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Abstract

Modern natural language processing

(NLP) research requires writing code.

Ideally this code would provide a pre-

cise definition of the approach, easy

repeatability of results, and a basis for

extending the research. However, many

research codebases bury high-level pa-

rameters under implementation details,

are challenging to run and debug, and are

difficult enough to extend that they are

more likely to be rewritten. This paper

describes AllenNLP, a library for applying

deep learning methods to NLP research,

which addresses these issues with easy-

to-use command-line tools, declarative

configuration-driven experiments, and

modular NLP abstractions. AllenNLP

has already increased the rate of research

experimentation and the sharing of NLP

components at the Allen Institute for

Artificial Intelligence, and we are working

to have the same impact across the field.

1 Introduction

Neural network models are now the state-of-the-

art for a wide range of tasks such as text classifi-

cation (Howard and Ruder, 2018), machine trans-

lation (Vaswani et al., 2017), semantic role label-

ing (Zhou and Xu, 2015; He et al., 2017), corefer-

ence resolution (Lee et al., 2017a), and semantic

parsing (Krishnamurthy et al., 2017). However it

can be surprisingly difficult to tune new models

or replicate existing results. State-of-the-art deep

learning models often take over a week to train

on modern GPUs and are sensitive to initialization

and hyperparameter settings. Furthermore, ref-

erence implementations often re-implement NLP

components from scratch and make it difficult to

reproduce results, creating a barrier to entry for

research on many problems.

AllenNLP, a platform for research on deep

learning methods in natural language processing,

is designed to address these problems and to sig-

nificantly lower barriers to high quality NLP re-

search by

• implementing useful NLP abstractions that

make it easy to write higher-level model code

for a broad range of NLP tasks, swap out

components, and re-use implementations,

• handling common NLP deep learning prob-

lems, such as masking and padding, and

keeping these low-level details separate from

the high-level model and experiment defini-

tions,

• defining experiments using declarative con-

figuration files, which provide a high-level

summary of a model and its training, and

make it easy to change the deep learning ar-

chitecture and tune hyper-parameters, and

• sharing models through live demos, making

complex NLP accessible and debug-able.

The AllenNLP website1 provides tutorials, API

documentation, pretrained models, and source

code2. The AllenNLP platform has a permissive

Apache 2.0 license and is easy to download and

install via pip, a Docker image, or cloning the

GitHub repository. It includes reference imple-

mentations for recent state-of-the-art models (see

Section 3) that can be easily run (to make pre-

dictions on arbitrary new inputs) and retrained

with different parameters or on new data. These

pretrained models have interactive online demos3

1http://allennlp.org/
2http://github.com/allenai/allennlp
3http://demo.allennlp.org/

http://allennlp.org
https://github.com/allenai/allennlp
https://github.com/allenai/allennlp
http://demo.allennlp.org
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with visualizations to help interpret model deci-

sions and make predictions accessible to others.

The reference implementations provide examples

of the framework functionality (Section 2) and

also serve as baselines for future research.

AllenNLP is an ongoing open-source effort

maintained by several full-time engineers and re-

searchers at the Allen Institute for Artificial Intel-

ligence, as well as interns from top PhD programs

and contributors from the broader NLP commu-

nity. It is used widespread internally for research

on common sense, logical reasoning, and state-

of-the-art NLP components such as: constituency

parsers, semantic parsing, and word representa-

tions. AllenNLP is gaining traction externally and

we want to invest to make it the standard for ad-

vancing NLP research using PyTorch.

2 Library Design

AllenNLP is a platform designed specifically for

deep learning and NLP research. AllenNLP is

built on PyTorch (Paszke et al., 2017), which pro-

vides many attractive features for NLP research.

PyTorch supports dynamic networks, has a clean

“Pythonic” syntax, and is easy to use.

The AllenNLP library provides (1) a flexible

data API that handles intelligent batching and

padding, (2) high-level abstractions for common

operations in working with text, and (3) a modular

and extensible experiment framework that makes

doing good science easy.

AllenNLP maintains a high test coverage of

over 90%4 to ensure its components and models

are working as intended. Library features are built

with testability in mind so new components can

maintain a similar test coverage.

2.1 Text Data Processing

AllenNLP’s data processing API is built around

the notion of Fields. Each Field represents a

single input array to a model. Fields are grouped

together in Instances that represent the exam-

ples for training or prediction.

The Field API is flexible and easy to extend,

allowing for a unified data API for tasks as di-

verse as tagging, semantic role labeling, question

answering, and textual entailment. To represent

the SQuAD dataset (Rajpurkar et al., 2016), for

example, which has a question and a passage as

inputs and a span from the passage as output, each

4https://codecov.io/gh/allenai/allennlp

training Instance comprises a TextField for

the question, a TextField for the passage, and

a SpanField representing the start and end po-

sitions of the answer in the passage.

The user need only read data into a set of

Instance objects with the desired fields, and the

library can automatically sort them into batches

with similar sequence lengths, pad all sequences

in each batch to the same length, and randomly

shuffle the batches for input to a model.

2.2 NLP-Focused Abstractions

AllenNLP provides a high-level API for building

models, with abstractions designed specifically for

NLP research. By design, the code for a model

actually specifies a class of related models. The

researcher can then experiment with various ar-

chitectures within this class by simply changing

a configuration file, without having to change any

code.

The library has many abstractions that encap-

sulate common decision points in NLP models.

Key examples are: (1) how text is represented as

vectors, (2) how vector sequences are modified to

produce new vector sequences, (3) how vector se-

quences are merged into a single vector.

TokenEmbedder: This abstraction takes in-

put arrays generated by e.g. a TextField and

returns a sequence of vector embeddings. Through

the use of polymorphism and AllenNLP’s exper-

iment framework (see Section 2.3), researchers

can easily switch between a wide variety of pos-

sible word representations. Simply by changing

a configuration file, an experimenter can choose

between pre-trained word embeddings, word em-

beddings concatenated with a character-level CNN

encoding, or even pre-trained model token-in-

context embeddings (Peters et al., 2017), which

allows for easy controlled experimentation.

Seq2SeqEncoder: A common operation in

deep NLP models is to take a sequence of word

vectors and pass them through a recurrent net-

work to encode contextual information, produc-

ing a new sequence of vectors as output. There

is a large number of ways to do this, includ-

ing LSTMs (Hochreiter and Schmidhuber, 1997),

GRUs (Cho et al., 2014), intra-sentence atten-

tion (Cheng et al., 2016), recurrent additive net-

works (Lee et al., 2017b), and many more. Al-

lenNLP’s Seq2SeqEncoder abstracts away the

decision of which particular encoder to use, allow-

https://codecov.io/gh/allenai/allennlp
https://codecov.io/gh/allenai/allennlp
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ing the user to build an encoder-agnostic model

and specify the encoder via configuration. In this

way, a researcher can easily explore new recur-

rent architectures; for example, they can replace

the LSTMs in any model that uses this abstrac-

tion with any other encoder, measuring the impact

across a wide range of models and tasks.

Seq2VecEncoder: Another common op-

eration in NLP models is to merge a sequence

of vectors into a single vector, using either a

recurrent network with some kind of averaging

or pooling, or using a convolutional network.

This operation is encapsulated in AllenNLP by a

Seq2VecEncoder. This abstraction again al-

lows the model code to only describe a class of

similar models, with particular instantiations of

that model class being determined by a configu-

ration file.

SpanExtractor: A recent trend in NLP is

to build models that operate on spans of text, in-

stead of on tokens. State-of-the-art models for

coreference resolution (Lee et al., 2017a), con-

stituency parsing (Stern et al., 2017), and se-

mantic role labeling (He et al., 2017) all op-

erate in this way. Support for building this

kind of model is built into AllenNLP, including

a SpanExtractor abstraction that determines

how span vectors get computed from sequences of

token vectors.

2.3 Experimental Framework

The primary design goal of AllenNLP is to make

it easy to do good science with controlled exper-

iments. Because of the abstractions described in

Section 2.2, large parts of the model architecture

and training-related hyper-parameters can be con-

figured outside of model code. This makes it easy

to clearly specify the important decisions that de-

fine a new model in configuration, and frees the

researcher from needing to code all of the imple-

mentation details from scratch.

This architecture design is accomplished in Al-

lenNLP using a HOCON5 configuration file that

specifies, e.g., which text representations and en-

coders to use in an experiment. The mapping from

strings in the configuration file to instantiated ob-

jects in code is done through the use of a registry,

which allows users of the library to add new im-

plementations of any of the provided abstractions,

5We use it as JSON with comments. See
https://github.com/lightbend/config/blob/master/HOCON.md
for the full spec.

or even to create their own new abstractions.

While some entries in the configuration file are

optional, many are required and if unspecified

AllenNLP will raise a ConfigurationError when

reading the configuration. Additionally, when a

configuration file is loaded, AllenNLP logs the

configuration values, providing a record of both

specified and default parameters for your model.

3 Reference Models

AllenNLP includes reference implementations

of widely used language understanding models.

These models demonstrate how to use the frame-

work functionality presented in Section 2. They

also have verified performance levels that closely

match the original results, and can serve as com-

parison baselines for future research.

AllenNLP includes reference implementations

for several tasks, including:

• Semantic Role Labeling (SRL) models re-

cover the latent predicate argument structure

of a sentence (Palmer et al., 2005). SRL

builds representations that answer basic ques-

tions about sentence meaning; for example,

“who” did “what” to “whom.” The Al-

lenNLP SRL model is a re-implementation

of a deep BiLSTM model (He et al., 2017).

The implemented model closely matches the

published model which was state of the art

in 2017, achieving a F1 of 78.9% on En-

glish Ontonotes 5.0 dataset using the CoNLL

2011/12 shared task format.

• Machine Comprehension (MC) systems

take an evidence text and a question as input,

and predict a span within the evidence that

answers the question. AllenNLP includes a

reference implementation of the BiDAF MC

model (Seo et al., 2017) which was state of

the art for the SQuAD benchmark (Rajpurkar

et al., 2016) in early 2017.

• Textual Entailment (TE) models take a pair

of sentences and predict whether the facts

in the first necessarily imply the facts in the

second. The AllenNLP TE model is a re-

implementation of the decomposable atten-

tion model (Parikh et al., 2016), a widely

used TE baseline that was state-of-the-art on

the SNLI dataset (Bowman et al., 2015) in

late 2016. The AllenNLP TE model achieves
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an accuracy of 86.4% on the SNLI 1.0 test

dataset, a 2% improvement on most publicly

available implementations and a similar score

as the original paper. Rather than pre-trained

Glove vectors, this model uses ELMo embed-

dings (Peters et al., 2018), which are com-

pletely character based and account for the

2% improvement.

• A Constituency Parser breaks a text into

sub-phrases, or constituents. Non-terminals

in the tree are types of phrases and the ter-

minals are the words in the sentence. The

AllenNLP constituency parser is an imple-

mentation of a minimal neural model for

constituency parsing based on an indepen-

dent scoring of labels and spans (Stern

et al., 2017). This model uses ELMo embed-

dings (Peters et al., 2018), which are com-

pletely character based and improves single

model performance from 92.6 F1 to 94.11 F1

on the Penn Tree bank, a 20% relative error

reduction.

AllenNLP also includes a token embedder that

uses pre-trained ELMo (Peters et al., 2018) repre-

sentations. ELMo is a deep contextualized word

representation that models both complex charac-

teristics of word use (e.g., syntax and semantics)

and how these uses vary across linguistic contexts

(in order to model polysemy). ELMo embeddings

significantly improve the state of the art across a

broad range of challenging NLP problems, includ-

ing question answering, textual entailment, and

sentiment analysis.

Additional models are currently under devel-

opment and are regularly released, including se-

mantic parsing (Krishnamurthy et al., 2017) and

multi-paragraph reading comprehension (Clark

and Gardner, 2017). We expect the num-

ber of tasks and reference implementations to

grow steadily over time. The most up-to-

date list of reference models is maintained at

http://allennlp.org/models.

4 Related Work

Many existing NLP pipelines, such as Stanford

CoreNLP (Manning et al., 2014) and spaCy6, fo-

cus on predicting linguistic structures rather than

modeling NLP architectures. While AllenNLP

supports making predictions using pre-trained

6https://spacy.io/

models, its core focus is on enabling novel re-

search. This emphasis on configuring parameters,

training, and evaluating is similar to Weka (Witten

and Frank, 1999) or Scikit-learn (Pedregosa et al.,

2011), but AllenNLP focuses on cutting-edge re-

search in deep learning and is designed around

declarative configuration of model architectures in

addition to model parameters.

Most existing deep-learning toolkits are de-

signed for general machine learning (Bergstra

et al., 2010; Yu et al., 2014; Chen et al., 2015;

Abadi et al., 2016; Neubig et al., 2017), and can

require significant effort to develop research in-

frastructure for particular model classes. Some,

such as Keras (Chollet et al., 2015), do aim to

make it easy to build deep learning models. Simi-

lar to how AllenNLP is an abstraction layer on top

of PyTorch, Keras provides high-level abstractions

on top of static graph frameworks such as Tensor-

Flow. While Keras’ abstractions and functionality

are useful for general machine learning, they are

somewhat lacking for NLP, where input data types

can be very complex and dynamic graph frame-

works are more often necessary.

Finally, AllenNLP is related to toolkits for deep

learning research in dialog (Miller et al., 2017) and

machine translation (Klein et al., 2017). Those

toolkits support learning general functions that

map strings (e.g. foreign language text or user

utterances) to strings (e.g. English text or sys-

tem responses). AllenNLP, in contrast, is a more

general library for building models for any kind

of NLP task, including text classification, con-

stituency parsing, textual entailment, question an-

swering, and more.

5 Conclusion

The design of AllenNLP allows researchers to fo-

cus on the high-level summary of their models

rather than the details, and to do careful, repro-

ducible research. Internally at the Allen Insti-

tute for Artificial Intelligence the library is widely

adopted and has improved the quality of our re-

search code, spread knowledge about deep learn-

ing, and made it easier to share discoveries be-

tween teams. AllenNLP is gaining traction exter-

nally and is growing an open-source community

of contributors 7. The AllenNLP team is com-

7See GitHub stars and issues
on https://github.com/allenai/allennlp
and mentions from publications at
https://www.semanticscholar.org/search?q=allennlp.
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mitted to continuing work on this library in or-

der to enable better research practices throughout

the NLP community and to build a community of

researchers who maintain a collection of the best

models in natural language processing.
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