
ARTICLE

Allelic decomposition and exact genotyping of
highly polymorphic and structurally variant genes
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High-throughput sequencing provides the means to determine the allelic decomposition for

any gene of interest—the number of copies and the exact sequence content of each copy of a

gene. Although many clinically and functionally important genes are highly polymorphic and

have undergone structural alterations, no high-throughput sequencing data analysis tool has

yet been designed to effectively solve the full allelic decomposition problem. Here we

introduce a combinatorial optimization framework that successfully resolves this challenging

problem, including for genes with structural alterations. We provide an associated compu-

tational tool Aldy that performs allelic decomposition of highly polymorphic, multi-copy

genes through using whole or targeted genome sequencing data. For a large diverse

sequencing data set, Aldy identifies multiple rare and novel alleles for several important

pharmacogenes, significantly improving upon the accuracy and utility of current genotyping

assays. As more data sets become available, we expect Aldy to become an essential com-

ponent of genotyping toolkits.
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Rapid development of high-throughput sequencing (HTS)
technologies promises to resolve some of the most critical
problems in genomics research and clinical genomic test-

ing. In principle, HTS data provide the means to determine the
exact sequence composition for each copy of any gene of interest.
Unfortunately, from a computational point of view, this is a
highly challenging task, since many functionally and clinically
important genes are highly polymorphic and have multiple copies
as well as sequencewise-similar pseudogenes, which they fre-
quently hybridize/fuse with to produce novel alleles. In addition,
some of these genes have been subject to structural alterations,
making their allelic decomposition (i.e., determining the number
of copies of a gene and the exact sequence content of each of its
copies) computationally difficult.

Currently, no existing computational tool can utilize HTS
data to perform allelic decomposition of genes that have been
subject to structural alterations. Available structural variation
detection tools aim to identify the type and locus of large
“structure altering events” (e.g., large-scale deletions, novel
sequence insertions, segmental duplications, and inversions),
typically in uniquely mappable regions of the genome. In
contrast, available copy number alteration detection/copy
number phasing tools aim to identify the number of copies of a
particular gene (in each chromosome1) under the implicit
assumption that gene duplications or deletions always affect the
entire (rather than a part of the) gene of interest, but do not
reconstruct the exact sequence content of the gene (although
the work of Sudmant et al.1 does utilize small variants for copy
number phasing, it is limited to detecting copy number changes
only, as opposed to the work presented here, which can also
determine the exact sequence content of each copy of a gene
that has been subject to structural alterations). In fact, no
existing tool aims to find out what happens when structural
alterations affect genes with multiple copies or those with
highly homologous pseudogenes. Such genes are algor-
ithmically difficult to resolve since reads that originate from
such genes have high mapping ambiguity.

In order to reconstruct the sequence content of a structurally
altered gene, one needs to (i) find out how many copies of the
gene there are and which read belongs to which copy (i.e.,
mapping ambiguity resolution), and (ii) implicitly or explicitly
assemble each copy of the gene from the read set (this is inher-
ently intermingled with mapping ambiguity resolution) and find
out its origins (in the reference genome). This requires one to (a)
identify all structural alteration breakpoints and carefully recon-
struct the sequence content of each breakpoint region, while
taking into account all micro-structural alterations, indels, and
single nucleotide variants (SNVs) each copy of the gene has been
subject to, and (b) identify fusions/hybridizations between the
gene and its highly homologous pseudogenes. None of the
computational tools available to date aim to address these issues.

Existing structural variation discovery tools are based on the
following general strategies: detection of variants using dis-
cordantly mapping paired-end reads (e.g., VariationHunter2,3

and HYDRA4 which report only the rough loci of structural
variants but not their sequence content); detection of variants
using split-read mappings (e.g., Socrates5); and detection of var-
iants by mapping de novo assembled contigs to a reference
genome (e.g., Barnacle6 and Dissect7, which are RNA-Seq analysis
tools that can also be used to analyze genomic data). There are
also several tools that employ a combination of these (e.g., Pin-
del8, Delly9, novoBreak10, and GASVPro11), which, unfortu-
nately, only consider uniquely mapped reads and cannot identify
alterations in repetitive DNA. In fact, no available tool, even those
designed to identify gene fusions only (e.g., deFuse12), aims to
reconstruct the sequence content of a fusion between a gene and a

highly similar pseudogene. Additionally, no existing tool aims to
infer variants from targeted capture sequencing data which are
highly non-uniform in coverage (e.g., PGRNseq—see below for
details). Even tools that aim to genotype a particular gene such as
CYP2D6, namely Cypiripi13 and Astrolabe (formerly Constella-
tion)14, respectively work only on uniform coverage sequencing
data, or can determine the gene’s sequence content only if it
differs from the reference by SNVs but not structural variation.

In order to address the aforementioned computational chal-
lenges, we present the first framework to perform allelic
decomposition of any gene of interest in HTS data. More speci-
fically, our combinatorial framework can perform allelic decom-
position of any gene that differs from the reference genome by (i)
SNVs, (ii) short indels, (iii) full gene duplications or deletions
(leading to copy number alteration), (iv) partial gene duplications
or deletions, as well as (v) “balanced” fusions (i.e., those that
preserve the structure of a gene) with highly homologous pseu-
dogenes (the fusions can have one or more breakpoints). Our
framework accomplishes this ambitious goal through a novel
combinatorial optimization formulation which it uses to identify
all possible combinations of genomic alterations and determine
the sequence content of all copies of a gene in whole genome or
targeted genome sequencing data. The practical implementation
of this framework, which we named Aldy, has been used to
genotype 10 of the most important pharmacogenes which reg-
ulate drug metabolism.

Note that much of clinical genotyping is still performed
through targeted genotyping panels. These panels (e.g., Affyme-
trix DMET+ arrays and the Illumina ADME assays) are able to
detect a common set of predefined variations and genotypes.
However, rare or personal variants, while functionally significant,
often cannot be captured by these panels. Unfortunately, rare
variants of pharmacogenes (e.g., CYP2D6) can impact drug
response15. As a result, new HTS-based targeted captures are
rapidly being introduced to help identify novel variants in a cost-
effective manner. A prime example is the PGRNseq capture
panel16, which targets 84 genes of pharmacogenomic interest
(also known as ADME genes) that encode drug-metabolizing
enzymes, drug transporters, and drug targets. For each of these
genes, PGRNseq targets the exonic region and a few kilobases
upstream and downstream of a gene’s UTR region, covering more
than 960 KB of the human genome through its first iteration
(PGRNseq v.1). PGRNseq capture products are sequenced on the
Illumina HiSeq platforms, providing low error rates while
maintaining a very high depth of coverage (averaging 500× per
chromosome) at a significantly lower cost than whole-genome
sequencing (WGS). Even though PGRNseq (or WGS) data for
some of the pharmacogenes are relatively straightforward to
interpret, other, more difficult genes, such as CYP2D6, have
proven difficult to analyze16. Such genes provide an excellent
application area for Aldy.

On a large data set involving 96 cell lines sequenced via the
(second iteration) PGRNseq v.2 protocol, comprised of 32 family
trios, 137 cell lines sequenced with the PGRNseq v.1 protocol,
and 25 WGS Illumina samples (from various sources), we show
that Aldy is able to reconstruct the sequence content of each copy
of some of the most challenging (structurally altered and poly-
morphic) genes in the human genome and identify many novel
alleles, significantly improving the accuracy and utility of cur-
rently used genotyping assays. Moreover, Aldy is able to identify a
large set of hybrid/fusion genes, composed of a coding gene and a
highly similar pseudogene; such fusions are very difficult to detect
with existing genotyping assays. Aldy has minimal impact on
computational resources, and is capable of analyzing a high-
coverage BAM file in less than a minute on a typical laptop
computer.
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Results
Overview of Aldy. The primary goal of Aldy is to “reconstruct the
structure and sequence content” of each copy of a particular gene
present in the sample being analyzed. Following the well-
established star-allele nomenclature in pharmacogenomics17, we
define a star-allele of a gene as a gene sequence which differs from
the “wild type” (or canonical) gene sequence by a (non-empty) set
of mutations. Thus, for our purposes, reconstructing the sequence
content of a gene copy is identical to identification of the gene
copy’s star-allele, which could either be already known or possibly
novel.

We distinguish two types of mutations and, as a consequence,
star-alleles. We call any mutation that has an impact on the
resulting protein product of the gene a gene-disrupting mutation
(also known as functional mutations). These mutations include
codon-changing single nucleotide polymorphisms (SNPs) and
indels, as well as mutations outside the coding regions that affect
the protein enzyme activity. Star-alleles which are defined solely
by gene-disrupting mutations are called major star-alleles, and are
assigned a unique number. For example, the canonical “wild
type” star-allele is always assigned *1, while *2 describes a star-
allele that harbors one or more gene-disrupting mutations
compared to the *1. If a new major star-allele, that has not been
reported in the literature, is discovered, it is a common practice to
call it �n‘þ 1, where ‘ is the number of major star-alleles known
up to that point17. Note that two major star-alleles can share a
common mutation.

We call any mutation that does not impact the protein product
a neutral mutation (also known as non-functional mutations).
Any major star-allele can be extended with neutral mutations,
and any such extension is called a minor star-allele. (If a copy of a
gene includes only neutral mutations, then it is considered to be

an extension of the wild type star-allele.) In order to distinguish
various minor star-alleles, a unique symbol (or, rarely, a pair of
symbols) is attached to the major star-allele’s number for each
such extension. For example, minor star-allele *2A is formed by
taking the set of gene-disrupting mutations for major *2 allele and
extending it with some neutral mutations; *2B is formed in a
similar manner, however the sets describing the neutral
mutations of *2A and *2B are not identical (although the sets
describing their gene-disrupting mutations are). If a new minor
star-allele that is an extension to the star-allele *k is discovered, it
is commonly called *kX where X is the lexicographically smallest
letter which has not yet been used for minor alleles of *k17.

Following the definitions above, we can rephrase Aldy’s goal as
follows: we aim to characterize the sequence composition of each
copy of a gene present in the sample, which is by definition
equivalent to inferring the major and minor star-allele label of
such a gene copy. In case there is a need to define a new star-
allele, we do so by minimizing the number of novel mutations
and structural variations (the set of allowed structural variations
are summarized below) that need to be added to or subtracted
from a known star-allele to describe the new one. In order to
achieve this goal, Aldy goes through the following steps for a
given gene (see Fig. 1):

Read alignment and mutation detection where HTS reads are
aligned to the reference genome and mutations present in
target gene region are identified;
Copy number and structural variation estimation where the
copy number of the gene is identified, and, if present, various
structural variations are identified;

Major star-allele identification where the major star-allele of
each gene copy is established; and

Read
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variation (SV)

detection

Major
star-allele
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Final
solution

BWA or other aligner
Post-processing with
GATK

Mutation calling
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Fig. 1 Graphical representation of steps performed by Aldy
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Genotype refinement where the supporting set of neutral
mutations is assigned to each major star-allele, and the “score”
of such an assignment (see “Genotype refining” in Methods for
details) is used to rank each allelic configuration found in the
previous three steps.
The final genotype (i.e., minor star-allele) is obtained by

choosing the set of allelic configurations with the best ranking
score (as will be detailed in Methods). In the case of multiple
configurations with the same score, all will be reported as equally
likely genotypes.

The primary input to Aldy is HTS data in SAM/BAM
file format, as well as a database comprised of information
about the gene to be genotyped. Such a database will contain
basic information about the gene (e.g., its location within a
reference genome, locations of pseudogenes, intron/exon bound-
aries), as well as the list of all known major and minor star-alleles
for that gene, each described as a unique set of gene-disrupting
and neutral mutations. Furthermore, this database will also
contain the list of all known structural variations involving
the gene of interest; i.e., duplications and deletions, as well as
all known hybridizations with its pseudogene, either in the
form of fusions (when a prefix or suffix of the hybrid gene
sequence is from the pseudogene) or gene conversions (when a
segment other than a suffix/prefix of the hybrid gene is from
the pseudogene).

Aldy uses the database to “guide” star-allele discovery. In
other words, if possible, Aldy will aim to assign a known
major and minor star-allele label for each copy of the gene.
However, if no known star-allele description “matches” the
input data, Aldy will infer previously unknown major or
minor star-alleles, by minimizing the number of mutations or
structural variations that need to be added to or subtracted
from known star-allele descriptions. The mutations we
consider here are SNVs and short indels; the structural
variations we consider here are (partial) deletions or duplications
of the gene, and hybridizations (a.k.a. fusions) with a specified
pseudogene. In its current implementation, Aldy detects
only hybrid gene structures that have been reported in the
literature, or those that are manually entered in the database. For
CYP2D6 for example, we constructed a database by using data
from The Human Cytochrome P450 Allele Nomenclature
Database18 and cross-validating it with PharmGKB19 and
dbSNP20.

Without loss of generality, in what follows we use CYP2D6, one
of the most pharmacogenomically significant genes, to provide a
detailed description of Aldy. The choice of this gene is motivated
by its highly polymorphic nature and the fact that its genotyping
exhibits all of the aforementioned challenges, including high
allelic variability and the existence of various structural
rearrangements. However, all concepts described below hold for
any other gene supported by Aldy.

Experimental data. We have used the following data sets to
evaluate Aldy’s performance:

1. 96 new Coriell cell line samples spanning 32 different family
trios and multiple ethnic backgrounds. They were all
captured using the PGRNseq v.2 reagent and sequenced
with Illumina HiSeq to an average coverage of 600×.
Genotypes of the sequenced samples contain various
CYP2D6 alleles, including those with multiple types of
structural variation. CYP2D6 genotypes of all samples were
validated with PCR-based genotyping panels. Furthermore,
genotypes of nine additional ADME genes were available for
17 of these samples. We used this subset to evaluate Aldy’s
performance on those additional genes.

2. 137 Coriell cell line samples from GeT-RM program21,
captured using the PGRNseq v.1 reagent and sequenced with
Illumina HiSeq to an average coverage of 600×16. Genotypes of
these samples for 10 key ADME genes were inferred by Aldy
and were compared with PCR-based genotyping panels21.

3. 25 Illumina whole-genome samples from the Platinum
Genome Project22, Public CEPH 1362 Sequencing Project23,
and 1000 Genomes Project24. Platinum Genome samples,
which include 17 individuals from the CEPH 1463 family,
were sequenced using the Illumina HiSeq 2000 sequencer to
an average coverage of 50×. From 1000 Genomes Project
samples, we chose five samples which had (i) average
coverage greater than 20× and (ii) validated genotypes
available in the literature. Three CEPH 1362 samples were
sequenced on HiSeq 2000 with the average coverage of 30×.

Aldy outperforms other methods. Aldy correctly calls CYP2D6
genotypes for all samples, significantly outperforming both Cypir-
ipi13, which was unable to properly genotype around 50% of the
samples, and Constellation/Astrolabe14, which misidentified around
40% of the samples (Table 1). Both Astrolabe and Cypiripi currently
only support the CYP2D6 gene, and thus we used it as a means for
comparison. The results in the top half of the table depict Aldy’s
superior performance on the 96 PGRNseq v.2 samples from data set
(1). The results in the bottom half of the table summarize Aldy’s
predictions on 14 Illumina WGS samples (dataset (3)). In a few
cases, Aldy offered more complete characterization of the genotype
than the validation panels; details are discussed below. Aldy’s pre-
dictions for the remaining 11 Illumina samples are available in the
Supplementary Results, as we did not have validated calls for these.
We note that, although we managed to run it on PGRNseq samples,
Cypiripi is not designed to support such samples and its suboptimal
performance is included mainly for reference purposes.

The summary of Aldy’s performance on the whole set of 10
ADME genes is shown in Table 2. This table depicts Aldy’s
performance on (i) 137 PGRNseq v.1 samples from GeT-RM
studies (dataset (2)), and on (ii) 17 PGRNseq v.2 samples for
which we had available genotype validations. More than 99% of

Table 1 Summary of CYP2D6 genotypes inferred by Aldy in
comparison to other tools on the set of 32 Coriell trios, i.e.,
96 PGRNseq v.2 sequenced samples, and on Illumina WGS
samples, grouped by the type of the events occurring in the
sample

PGRNseq v.2 Aldy Astrolabe Cypiripi Validation Total

Normal 69 68 48 62 69
Deletions 9 0 7 8 9
Duplications 6 0 4 5 6
Fusions 12 0 0 12 12

Total 96 68 59 87 96

Illumina
WGS

Aldy Astrolabe Cypiripi Validation* Total

Normal 9 3 3 7 9
Duplications 2 0 1 0 2
Fusions 14 0 0 4 14

Total 25 3 4 11* 25

Validation was available for 11 out of 25 Illumina WGS samples (thus the validation column,
marked with *, is missing 14 samples). In few cases, there was discrepancy between validation
calls and Aldy’s predictions, and after the further investigation, we confirmed that the Aldy’s
calls were correct (such cases occur mostly because of the lack of key SNPs in a validation kit).
Further explanation is available in the discussion and Supplementary Discussion
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the samples were accurately genotyped by Aldy. Furthermore,
Aldy found a few instances of novel major star-alleles as well;
details are discussed below.

In addition to its genotyping accuracy, Aldy has very low
computational overhead. In our experiments, each run required
less than 10 s and fewer than 100MB of memory even for the
high-coverage PGRNseq samples. Although Astrolabe offers
similar performance, it requires VCF data as an input, but
generation of such data usually takes significant amounts of
system resources. On the other hand, Cypiripi’s running time
performance significantly drops as the coverage increases and it
can take up to 1 h to complete on high-coverage PGRNseq data
sets.

Full results, including the complete list of obtained genotypes
per sample, are available in Supplementary Results.

As can be seen from Table 1, Aldy is able to accurately
identify all of CYP2D6 genotypes. Furthermore, Aldy is able to
identify all complex events, especially when compared with
Astrolabe (which currently does not support calling such events)
and Cypiripi.

When it comes to the genotyping panels, we have found several
discrepancies between Aldy’s and panels’ predictions. After
further investigation, we concluded that genotyping panels used
for validation purposes made either ambiguous or incorrect calls
in these cases. Such examples include inability to detect alleles
CYP2D6*35 and CYP2D6*45, which were identified as CYP2D6*2
due to the inability of validation kits to detect the discerning
SNPs. Additional cases include the misidentification of the
CYP2D6*15 allele, which is highly similar to the pseudogene
CYP2D7. In some cases, validation kits were unclear about the
exact copy number; we have cross-validated such samples with

the Illumina data and external sources to confirm our predictions.
Further explanation of these cases is available in the Supplemen-
tary Discussion.

We have not observed any Mendelian inconsistencies when
using Aldy on PGRNseq v.2 and Illumina WGS data. This is in
sharp contrast with previous PGRNseq data analysis which relied
on SNP callers to infer genotypes16.

When it comes to Illumina WGS data, genotypes predicted by
Aldy are in concordance with genotypes validated in the
literature14,21,25, as shown in Supplementary Results. Although
we do not have genotype information for some members of the
CEPH 1463 family, we show that our predictions are in full
accord with the Mendelian laws of inheritance, as depicted in
Fig. 2.

Furthermore, it should be noted that Aldy provides accurate
genotype calls for other genes as well, as demonstrated in Table 2.
In all samples, the accuracy rate is above 99%. A few mismatched
calls are mainly due to that unlike PGRNseq v.2, the PGRNseq v.1
reagent does not target the CYP2D6 associated pseudogenes
making accurate genotype calling in the presence of pseudogene-
derived mutations significantly harder (Figs. 3 and 4).

Please note that majority of these samples cannot be genotyped
accurately by a simple mutation tagging procedure (i.e., by testing
for the existence of mutations which define the underlying star-
alleles), as shown in the Table 3.

Novel alleles. We have detected the presence of novel major star-
alleles in GeT-RM samples, namely a novel CYP2D6*10-like allele
in NA17012 (*10 with c.77 G>,A), novel DPYD alleles (based on
either *4, *5, or *6, with c.85 A>G in NA07357, NA10859, and

Table 2 Summary of genotypes for 10 ADME genes inferred by Aldy on GeT-RM samples (137 PGRNseq v.1 samples) and Coriell
samples (17 PGRNseq v.2 samples)

PGRNseq v.1 Matches Improvements Mismatches Unknown Total

CYP2A6 110 18 3 6 137
CYP2C8 137 0 0 0 137
CYP2C9 136 1 0 0 137
CYP2C19 128 9 0 0 137
CYP2D6 107 27 0 3 137
CYP3A4 131 6 0 0 137
CYP3A5 137 0 0 0 137
CYP4F2 121 16 0 0 137
DPYD 79 56 0 2 137
TPMT 135 2 0 0 137

Total 1221 135 3 11 1370
89% 10% 0.2% 0.8% 100%

PGRNseq v.2 Matches Improvements Mismatches Unknown Total

CYP2A6 14 2 0 1 17
CYP2C8 17 0 0 0 17
CYP2C9 17 0 0 0 17
CYP2C19 16 1 0 0 17
CYP2D6 87 9 0 0 96
CYP3A4 17 0 0 0 17
CYP3A5 17 0 0 0 17
CYP4F2 15 2 0 0 17
DPYD 9 8 0 0 17
TPMT 17 0 0 0 17

Total 226 22 0 1 249
91% 8.6% 0% 0.4% 100%

“Matches” column indicates the concordance between Aldy’s call and panel prediction, while “Mismatches” indicates the discordance. “Improvements” column indicates the potential improvement of
Aldy’s calls over the genotyping panels. Finally, “Unknown” indicates the samples for which further validation is needed to clearly call the correct genotype. Further details are available in the
Supplementary Discussion
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NA24027) and a novel CYP2C19 allele in NA07439 (based on *27
with c.19153 C>T). Furthermore, we observed novel major star-
alleles formed by combining variations from two different alleles:
in the case of CYP4F2, variations from *2 and *3 allele formed a
novel CYP4F2*4 allele, and for the DPYD gene, a novel allele was
formed by variations from both *5 and *9 alleles.

In many samples, we observe that sub-alleles detected by Aldy
are not present in the online database. A similar observation was
made in Raimundo et al.26 regarding the CYP2D6*2 family of

sub-alleles. For example, c.843 T>G, associated with all recently
discovered CYP2D6*4 sub-alleles (e.g., *4M, *4N, and *4P), is not
associated with *4 alleles discovered earlier (e.g., *4A, *4B etc.).
However, we found multiple samples where the evidence strongly
suggests that the *4A allele contains this SNP. This implies either
the incomplete characterization of *4A sub-allele, or the presence
of novel *4 sub-alleles.

Since the lack of neutral SNPs can affect the accurate genotype
interpretation of HTS-based tools (as already reported14), Aldy
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cases represent the most common configurations with whole copies of gene and pseudogene, respectively. The third case describes the conservation of
pseudogene’s region (in this case, exon 3) within a gene. The fourth case describes a fusion (hybrid) gene. The fifth case depicts partial deletion of the
gene, while the sixth case shows how to handle cases when parts of the gene (exon 2 in this case) are duplicated
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comes with the updated database which contains additional
major star-alleles and sub-alleles believed to exist in the wild.
Further studies are needed for complete characterization of those
novel alleles.

Discussion
Allelic decomposition of functionally significant genes (e.g.,
pharmacogenes and immunogenes) is essential for many appli-
cations, especially in clinical decision making. For example,
pharmacogenes play an important role in the treatment and
dosage decisions for more than 90% of all prescription drugs.
Examples include CYP2D6, a major pharmacogene involved in the
metabolism of 20–25% of clinically prescribed drugs and CYP2A6,
a major nicotine metabolizer. Allelic decomposition of pharma-
cogenes is highly recommended before drug treatment decisions,
even though existing methods (array based genotyping assays) are
limited in scope (not covering all genes and all potential variants),
can be costly and may yield false positives. Both CYP2D6 and
CYP2A6 are located in the vicinity of highly homologous and
evolutionarily related pseudogenes that facilitate formation of
various structural rearrangements and copy number gains/losses,
resulting in gene variants that affect a patient’s drug metabolism.

Allelic decomposition of genes harboring various structural
rearrangements (e.g., CYP2D6 and CYP2A6) still presents a major
challenge. In order to provide some level of assistance to the
analysis of such structural variants, the second iteration of the
PGRNseq platform (PGRNseq v.2) targets the whole genic clus-
ters containing those genes (e.g., for CYP2D6, the whole 30 KB
CYP2D cluster is targeted, including CYP2D6 and the pseudo-
genes CYP2D7 and CYP2D8). An additional obstacle introduced
by capture panels is non-uniformity of coverage, which, despite
the depth, further complicates the detection of structural
rearrangements.

In this paper, we have presented the first computational tool,
Aldy, to accurately infer genotypes of highly polymorphic,
structurally variant but functionally important genes through the
use of Illumina WGS or targeted capture sequencing data such as
PGRNseq. We have applied Aldy to perform allelic decomposi-
tion of the key pharmacogenes such as CYP2D6 and CYP2A6.
Fast execution and low system requirements make Aldy highly
suitable for clinical settings where not only accuracy but also
speed is of high importance.

There are still some challenges that need to be addressed in
future work. Perhaps the most important one is that in the exact
characterization of novel alleles and sub-alleles, we may end up
with two or more equally valid solutions. There are two possible
ways to reduce the number of solutions to one, each requiring
additional data: (i) if a large cohort or family information is
available, use a statistical approach to identify the most likely
solution; or (ii) if additional barcoded read data can be obtained,
use it for phasing SNVs. We aim to expand Aldy so as to employ
both types of data (when available) to break these rare occasions
of symmetry.

WGS and specialized HTS platforms such are PGRNseq can
help remove the last obstacles preventing the wider integration of
HTS technologies in everyday clinical settings. Coupled with our
accurate and fast allelic decomposition framework Aldy, these
platforms can assist physicians in tailoring prescription recom-
mendations based on a patient’s genetic makeup, leading to
improved and more cost-effective medical care.

Methods
Data sequencing. Illumina and PGRNseq v.1 samples (data sets 2 and 3) were
acquired from the public sources and the previous work16,21–24. We sequenced
remaining 96 Coriell trio samples (data set 1) with PGRN-seq v.2 capture panel
(Illumina HiSeq 2000/2500). The sequencing materials and the cell lines are
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*68+*4/*3

NA12880
*68+*4/
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Fig. 4 CEPH 1463 Family Tree with the Aldy genotype predictions for CYP2D6. Purple alleles indicate alleles inherited from mother, while black alleles from
father. Red sample IDs indicate the lack of validation, while green samples the presence of validations. As can be seen, all genotypes follow Mendelian laws
of inheritance

Table 3 Summary of the samples where CYP2D6 cannot be genotyped by simple (or single) mutation tagging (i.e., by testing for
the existence of mutations that define the underlying star-alleles)

CYP2D6 PGRNseq v.2 PGRNseq v.1 Illumina WGS

Uniquely identifiable 35 35 7
Ambiguous 34 50 2
Subject to structural alterations (i.e., deletions, duplications, or gene fusions) 27 52 16

Total number of cases unidentifiable via mutation tagging 61 102 18
64% 74% 72%

All samples with structural alterations (e.g., full or partial deletions, duplications, and fusions) fall into this category. The “Ambiguous” row refers to samples where mutation tagging produces ambiguous
results
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publicly available from the Coriell Institute (NHGRI Sample Repository for Human
Genetic Research). All IRB and consent materials are maintained by Coriell
Institute.

Read mapping. The common practice in genotyping is to map relevant reads to
the reference genome by following a “best practices workflow”27, usually involving
a read mapper (e.g. BWA28 or CORA29) and Genome Analysis Toolkit (GATK)30.
We have used this workflow for all evaluated samples. However, Aldy is not limited
to this mapping framework, and accepts any valid SAM/BAM file containing the
region of the targeted gene. The GATK pipeline is recommended since it performs
local indel realignment31, which improves the detection of various small indels.

Copy number and structural variation estimation. CYP2D6 (as well as
many other genes) is prone to copy number variations including gene deletions
and duplications, typically producing exactly two copies of a gene in a chromo-
some; cases in which more than two copies are present are sometimes called
multiplications. It is also prone to structural variations/alterations in the form of
deletions and duplications that affect only a part of the gene. Since CYP2D6 lies in
close physical proximity to highly homologous and evolutionary related pseudo-
gene CYP2D7, such structural variations/alterations often lead to formation of
CYP2D6/2D7 hybrid genes, through gene fusions, where a prefix or suffix of the
hybrid gene is from the pseudogene CYP2D7, or gene conversions, where one (or,
rarely, more) non-prefix/suffix contiguous segment of the hybrid gene is from
CYP2D7 (a detailed description of known structural variations/alterations and
hybrid arrangements of CYP2D6 and CYP2D7 can be found in Kramer et al.32).
Note that some genes, including CYP2D6, have more than one pseudogene (in the
case of CYP2D6, it is CYP2D8), however typically only one such pseudogene is
highly homologous and difficult to distinguish. Nevertheless, the formulation below
can be easily modified to accommodate multiple highly homologous pseudogenes.

Typically (gene) duplications and deletions impact a gene (such as CYP2D6) or
a pseudogene (such as CYP2D7) as a whole. In the case where such a deletion or a
duplication impacts only part of a gene or a pseudogene, it is called a partial gene
deletion or a partial gene duplication. Since, in the literature, all structural
variations/alterations resulting in the formation of hybrid genes are defined at the
level of whole introns and exons32, we assume that partial gene deletions or partial
gene duplications involve one or more (contiguous sequence of) whole introns and
exons. As a result, we assume that each exon and each intron of the hybrid gene
originates from either CYP2D6 or CYP2D7 as a whole.

Let n be the total number of exons and introns in a gene (as well as its highly
related pseudogene—under the assumption that the number of exons and introns
are conserved in the pseudogene). Now let R= [r1, r2, …, rn, rn+1, rn+2, …, r2n]
denote the sequence of introns and exons of the gene and its pseudogene, i.e.,
CYP2D6 and CYP2D7 for our case, where r1 stands for the first intron and r2 stands
for the first exon of CYP2D6 (n= 19 for CYP2D6). Similarly, rn+1 and rn+2,
respectively, stand for the first intron and the first exon of CYP2D7. We represent
each hybrid configuration of CYP2D6/2D7 by a vector v of length 2n such that v[i]
= l if l copies of region ri are present in the configuration and v[i]= 0 if no such
copy is present. A single copy of CYP2D6, for the case when no structural
variations are present, will be represented as a vector v consisting of n ones
followed by n zeros. Analogously, this applies to a single copy of CYP2D7
(zeros followed by ones). Note that as long as the gene of interest has d well
established pseudogenes with which it can hybridize, vector v will have n(d+ 1)
dimensions.

Aldy’s first goal in this step is to derive the aggregate copy number of each exon
and intron of the gene from read mappings (see below for details). Then, for each
possible configuration that could be present in the sample, Aldy constructs the
corresponding vector v. Let V= {v1, v2,…, vk} denote the set of all such vectors. We
repeat here that in theory, any vector v for which each of its dimensions is upper
bounded by the aggregate copy number of the corresponding exon or intron, is the
possible candidate vector to be included in the set V. However, since there are
exponentially many such vectors, Aldy restricts its attention to vectors that
correspond to hybrid configurations described in the database.

Aldy’s main goal in this step is to find the number of whole copies of CYP2D6
and CYP2D7, as well as the number of copies of each hybrid gene as well as each
structural variation (more specifically, each partial gene deletion and partial gene
duplication) configuration described in the database. Aldy achieves this aim by
computing the set of configurations, which, collectively, match the aggregate copy
number profile of each intron and exon, as closely as possible. Below, we first define
how the copy number of an arbitrary genomic region (intron or exon) is estimated
and then provide an exact integer linear programming formulation for achieving
the goal.

In order to estimate the copy number of any region r spanning positions
a, a+ 1, …, b of a gene or pseudogene s, we first calculate the normalized copy
number cns of s, which intuitively reflects the number of copies of s at position i
(when the intron/exon of the gene includes ambiguously mappable positions, those
positions are ignored). Details about calculating this function are provided in
Supplementary Note 1 and Supplementary Figures 1 and 2. The estimated copy
number (or observed coverage) of a region r of s is denoted as cn[r], and is simply

calculated as:

cn½r� ¼

P
a�i�b

cns ðiÞ

b� aþ 1
:

Now we formulate Aldy’s goal in this step as an instance of ILP, i.e. integer
linear programming (see Trick33 for an introduction to ILP) where the goal is to
find an integer linear combination

Pk
i¼1 zivi of configuration vectors from the set

V such that the sum X
r2R

Grj j ð1Þ

where

Gr ¼ cn½r� �Pk
i¼1

zivi½r� for each r 2 R

is minimized. Here, non-negative integer variables zi denote the number of times
(the copy number of) a configuration described by vector vi from the database,
appears in the solution (we recall that k denotes the total number of possible
configurations). We call this problem the Copy Number Estimation Problem
(CNEP).

After finding all optimal solutions of CNEP, Aldy only reports “the most
parsimonious” solution(s), i.e., those for which

Pk
i¼1 zi is the minimum possible. In

the case when multiple optimal solutions minimize the term
Pk

i¼1 zi , all will be
reported in the final output of CNEP.

We illustrate the above notion of parsimony through a simple example with n
= 2. Let the aggregate copy number vector be cn=[1111], and the set of potential
vectors be V= {v1, v2, v3, v4} where v1= [1100], v2= [0011], v3= [1000], and v4=
[0100] . Consider the following optimal solutions to this instance of CNEP: (z1, z2,
z3, z4)= (1, 1, 0, 0) and (z1, z2, z3, z4)= (0, 1, 1, 1). The first solution is more
parsimonious compared to the second one since the first solution implies the
presence of the whole gene and the whole pseudogene—whereas the second
solution implies the presence of two structurally altered copies of the gene itself, in
addition to the whole pseudogene.

Major star-allele identification. One of the major goals of genotyping is to
accurately predict the gene’s final protein product, which is equivalent to the
detection of a major star-allele of each gene copy discovered in the previous step. In
order to achieve this, we first identify the set M= {m1, m2, …, mw} of all gene-
disrupting mutations (as defined in the database) detected in the sample. At this
point, we discard from further consideration all major star-alleles for which at least
one of their defining gene-disrupting mutations is not present inM. In addition, we
also discard all alleles with a structural configuration that is not reported among
any of the optimal solutions of CNEP (some major star-alleles of CYP2D6 are
hybrid configurations with CYP2D7). Let A= {a1, a2,…, at} denote the set of major
star-alleles remaining after this filtering step and gdm(a) denote the set of gene-
disrupting mutations of allele a.

We introduce non-negative integer variables p1, p2, …, pt where pt represents
the number of copies of the major star-allele ai in the genotype reported in the
solution. For an arbitrary mutation m, we define

Em ¼ mutcnðmÞ �
X

i:m2gdm aið Þ
pi;

where mutcn(m) denotes the estimated copy number of m. Note that for a
mutation m (of the wild type CPY2D6 in our case), the value of mutcn(m) is
obtained by normalizing the number of reads that include m by the expected
coverage of m’s locus, which is upper bounded by the normalized copy number of
the region that covers m’s locus, since it is not necessary that all reads that are
mapped to this locus include mutation m —as they may originate from other
copies of the gene.

We assume that the presence of gene-disrupting mutation m in our sample
implies that its genotype contains at least one of the major star-alleles harboring m.
In order to enforce this, for each m ∈M, we introduce the following constraint:X

i:m2gdm aið Þ
pi � 1:

Our objective in this step is thus to select a set of major star-alleles which most
closely match the observed set M of gene-disrupting mutations. More formally, we
aim to minimize: P

m2M
Emj j: ð2Þ
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We call this problem the Major Star-Allele Identification Problem (MSAIP),
which we formulate/solve as an ILP. If multiple optimal solutions to the MSAIP are
obtained, all of them will be processed by a final refining step.

In this step, pairs of mutation loci that are covered by a single read are
optionally used to eliminate major star-alleles whose mutational compositions
contradict the reads covering such mutations. More specifically, this filter considers
reads that cover the locus of at least two gene-disrupting mutations, and eliminates
major star-alleles which do not agree with (i.e., are not in phase with) any of the
reads that cover these mutation loci.

In some rare instances, no set of major star-alleles from the database can satisfy
all of the aforementioned constraints, making MSAIP infeasible. This means that
the sample contains major star-alleles which are not present in the database. In
such cases, an empty set is reported as the output of MSAIP and the next step
(described below) is used to construct novel major star-alleles that best describe the
observed set of mutations. Note that the presence of novel major star-alleles does
not necessarily imply infeasibility of MSAIP; as long as the set of observed
mutations can be explained with available major star-alleles from the database,
Aldy will return those star-alleles as the output.

Genotype refining. Since certain gene-disrupting mutations are present in multiple
major star-alleles, several mutations must be used to distinguish such major star-
alleles. In cases where subsequent gene-disrupting mutations are “distant” (i.e., farther
away than the read/fragment length), and are shared by multiple major star-alleles, it
may not be possible to unambiguously identify the specific major star-alleles present
in the sample.13 In such cases, the previous step can produce multiple equally
plausible solutions that “explain” the set of input reads. We resolve this ambiguity
through the observation that some neutral mutations are more likely to occur within
certain major star-alleles. We call the use of neutral mutations in the genotyping
process the Genotype Refining Problem (GRP). We establish the final allelic
decomposition of the sample by solving GRP. As described below, because the gen-
otype refining step is highly flexible, Aldy is able to assign additional neutral muta-
tions to each star-allele and thus establish novel star-alleles. As a result, the genotype
refining step not only allows us to select the best major star-allele configuration for the
sample, but also to assign each neutral mutation to its major star-allele of origin.

GRP is highly similar to MSAIP defined above. The input to GRP is a set of
major star-alleles inferred in the previous step, and the goal is to “extend” each
such major star-allele definition to a minor star-allele definition. As a result, the
goal of GRP is to return a collection of minor star-alleles such that each is an
extension to a unique major star-allele identified by solving MSAIP as described in
the previous section. Let mut(a) denote the set of all (both gene-disrupting and
neutral) mutations defining a minor star-allele a. Consider each major star-allele b
identified in the major star-allele identification step and each minor star-allele a
that is an extension to b (e.g., *2A is an extension of *2). Let binary variable xa,b
indicate whether the solution of GRP “identifies” a as the “correct” extension of b.
Naturally, for a given major star-allele b, xa,b= 1 for at most one minor star-allele
a. If all minor star-alleles in the sample are known/defined in the database, then
the goal of GRP would be to find for each major star-allele b identified in the
solution of MSAIP, the minor star-allele a for which xa,b= 1 based on mut(a). In
the case where such a solution to GRP is infeasible, we “define” a new minor star-
allele a′ in the most parsimonious manner so that mut(a) ∩ mut(a′) is the
maximum possible.

For each xa,b and for each m∈ mut(a), consider a binary variable ea,b,m, which is
equal to 1 only if m∈ mut(a′). For each xa,b and for each m∉mut(a) also consider
a binary variable fa,b,m, which is equal to 1 only if m∈ mut(a′). Now consider all
mutations m, either observed in the sample, or are present in the minor allele-
descriptions. The primary goal of GRP is the minimization of the (weighted)
difference between fa,b,m and aa,b,m across all mutations m and all minor-major
allele pairs a,b such that xa,b= 1.

The major challenge here is thus to assign each observed mutation m to one or
more of the major star-alleles identified in the previous step to obtain a possibly
new minor star-allele a′ for each major star-allele b, such that
min8a2database mutða′Þ \mutðaÞj j is minimized across all minor star-alleles a′ in the
solution of GRP. To achieve this aim we need to ensure for each mutation m, the
number of minor star-alleles a′ in the solution to GRP for which m ∈ mut(a′) is as
close as possible to mutcn(m), the estimated copy number of m (see the previous
section). The difference between mutcn(m) and the number of minor star-alleles in
the solution that includes m can be expressed as

Fm ¼ mutcnðmÞ �
X

a;bð Þ:m2mutðaÞ
xa;bea;b;m

2
4

þ
X

ða;bÞ:m=2mutðaÞ
xa;bfa;b;m

3
5for allmutationsm:

As a result, the objective of GRP is to simultaneously minimize Fm as well as the
difference between fa,b,m and ea,b,m across all mutations m. We combine these two

objectives linearly as:

min
P
m

Fmj j þP
a;b

xa;b α
P

m2mut að Þ
1� ea;b;m
� � !"(

þβ
P

m=2mutðaÞ
fa;b;m

 !
þ η

P
m2MnmutðaÞ

fa;b;m

 !#) ; ð3Þ

where α and β, respectively, denote the penalty scores for missing and added
mutations to the selected minor star-alleles from the database. In our experiments,
we used α= 2 and β= 1, since the likelihood of a minor star-allele to contain a new
mutation was roughly twice that of lacking a known mutation. Note that the above
objective also provides a way to modify a major star-allele description: here η
represents the penalty of assigning a gene-disrupting mutation to a minor star-
allele (thus modifying its major allele, and thus its functional impact). The value of
η is set very high (currently η= 100,000) to make sure that gene-disrupting
mutations are allowed to produce novel major star-allele descriptions only if
MSAIP produces no valid solutions (implying that a novel major star-allele is
present in the sample). Finally, we note that ea,b,m is always 1 if m is a gene-
disrupting mutation (i.e., we do not allow removal of gene-disrupting mutations
from the minor star-allele).

We guarantee that each major star-allele associated with a minor star-allele in
the solution is assigned all of its gene-disrupting mutations as follows. Let Da be the
set of gene-disrupting mutations from the set mut(a). This requirement can be
expressed by the following set of constraints:

Daj j � P
m2Da

ea;b;m

 !
xa;b ¼ 0 for each xa;b:

We also ensure that no variation is “over-called” (i.e., the copy numbers of each of
the minor star-alleles in the solution must be consistent with the estimated copy
number of the mutations they include) through the use of additional sentinel
constraints.

GRP asks us to find the set of minor star-alleles for which Eq. 3 gives the lowest
score. Aldy solves GRP as a QIP (Quadratic Integer Program) and returns the
minor star-alleles obtained as the final genotype. Note that Aldy solves GRP for
each one of the optimal solutions for CNEP and MSAIP (which GRP takes as
input). Aldy refines all such solutions, and outputs the genotype with the lowest
scoring objective 3.

Computational complexity and practical limitations. Although particular
instances of the problems described above are solvable in polynomial time (e.g.,
cases where configuration vectors form a unimodular matrix, as is the case of a
gene not harboring any structural variations), the general case which would cover
any gene is NP-hard (see Supplementary Note 2 for NP-hardness proofs for the
two main components of the Aldy framework, namely copy number estimation
problem—CNEP, and major star-allele prediction problem—MSAIP). The proofs
use reductions from the Closest Vector Problem (CVP), a well-known NP-hard
problem. Note that even approximating CVP (and, by extension, our problems)
with an additive guarantee of (In2−∈)r, for any ∈ and any r (number of regions),
turns out to be NP-hard34.

For these reasons, we utilize state-of-the-art integer programming solvers, such
as Gurobi35 or SCIP36, to efficiently solve our problems in practice. These solvers
can identify many problem instances that are exactly solvable in reasonable time, or
utilize appropriate approximation algorithms and heuristics for solving hard
instances.

Regardless of the algorithm or model used for downstream analysis, Illumina-
based HTS data are ultimately limited by the short read length (usually around
100 bp) and short insert size (around 300 bp). Furthermore, HTS data does not
provide any information about the read’s originating strand. This makes the
detection of some structural rearrangements and alleles highly ambiguous,
especially in homologous regions.

For example, the region between the end of exon 6 and the beginning of exon 9
in both CYP2D6 and CYP2D7 is identical. Furthermore, the size of this identical
region is larger than the PGRNseq v.2’s size of fragment length, implying that it is
impossible to unambiguously assign reads coming from this region to the
originating gene. In general, for any sequencing technology with read length R and
insert size r, and given the pairwise sequence alignment for (the reference allele of)
gene g and (any of) its pseudogene(s) h, reads from an identically matching region r
of length greater than I+ 2Rcannot be unambiguously mapped to the reference
genome, at least not without any additional information provided. Aldy masks each
such region r during the copy number estimation step, because reads originating
from r and other regions identical to r could significantly alter our estimation of the
copy number of the region r. The impact of misaligned reads is clearly visible in
Supplementary Fig. 1, where identically matching regions are shaded with in
orange. For the purposes of fusion detection, since the sequence content of such a
region in the reference allele and the related pseudogene is identical, it is impossible
(and not at all relevant) to identify the exact locus of the breakpoint. As a result,
masking such regions will not have any adverse effects.
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Also note that there might exist multiple solutions which minimize the Eqs. 1, 2,
and 3. Aldy will try to call a genotype for each such optimal solution, and select one
that has the best score based on subsequent steps. However, if there are multiple
optimal genotypes even after the final refining step, Aldy reports all of them as
equally likely. Similarly, the underlying cause of multiple optimal solutions is again
the short read length of HTS data, which prevents Aldy from precisely resolving the
cases where one set of distant mutations (i.e., mutations that cannot be spanned by
read pairs) describes multiple valid alleles.

Finally, due to the absence of information about the read’s originating strand, it
is sometimes impossible to unambiguously identify diplotype, especially in the
presence of multiplications and fusions. One such example is *68+*4/*5, where
both *68+*4/*5 and *68/*4 are equally likely based on HTS data analysis.

Note that all of the aforementioned limitations derive from the theoretical
limitations of the sequencing technology, and not Aldy per se. Most of them can be
alleviated by using technologies that provide the additional information (e.g.,
barcoded sequencing), and such additional information can be easily incorporated
into Aldy without impacting its underlying mechanisms.

It should also be mentioned that Aldy uses the database of known fusion
breakpoints to detect fusion alleles. In the very rare case of novel breakpoints (and
thus a novel fusion allele), the current implementation of Aldy will select the closest
breakpoint from the database as a fusion breakpoint. Novel breakpoints can be
detected by extending the database to include the set of all possible breakpoints
(note that in some cases, the database already includes all possible breakpoints).
Similarly, Aldy relies on the database to determine whether a mutation is gene-
disrupting or neutral; thus, in its current implementation (v1.0), we do not take
into the account any mutation which is not part of any major or minor star-allele
description present in the database.

Data availability. Illumina data were obtained from 1000 Genomes project (http://
www.internationalgenome.org), Platinum Genomes (dbGaP phs001224), and
HiSeq X CEPH sequencing performed by the National Genomics Infrastructure
SciLifeLab in Uppsala, Sweden (https://export.uppmax.uu.se/a2009002/opendata/
HiSeqX). All PGRNseq data are available upon request. Aldy and the sample data
are available at http://aldy.csail.mit.edu.
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