
611 (2021).

9�. Jerkovic, I. & Cavalli, G. Understanding 3D genome organization by multidisciplinary methods. Nat.
Rev. Mol. Cell Biol. 22, 511–528 (2021).

99. Zhou, T., Zhang, R. & Ma, J. The 3D genome structure of single cells. Annu. Rev. Biomed. Data Sci. 4,
21–41 (2021).

100. Galupa, R. et al. A conserved noncoding locus regulates random monoallelic Xist expression across a
topological boundary. Mol. Cell 77, 352–367. e358 (2020).

101. Crane, E. et al. Condensin-driven remodelling of X chromosome topology during dosage
compensation. Nature 523, 240–244 (2015).

102. Bauer, M. et al. Chromosome compartments on the inactive X guide TAD formation independently of
transcription during X-reactivation. Nat. Commun. 12, 1–21 (2021).

103. Chen, K., Baxter, T., Muir, W. M., Groenen, M. A. & Schook, L. B. Genetic resources, genome mapping
and evolutionary genomics of the pig (Sus scrofa). Int. J. Biol. Sci. 3, 153–165 (2007).

104. de Wit, E. Capturing heterogeneity: single-cell structures of the 3D genome. Nat. Struct. Mol. Biol. 24,
437–438 (2017).

105. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

10�. Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory
DNA. Science 337, 1190–1195 (2012).

107. Pan, Z. et al. Pig genome functional annotation enhances the biological interpretation of complex
traits and human disease. Nat. Commun. 12, 1–15 (2021).

10�. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

109. Aganezov, S. et al. A complete reference genome improves analysis of human genetic variation.
Science 376, eabl3533 (2022).

110. Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. Nature 593, 238–
243 (2021).



Page 38/52

111. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of
chromatin looping. Cell 159, 1665–1680 (2014).

112. Han, K., Ren, R., Cao, J., Zhao, S. & Yu, M. Genome-wide identi�cation of histone modi�cations
involved in placental development in pigs. Front. Genet. 10, 277 (2019).

113. Krijger, P. H. L., Geeven, G., Bianchi, V., Hilvering, C. R. E. & de Laat, W. 4C-seq from beginning to end: A
detailed protocol for sample preparation and data analysis. Methods 170, 17–32 (2020).

114. van de Werken, H. J. et al. 4C technology: protocols and data analysis. Meth. Enzymol. 513, 89–112
(2012).

115. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics 25, 1754–1760 (2009).

11�. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

117. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait
analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

11�. Pritchard, J.K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus
genotype data. Genetics 155, 945–959 (2000).

119. Servant, N. et al. HiC-Pro: an optimized and �exible pipeline for Hi-C data processing. Genome Biol.
16, 259 (2015).

120. Edge, P., Bafna, V. & Bansal, V. HapCUT2: robust and accurate haplotype assembly for diverse
sequencing technologies. Genome Res. 27, 801–812 (2017).

121. Krueger, F. & Andrews, S. R. SNPsplit: allele-speci�c splitting of alignments between genomes with
known SNP genotypes. F1000Res. 5, 1479 (2016).

122. Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments.
Cell Syst. 3, 95–98 (2016).

123. Knight, P. A. & Ruiz, D. A fast algorithm for matrix balancing. IMA J. Numer. Anal. 33, 1029–1047
(2013).

124. Fletez-Brant, K., Qiu, Y., Gorkin, D. U., Hu, M. & Hansen, K. D. Removing unwanted variation between
samples in Hi-C experiments. BioRxiv, 214361 (2021).

125. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quanti�cation.
Nat. Biotechnol. 34, 525–527 (2016).

12�. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

127. Liu, S. et al. Genome Architecture Mediates Transcriptional Control of Human Myogenic
Reprogramming. iScience 6, 232–246 (2018).

12�. Yang, T. et al. HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation
coe�cient. Genome Res. 27, 1939–1949 (2017).

129. Ursu, O. et al. GenomeDISCO: a concordance score for chromosome conformation capture
experiments using random walks on contact map graphs. Bioinformatics 34, 2701–2707 (2018).



Page 39/52

130. Yardimci, G. G. et al. Measuring the reproducibility and quality of Hi-C data. Genome Biol. 20, 57
(2019).

131. Rieber, L. & Mahony, S. miniMDS: 3D structural inference from high-resolution Hi-C data.
Bioinformatics 33, i261–i266 (2017).

132. Rowley, M.J. et al. Evolutionarily conserved principles predict 3D chromatin organization. Mol. Cell
67, 837–852.e837 (2017).

133. Dixon, J. R. et al. Topological domains in mammalian genomes identi�ed by analysis of chromatin
interactions. Nature 485, 376–380 (2012).

134. Zufferey, M., Tavernari, D., Oricchio, E. & Ciriello, G. Comparison of computational methods for the
identi�cation of topologically associating domains. Genome Biol. 19, 217 (2018).

135. Sauerwald, N. & Kingsford, C. Quantifying the similarity of topological domains across normal and
cancer human cell types. Bioinformatics 34, i475–i483 (2018).

13�. Li, M. et al. An atlas of DNA methylomes in porcine adipose and muscle tissues. Nat. Commun. 3,
850 (2012).

137. Ron, G., Globerson, Y., Moran, D. & Kaplan, T. Promoter-enhancer interactions identi�ed from Hi-C data
using probabilistic models and hierarchical topological domains. Nat. Commun. 8, 2237 (2017).

13�. Zhi, M. et al. Generation and characterization of stable pig pregastrulation epiblast stem cell lines.
Cell Res. 32, 383–400 (2022).

139. Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X. S. Identifying ChIP-seq enrichment using MACS. Nat.
Protoc. 7, 1728–1740 (2012).

140. Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell
identity genes. Cell 153, 307–319 (2013).

141. Loven, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153,
320–334 (2013).

142. Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-
performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).

143. Koren, S. et al. De novo assembly of haplotype-resolved genomes with trio binning. Nat. Biotechnol.
(2018).

144. Chen, Y. et al. E�cient assembly of nanopore reads via highly accurate and intact error correction.
Nat. Commun. 12, 60 (2021).

145. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100
(2018).

14�. Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule
sequencing. Nat. Methods 15, 461–468 (2018).

147. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100
(2018).



Page 40/52

14�. Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule
sequencing. Nat. Methods 15, 461–468 (2018).

149. Whalen, S., Truty, R. M. & Pollard, K. S. Enhancer-promoter interactions are encoded by complex
genomic signatures on looping chromatin. Nat. Genet. 48, 488–496 (2016).

150. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif.
Bioinformatics 27, 1017–1018 (2011).

151. Kulakovskiy, I. V. et al. HOCOMOCO: expansion and enhancement of the collection of transcription
factor binding sites models. Nucleic Acids Res. 44, D116–125 (2016).

152. Yang, Y., Zhang, R., Singh, S. & Ma, J. Exploiting sequence-based features for predicting enhancer-
promoter interactions. Bioinformatics 33, i252–i260 (2017).

153. Chen, T., Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining [Internet]. New York, NY,
USA: ACM, 785–794 (2016).

154. Friedman, J. H. Greedy function approximation: a gradient boosting machine. Annals of Statistics 29,
1189–1232 (2001).

155. Huynh, L. & Hormozdiari, F. TAD fusion score: discovery and ranking the contribution of deletions to
genome structure. Genome Biol. 20, 60 (2019).

15�. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 e1821 (2019).

157. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data
using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

15�. Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral
prefrontal cortex. Nat. Neurosci. 24, 425–436 (2021).

159. McCarthy, D. J., Campbell, K. R., Lun, A. T. & Wills, Q. F. Scater: pre-processing, quality control,
normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179–1186
(2017).

1�0. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and
microarray studies. Nucleic Acids Res. 43, e47 (2015).

1�1. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level
datasets. Nat. Commun. 10, 1523 (2019).

1�2. Hoencamp, C. et al. 3D genomics across the tree of life reveals condensin II as a determinant of
architecture type. Science 372, 984–989 (2021).

1�3. Sievers, F. & Higgins, D. G. The clustal omega multiple alignment package. Methods Mol. Biol. 2231,
3–16 (2021).

1�4. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49,
D480–D489 (2021).

1�5. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies,
targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).



Page 41/52

Figures

Figure 1

Three-dimensional (3D) structures of diploid genome in hybrid pigs.
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a, Schematic representation of reciprocal crosses between genetically distinct Berkshire and Tibetan pig
breeds. Liver, skeletal muscle, and brain of F1 hybrids were collected for multi-omics assays (see
Supplementary Fig. 1a for details). F1i and F1r denote the F1 hybrids of initial and reverse crosses,
respectively.

b, Allele assignment of in situ Hi-C contacts in F1 hybrids. A total of ~48.95 billion valid Hi-C contacts
were generated, including ~3.15 billion autosomal contacts for each of the 14 samples (six liver, four
muscle, and four brain samples; dataset 1). To reliably identify PEIs throughout the diploid genome, we
carried out additional in situ Hi-C assays for 12 samples (dataset 2), and resulting in a �nal total of
~97.53 billion valid Hi-C contacts (~7.29 billion autosomal contacts for each of the 12 samples, including
four liver, four muscle, and four brain samples) in the combined datasets 1 and 2 (see Supplementary Fig.
1a for details).

c, 3D genome structure of a representative liver sample (see Methods). Left: whole genome. Right: the 18
autosome pairs visualized separately.

d, Uneven distribution of mass in the 3D nucleus. The nucleus is divided into 100 shells of equal radius
from the center to the periphery in order to determine the distribution of 20-kb genomic bins. Colored lines
represent mean values across tissues, and shading around the mean shows dispersion calculated using
the standard deviation divided by the cumulative sum of all means.

e, Inter-chromosomal interaction pro�les (18 × 18 matrix consisting of the homologs of each autosome)
show chromosome territories (dotted boxes indicate the two clusters of chromosomes) and preferential
interactions between homologs compared to that between heterologs (Wilcoxon rank-sum test, n.s., P ≥
0.05; *P < 0.05; **P < 0.01; ***P < 0.001).

f, Quanti�cation of centromere and telomere organization. 3D genome structure and its intersecting
regions in a representative liver sample. Most centromeres had a larger radius in the nucleus than
telomeres (i.e., centromeres were localized to outer nuclear regions relative to telomeres). Only autosomes
with recognizable centromeres were compared. Data are presented as mean values ± SD (n = 14).
Wilcoxon rank-sum test, n.s., P ≥ 0.05; *P < 0.05; **P < 0.01; ***P < 0.001.

g, Homologs exhibited highly similar distances to the center of 3D nucleus (Pearson’s r = 0.87, P < 2.2 ×
10−16). The center of the 3D nucleus was calculated as the mean coordinate of all autosomes.

h, PCA analysis of autosomal interactions in a representative liver sample in which homologs that are
closer in the plot have more similar interaction patterns.

i, Distance between homologs is almost always shortest between potential pairs in the 2D PCA projection.
Homo, homologs; Nearest, an autosome and its nearest heterolog; Mean, a chromosome and all the other
autosomes; Random, two randomly picked autosomes. Data are presented as means ± SD (n = 14). P
values are from Student’s t-test.
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j, Spatial distance between bin pairs of homologs and heterologs. Coordinated bin pairs of homologs
(purple) were spatially closer than non-coordinated bin pairs of homologs (pink) or heterologs (yellow).
Lines indicate means and shadows show ± SD.

For Hi-C maps, d, f, g, and j show 20-kb resolution; C uses 100-kb resolution, 1-Mb resolution was used in
e, h, and i. See also Supplementary Fig. 1–5.

Figure 2

Compartmental rearrangements and variable TAD boundaries among haploid genomes.
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a, Identi�cation of compartmental rearrangements. Regions with distinct compartment status were
de�ned (i.e., from B [negative value of A-B index] to A [positive value of A-B index], or from A to B;
scenarios 1 and 2, respectively) as A/B switched regions. Additionally, compartment scores (i.e., the A-B
index values) for regions with the same status were compared between haploid genomes (not between
those with distinct switches in compartment status), and identi�ed regions with signi�cantly higher
compartment scores as A/B variable regions (P < 0.05, paired Student’s t-test, and |ΔA-B index| > 0.5;
scenarios 3 and 4).

b, Allelic compartmental rearrangements in muscle.We identi�ed compartment A regions exclusively
found in the Tibetan (7.58 Mb) or Berkshire (4.94 Mb) alleles (top left), and regions with signi�cantly
elevated compartment scores in of the Tibetan (18.52 Mb) and Berkshire (10.78 Mb) alleles (top right).
Genes with testable differences in allele (i.e., with informative SNVs and TPM ≥ 0.5 in at least one allele)
tended to be located in the more accessible chromatin regions and generally showed increased
expression; violin plots show changes in allelic expression (Wilcoxon rank-sum test) and counts (Fisher’s
exact test) of genes located in regions with allelic differences in compartmentalization (i.e., A/B switches,
left; and A/B variables, right).

c, Identi�cation of shifted TAD boundaries (see Methods).

d, Paternal-speci�c TAD boundaries adjacent to three paternally-expressed imprinted genes (NDN,
MAGEL2 and MKRN3).

e, In comparison to genomic background, regions with allelic differences in boundary strength (LBS, P <
0.05, paired Student’s t-test) exhibited greater allelic divergence in sequence divergence (re�ected by the
lower pairwise haplotype similarities between two parental breeds determined by identity score [IDS]; see
Methods). P values are from Wilcoxon rank-sum test.

For Hi-C maps, 20-kb resolution were used. See also Supplementary Fig. 6–10 and Supplementary Data
1–6.
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Figure 3

Parent-of-origin-speci�c PEI organization of imprinted genes.

a, Quanti�cation of PEIs in 126 previously described imprinted genes identi�ed 101 genes with
informative SNVs which interacted with enhancers in at least one tissue. Plots of differential RPS
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between parents-of-origin in at least two tissues are shown for 12 representative imprinted genes (|ΔRPS|
> 0.3 and P< 0.05, paired Students t-test).

b, Allelic differences in RPS and expression of 12 imprinted genes with differential RPS listed in (A). The
similarity (Pearson’s r) of interactions in promoter-centered regions (200 kb up- and downstream from the
promoter bin) among eight haplotypes are shown for each tissue.

c, Allelic promoter-centered interactions in the representative imprinted gene MAGEL2. Haplotype-resolved
Hi-C maps (left), 3D structural models (middle), and interaction metaplots (right) of promoter-centered
regions across replicates and tissues. Enhanced paternal allele-speci�c interactions between the
promoter and its 200 kb upstream regions. Black lines in metaplots show interactions of the other
parental allele.

Hi-C maps in a–c are shown at 5-kb resolution. See also Supplementary Fig. 11 and 15, and
Supplementary Data 8.
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Figure 4

In�uence of allelic sequence variations on PEIs.

a, b, Promoters (a) and enhancers (b), with higher allelic sequence divergence (especially those with the
lowest 1% of IDS between parental breeds; see Methods) showed greater differences in PEI intensity. P-
values are from Wilcoxon rank-sum test.
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c–e, The example PEI in SMAD4 was potentially disrupted by sequence variations between the two
parental alleles.

c, Hi-C maps (upper left) and their allelic differences (upper right); ChIP-seq signals of H3K27ac
(enhancer) and H3K4me3 (promoter) (bottom left), and a statistical comparison of the example PEI
between breeds (bottom right).

d, Allelic differences in promoter-centered interaction patterns (200 kb up- and downstream regions from
the promoter) (left); con�rmation of allelic rewiring of the example PEI by predicted sequence-based PEI
probabilities (see Methods; right). P-values are from paired Student’s t-test.

e, Pairwise comparison of the degree of haplotype similarity (measured by IDS) in promoters and
enhancers among eight haplotypes; note that Berkshire pigs appear to carry a single allele. Summary of
sequence variants (SNVs and InDels) as well as changes in PEI interval length are shown.

f, Effects on PEI intensity caused by allelic variation-induced differences in PEI bridging distances. PEIs
with the top 1% of increases in bridging distance showed signi�cantly decreased PEI intensity (0–99% vs.
99–100%: P = 5.03 × 10–12 in liver, P = 2.21 × 10–6 in muscle, and P = 3.26 × 10–10 in brain; Wilcoxon
rank-sum test; left). This trend is more prominent in PEIs with the greatest extension (allelic fold change
in linear bridging distance of the top 0.1%: 1.17–1.21), which exhibited strongly negative correlations
between bridging distance and PEI intensity of PEIs (Spearman’s r = –0.15 to –0.29, P ≤ 0.0036; right).

g, PEIs with enrichment for differential allelic intensity (x-axis) among genes that contact a variable
number of enhancers (y-axis) in the three tissues.

h, PEIs showing greater differential allelic intensity tend to contribute less to RPS (including the combined
regulatory effects of multiple enhancers for a given gene), and thus exert the least impacts on gene
expression. P-values are from paired Student’s t-test.

Hi-C maps in a–e and g, h are shown at 5-kb resolution. See also Supplementary Fig. 16 and 17, and
Supplementary Data 9.
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Figure 5

Allelic rewiring of PEIs in F1 hybrids.

a, Volcano plots of genes with differential RPS (|ΔRPS| > 0.3 and P < 0.05, paired Student’s t-test)
between Berkshire and Tibetan alleles in three tissues (left). Differential PEI intensities, distributions of
differential PEI intensities, and estimated probabilities of PEIs based on their sequence variants (see
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Methods) are shown (middle). Degree of sequence similarity for promoters and enhancers in pairwise
comparisons among eight haplotypes (Tibetan [n = 4] and Berkshire [n = 4]; measured by IDS) and among
82 diploid genomes in population-level analysis of purebred pigs (measured by pairwise IBS distances;
see Methods) (right). Among the 82 diploids, 12 arefrom the six trios in this study(Berkshire [n = 6] and
Tibetan [n = 6]) and 70 are publicly available (Berkshire [n = 15] and Tibetan [n = 55]); SNVs were retrieved
from the ISwine database [http://iswine.iomics.pro/pig-iqgs/iqgs/index]). Representative functional
genes are labelled.

b, Comparison of myo�ber cross-sectional area in representative longissimus dorsimuscle (hematoxylin-
and-eosin staining) between adult purebred Berkshire and Tibetan pigs (see Methods). P-value is from
paired Student’s t-test.

c, Spatial transcriptomic pro�les of type I myo�ber marker MYH7 expression in succinate dehydrogenase
(SDH)-stained histological sections. The proportions of type I myo�bers (dark color) were estimated using
SDH-stained sections (top). Insets show three typical regions/images magni�ed for comparison (middle).
Differential MYH7 expression between type I and type II myo�bers (masked from SDH-stained sections)
was quanti�ed using a ’pseudo-bulk’ approach (see Methods; bottom).

d–f, Allelic differences in PEIs and sequence divergence in promoter and enhancer regions of DDIT4Lin
muscle.

d, Hi-C maps (upper left) and a heatmap of corresponding allelic differences in PEI intensity (upper right).
ChIP-seq signals of H3K27ac, H3K4me3, and gene expression levels (lower left), and 3D structural
models of PEIs (lower right). Promoter (grey square), enhancers (green squares), and PEIs (connecting
lines) are displayed beside the Hi-C maps.

e, Statistical analysis of allelic differences in PEI intensity (mean ± SD, n = 4, top) and sequence-based
PEI probability (middle), and H3K27ac and H3K4me3 signals in enhancers and promoter (mean ± SD, n =
4; bottom). Paired Student’s t-test, n.s., P > 0.05; *P< 0.05; **P < 0.01.

f, Degree of sequence divergence in promoter and enhancer regions among eight haplotypes (measured
by IDS; top) and among 82 diploids(measured by IBS), as well as the frequency distribution of SNVs in 82
diploids (middle). Neighbor-joining phylogenetic trees of a promoter and eight enhancers were separately
constructed based on pairwise IBS distances (bottom). Note that the genetically distinct clusters between
breeds, with high homozygosity in the Berkshire population. See also Supplementary Fig. 19–21 and
Supplementary Data 9.
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Figure 6

Highly structured homolog pairing facilitates regulatory interactions between homologs.

a, Hi-C maps showing signals of genome-wide homolog pairing (arrows) in representative somatic tissue
(liver) of a hybrid pig. Magni�ed Hi-C maps of chromosomes 7, 8 and 9 are shown on the right.
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b, Identi�cation of tightly-paired loci in all three somatic tissues of hybrid pig based on distribution of
homolog pairing score (HPS) values. In the boxplot, the internal line indicates the median, the box limits
indicate the 25th and 75th quartiles and the whiskers extend to 1.5 × IQR from the quartiles. Rare tightly-
paired loci (liver, 76.74 Mb; muscle, 72.12 Mb; brain, 74.18 Mb) are de�ned as those with HPS above Q3 +
1.5 × IQR. Percentiles of HPS for PHOSPHO1 as well as B4GALNT2 and GNGT2 are shown.

c, Schematic representation of intra-chromosomal (solid lines) and inter-homolog (dashed lines)
promoter-enhancer interactions in tightly-paired loci; the former are generally much stronger than the
latter.

d–f, Evidence of unbalanced inter-homolog PHOSPHO1 PEIs in the genomes of liver (d), muscle (e), and
brain (f) in hybrid pigs. Top to bottom: HPS values and Hi-C maps of the corresponding genomic regions
(with schematic representation of allelic PEI organization). Allelic differences in gene expression, intra-
chromosomal and inter-homolog PEI intensity, and ChIP-seq signals of H3K27ac (enhancers) and
H3K4me3 (promoter) are also shown (mean ± SD, n = 4). P-values are from paired Student’s t-test.
PHOSPHO1 is in a tightly-paired locus in all three tissues of (b). The intra-chromosomal PEIs of
PHOSPHO1 were signi�cantly greater in the Tibetan allele compared with in the Berkshire allele of the
three tissues, 2 (of 13, liver), 1 (of 4, muscle), and 2 (of 6, brain), resulting in increased RPS for
PHOSPHO1 in the Tibetan allele, although its expression was not correspondingly increased in the allele.
This effect may be attributable to the increased inter-homolog PEIs between enhancers in the Tibetan
allele and the promoter in the Berkshire allele. Data in E–G show means ± SD (n = 4), and dots indicate
values of each haplotype (n = 4). P values are from paired Student’s t-test. n.s., P > 0.05; *P < 0.05; **P <
0.01.

g, Degree of haplotype similarities (measured by IDS) of promoter and enhancers in pairwise
comparisons among eight haplotypes. The changes in PEI interval length (mean ± SD, n = 4) are also
shown. Top: Schematic representation of enhancers across three tissues organized from upstream to
downstream of the promoter.

Hi-C maps in b, and c, are shown at 20-kb resolution, 5-kb resolution in d–f, and 1-Mb resolution in a. See
also Supplementary Fig. 22–25.

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

Supplementaryinformation1123OK.docx

https://assets.researchsquare.com/files/rs-2392032/v2/4e45c318b6588224e6576a07.docx

