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Abstract

Allelic richness (number of alleles) is a measure of genetic diversity indicative of a

population’s long-term potential for adaptability and persistence. It is used less

commonly than heterozygosity as a genetic diversity measure, partially because it is

more mathematically difficult to take into account the stochastic process of genetic

drift for allelic richness. This paper presents a stochastic model for the allelic richness

of a newly founded population experiencing genetic drift and gene flow. The model

follows the dynamics of alleles lost during the founder event and simulates the effect

of gene flow on maintenance and recovery of allelic richness. The probability of an

allele’s presence in the population was identified as the relevant statistical property

for a meaningful interpretation of allelic richness. A method is discussed that

combines the probability of allele presence with a population’s allele frequency

spectrum to provide predictions for allele recovery. The model’s analysis provides

insights into the dynamics of allelic richness following a founder event, taking into

account gene flow and the allele frequency spectrum. Furthermore, the model

indicates that the ‘‘One Migrant per Generation’’ rule, a commonly used conservation

guideline related to heterozygosity, may be inadequate for addressing preservation of

diversity at the allelic level. This highlights the importance of distinguishing between

heterozygosity and allelic richness as measures of genetic diversity, since focusing

merely on the preservation of heterozygosity might not be enough to adequately

preserve allelic richness, which is crucial for species persistence and evolution.
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Introduction

Genetic diversity is an important aspect of the dynamics of populations, as it is

directly related to the evolutionary potential of the population and the deleterious

effects of inbreeding [1]. There are, however, several different types of measures of

genetic diversity, most notably measures based on heterozygosity and measures

based on allelic richness (defined as the number of alleles). These groups of

measures differ in their formulations, their ecological and evolutionary

interpretations, and the mathematical frameworks in which they can be applied

[2–4].

Observed heterozygosity (HO), the frequency of heterozygous individuals in a

population, or expected heterozygosity (HE), the probability that two gametes,

randomly chosen from the gene pool, are of different alleles, are by far the

measures most commonly used by the majority of papers that present a genetic

summary of populations [4] (e.g., [5, 6]). These measures are very sensitive to the

allele frequencies in the population, rather than just to the number of alleles. It has

been shown that a decrease in the observed heterozygosity can induce a decrease

in the average fitness of individuals [7, 8], and thus this measure has clear

ecological consequences. There exists an extensive mathematical framework, F-

statistics, first presented by Wright [9], that allows for the modeling and analysis

of varied scenarios regarding heterozygosity, as well as the inclusion of processes

such as gene flow to provide quantitative predictions and assessments. Allele

richness (also referred to as allelic diversity) is calculated as the average number of

alleles per locus [1]. A decrease in the allelic richness could lead to a reduction in

the population’s potential to adapt to future environmental changes, since this

diversity is the raw material for evolution by natural selection [10]. While not all

variation is related to the adaptive potential, clearly no standing variation exists if

no allelic richness exists. Moreover, there is evidence that high allelic richness,

even of merely neutral alleles, increases evolvability by making a larger fraction of

the genotypic space accessible by fewer mutational events [11]. Allelic richness is,

therefore, a strong indicator for the evolutionary potential of a population

[2, 3, 12], and it has been suggested that this measure is of key importance in

population conservation and management [13–18]. Allelic richness measures are

also commonly presented in population genetic summaries (as the number of

alleles in a given locus or the mean number of alleles per locus). However, in

practice, conclusions pertaining to these measures are often merely comparative,

such as ‘‘population A has higher allelic richness than population B’’ or ‘‘the

population had higher allelic richness at time T than at time S’’, and not

quantitative.

As human activity pushes many species closer to extinction, conservation of

populations is increasingly becoming a major concern, and an important aspect of

conservation is addressing the preservation of genetic diversity [19]. Conservation

programs combine general rules and guidelines, usually derived from the F-

Statistics framework, with the specific ecological scenario in question [12, 20].

One such general rule, concerning gene flow, is the ‘‘One Migrant per
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Generation’’ (OMPG) rule [12, 21]. The rule states that, under the conditions of

an island model of migration in which gene flow is not influenced by distance or

any geographical feature, an exchange of one effective migrant per generation

(effective migrants are migrants that breed and contribute to the population’s

gene pool; for the purpose of this paper, all migrants will be regarded as effective

migrants) is enough to adequately maintain the genetic diversity of the population

[22, 23]. This rule is derived from the island model [24], and other F-statistics

models have been formulated (e.g., the stepping stone model [25]), but they are

used less frequently as conservation guidelines.

Founder events are known to decrease the genetic diversity of the population

[26], and are often followed by a demographic expansion. It has been shown, both

theoretically [2, 26–30] and empirically [27, 31], that allelic richness is more

sensitive than heterozygosity to founder events followed by expansions, since

allelic richness does not consider abundances of the alleles but only their presence

(a rare allele that is lost in a founder event will probably not affect heterozygosity

much, but the loss does reduce allelic richness). Moreover, allelic richness is more

indicative of the evolutionary potential of the population in the long-run in these

scenarios [2, 3, 12], as the existence of alleles, rather than their frequencies, holds a

significant part of potential for response to selection, as selection limits are

determined by the initial allelic composition [13, 32] (studied for biallelic loci by

[33–35]) rather than by levels of heterozygosity. For example, consider a

population with n different alleles with different selection coefficients (e.g., taken

randomly from a uniform distribution U(0,1)). If we consider that only selection

is at play, eventually alleles with the highest selection coefficients will become

abundant while the rest will be lost. Thus the eventual fitness of the population

will be determined by the expected maximal value of the initial selection

coefficients, a value which depends on n, the number of alleles (1{
1

nz1
in the

case of the uniform distribution above). This maximal value is higher when n is

larger, and therefore, populations with higher allelic richness are expected to

eventually show higher average fitness, under these assumptions. Nevertheless,

most theoretical models and conservation applications pertaining to these

scenarios are still drawn from the F-Statistics framework [4], where higher

heterozygosity levels are considered to convey increased response to selection.

While some work has been done in modeling allelic richness [36–39], the field has

not yet been fully investigated.

Founder events are often followed by a loss of alleles, referred to as the ‘‘founder

effect’’ [40]. The founders of the new population seldom carry all the alleles that

existed in the original population. This loss of alleles might later be countered by

gene flow induced by migrants arriving from the source population carrying the

lost alleles, and therefore, gene flow is a force that may recover allelic richness, as

well as heterozygosity [41]. Since founded populations are usually small, genetic

drift – the stochastic element of the genetic process that can lead to the loss of

alleles – is another relevant genetic force that needs to be taken into account.

These two forces can be seen as acting in opposing directions in the founded
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population, with gene flow potentially generating an increase in allelic richness

and genetic drift leading to a decrease.

The goal of this paper is to present a simulation framework, to be used as a

method for estimating the maintenance and recovery of allelic richness, as well as

for identifying the appropriate statistical properties with which to address allelic

richness in similar modeling frameworks. A model was developed in a neutral

theory [42, 43] context that focuses on gene flow and genetic drift in a founder

scenario. The model tracks and simulates a single allele lost in the founder event

under different demographic parameters and allele frequencies, and later it is

shown how the single-allele results can be extended and applied to the entire allele

frequency spectrum to give a meaningful estimation of overall allelic richness

recovery. While the model does not include mutation and selection, although they

may be relevant in many scenarios, it provides insights into the potential effect of

gene flow in the recovery of allelic richness. The model’s results also demonstrate

that the OMPG rule may not be sufficient to conserve allelic richness, and thus

they emphasize the need to distinguish between allelic richness and heterozygosity

regarding management conclusions pertaining to migration rates between

populations. Such conclusions should be drawn while taking both measures into

account.

Methods

2.1. Model

The model consists of a source population and a newly founded population. The

source population is the population from which the founded population

originated and from which migrants can possibly arrive. It is assumed to be an

ideal population at Hardy-Weinberg equilibrium, much larger than the founded

population, and is therefore assigned a static genetic description (i.e., allele

frequencies in the population do not change over time), while the founded

population is dynamic in this regard. The model tracks the frequency of a single

allele in the founded population over time. The founded population is assumed to

be demographically expanding with a discrete logistic equation describing the

population size:

Ntz1~NtzrNt(1{
Nt

K
) ð1Þ

where Nt is the population size at time t, r is the population growth rate and K the

carrying capacity (note that migration does not affect the population size). Nt was

rounded to the nearest integer to delineate the population size for the purpose of

performing simulations. Since the goal of the model is to assess the potential of

migration to negate allele loss as a result of the founder effect, the allele in

question is assumed to have been lost during the founding process, and therefore,

its initial frequency is 0. The same allele has a constant frequency of Q in the

source population.
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The model assumes a Poisson-distributed migration pattern. The mean number

of migrants per generation from the source population to the founded population

is M and the mean number of migrants from the founded population back to the

source population is mNt (a proportion m of the population each generation).

Migration is defined to be asymmetric because we assume the source population is

large and static, while the size of the founded population is dynamic (following eq.

1). Note that the inclusion of back-migration when the source population is

constant could have been left out of the model, since these migrating individuals

are effectively ‘‘lost’’, but it has been included in order to provide an outline for

future development of the model (here we assume that the source population is

very large, and therefore, the effect of back migration on the source population

allele frequencies is negligible). We also used a deterministic migration pattern, in

which the number of migrants per generation is constant (see S1 Appendix and

S1 and S2 Tables). Migrants are assumed to carry the allele in question according

to the frequency of the allele in the population from which they are migrating.

Genetic drift is simulated according to the Wright-Fisher model [24]: a random

independent draw for each gamete determines whether it is a gamete of the allele

in question or not. This induces a binomial distribution on the number of

gametes of the allele. The model, combining both gene flow and genetic drift, can

thus be summarized as follows:

qtz1~
B(2Ntz1{2M�tz1,qt)zB(2Mtz1,Q)

2Ntz1{2M�tz1z2Mtz1
ð2Þ

with the initial condition q1~0. Here qt is the allele frequency; B(n,p) is the

Binomial distribution with n number of trials and success probability p; M�t , the

number of migrants back-migrating to the source population at time t, is a

random variable with a Poisson distribution M�t *Pois(mNt); and Mt, the number

of migrants to the founded population at time t, is a random variable with a

Poisson distribution Mt*Pois(M). The numerator represents the number of

alleles in the population after one generation of migration as the sum of two

random variables with the first reflecting alleles drawn from the founded

population’s gene pool and the second alleles drawn from the migrants, and the

denominator represents the relevant population size.

The expected value of qt is thus given by:

E qtz1½ �~ E½qt�Ntz1(1{m)zQM
Ntz1(1{m)zM

ð3Þ

and at equilibrium, the expected value is E½qequilibrium�~Q (for Mw0). This

theoretical expected value should be approached when the stochastic nature of the

process (i.e. genetic drift) is negligible, but otherwise, the empirical mean allele

frequency at equilibrium, qequilibrium, might also depend on other parameters, due

to the absorbing boundaries of the genetic drift process at q~0 and q~1.

A comprehensive theory for analytically describing qequilibrium that takes all the

model parameters into account is not yet available, but a simplified approxima-
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tion can be used. The expected waiting time between arrival from the source

population of two individual alleles is Ta~
1

2MQ
as t??, and the expected

waiting time for an individual allele’s loss, assuming that the population is at

carrying capacity (N~K), is approximately Tl~2 ln (2K) [44] (here an additional

assumption is made, that the allele frequency at arrival is very small compared to

K). Thus, for Mw

1
4Q ln (2K)

, the waiting time between arrivals is shorter than the

loss time (TavTl), and we expect qequilibrium~Q to hold. Otherwise, qequilibrium is

expected to be lower in proportion to the time interval in which the allele is

present:

qequilibrium~Q
Tl

Ta
~4MQ2 ln (2K): ð4Þ

2.2. Simulations

Simulations were carried out for different scenarios with the following parameter

values: initial population size N0~5,10,20; carrying capacity K~200,400,1000;

population growth rate r~0:01,0:05,0:1. All scenarios were simulated for

frequencies in the source population of Q~0:01 to 0.02 (0.01 intervals) and

migration rates from the source population to the founded population of M~0:1
to 30 (0.1 intervals). For all simulations, a fixed back-migration value of m~0:05
was used. These parameters were chosen to illustrate the presented framework

since they could be reasonable parameters for a reintroduction of a mammalian

population, as a possible application, but the framework is not restricted to these

parameters.

We ran 1000 simulations for each scenario. The mean allele frequency and the

probability of allele presence (see below) were calculated for each generation

across the 1000 simulations. Each of these simulations was run until equilibrium

was reached, plus an additional 200 generations to generate the equilibrium phase

of the system (equivalent to the migration-drift balance). The equilibrium

generation was defined by first defining an equilibrium separately for the mean

allele frequency and for the probability of allele presence. Equilibrium was defined

as the generation for which the following 100 generations show no trend, i.e., the

difference between the number of generations showing a positive change in the

statistical property (mean allele frequency or probability of allele presence) and

the number of generations showing a negative change was one or zero. The overall

equilibrium was taken as the greater of these two equilibria to ensure that the

system is stable for both statistical properties. This conservative definition of

equilibrium, which could overestimate the actual time needed to reach

equilibrium, was chosen to ensure that the analysis is done within the equilibrium

phase rather than to determine precisely the time needed to reach equilibrium.
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The model focuses on time scales that are sufficiently short and on population

sizes that are sufficiently small, so that mutation can be neglected; mutation events

are very rare in small populations during short time scales [20]. The model was

simulated using MATHEMATICA software [45], and appears in S2 Appendix

along with the code for the analysis and the graphical representation of the results

(which could be used with alternative parameterizations).

2.3. Simulation analysis

Probability measures can be broken into a discrete part and a continuous part

(Jordan’s decomposition theorem [46]). In the dynamics of allele frequency over

time, the discrete part of the probability measure constitutes the allele frequencies

0 and 1 - the events of allele fixation and allele loss, respectively. For each of these

two points, there is a positive probability that the allele has those frequencies, and

we define these probabilities as p0 and p1 respectively. This attribution of positive

probabilities to singular points is due to the fact that the stochastic process of

genetic drift has absorbing boundaries at these points, and alleles that have

reached loss or fixation are expected to remain in these states for some time

(permanently in the absence of gene flow or mutations). For the frequencies

between but not including 0 and 1, a continuous probability distribution is an

appropriate description. Thus, the behavior of the system at 0 and 1 should be

considered separately from the rest of the distribution (see Fig. 1 for an

illustration, explained below). We define the ‘probability of allele presence’ as the

probability of the allele not being at frequency zero:

ppresence~1{p0: ð5Þ

The probability ppresence was calculated for each generation in each scenario

from the simulations.

The equilibrium phase of the population was defined as the 200 generations

after equilibrium was reached, and the mean ppresence was calculated over these 200

generations, as well as the mean allele frequency (the mean over 200 generations

of the mean allele frequency for 1000 simulations). For a given scenario, the

minimal migration rate required to reach E½qequilibrium�~Q (i.e., the mean allele

frequency at equilibrium as the source population’s allele frequency) was defined

as the minimal migration rate Mmean for which all qequilibrium values for

MmeanƒMvMmeanz0:05 are above 0.95Q (i.e., the minimal migration for which

five consecutive data points are above 95% of the allele frequency in the source

population). This was done in order to estimate how many migrants are needed to

ensure that the expected mean allele frequency at equilibrium is reasonably stable

around Q.

The presence of an allele in the system was defined based on a threshold - the

‘95% probability of allele presence’. Only scenarios in which ppresence is higher than

95% (ppresencew0:95) are assumed to have the allele in question with high enough

confidence, while those below 95% are assumed to be missing the allele (used
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similarly by Tracy et al. [47]). For a given scenario, the migration rate required for

allele presence with 95% probability, Mpresence, was defined as the minimal

migration rate for which ppresencew0:95. Both Mmean and Mpresence were obtained

for all scenarios and for Q values of 0.02, 0.04, 0.1 and 0.2.

2.4. Source population allele frequency spectrum

In order to assess the model’s implications for a polymorphic locus and not just a

single allele, the allele frequency spectrum of the source population is compared

with results for simulations with different Q values. To illustrate this process, and

the application of the model with allele frequency spectra, examples of theoretical

frequency spectra for the source population were generated using the method

presented by Ewens [48]:

E(x1,x2)~h

ðx2

x1

(1{x)h{1

x
dx for

1
2Nev

ƒx1ƒx2ƒ1 h~4Nevm: ð6Þ

This equation allows for the calculation of the expected number of alleles with

frequencies between x1 and x2, where m is the mutation rate and Nev the variance

effective population size of the source population. Nev~5000 (although the

population is assumed large, a finite Nev was used in order to derive an

equilibrium allele frequency spectrum) and three different mutation rates,

m~5|10{6,5|10{5,5|10{4 (resulting in h~0:1,1,10, respectively), were

taken to represent the source population. These per locus mutation rates

correspond to the estimated range of human mutation rates [49, 50]. The

resulting frequency spectra appear in Fig. 2.

Fig. 1. Cumulative density functions for the allele frequency at the equilibrium phase. M~1 migrants in
blue, M~30 migrants in red; scenario parameters Q~0:04, N0~10, K~400, r~0:05, m~0:05. The jump at
allele frequency 0 for M~1 is due to the low ppresence for this scenario.

doi:10.1371/journal.pone.0115203.g001
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The ‘95% probability of allele presence’, as described above, was similarly used

to obtain a ‘cut-off frequency’, Qc, a threshold frequency (in the source

population) above which the allele in question is assumed to be present in the

population (i.e., ppresencew0:95). The cut-off frequency of a given scenario was

then compared with the allele frequency spectra in Fig. 2, and the number of

alleles above the cut-off frequency was calculated using eq. 6, i.e. E(Qc,1), as well

as their proportion from the overall expected number of alleles, i.e.
E(Qc,1)

E( 1
2Nev

,1)
.

The cut-off frequency and the number and proportion of alleles that are

potentially expected to be recovered by gene flow (with the 95% probability

guideline), if lost in a founder effect, were calculated for three different migration

rates, M~1, M~5 and M~20.

Results

In all simulated scenarios, the mean allele frequency in the founded population

increased over time, showing eventual stabilization. The same pattern was

observed for ppresence. The number of migrants required for the mean allele

frequency at equilibrium (qequilibrium) to recover to the same mean frequency as in

the source population, Mmean, varied between 0.2 to 4.9 migrants per generation,

with most scenarios requiring between 0.5–2.5 migrants, summarized in Table 1

(average over all scenarios simulated of 1:48+0:91 migrants). For migration rates

below Mmean, the mean frequency at equilibrium was lower than Q, with an

example shown in Fig. 3 (all results are presented in S1–S9 Figs.). Mmean values

were generally higher for rare alleles (Q~0:02 and 0.04), compared with more

common alleles (Q~0:1 and 0.2), with averages of 1.74¡0.98 migrants, and

1:22+0:75 migrants respectively. Mmean values were also generally higher for

larger initial population sizes, higher carrying capacities and higher growth rates

(Table 1).

While the simplified approximation summarized by equation 4 was far from an

accurate evaluation of qequilibrium for migration rates below Mmean, it did

Fig. 2. Theoretical allele frequency spectra. Theoretical allele frequency spectra for A) h~0:1 (blue); B) h~1 (red); C) h~10 (green). The frequency
spectra were generated using equation 6.

doi:10.1371/journal.pone.0115203.g002
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qualitatively describe the gradual increase in qequilibrium for migration rates below a

threshold and stabilization of Q (S1–S9 Figs.). A better approximation was

attained using a regression analysis with the model Q(1{e{aM)with unknown

parameter a introduced to increase the goodness of fit of the model, shown

in S1–S9 Figs., and with regression details presented in S3 Table. For the scenarios

simulated, Mmean was estimated fairly well by equation 4 for rare alleles, but less so

for more common alleles. The simplified approximation also showed migration

thresholds for stabilization that were higher for common alleles, compared with

Table 1. Mmean and Mpresence thresholds for different scenarios.

Mmean Mpresence

N0 r K Q~0:02 Q~0:04 Q~0:1 Q~0:2 Q~0:02 Q~0:04 Q~0:1 Q~0:2

5 0.01 200 1.2 0.6 0.2 0.2 26.8 11.7 2.1 1.0

400 0.7 1.4 0.4 0.2 30.4 5.9 1.9 0.8

1000 0.8 0.4 0.6 0.2 16.6 10.8 2.0 0.7

0.05 200 1.8 1.2 0.6 0.7 17.4 6.3 1.9 0.8

400 2.2 0.4 0.5 1.0 12.5 5.0 1.6 0.8

1000 1.9 0.8 0.7 0.8 9.1 3.8 1.3 0.6

0.1 200 0.9 0.9 1.2 0.6 17.8 6.3 1.9 0.8

400 1.4 1.7 1.4 1.2 12.4 4.9 1.6 0.8

1000 1.3 2.5 1.3 1.5 9.3 3.9 1.4 0.7

10 0.01 200 1.8 1.1 0.7 1.3 19.8 7.7 2.5 0.9

400 1.0 0.4 0.7 0.5 15.7 10.4 1.9 0.8

1000 1.0 0.5 0.5 0.3 13.0 4.7 1.8 1.0

0.05 200 1.6 1.9 1.3 1.0 17.3 6.4 1.9 0.8

400 1.9 1.3 1.4 1.2 12.9 4.9 1.6 0.8

1000 2.0 1.5 1.5 1.5 9.2 4.0 1.3 0.7

0.1 200 1.9 1.8 1.1 0.9 17.5 6.2 1.9 0.9

400 2.9 2.7 2.0 1.9 12.7 4.9 1.6 0.8

1000 2.7 2.4 2.4 2.4 9.0 3.8 1.4 0.7

20 0.01 200 1.0 1.3 0.8 0.6 21.6 6.9 2.3 0.9

400 0.8 0.7 0.8 1.0 15.8 7.3 1.8 0.8

1000 1.8 1.7 1.1 0.7 15.2 4.0 1.7 0.7

0.05 200 1.5 2.3 2.2 1.6 17.2 6.2 1.9 0.9

400 2.0 2.9 2.2 1.8 12.7 4.9 1.6 0.8

1000 2.3 3.3 2.5 2.1 9.0 3.8 1.4 0.7

0.1 200 1.9 2.0 1.3 0.9 17.5 6.4 1.9 0.8

400 4.1 2.5 2.6 1.4 12.6 5.0 1.7 0.7

1000 4.6 4.9 3.3 3.1 9.0 3.9 1.4 0.7

Parameters: initial population size (N0); growth rate (r); carrying capacity (K); source population allele frequency (Q); minimal number of

migrants from source population to founded population required to reach mean allele

migrants from source population to founded

doi:10.1371/journal.pone.0115203.t001
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rare alleles, a pattern similar to that shown by the Mmean values from the

simulations.

The migration thresholds when considering mean allele frequency and when

considering the probability of allele presence were considerably different, as can be

seen in Table 1. Although qequilibrium wa, s similar for migration rates above Mmean,

the actual probability distribution of the allele frequency revealed a different

picture. For example, in Fig. 1, one can see very different distributions for the

allele frequency at the equilibrium phase for two simulations with migration rates

M~1 and M~30 (other parameters: Q~0:04, N0~10, r~0:05 K~400,

m~0:05). Specifically, the probability of allele presence with one migrant per

generation was ppresence~0:58, evident in the large discontinuous ‘‘jump’’ in the

cumulative distribution function at allele frequency 0, while the probability for

presence with 30 migrants per generation was much higher, with ppresence~0:99. In

contrast, the mean allele frequency values at equilibrium for these two migration

rates were almost identical, with qequilibrium~0:038 for M~1 and qequilibrium~0:039
for M~30.

Fig. 3. Mean allele frequencies at equilibrium (qequilibrium) as a function of the number of migrants per generation. Solid lines indicate the estimation of
the mean allele frequency (equation 4), dashed lines indicate Mmean thresholds. K~200 in blue; K~400 in red; K~1000 in blue. A) Q~0:02; B) Q~0:04; C)
Q~0:1; D) Q~0:2. Scenario parameters: N0~10, r~0:05, m~0:05. Error bars indicate the standard error of the mean.

doi:10.1371/journal.pone.0115203.g003
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Fig. 4 shows the Mpresence thresholds (number of migrants required to reach

ppresencew0:95) for four scenarios, and Table 1 summarizes the thresholds for all

scenarios simulated. Evidently, Mpresence thresholds were very much affected by the

source population allele frequency and were much higher for rare alleles than for

more common alleles (an average of 11:23+6:34 for Q~0:02 and Q~0:04
compared to an average of 1:34+0:52 for Q~0:1 and Q~0:2). When comparing

the Mpresence and Mmean thresholds, for Q~0:02, Mpresence was much larger than

Mmean for all scenarios simulated (an average Mmean of 1:81+0:93 in contrast to

an average Mpresence of 16:0+5:36), and for Q~0:04 this was true for all scenarios

but one (an average Mmean of 1:67+1:05 in contrast to an average Mpresence of

6:47+2:47). For the more common alleles, however, the two thresholds were

generally similar (an average Mmean of 1:22+0:74 and an average Mpresence of

1:34+0:52 for Q~0:1 and Q~0:2 combined). In contrast to the Mmean

thresholds, the Mpresence thresholds were generally lower for higher initial sizes,

carrying capacities and growth rates; however, this was only evident for the rare

alleles, while for the more common alleles, Mpresence was not much affected by the

change of scenario parameters.

3.1. Allele frequency spectrum

Performing an analysis on polymorphic loci requires attention to different alleles

with different frequencies, and not just a single allele. Fig. 5 shows how the cut-off

frequency can be derived from the perspective of the allele frequency in the source

population. For example, with K~400, r~0:1 and N0~10, and one migrant per

generation (M~1), alleles of frequencies Qc~0:15 or higher are expected to be

present in the founded population at equilibrium with a probability of 95% or

higher, while alleles with lower frequencies are not. For the same demographic

parameters, for M~5 the cut-off frequency is Qc~0:05, and for M~20 the cut-

off frequency is Qc~0:02.

Table 2 summarizes the cut-off frequencies and the proportion of allelic

richness that is expected to be recovered, given the defined genetic goal of 95%

probability of allele presence and the allele frequency spectra given in Fig. 2.

Different migration rates result in different cut-off frequencies, and therefore have

different impacts on the recovery potential of allelic richness. While the

demographic parameters of the founded population seem to have little impact on

the proportion of allelic richness expected to be recovered, the allele frequency

spectrum of the source population has a major effect on the potential of recovery

of alleles (Qc values in Table 2 do not vary much with different demographic

parameters, but they do vary with different h values). Allele frequency spectra that

have few rare alleles (low h values) have more alleles above the cut-off frequency

and a higher potential for recovery of allelic richness. In contrast, allele

frequencies with many rare alleles (high h values) have many alleles below the cut-

off frequency, alleles that are not expected to be recovered by gene flow and, as a

result, show low potential for allelic richness recovery.
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Discussion

The model follows a single allele that is subject to two evolutionary forces: gene

flow and genetic drift. If the stochastic nature of genetic drift and migration

pattern are ignored, equation 3 predicts that the mean allele frequency at

equilibrium, qequilibrium, should converge to the allele frequency in the source

population, Q. The observation that for the scenarios simulated, the mean allele

frequency indeed converged to Q at equilibrium for high enough migration rates

(Fig. 3 and S1–S9 Figs.) fits this deterministic prediction. For migration rates

lower than the threshold (Mmean), qequilibrium was lower and only qualitatively

Fig. 4. ppresence (probability of allele presence) for different migration rates. Q~0:01 in blue; Q~0:02 in red;
Q~0:1 in green and Q~0:2 in purple. Horizontal dashed line show the 95% probability of allele presence
threshold (ppresence~0:95) and vertical dashed lines show Mpresence thresholds. Scenario parameters:
N0~10, r~0:05, K~400, m~0:05. standard error of the mean was below 0.002 for all ppresence values and is
therefore not indicated.

doi:10.1371/journal.pone.0115203.g004

Fig. 5. Probability of allele presence for different Q values (allele frequencies in source population).
M~1 in blue, M~5 in red and M~20 in green. Horizontal dashed line show the 95% probability of allele
presence threshold (ppresence~0:95) and vertical dashed lines show Qc thresholds (cut-off frequencies) for the
different migration rates. Scenario parameters: N0~10, r~0:05, K~400, m~0:05.

doi:10.1371/journal.pone.0115203.g005

Allelic Richness - Stochastic Model

PLOS ONE | DOI:10.1371/journal.pone.0115203 December 19, 2014 13 / 23



described by the simplified approximation given in equation 4. This lower

qequilibrium is due to the fact that the arrival times of the allele from the source

population are long enough, compared to the time required for the allele to be

lost, so that the allele is absent for significant periods from the population.

These last observations, and the simulation results of typical Mmean values of

0.5–2.5, might lead to the erroneous conclusion that in these scenarios, migration

rates higher than one or two migrants per generation are enough to restore the

loss of genetic diversity for most scenarios, as the mean allele frequency in the

Table 2. Proportion of allelic richness recovered by gene flow and cut-off frequencies (Qc).

M~1 M~5 M~20

Proportion of allelic richness
recovered

Proportion of allelic richness
recovered

Proportion of allelic richness
recovered

N0 r K Qc h~0:1 h~1 h~10 Qc h~0:1 h~1 h~10 Qc h~0:1 h~1 h~10

5 0.01 200 0.2 0.59 0.17 0.01 0.08 0.65 0.27 0.05 0.03 0.7 0.38 0.15

400 0.16 0.6 0.2 0.01 0.05 0.67 0.33 0.09 0.03 0.7 0.38 0.15

1000 0.18 0.6 0.19 0.01 0.04 0.68 0.35 0.11 0.04 0.68 0.35 0.11

0.05 200 0.18 0.6 0.19 0.01 0.06 0.66 0.31 0.07 0.03 0.7 0.38 0.15

400 0.2 0.59 0.17 0.01 0.06 0.66 0.31 0.07 0.03 0.7 0.38 0.15

1000 0.17 0.6 0.19 0.01 0.06 0.66 0.31 0.07 0.03 0.7 0.38 0.15

0.1 200 0.17 0.6 0.19 0.01 0.06 0.66 0.31 0.07 0.03 0.7 0.38 0.15

400 0.16 0.6 0.2 0.01 0.06 0.66 0.31 0.07 0.03 0.7 0.38 0.15

1000 0.13 0.62 0.22 0.02 0.05 0.67 0.33 0.09 0.02 0.72 0.42 0.2

10 0.01 200 0.16 0.6 0.2 0.01 0.05 0.67 0.33 0.09 0.02 0.72 0.42 0.2

400 0.14 0.61 0.21 0.02 0.04 0.68 0.35 0.11 0.02 0.72 0.42 0.2

1000 0.13 0.62 0.22 0.02 0.04 0.68 0.35 0.11 0.02 0.72 0.42 0.2

0.05 200 0.17 0.6 0.19 0.01 0.05 0.67 0.33 0.09 0.02 0.72 0.42 0.2

400 0.15 0.61 0.21 0.01 0.05 0.67 0.33 0.09 0.02 0.72 0.42 0.2

1000 0.12 0.62 0.23 0.02 0.04 0.68 0.35 0.11 0.02 0.72 0.42 0.2

0.1 200 0.16 0.6 0.2 0.01 0.05 0.67 0.33 0.09 0.02 0.72 0.42 0.2

400 0.15 0.61 0.21 0.01 0.04 0.68 0.35 0.11 0.02 0.72 0.42 0.2

1000 0.13 0.62 0.22 0.02 0.04 0.68 0.35 0.11 0.02 0.72 0.42 0.2

20 0.01 200 0.16 0.6 0.2 0.01 0.05 0.67 0.33 0.09 0.02 0.72 0.42 0.2

400 0.14 0.61 0.21 0.02 0.04 0.68 0.35 0.11 0.02 0.72 0.42 0.2

1000 0.12 0.62 0.23 0.02 0.04 0.68 0.35 0.11 0.02 0.72 0.42 0.2

0.05 200 0.16 0.6 0.2 0.01 0.05 0.67 0.33 0.09 0.02 0.72 0.42 0.2

400 0.14 0.61 0.21 0.02 0.04 0.68 0.35 0.11 0.02 0.72 0.42 0.2

1000 0.13 0.62 0.22 0.02 0.04 0.68 0.35 0.11 0.02 0.72 0.42 0.2

0.1 200 0.17 0.6 0.19 0.01 0.05 0.67 0.33 0.09 0.02 0.72 0.42 0.2

400 0.14 0.61 0.21 0.02 0.04 0.68 0.35 0.11 0.02 0.72 0.42 0.2

1000 0.12 0.62 0.23 0.02 0.04 0.68 0.35 0.11 0.02 0.72 0.42 0.2

Initial population size (N0); growth rate (r); carrying capacity (K); migrants per generation from source population to founded population (M); cut-off frequency
(Qc); source population allele frequency spectrum (defined by equation 6) with given h value.

doi:10.1371/journal.pone.0115203.t002
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founded population is similar to that of the source population. This conclusion

would be concordant with the analogous analysis of heterozygosity in a

migration-drift island model that is exemplified in the OMPG rule (the One

Migrant Per Generation rule states that one migrant per generation is an adequate

gene flow rate to prevent loss of genetic diversity). The actual probability

distributions (Fig. 1) and, specifically, the probability of allele presence (Fig. 4),

reveal that this is not the case for allelic richness. In the scenarios simulated, the

migration rates needed to reach the defined threshold of 95% probability of

presence for relatively rare alleles are typically much higher than the migration

rates needed for convergence of the mean frequency to Q (Table 1). This genetic

goal (95% probability of allele presence [47]) directly addresses the question of

the presence or the absence of the allele and is, therefore, a more appropriate

statistical characteristic than the mean frequency of the allele for the analysis of

allelic richness (since the expected value of allelic richness is, by definition, the

probability of allele presence summed over all alleles and averaged over all loci).

In conservation, often there is concern to maintain as high as possible levels of

genetic diversity, both of heterozygosity and allelic richness. Setting the genetic

goal at 95% probability of presence, as defined above, is appropriate in

conservation, since its interpretation, in terms of statistical confidence, is the

‘‘minimal allelic richness retained with a 95% confidence’’, which could be

applied in management programs or genetic assessments. The genetic goal affects

the required rates of migration needed to maintain different levels of allelic

richness, and lower genetic goals would show lower migration requirements (one

could imagine, for example, a genetic goal line of 80% or 60% in Figs. 4 and 5).

This can be used to give several thresholds with varying levels of confidence,

which could be useful for decision making and management assessments.

4.1. Allele frequency spectrum analysis

Typically, it is not that the presence of a specific allele is of concern, but rather the

presence of many alleles across many loci [51]. Therefore, a study of the allele

frequency spectrum of the population is required (i.e., the number of alleles at

different frequency intervals). From the perspective of the allele frequency

spectrum, the questions shift to how many alleles will be recovered by gene flow

following the founder effect, and what amount of allelic richness will be recovered

from the source population and maintained in the founded population in a given

scenario. We have used the same genetic goal of ppresencew0:95 to obtain the ‘cut-

off frequency’ Qc (the minimal allele frequency in the source population for which

the allele is assumed to be present in the founded population at equilibrium) of a

given scenario. Qc allows us to evaluate the effect gene flow has on the

maintenance of allelic richness with regard to the entire frequency spectrum, and

not just at the level of a single allele. For five migrants per generation, for example,

Qc is lower than for one migrant per generation, meaning that rarer alleles are

expected to be present in the population at equilibrium, and the population is

expected to show higher allelic richness (Fig. 5 and Table 2).
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In order to apply the framework presented here, an estimation of allele recovery

that takes into account the allele frequency spectrum is needed. The cut-off

thresholds can be used to calculate the portion of allelic richness that may

potentially be recovered by gene flow in a given scenario by comparing them to an

allele frequency spectrum, as shown in Fig. 5 (when comparing with an actual

allele frequency rather than a theoretical one, the expected number and

proportion of alleles above Qc should be derived directly from the allele frequency

distribution of the population, and not from equation 5). This can give a

quantitative estimate of the impact gene flow will have in a given scenario with a

given allele frequency spectrum, as shown in Table 2. This may be particularly

useful in conservation efforts aimed at restoring genetic diversity by active

management (e.g., translocations), when genetic studies of source populations can

provide an allele frequency spectrum (e.g., by averaging allele spectra from several

loci), and management strategies can be evaluated by conducting simulations, in

the presented framework, for appropriate scenarios.

The results emphasize the importance of taking into account the source

population’s allele frequency spectrum when evaluating allelic richness recovery

by gene flow, as this parameter had the greatest impact on allelic richness

recovery. Most allele frequency spectrums are ‘‘L-shaped spectrums’’ - they

consist of many rare alleles and few common alleles [48]. Since rare alleles are the

ones most susceptible to loss through founder effect, they are the ones that mainly

need to be considered when estimating genetic diversity. This abundance of rare

alleles in many populations is not represented well by heterozygosity measures

and is better addressed by allelic richness [2].

The analysis presented here estimates the potential of allele recovery following a

founder effect, but does not directly consider the founder event itself. The

framework has been generalized to include a simple founder event (S3 Appendix);

however, this entails additional simulations to account for initial conditions

different than q1~0. Nevertheless, for scenarios with low enough Qc values,

ppresence is a good approximation for the probability of presence including the

founder event (since for low Q values the allele is likely to be lost in the founder

event or soon after, see details in S3 Appendix). The results obtained from

scenarios with low Qc are thus an approximation of the proportion of allelic

richness expected to be retained from founder event to migration-drift balance.

Although analyzing the results from simulations that track single alleles at

different allele frequencies in the source population in light of an allele frequency

spectrum, as presented here, provides a reasonably simple approach for the

evaluation of allelic richness recovery, it does have its limitations. One important

limitation is the fact that the probabilities of allele presence of different alleles are

not independent, while the cut-off frequency, used to calculate the number and

proportion of allele recovery, assumes independence. Thus, results should be used

as an approximation of the expected allele recovery, and more computationally

complex simulations of multiple alleles with frequencies taken from an
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appropriate allele frequency spectrum are needed to obtain more accurate results

for specific scenarios.

4.2. The OMPG rule and allelic richness

Conservation and management programs increasingly address genetic issues, as

small, vulnerable populations are susceptible to genetic diversity loss, which might

negatively impact their status [1]. Management programs usually include some

reference to general rules and try to put them in the context of the scenario in

question. Since F-statistics are amongst the most widely used frameworks for

genetic differentiation [52], they are the source of many conservation-genetic

rules and guidelines [53].

One such conservation rule is the OMPG rule [54]. This regularly used rule

[21] is based on the results of an F-statistics derivation of the infinite islands

model that implies that only the product of genetic drift and migration rate (Nem)

need be taken into account, where Ne is the local variance effective population

size. The OMPG rule states that one effective migrant per generation (Nem§1) is

enough for conservation purposes. While the original papers concerning the

OMPG rule emphasize the limitation of the rule, and that its interpretation is

limited to the equilibrium state of the mean allele frequency (and not the

presence\absence of alleles) in an island model of migration, the OMPG rule is

extensively used in the conservation and management of captive populations. The

model and framework presented in this paper show that the ‘probability of allele

presence’ (ppresence), which is the relevant statistic for assessing allelic richness, is

not adequately addressed by the OMPG rule. The number of migrants required

for allelic richness maintenance, at least when founding events are considered,

depends on the specific parameters of the scenario (e.g., allele frequency spectrum,

demographic parameters), and in some cases, for instance when source

population allele frequency spectra with many rare alleles are concerned, the

migration rate required for the presence of the allele at equilibrium could be much

higher than just one migrant per generation.

This analysis points out, once again, that the OMPG rule has limitations (for

limitations from other perspectives, see [21, 55]). More specifically, its application

should be reserved for cases in which low heterozygosity is a concern.

Maintenance of heterozygosity might be achieved with one migrant per

generation, but this can be too low a migration rate for allelic richness

maintenance. Following a founder effect, heterozygosity should be a concern for

the period immediately following the event, but allelic richness should be more

important for the long-term evolutionary potential of the population [2, 12], and

the OMPG rule should be used with this distinction in mind.

4.3. Allelic richness vs. heterozygosity

Allelic richness and heterozygosity form the basis of the two most commonly used

measures of genetic diversity, but heterozygosity is applied much more regularly.
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While a third group of locus-level diversity measures, based on Shannon’s index,

has been suggested and has recently seen some development [56], the evolutionary

interpretation of these measures is still unclear [57], and they are not yet in

common use. Allelic richness measures are essential to our understanding of the

aspect of a population’s genetic diversity pertaining to the long term evolutionary

potential of the population [2, 13–15, 17]. The differences between the measures,

in regards to treatment of rare and common alleles, are perhaps more apparent

when considering them as two diversity indices. Allelic richness is a q~0 diversity

measure (
Pa
i~1

qi
0 where a is the number of alleles and pi are the allele frequencies),

and heterozygosity is the Geni-Simpson index, which has a q~2 diversity

(1{
Pa
i~1

pi
2)[58, 59]. The order of the diversity index, q, indicates the sensitivity of

the measure to common and rare alleles, where a q~0 diversity is completely

insensitive to allele frequencies and, therefore, favors rare alleles, and q~2
diversity favors common alleles (with a q~1 diversity, Shannon’s index, rare and

common alleles are proportionally weighted)[56, 58]. Allelic richness, therefore,

quantifies the actual number of alleles, while heterozygosity can be seen to

quantify na, the ‘‘effective number of alleles’’ (na~
1

1{He
) – the number of alleles

expected in a population with the same heterozygosity but with allele frequencies

distributed equally[12, 13, 60, 61].

In this paper, we suggest a genetic goal of ‘95% probability of allele presence’

that emphasizes the importance of the presence of alleles over their frequency, as

is appropriate for a conservative allelic richness evaluation (lower genetic goals

may be used to give evaluations with lower confidence of allele presence). The

presence of alleles is indicative of the potential of selection to act upon an allele

and, thus, relates directly to the evolutionary potential of the population[13]. This

genetic goal can be used in analysis of stochastic models and in combination with

an allele frequency spectrum to provide predictions for allelic richness under

different ecological scenarios, as shown in the model presented here.

While F-statistics provide a framework for analyzing heterozygosity dynamics,

our understanding of allelic richness dynamics is limited. Allelic richness, which

emphasizes the number of alleles over their frequencies, is affected by various

parameters, such as migration rates, allele frequency and demographic

parameters, as demonstrated by the model results. However, heterozygosity,

which focuses on allele frequencies and thus is insensitive to rare alleles, is affected

differently by different parameters in similar systems [2, 16, 18, 41, 62]. Thus, an

allelic richness evaluation requires different considerations than that of an F-

statistics framework, as demonstrated by the comparison of the OMPG rule with

the simulation results. With the ecological and evolutionary consequences of

heterozygosity versus allelic richness in mind, both measures should be considered

in conservation and management efforts aiming at maintaining genetic diversity.
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Supporting Information

S1 Appendix. Migration patterns and allelic diversity.

doi:10.1371/journal.pone.0115203.s001 (DOCX)

S2 Appendix. Code for the simulations.

doi:10.1371/journal.pone.0115203.s002 (NB)

S3 Appendix. Generalization of the framework to include a simple one-generation

founder event.

doi:10.1371/journal.pone.0115203.s003 (DOCX)

S1 Fig. Mean allele frequencies at equilibrium (qequilibrium) as a function of the

number of migrants per generation (M). Solid lines indicate the estimation of the

mean allele frequency (equation 4). Dashed lines indicate Mmean thresholds.

Dashed-dotted lines indicate regression analysis results for the model

Q(1{e{aM); details in S3 Table. K~200 in blue; K~400 in red; K~1000 in blue.

A) Q~0:02; B) Q~0:04; C) Q~0:1; D) Q~0:2. Scenario parameters:

N0~5, r~0:01, m~0:05. Error bars indicate the standard error of the mean.

doi:10.1371/journal.pone.0115203.s004 (TIFF)

S2 Fig. Mean allele frequencies at equilibrium (qequilibrium) as a function of the

number of migrants per generation (M). Solid lines indicate the estimation of the

mean allele frequency (equation 4). Dashed lines indicate Mmean thresholds.

Dashed-dotted lines indicate regression analysis results for the model

Q(1{e{aM); details in S3 Table. K~200 in blue; K~400 in red; K~1000 in blue.

A) Q~0:02; B) Q~0:04; C) Q~0:1; D) Q~0:2. Scenario parameters:

N0~5, r~0:05, m~0:05. Error bars indicate the standard error of the mean.

doi:10.1371/journal.pone.0115203.s005 (TIFF)

S3 Fig. Mean allele frequencies at equilibrium (qequilibrium) as a function of the

number of migrants per generation (M). Solid lines indicate the estimation of the

mean allele frequency (equation 4). Dashed lines indicate Mmean thresholds.

Dashed-dotted lines indicate regression analysis results for the model

Q(1{e{aM); details in S3 Table. K~200 in blue; K~400 in red; K~1000 in blue.

A) Q~0:02; B) Q~0:04; C) Q~0:1; D) Q~0:2. Scenario parameters:

N0~5, r~0:1, m~0:05. Error bars indicate the standard error of the mean.

doi:10.1371/journal.pone.0115203.s006 (TIFF)

S4 Fig. Mean allele frequencies at equilibrium (qequilibrium) as a function of the

number of migrants per generation (M). Solid lines indicate the estimation of the

mean allele frequency (equation 4). Dashed lines indicate Mmean thresholds.

Dashed-dotted lines indicate regression analysis results for the model

Q(1{e{aM); details in S3 Table. K~200 in blue; K~400 in red; K~1000 in blue.

A) Q~0:02; B) Q~0:04; C) Q~0:1; D) Q~0:2. Scenario parameters:

N0~10, r~0:01, m~0:05. Error bars indicate the standard error of the mean.

doi:10.1371/journal.pone.0115203.s007 (TIFF)

S5 Fig. Mean allele frequencies at equilibrium (qequilibrium) as a function of the

number of migrants per generation (M). Solid lines indicate the estimation of the
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mean allele frequency (equation 4). Dashed lines indicate Mmean thresholds.

Dashed-dotted lines indicate regression analysis results for the model

Q(1{e{aM); details in S3 Table. K~200 in blue; K~400 in red; K~1000 in blue.

A) Q~0:02; B) Q~0:04; C) Q~0:1; D) Q~0:2. Scenario parameters:

N0~10, r~0:05, m~0:05. Error bars indicate the standard error of the mean.

doi:10.1371/journal.pone.0115203.s008 (TIFF)

S6 Fig. Mean allele frequencies at equilibrium (qequilibrium) as a function of the

number of migrants per generation (M). Solid lines indicate the estimation of the

mean allele frequency (equation 4). Dashed lines indicate Mmean thresholds.

Dashed-dotted lines indicate regression analysis results for the model

Q(1{e{aM); details in S3 Table. K~200 in blue; K~400 in red; K~1000 in blue.

A) Q~0:02; B) Q~0:04; C) Q~0:1; D) Q~0:2. Scenario parameters:

N0~10, r~0:1, m~0:05. Error bars indicate the standard error of the mean.

doi:10.1371/journal.pone.0115203.s009 (TIFF)

S7 Fig. Mean allele frequencies at equilibrium (qequilibrium) as a function of the

number of migrants per generation (M). Solid lines indicate the estimation of the

mean allele frequency (equation 4). Dashed lines indicate Mmean thresholds.

Dashed-dotted lines indicate regression analysis results for the model

Q(1{e{aM); details in S3 Table. K~200 in blue; K~400 in red; K~1000 in blue.

A) Q~0:02; B) Q~0:04; C) Q~0:1; D) Q~0:2. Scenario parameters:

N0~20, r~0:01, m~0:05. Error bars indicate the standard error of the mean.

doi:10.1371/journal.pone.0115203.s010 (TIFF)

S8 Fig. Mean allele frequencies at equilibrium (qequilibrium) as a function of the

number of migrants per generation (M). Solid lines indicate the estimation of the

mean allele frequency (equation 4). Dashed lines indicate Mmean thresholds.

Dashed-dotted lines indicate regression analysis results for the model

Q(1{e{aM); details in S3 Table. K~200 in blue; K~400 in red; K~1000 in blue.

A) Q~0:02; B) Q~0:04; C) Q~0:1; D) Q~0:2. Scenario parameters:

N0~20, r~0:05, m~0:05. Error bars indicate the standard error of the mean.

doi:10.1371/journal.pone.0115203.s011 (TIFF)

S9 Fig. Mean allele frequencies at equilibrium (qequilibrium) as a function of the

number of migrants per generation (M). Solid lines indicate the estimation of the

mean allele frequency (equation 4). Dashed lines indicate Mmean thresholds.

Dashed-dotted lines indicate regression analysis results for the model

Q(1{e{aM); details in S3 Table. K~200 in blue; K~400 in red; K~1000 in blue.

A) Q~0:02; B) Q~0:04; C) Q~0:1; D) Q~0:2. Scenario parameters:

N0~20, r~0:1, m~0:05. Error bars indicate the standard error of the mean.

doi:10.1371/journal.pone.0115203.s012 (TIFF)

S1 Table. Mmean and Mpresence thresholds for different scenarios with deterministic

migration pattern. Parameters: initial population size (N0); growth rate (r);

carrying capacity (K); source population allele frequency (Q); minimal number of

migrants from source population to founded population required to reach mean

allele frequency Q at equilibrium (Mmean); minimal number of migrants from
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source population to founded population required to reach 95% probability of

presence of the allele at equilibrium (Mpresence).

doi:10.1371/journal.pone.0115203.s013 (DOCX)

S2 Table. Proportion of allelic richness recovered by gene flow and cut-off

frequencies (Qc) for deterministic migration pattern. Initial population size (N0);

growth rate (r); carrying capacity (K); migrants per generation from source

population to founded population (M); cut-off frequency (Qc); source population

allele frequency spectrum (defined by equation 6) with given h value.

doi:10.1371/journal.pone.0115203.s014 (DOCX)

S3 Table. Fitted regression models for Q(1{e{aM) for mean allele frequency at

equilibrium. Curves shown in S1-S9 Figs.

doi:10.1371/journal.pone.0115203.s015 (DOCX)
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