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Abstract
We explore a toy model mechanism of geometric cancellation, alleviating the
(classical) cosmological constant problem. To do so, we assume at primor-
dial times that vacuum energy fuels an inflationary quadratic hilltop potential
nonminimally coupled to gravity through a standard Yukawa-like interacting
term, whose background lies on a perturbed Friedmann–Robertson–Walker
metric. We demonstrate how vacuum energy release transforms into geometric
particles, adopting a quasi-de Sitter phase where we compute the expected
particle density and mass ranges. Perturbations are introduced by means of
the usual external-field approximation, so that the back-reaction of the created
particles on the geometry is not considered here. We discuss the limitations
of this approach and we also suggest possible refinements. We then propose
the most suitable dark matter candidates, showing under which circumstances
we can interpret dark matter as constituted by geometric quasiparticles. We
confront our predictions with quantum particle production and constraints
made using a Higgs portal. In addition, the role of the bare cosmological con-
stant is reinterpreted to speed up the Universe today. Thus, consequences on

∗
Author to whom any correspondence should be addressed.

Original Content from this work may be used under the terms of the Creative Commons Attribution
4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.

1361-6382/23/105004+36$33.00 © 2023 The Author(s). Published by IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1361-6382/accc00
https://orcid.org/0000-0002-5348-9570
https://orcid.org/0000-0002-7147-134X
mailto:alessio.belfiglio@unicam.it
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6382/accc00&domain=pdf&date_stamp=2023-4-21
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Class. Quantum Grav. 40 (2023) 105004 A Belfiglio et al

the standard ΛCDM paradigm are critically highlighted, showing how both
coincidence and fine-tuning issues can be healed requiring the Israel–Darmois
matching conditions between our involved inhomogeneous and homogeneous
phases.

Keywords: dark energy, dark matter, inflation

(Some figures may appear in colour only in the online journal)

1. Overview

The cosmological constant problem is the undeniable tension in reconciling the observed val-
ues of vacuum energy density and theoretical large value of zero-point quantum vacuum fluc-
tuations5 [1]. This issue affects theoretical physics and its resolution would certainly convey a
very important step towards understanding physics beyond current standard models of cosmo-
logy and particle physics [2]. The corresponding background cosmology, namely the ΛCDM
model [3, 4], associated to the standard Big Bang scenario, is jeopardized by fine-tuning and
coincidence issues as consequence of the aforementioned cosmological constant problem [5].
Thus, it is likely that solving the latter would justify the exact dark energy magnitude, exhib-
iting a self-consistent scheme for late-time cosmology.

On the other side, early-time cosmology is driven by awidely-established inflationary epoch
where the Universe speeds up under the action of an inflaton field [6]. Commonly, it is believed
the current accelerated phase and inflation represent different scenarios, despite models unify-
ing both the two epochs are currently subject of intensive studies, see e.g. [7, 8] and references
therein.

In this work, we propose a toy model that tries to partially heal the (classical) cosmolo-
gical constant problem6. In particular, if we couple the inflaton field with the scalar curvature
of spacetime, we can obtain the inflationary dynamics and a particle production induced by
curvature that we may interpret in terms of dark matter. We conjecture that the corresponding
magnitude of such particles may cancel out the degrees of freedom of vacuum energy, coun-
terbalancing its value and de facto alleviating the huge discrepancy between observations and
predictions. To do so, we propose a suitable value for the bare cosmological constant today,
assuming it to drive the Universe at current time. To do so, following the Sakharov hypothesis
[9], stating that the stress-energy tensor of a field placed in the vacuum state must be propor-
tional to the constant7 vacuum energy density ρvac, we argue that the so-produced dark matter
particles are forced to be weakly-interacting and stable.We discuss their properties and assume
that they could be under the form of quasiparticles in agreement with previous findings, see

5 According to the standard lore of quantum field theory, ground state energy supports non-zero excitations as both
potential and kinetic energies cannot vanish at the same time, providing extremely large quantum fluctuations.
6 The cosmological constant problem is often split in classical and quantum. Here, we focus on the first case only.
For additional details, one can see [2]. In this work, we implicitly refer to the cosmological constant problem as its
classical version only.
7 This can be shown starting from flat (Minkowski) spacetime, where the only invariant tensor is ηµν . Since the
vacuum state must be the same for all observers, this implies ⟨0|Tµν |0⟩ ∝ ηµν . Moving to curved spacetime, con-
servation of stress-energy tensor requires ⟨Tµν⟩=−ρvacgµν , with ρvac constant. In the following we will then write
the cosmological constant as Λ = ΛB + ρvac, where ΛB is the bare cosmological constant driving current expansion
of the Universe. For a different perspective see, for example, [10].
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e.g. [11]. In so doing, we show that a passage from an initial quasi-de Sitter phase in a per-
turbed Friedmann–Robertson–Walker (FRW) spacetime to a radiation dominated Universe is
needful. If so, passing through these two phases, i.e. from a inhomogeneous to homogeneous
Universe, would imply two main processes: (1) inflation first, driven by an effective curvature-
coupled inflaton potential and (2) dark matter production fueled by vacuum energy release and
due to the coupling with geometry. In our treatment, we neglect possible back-reactionmech-
anisms, i.e. we do not show how particle production acts back on the spacetime geometry, thus
modifying the original perturbations8. We also discuss under which circumstances quantum
mechanisms of particle production could be subdominant than geometric particle production.
Further, we show suitable intervals of mass ranges for our dark matter candidates and we com-
pare our expectations with suitable examples of Higgs portal. Moreover, we discuss heuristic-
ally both the fine-tuning and coincidence problems by adopting the Israel–Darmois conditions
to connect our inhomogeneous and homogeneous universes. In this respect, we conjecture the
origin of the bare cosmological constant as due to matter pressure only, in agreement with a
mechanism of vacuum energy cancellation recently proposed in [7, 13]. Finally, consequences
on the ΛCDM paradigm are investigated.

The paper is outlined as follows. In section 2 we propose an effective potential driving infla-
tion, carrying vacuum energy that couples to gravity and we discuss its implications in both
inflation and particle production. The latter is well-described by using a perturbed FRW to get
particle contributions from vacuum energy. Consequences after inflation, namely in the reheat-
ing, radiation and matter eras, are investigated. The predictions of our dark matter constituents
are reported in section 3. The consequences at late-time, about the coincidence and fine-tuning
caveats are highlighted in section 4. The role of the bare cosmological constant is also debated.
Theoretical consequences of our recipe have been moreover discussed in section 5, emphasiz-
ing the strengths and limitations of ourmodel. The role of quantum particles has been reviewed.
Excluded ranges of masses for our geometric dark matter particles have been also discussed.
Conclusions and perspectives are drawn in section 6. Appendices concerning the details of our
computations have been also shown at the end of our manuscript.

2. Lagrangian setup

In this section, we investigate particle production that occurs as the Universe undergoes a
perturbed phase, i.e. where it turns out to be not-perfectly homogeneous and isotropic. To jus-
tify this fact in view of the cosmological principle, we will assume as basic demand, widely-
considered in the literature [6, 14], that metric perturbations originate from quantum fluc-
tuations of the inflaton field throughout all the inflationary phase. Thus, inflation generates
quantum fluctuations responsible for producing particles at primordial times [15].

We work out the latter ansatz to investigate whether particles inferred from geometry only
can influence the overall dynamics at primordial times. In fact, we are excluding possible
couplings of our fields with other fields from the standard model of particle physics. Moreover,

8 As discussed in [12], some arguments suggest that the reaction of particle creation back on the gravitational field
would modify the expansion, reducing the creation rate. A lower creation rate does not affect in any critical way our
model, it simply implies a longer time to produce the desired number density of particles, as we will see. However, it
is evident that a fully self-consistent treatment of gravitational particle production needs to properly address the issue
of back-reaction. We will come back to this point later in the text.
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we are also neglecting ‘quantum’ particle production from vacuum9, that would imply particle
pairs that in principle could annihilate. We will come back to this issue later on.

At primordial times, therefore, the Universe is clearly dominated by vacuum energy [19]
that, by construction, tends to highly accelerate the Universe [20]. The effect of particle pro-
ductionwould reduce the net amount of vacuum energy, breaking the Universe down. Tomodel
this process, we choose a potential that carries out vacuum energy with it throughout inflation,
whose scalar field is naively associated to inflaton10.

To simplify our scheme, we compute geometric particle production as due to inhomogen-
eities over a perturbed FRWbackground11. To account the high acceleration due to inflationary
epoch, we assume that particles are produced during an approximate de Sitter phase, i.e. hav-
ing a fast-evolving scale factor. Undoubtedly, in a pure de Sitter phase we cannot escape
from accelerating the Universe. Consequently, postulating a suitable version of our scalar-
field potential is crucial in order to get a graceful exit from inflation, as we will see.

A scalar field Lagrangian is therefore introduced, as composed by three main parts, namely
L= L1 +L2 +L3 that read

L1 =
1
2
gµνϕ,µϕ,ν [Kinetic term]

L2 =−ξ
2
Rϕ2 [Yukawa-like term]

L3 =−V(ϕ) [Potential term] (1)

whose physical meanings are reported in the square brackets on the right, with the minus sign
for L2 and L3 imposed adopting the signature convention (+,−,−,−) for L.

Choosing the Yukawa interaction implies to couple the gravity sector to the scalar field ϕ.
The interaction that we chose turns out to be the simplest non-minimal contribution to the
Lagrangian. Simpler approaches, namely minimal couplings, would not produce remarkable
results in view of particle production.

Finally, the coupling constant ξ implies non-minimal coupling with curvature that
resembles a Yukawa-like interaction between the scalar field ϕ and curvature itself, i.e. show-
ing an illuminating toy model describing self-interacting fields with spacetime12.

In our scheme,V(ϕ) is the inflationary potential that drives the Universe to accelerate during
inflation. Consequently, the field ϕ corresponds to the inflaton, that in our model is thought to
evolve from small to large field excitations, with small curvature at the end of inflation.

The Yukawa-like term carries with it the interaction, so as in particle physics one can ima-
gine to dress the field ϕ with the interaction itself [23]. Consequently, since the interaction
involves curvature the corresponding particles would be quasiparticles, interpreted as excit-
ations between geometry and inflaton. This hypothesis discussed in [11, 24] resembles free
standard particles, but provides for them a different mass and, more in general, different phys-
ical properties. As we clarify later, we interpret those particles, produced within our landscape,

9 With this expression we refer to gravitational particle production due to the sole expansion of spacetime, see e.g. the
seminal work [16] or [17, 18] for more recent reviews. Such particle production has a quantum nature, since it relies
on the fact that the initial (quantum) vacuum state is no longer seen as a vacuum as the Universe expands, thus leading
to particle creation. More details are given in section 5.
10 In principle, other approaches are possible. In the case of Higgs field, for instance, one gets the Higgs inflation [21].
Alternative views are also related to [22].
11 As a matter of fact, one can imagine to change the spacetime instead of perturbing FRW background. However,
this would imply to know a priori the underlying metric that is clearly unknown.
12 Usually Yukawa interaction involves three complex fields with a coupling constant associated to one of the four
fundamental forces. Since this is not exactly our case, we here use Yukawa-like.
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as darkmatter candidates. Themechanism of geometric particle production is clearly due to the
kind of coupling between the inflaton and the Ricci scalar and agrees with previous approaches
that seem to provide similar outcomes [24]. Rephrasing this concept, we here propose geomet-
ric particles of dark matter within the context of pure general relativity13.

Last but not least, we conventionally describe the Universe evolution in terms of conformal
time14, τ , having the conformally-flat FRW metric to be

gµν = a2(τ)ηµν , (2)

with ηµν the standard Minkowski metric. The ansatz for the scale factor in the various epochs
considered, and the corresponding matching conditions, will be discussed later in the text.

2.1. Inflationary potential

Adopting equation (1), we do not know a priori the most suitable choice for the potential.
Following Planck satellite results [26], there is no consensus about the most suitable scalar
field potential that drives inflation. The corresponding experimental results provided several
approaches that are still valid, ruling out other versions of V(ϕ). Among all the most promising
possibilities, the hilltop potentials have not been excluded yet [27, 28] and may well-adapt to
our scopes of healing the longstanding cosmological constant problem, producing de facto
particles from quantum vacuum energy. Indeed, the choice

V(ϕ) = Λ4(1−ϕn/µnn+ . . .), (3)

with n= 2;4, involves a typically-large early cosmological constant, which may drive cos-
mological inflation. Even though assuming hilltop potentials is not the unique possibility, it
appears as a remarkable toy approach that considers the presence of a potential driving inflation
with vacuum energy and permits one to analytically integrate the subsequent equations related
to particle production amount. Further, such potential has the advantage of driving inflation
for small fields, ϕ≃ 0, thus leaving the constant cosmological term to be responsible for a
large scalar curvature and particle production. More complicated models can also be invoked,
e.g. by assuming large field approaches, like the Starobinski potential, albeit in this case the
amount of particles would be mostly due to the interaction between inflaton and curvature,
thus complicating the overall treatment.

Hence, to guarantee the above prescriptions to hold, our strategy consists in the following
two steps:

• We split the Universe into different epochs. The first is dominated by the inflaton field. The
subsequent describes reheating and afterwards radiation dominated epoch until our era, i.e.
late-time. During inflation, we write FRW perturbations within the de Sitter spacetime as
generated by quantum fluctuations of the inflaton field;

• We evaluate geometric particle production [12, 29] during inflation, adopting the simplest
choice for the coupling constant ξ, namely the conformal coupling15 ξ = 1/6. To do so, we

13 Actually, the concept of geometric particles, or better geometric modes, of dark matter is also associated to exten-
ded theories of gravity. There, geometric particles are associated to higher orders of corrections within the Hilbert–
Einstein’s action [25].
14 See appendix B for a brief introduction to the notion of conformal time in cosmology and its relation to cosmic
time.
15 In appendix A we generalize our approach to the case of an unspecified coupling, deriving the corresponding
solutions for the field ϕ.
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focus on geometry to fuel particle production, neglecting the quantum particle production
related to the Bogoliubov coefficients [30, 31], as above remarked.

To work out our treatments, from equation (1), the free equation of motion for ϕ reads

□ηχ+V ′(ϕ → χ/a) a3 = 0, (4)

with□η ≡ ∂µ∂
µ in conformal time and V ′(ϕ)≡ ∂V/∂ϕ. From equation (4), since we rescaled

the field itself by the ansatz

ϕ(x) = χ(x)/a, (5)

the friction term, namely ∼ϕ̇H, disappears as a natural consequence of our choice, as well-
known in the literature, see e.g. [32].

Since our geometric particle production occurs at early stages of inflationary domain,
namely as ϕ is small, the case n= 4 is disfavored to describe our prescription than n= 2, that
also has the advantage to provide analytical dynamical solutions in strict analogy to the case
of chaotic potential V(ϕ) = m2ϕ2/2. Accordingly, we write the hilltop quadratic potential by

V(ϕ) = Λ4(1−ϕ2/µ2
2 + . . .), (6)

where Λ4 corresponds to the vacuum energy density during inflation [33, 34].
The above potential is defined independently from the shift V(ϕ)→ V(ϕ)+ C, with C a

generic constant, by simply rescaling the values ofΛ4 and µ2
2. This guarantees that, modifying

the potential by adding a constant, the cosmological constant problem is not restored. The scale
µ2 is intimately related to the field width, i.e. to the field variation during inflation.

2.2. Effective coupling with geometry

Inflation occurs as ϕ≃ 0 and, by virtue of equation (1), we define the corresponding effective
potential driving our inflationary phase as

Veff(ϕ,R)≡ Λ4(1−ϕ2/µ2
2)+ ξRϕ2 , (7)

having constructed the sum of both hilltop potential and geometric coupling without any more
complicated interactions. During inflation we can approximate it for small fields, having de
facto that it can reduce to a slightly evolving vacuum energy contribution ∼Λ4.

Clearly the dynamics of equation (7) is not fully-stable as due to the typology of coupling
with scalar curvature, here theYukawa-like one. In particular, once the original hilltop potential
is modified through the geometric coupling, it is possible a priori not to get a graceful exit.
In principle, we are here proposing a toy model where the coupling with curvature can play
the role of producing particles, but further investigations on equation (7), to work out how
inflation naturally ends, are essential. In other words, one has to investigate which kind of
more complicated curvature coupling may be included into the above scenario, in order to exit
inflation. Limiting to this toy model, we make some heuristic considerations on how inflation
may end later in the manuscript.

At this stage, plugging equation (6) into (4), we get

□ηχ − 2a2
Λ4

µ2
2

χ= 0. (8)

Here, equation (8) can be analytically solved to adapt throughout inflation occurs. We focus on
two phases below, namely during and after inflation. We thus analyze how to produce particles
and how to interpret them as dark matter, and then we discuss the consequences of our recipe
immediately after inflation, up to our times.
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2.3. Phase A: starting with the inflationary stage

Theoretically speaking, inflation lasts inside−∞< τ < 0. Around τ ≃ 0, i.e. as inflation ends,
a de Sitter phase would naturally diverge and consequently unphysical divergences could
occur. To avoid such singularities, the scale factor can be rewritten as prompted in [35]:

a(τ) =
1

1−HIτ
, τ ⩽ 0, (9)

where we conventionally baptize the Hubble constant with HI , during inflation. It is evident
that equation (9) does not provide any pathology within the range −∞< τ ⩽ 0, letting our
model to work better during and immediately after inflation.

For the sake of clearness, it is well-established that during inflationary stage the Hubble
rate is not exactly a constant. It may slightly change with time, leading to a quasi-de Sitter
expansion. Assuming a de Sitter phase is therefore an approximation that, however, works
well in describing the overall evolution of the scalar field during inflation. We will come back
to analyze this issue later throughout the text.

2.3.1. Dynamical solutions. Now, bearing the ansatz (9) in mind, equation (8) gives

□ηχ− 2
(1−HIτ)2

Λ4

µ2
2

χ= 0, (10)

whose general solution can be recast by

χ(x, τ) =
fk(τ)eik·x

(2π)3/2
. (11)

Here, the field modes f k satisfy the differential equation

f̈k+

[
k2 − 1

(1−HIτ)2

(
2Λ4

µ2
2

)]
fk = 0. (12)

Hence, equation (12) can be more compactly written as

f̈k+

[
k2 − 1

τ̃ 2

(
2Λ4

µ2
2H

2
I

)]
fk = 0, (13)

having introduced the new variable τ̃ = τ − 1/HI. This equation has the form

f̈k+

[
k2 − 1

τ̃ 2

(
ν2 − 1

4

)]
fk = 0, (14)

admitting general solutions given in terms of Hankel’s functions [14]

fk(τ) =
√
−τ̃
[
c1(k)H

(1)
ν (−kτ̃)+ c2(k)H

(2)
ν (−kτ̃)

]
. (15)

2.3.2. Bunch–Davies state for vacuum. The constants c1(k) and c2(k) are determined by
selecting the vacuum state in the de Sitter space. As it is well-known from quantum field
theory, a general curved spacetime does not admit a canonical, or even preferred, vacuum
state [36]. So, a convenient choice in the de Sitter spacetime is the so-called Bunch–Davies
state, which appears precisely thermal to a free-falling observer in such a space16 [38]. In

16 Clearly, this choice is not unique and modifying the vacuum can have consequences on particle production. Our
choice is, however, extremely common and widely-used in the literature. See e.g. [37] for an introduction to other
possible vacuum choices in inflation.
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particular, imposing in our scheme the Bunch–Davies vacuum turns out to be equivalent to let
our solution match the plane wave solution eikτ/

√
2k in the ultraviolet regime k≫ aHI. Thus,

we have

fk(τ) =

√
π

2
ei(ν+

1
2 )

π
2
√
−τ̃H(1)

ν (−kτ̃), (16)

where H(1)
ν are first kind Hankel’s functions and from equations (13) and (14) we get

ν2 =
1
4
+

2Λ4

µ2
2H

2
I

. (17)

2.3.3. Scalar field perturbations. We assume now that scalar perturbations of the metric
are generated by the quantum fluctuations of the inflaton field, as in the standard model of
inflation [6, 14]. We neglect the effects of tensor modes (gravitational waves), which however
are expected to produce similar outcomes17 on super-Hubble scales. The most general line
element for a perturbed spatially flat FRW Universe in case of scalar perturbations reads

ds2 = a2(τ)
[
(1+ 2Φ)dτ 2 − 2 ∂iB dτdxi − ((1− 2Ψ)δij+DijE)dx

i dxj
]
. (18)

In the longitudinal (or conformal Newtonian) gauge, we set E= B= 0. For a scalar field,
one also obtains18 Ψ =Φ. Accordingly, the perturbation potential Ψ satisfies the differential
equation [14, 40]

Ψ̇+HΨ= 4πGϕ̇0δϕ= ϵH2 δϕ

ϕ̇0
, (19)

where we split the field as

ϕ= ϕ0(τ)+ δϕ(x, τ), (20)

with ϕ0 representing the ‘classical’ background field19 and δϕ(x, τ) the quantum fluctuations
around ϕ0. In equation (19), G is the gravitational constant,H= ȧ/a and ϵ the usual slow roll
parameter20. From equation (9), we have

H≡ ȧ
a
=

HI

1−HIτ
, (21)

with (always) vanishing slow-roll parameter ϵ, given as a consequence of adopting a quasi-de
Sitter phase. Indubitably, a pure de Sitter spacetime implies ϵ= 0 at any time. To overcome
this issue, we could easily modify the scale factor by including a slight correction, following
the general idea of [14]. A plausible modified a(τ) then reads

17 If the energy-momentum tensor of the inflaton field is diagonal as in our case, it can be shown that also tensor modes
are nearly frozen on super-Hubble scales [14]. For what concerns graviton production itself, it has been proven that
in this case the relevant terms are those due to the FRW background [12, 39], i.e. perturbative production of gravitons
would only give small corrections and thus it is not further investigated here. However, graviton dynamics may be
damped due to the creation of scalar particles, as discussed in [12].
18 For the minimally coupled case, this can be shown starting from the non-diagonal part (i ̸= j) of the (ij)-perturbed
Einstein equations. See e.g. [14] for the details. Using a similar argument, one can show that the same result holds
during the slow-roll phase of inflation, where the scalar curvature is almost constant.
19 Spatial ϕ0 expansions are in the form of complex exponentials. Taking infinite wavelengths leads to vanishing
momenta, or alternatively to non-oscillations of the field, justifying de facto the name ‘classical’ above used, see
e.g. [14].
20 In our notation, the overdot always refers to derivatives with respect to conformal time, e.g. ȧ= ∂a/∂τ . See
appendix B for the interconnections between conformal, τ , and cosmic time, t.
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a(τ) =
1

(1−HIτ)1+m
, (22)

where m is a constant that weakly deviates from m= 0. For the sake of completeness, in
principle we can assume m= m(τ) instead of a pure constant m, in order to properly solve
equation (19). Both the possibilities, namely constant m and m= m(τ), as anticipated above,
are related to the fact that inflation has to be described by a quasi de Sitter phase, first to avoid
ϵ= 0 and second to guarantee that a(τ) is an approximate, but suitable, ansatz for our hilltop
potential that, only asymptotically, evolves like a de Sitter phase.

With the ansatz (22), equation (21) is slightly modified by

H=
(1+m)HI

(1−HIτ)
(23)

from which

ϵ= 1− Ḣ
H2

= 1− 1
1+m

≃ m, (24)

where the last equality on the r.h.s. is true for small m only. As stated above, by imposing a
time-varying m term, the corresponding, more complicated, version of ϵ would weakly evolve
during inflation to guarantee a graceful exit from it. We hereafter leave it fixed throughout the
overall inflationary phase only to simplify our calculations and we will require ϵ→ 1 in order
to end inflation.

2.3.4. Potential solutions at super-Hubble scales. From now on, we focus on super-Hubble
scales, where the condition k≪ a(τ)HI holds. This will provide a physically motivated cut-
off for the momenta of particles produced, as we will see. On these scales, it can be shown
[14] that ϕ̇0 and δϕ solve the same equation. The solutions are then related to each other by a
function c(x) which depends upon space only:

δϕ= c(x)ϕ̇0. (25)

Setting c(x) = eiq·x, we can solve equation (19) for the scale factor (9) and obtain the general
form of the potential

Ψ=
ϵHI− 2c1(1−HIτ)

2

2(1−HIτ)
eiq·x. (26)

Assuming now that Ψ(τ →−∞) = 0, we explicitly get

Ψ=
ϵHI

2(1−HIτ)
eiq·x. (27)

Having a functional form for Ψ, we can now compute the perturbation tensor from which our
geometric particles arise.

An interesting point, from equation (27) is the following. As ϵ tends to one, namely as infla-
tion ends, the perturbed potential does not vanish. This is a general feature of inflationary mod-
els, not only limited to our choice of V(ϕ). Consequently, a suppressing position-dependent
exponent in the phase eiq·x may be requested as cut-off scale in Ψ, physically motivated by
the fact that once inflation ends the Universe is less inhomogeneous than during inflation and,
gradually increasing the cosmic scale by cosmic expansion, one recovers the cosmological
principle.

9
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In other words, a generic form of Ψ for a unspecified potential that violates equation (25)
may read

Ψ= F(ϵ,τ,HI)e
iq(τ)·x , (28)

with q(τ) = q+ iKτ , and K a unconstrained positive-definite momentum.
A possible physical motivation to an ansatz of the form (28) may lie in the so-called back-

reaction mechanism, which we now briefly discuss.

2.3.5. The issue of back-reaction. The perturbed Einstein equations, equation (19), describe
how the inflaton fluctuations affect spacetime geometry during inflation. The next step would
be then to compute particle production starting from the perturbation potential Ψ, which is
the only independent geometric quantity in our framework. However, when particles are pro-
duced, they inevitably alter spacetime geometry via their energy-momentum tensor. In other
words, particle production induces a back-reaction of the field on the geometry, implying a
modification of the original fluctuations δϕ(x, τ).

In [12], it has been pointed out that such amechanism could, in principle, reduce the particle
production rate, since any initial inhomogeneity can be damped out as the Universe evolution
goes on. In our model, we could heuristically overcome this issue by simply changing the
instant of time at which particle production is expected to begin, as discussed in section 2.4.
Accordingly, for the moment we neglect the back-reactionmechanism due to its computational
complexity, thus preserving the external-field approximation proposed in [12]. Clearly, a self-
consistent approach to geometric particle production cannot avoid a proper description of back-
reaction, which requires then further investigation. In this direction, a recent gauge-invariant
study of back-reaction associated to inflationary particle production has been performed in
[41], focusing on a classical approach to cosmological perturbations [42].

2.3.6. Gauge transformations. We now need to write the gravitational potential Ψ in the
synchronous gauge21. In this gauge, the most general scalar perturbation takes the form hij =

hδij/3+ h∥ij.
The general procedure to transform from the longitudinal to the synchronous gauge is the

following [43]. Let us consider a general coordinate transformation from a system xµ to another
x̂µ

xµ → x̂µ = xµ + dµ(xν). (29)

We write the time and the spatial parts separately as

x̂0 = x0 +α(x, τ) (30a)

x̂= x+∇β(x, τ)+ ϵ(x, τ), ∇· ϵ= 0, (30b)

where the vector d has been divided into a longitudinal component ∇β and a transverse com-
ponent ϵ⃗.

Let x̂µ denote the synchronous coordinates and xµ the conformal Newtonian coordinates,
with x̂µ = xµ + dµ. We have

21 We adopt the synchronous gauge in analogy to seminal papers on geometric particle production [12, 29]. However,
the number of geometric particles produced is a gauge-independent quantity, as discussed in [41], where the more
popular longitudinal gauge is also considered.

10
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α(x, τ) = β̇(x, τ), (31a)

ϵi(x, τ) = ϵi(x), (31b)

h∥ij(x, τ) =−2

(
∂i ∂j−

1
3
δij∇2

)
β(x, τ), (31c)

∂i ϵj+ ∂jϵi = 0. (31d)

and

ψ(x, τ) =−β̈(x, τ)− ȧ
a
β̇(x, τ), (32a)

ϕ(x, τ) = +
1
6
h(x, τ)+

1
3
∇2β(x, τ)+

ȧ
a
β̇(x, τ). (32b)

Now, setting Φ =Ψ, as above stated, and recalling equation (27), we obtain

β̈(x, τ)+
β̇(x, τ)
1−HIτ

HI+
ϵHI

2(1−HIτ)
eiq·x = 0, (33)

whose general solution is

β(x, τ) =
(
−ϵτ

2
+
c1τ 2

2
+ c2

)
eiq·x. (34)

2.3.7. Perturbation potential. Let us now focus on the values of the integration constants c1
and c2. Concerning c2 it is easy to see, from equation (32a), that Ψ vanishes at τ → 0 inde-
pendently from the value of c2 that, consequently, is fully-unconstrained. It is straightforward
to set c2 = 0 only to reduce our problem complexity. The situation mostly changes concerning
c1. There is no a priori reasons to fix it to a given value and apparently β(x, τ) turns out to be
quadratic in the conformal time. However, a conceptual caveat suggests how to get it. Indeed,
subtracting then equation (32b) from (32a), we get

β̈(x, τ)− 2HI

1−Hτ
β̇(x, τ)+

h(x, τ)
6

= 0 (35)

leading to

h(x, τ) =−6β̈+
12HI

1−HIτ
β̇. (36)

Here, h(x, τ) would imply non-vanishing perturbations at −∞ that actually diverge, as due to
the first-order β time-derivative22. This fact appears clearly unphysical as we require perturb-
ations to occur during and after inflation, rather than before. Plausibly we are thus forced to
set c1 = 0 to avoid any possible issue. Hence, we get from equation (37)

h(x, τ) =− 6ϵHI

1−HIτ
eiq·x =−12Ψ. (37)

On super-Hubble scales, the term h∥ij can be neglected. The perturbation tensor in synchronous
gauge then reads

22 Second-order time-derivative implies instead a constant term, almost non-influential for our prescription.

11



Class. Quantum Grav. 40 (2023) 105004 A Belfiglio et al

hµν =


0 0 0 0
0 4Ψ 0 0
0 0 4Ψ 0
0 0 0 4Ψ

 , (38)

from which the line element

ds2 = a2(τ)
[
dτ 2 − δij(1− 4Ψ)dxi dxj

]
. (39)

We are now ready to compute the corresponding geometric particle production.

2.4. Geometric particle production

In the external-field approximation, we can describe the interaction of the inflaton with space-
time geometry at first perturbative order via the Lagrangian [12]

LI =−1
2

√
−g(0)HµνT(0)µν , (40)

where g(0)µν ≡ a2(τ)ηµν , Hµν = a2(τ)hµν and T(0)µν is the zero-order energy-momentum tensor,
namely

T(0)µν = ∂µϕ∂νϕ−
1
2
g(0)µν

[
gρσ(0)∂ρϕ∂σϕ− 2Λ4(1−ϕ2/µ2

2)
]

− 1
6

[
∇µ∂ν − g(0)µν∇ρ∇ρ +R(0)

µν −
1
2
R(0)g(0)µν

]
ϕ2. (41)

The first-order Ŝ-matrix can be obtained by Dyson’s expansion formula (see e.g. [44])

Ŝ= T̂exp−i
´+∞
−∞ d4xHI , (42)

where HI is the Hamiltonian density in interacting picture and T̂ the time-ordering operator.
The exponential form of Dyson’s expansion is not practical, since the integral in the expo-

nent cannot be computed exactly. We may then expand out equation (42) at first order, recall-
ing that the interaction Hamiltonian is smaller than the background one. As HI =−LI in our
model [45, 46], following the standard procedure in Dyson’s expansion we get

Ŝ≃ 1+ i T̂
ˆ

d4x LI. (43)

Accordingly, the second order particle number density at time τ∗ is

N(2)(τ∗) =
a−3(τ∗)

(2π )3

ˆ
d3k d3p |⟨0|Ŝ|k,p⟩|2. (44)

We remark that second order terms are not required in the Ŝ-matrix expansion (43), since
the interaction Lagrangian is still quadratic in the field at second geometric order, thus con-
tributing at higher orders to the particle number density. Moreover, in equation (44) we have
assumed that no ‘quantum’ particle production is involved, namely the Bogoliubov coefficients
βk and βp obtained in [12] have been neglected. In appendix C we discuss the generalization
of equation (44) to the case of non-zero Bogoliubov coefficients. Quantum particle production
is also responsible for the generation of particle-antiparticle pairs at zero and first geometric
order [12, 16, 29], as we will discuss in section 5.

12
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Coming back to equation (44), the probability amplitude for particle pair creation can be
derived from equations (40)–(43), namely

⟨0|Ŝ|k,p⟩= − i
2

ˆ
d4x 2a4Hij

[
∂(iϕ

∗
k∂j)ϕ

∗
p −

1
2
ηijη

ab∂(aϕ
∗
k∂b)ϕ

∗
p + g(0)ij Λ4

(
−
ϕ∗kϕ

∗
p

µ2
2

)
− 1

6

(
∇i ∂j− g(0)ij ∇a∇a+R(0)

ij − 1
2
R(0)g(0)ij

)
ϕ∗kϕ

∗
p

]
, (45)

with i, j = 1,2,3 as consequence of working in the synchronous gauge. We have also defined
the field modes

ϕk(x, τ) =
fk(τ)

(2π)3/2a(τ)
eik·x, (46)

which can be derived from equation (11) together with the solutions equation (16).
On super-Hubble scales, these modes can be written as [14]

ϕk =
1

(2π)3/2
ei(ν−

1
2 )

π
2 2ν−

3
2

Γ(ν)

Γ(3/2)
HI√
2k3

(
k
aHI

) 3
2−ν

eik·x. (47)

Exploiting now the fact that the perturbation tensor is diagonal and writing explicitly all the
curvatures, equation (45) can be recast in the compact form

⟨0|Ŝ|k,p⟩=− i
2

ˆ
d4x 2a4 (A1(x, τ)+A2(x, τ)+A3(x, τ)) , (48)

where Ai(x, τ) are the only non-zero contributions to the probability amplitude, namely

Ai(x, τ) = Hii ·
[
∂iϕ

∗
k∂iϕ

∗
p +

1
2
ηab∂aϕ

∗
k∂bϕ

∗
p + a2Λ4

(
ϕ∗kϕ

∗
p

µ2
2

)
− 1

6

(
∂i ∂i+

ȧ
a
∂0 + ηab∂a∂b−

(
ä
a
+

(
ȧ
a

)2
)
+ 3

ä
a

)
ϕ∗kϕ

∗
p

]
. (49)

2.4.1. Dark matter from ‘geometric particles’?. With all the above ingredients, we can now
compute the final number density of geometric particles produced, namely N(2)(τ) at τ = 0.
As anticipated, these are interpreted in terms of dark matter quasiparticles. Dark matter seems
the most plausible candidate in our model, since it only interacts gravitationally with ordinary
matter and, in fact, the way of obtaining it derives from the Yukawa-like potential only. We
expect that any particle pair creation, got from purely quantum processes, becomes subdom-
inant over quasiparticles obtained directly from vacuum fluctuations [47], as above discussed.

Hence, to determine dark matter microphysics and properties, we first need to specify initial
inflationary settings, i.e. to properly define super-Hubble scales, introducing a cut-off scale to
have enough e-foldings, say N, that are needful to speed up the Universe during inflation [6],
having

N=

ˆ
dtH(t) =

ˆ
dτ

HI

1−HIτ
≃ 60, (50)

where conventionally we took 60 as minimal number of e-foldings. We thus obtain log(1−
HIτ)|tI0= 60, where tI < 0 is assumed to be the initial time for inflation, and it can be inferred
once the fixed values are imposed on our free parameters.

13
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Lying on super-Hubble scales, namely

k
a(τ)HI

≪ 1 =⇒ k≪ a(τ)HI, (51)

quantum fluctuations of the inflaton field become classical23, i.e. they no longer oscillate in
time (cfr equation (47)). In this respect, we can properly get particles only after horizon exit24.

Easily, equation (47) is valid throughout all the inflationary epoch, as we take the min-
imum of aHI , say a(τI)HI, as required cut-off. This ensures that the field modes are described
by equation (47) as τ > τI. However, since a(τI)∝ exp(−60), this choice would result in a
very small cut-off for particle momenta. Consequently, from a genuine physical perspective,
this issue is healed by assuming that geometric particle production started at ti > tI, i.e. not
exactly at the beginning of the inflationary era. In our computation we can show that, in view
of our effective potential parameters, realistic values for the dark matter number density may
be obtained within the range ti ∈ [−exp(45)/HI,−exp(40)/HI]. For completeness, however,
we remark that our choice of time-independent cut-off inevitably leads to underestimating the
total number density. This happens because we essentially neglect all the momenta whose
horizon crossing is subsequent the time τ i.

2.4.2. Constraints on the effective potential. Concerning the requirements of our effective
potential, we invoke the following basic demands.

• Since inflation is thought to follow a quantum gravity regime, we expect vacuum energy
scales to lie on Planck mass scales, namely

Λ4 ≃M4
pl, (52)

where Mpl = 1.22× 1019 GeV is the Planck mass. This ansatz agrees with current under-
standing about the value of the cosmological constant as predicted by quantum field theory
fluctuations [1].

• The corresponding slightly evolving Hubble rate during inflation is therefore

H2(t)≡ H2
I ≃

8πG
3

Λ4, (53)

and Planck satellite data [26] impose the following constraint (at a 95% confidence level):

HI

Mpl
< 2.5× 10−5, (54)

which accordingly would give Λ4 ≲ 1065 GeV4. In particular, this energy scale for vacuum
energy is the typical regime of spontaneous symmetry breaking in grand unified theories
[48, 49].

• The minimally coupled hilltop quadratic potential requires [26]

0.3< log10(µ2/Mpl)< 4.85, (55)

23 The same expression of equation (51) formally holds for p also.
24 A more detailed discussion on the notion of particle at horizon crossing can be found in chapter 24 of [47].
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Figure 1. Number density N(2) in GeV3 as function of the hilltop width, µ2, in
units of Mpl. The other involved parameters are: Λ4 = 1064 GeV4, ϵ= 10−14, τi =
−exp(40)/HI. The value 40 is conventionally chosen inside the whole interval in which
inflation occurs, as explained in the text.

namely 2 Mpl ≲ µ2 ≲ 105 Mpl. Our effective potential, instead, includes additional
field-curvature coupling contribution, that provide relevant consequences on inflation.
Nevertheless, in case of conformal coupling, large Λ4 values would result in vacuum energy
domination. Hence, it appears licit to consider the prescription of equation (55) in our com-
putation as prior for equation (7).

Concerning the choice of the slow-roll parameter, we have previously discussed that small
deviations from a pure de Sitter evolution are required in order to have a non-zero ϵ. Since we
are dealing with inhomogeneities at a perturbative level, we also have to satisfy [12, 29]

|hij(x)| ≪ 1. (56)

Hence, by virtue of equation (27) we see that in order to preserve the perturbative treatment,
we further need ϵHI ≪ 1. In this respect, we draw in figure 1 the number density of geometric
particles, namely N(2)(0), for given values of the hilltop parameter µ2. In figure 2 we show the
dependence of the number density on the vacuum energy term driving inflation, Λ4.

2.4.3. Cut-off scales and vacuum energy. A further inspection of equations (17) and (47)
reveals that the modes of the field become exactly ‘frozen’ on super-Hubble scales if ν ≃ 3/2,
namely

µ2 ≃ 0.42× 1019 GeV= 0.34 Mpl. (57)

This value is well outside the range provided in equation (55) that, however, we know to be
valid only in case of minimally-coupled inflaton. Smaller µ2 values generally lead to a larger
number density. Accordingly, if we require equation (57) to hold in general, then two possib-
ilities arise:

• The cut-off scale on particle momenta is forced to be much smaller, in order to preserve
realistic values for the number density N(2)(0);

• Alternatively, vacuum energy should be several orders of magnitude below Planck energy
scale, i.e. closer to the scales of the particle physics standard model.
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Figure 2. Number density N(2) in GeV3 as function of vacuum energy. We have set
µ2 = 2 Mpl, τi =−exp(40)/HI and ϵ is chosen so that ϵHI = const. The value 40 is
conventionally chosen inside the whole interval in which inflation occurs, as explained
in the text.

The latter possibility is still an open and promising scenario. Constraining N(2)(0) requires
to know the cut-off scale that a priori cannot be known. Disclosing how to constrain the
vacuum energy cut-off scales deserves further investigation and will be object of future works.

2.5. Phase B: exiting inflation

We featured the inflationary epoch by using the de Sitter solution of equation (9). This rep-
resented a suitable approximation that, however, fails to be predictive during the reheating
transition, i.e. as inflation ends. In particular, at the end of inflation equation (53) no longer
holds and the behavior of the scale factor is not determined by the sole vacuum energy, Λ4.
Instead, it depends on the full effective potential Veff that, consequently, should be evaluated
in toto.

In particular, the potential Veff of equation (7) also includes the coupling to the Ricci scalar
curvature, which is crucial to interpret geometric particles as dark matter quasiparticles. How-
ever, this interacting term grows as ϕ increases. By construction, it grows when the hilltop
potential evolves towards its minimum. Accordingly, the presence of such coupling would not
allow a graceful exit from inflation, since the full potential never reaches its minimum. In prin-
ciple, this may suggest that a more complicated version the single-field inflationary potential
would be required in order to properly address the transition from inflation to reheating. For
instance, in [7] a Morse potential reducing to the Starobinski one is investigating, unifying de
facto inflation with dark energy.

2.5.1. Approximating the reheating phase. Here, as naive estimation we can assume that
during reheating the background geometry behaves in average as a matter dominated Universe
[35, 50] and so, accordingly to this hypothesis, we select a scale factor that fulfills an Einstein–
de Sitter (EdS) Universe dominated by matter through

a(τ) =

(
1+

HI τ

2

)2

, 0< τ < τr (58)

where we denote with τr the time at which reheating is expected to end.
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We now need continuity of each epoch, without passing through any transition. To do so,
we notice that equation (58) ensures the validity of the matching conditions [51] at time τ = 0,
essentially implying the continuity of the scale factor and Hubble parameter on the junction
hypersurface. For τ > 0, the zero-order scalar curvature takes the form:

R(0) =
3H2

I

(1+ HIτ
2 )6

, 0< τ < τr (59)

and introducing the usual slow-roll parameter

ϵ=
1

16πG

(
V ′

V

)2

, (60)

we can exploit equation (7) and set ϵ= 1 to obtain a realistic value ϕend for the field at the end
of inflation. For R(0)(τ > 10−12) the hilltop contribution dominates over the field-curvature
coupling in Veff, and we expect a result close to the one obtained for minimally coupled hilltop
models [52], namely

2q2
(ϕend/µ2)

2

(1− (ϕend/µ2)2)2
= 1 , (61)

having defined q≡Mpl/µ2. We obtain the following expansion for small q,

ϕend = µ2

(
1− 1√

2
q+

1
4
q2 +O(q3)

)
, (62)

so that we have a nonzero remaining contribution to the hilltop component of the potential.
We expect this remaining contribution to the potential to be responsible for baryonic particle
creation, as usually discussed in preheating and reheating models (see e.g. [50]).

2.5.2. Approximating the radiation dominated phase. As the reheating stops, the subsequent
phase of radiation domination can be modeled by a scale factor of a EdS Universe of the form

a(τ) = bτ + c, τr < τ < τm (63)

where the constants b and c are determined by again imposing the matching conditions on
the matching hypersurface from reheating to radiation phase, at time τ = τr. The quantity τm
denotes the instant of time at which transition to the matter-dominated era is expected to hap-
pen. During radiation domination, the corresponding EdS Hubble parameter and temperature
satisfy [48]

H∼
√
GT2, (64)

where T is the corresponding temperature of the Universe. The expected dark matter energy
density at τr is then25

ρDM (τr) ≃ (1+ zr)
3ρDM

0 , (65)

where ρDM
0 is the current value got at redshift z= 0, namely ρDM

0 ≃ 0.25 ρcr, with ρcr ≡
3H2

0/8πG and H0 is the Hubble constant. Further, we introduced the redshift zr that certifies

25 For the sake of completeness, the subsequent dark matter contribution is not pressureless as in the standard cosmo-
logical model, but has a non-negligible term that agrees with the one found in [13]. This term, however, is absolutely
negligible at the reheating time and does not affect the Universe dynamics. We will show later in the text that its
magnitude can be associated to current observations of the cosmological constant, tackling the coincidence problem.
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the beginning of the radiation phase. Since we are dealing with the radiation-dominated epoch,
zr can be obtained within a EdS Universe dominated by radiation only, i.e.

H(z)≃ H2
0Ω0r(1+ z)4. (66)

Here, Ω0r is the today radiation density, say Ω0r ≡ ρr0/ρcr ≃ 9.29× 10−5 [53]. Using now the
ansatz made in equation (64), we get

zr ≡ z(Tr)≃ 4

√
GT4

r

H2
0 Ω0r

, (67)

where Tr is the temperature corresponding to zr.

3. Dark matter constituent

Assuming the whole dark matter is produced during inflation, via the geometric mechan-
ism described in section 2.4, we could in principle estimate its mass. By construction we
have ρDM = m∗N(2), where m∗ is the mass of the dark matter candidate. Thus, by virtue of
equations (65) and (67), we easily get

m∗(Tr) =
ρDM

N(2)
≃
(

GT4
r

H2
0 Ω0r

)3/4
ρDM
0

N(2)
, (68)

and both densities might be computed at τ = τr. However, since this time is a priori unknown,
we cannot use equation (58) to compute the normalization factor for N(2)(τr). This issue may
be healed assuming, for instance, that τr is small enough to show a(τ = τr)≃ a(τ = 0) = 1.
We therefore simply follow the latter approach, just noticing that any larger τr would only
slightly modify the normalization factor for N(2), as confirmed in equation (44).

Hence, fixing the temperature Tr and employing the parametersΛ4 ≃ 1064 GeV4, ϵ= 10−14

introduced in figure 1, we can compute the value of the mass m∗ for µ2 in a given interval, as
reported in table 1 and prompted in figure 3. In table 1 we also show that a larger (in absolute
value) τ i would lead to larger values for the mass of the dark matter candidate. As already
discussed, this is due to the fact that larger |τi |would result in smaller values for themomentum
cut-off and thus less particles produced. In figure 4 we show the dependence of the mass m∗

on the temperature Tr, for µ2 = 2Mpl.
We notice then that the total amount of dark matter present in the Universe could in prin-

ciple be traced back to a geometric particle production mechanism. We remark again that our
results critically depend on the momentum cut-off scales, introduced in section 2.4.1, which
is intimately related to the initial ansatz for the scale factor during inflation. A larger cut-off
would result in a larger number of particles produced and, therefore, smaller values for the
mass m∗. We also underline that the initial temperature of the radiation phase is in principle a
model dependent quantity.

In figure 5 we show that the points of table 1 fit well with an exponential function, provided
µ2 remains close to the lower bound imposed by Planck (cfr equation (55)).

4. Coincidence and fine-tuning problems

The above-developed strategy is proposing a toy model mechanism that transforms vacuum
energy into particles. Since dark matter here arises from the coupling between inflaton and
curvature, at a perturbative level, we baptized it as due to geometric particles, whose collective
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Figure 3. Mass of the dark matter candidate (GeV) as function of the hilltop parameter
µ2. The other parameters are:Λ4 = 1064 GeV4, ϵ= 10−14, τi =−exp(40)/HI and Tr =
1 GeV.

Table 1. Table of masses m∗ of the geometric dark matter candidate for given values of
τ i and the hilltop parameter µ2, assuming conventionally Tr = 1 GeV. The numbers 40
and 45 are arbitrarily chosen to reduce the interval in which dark matter is produced, as
explained in detail in the text.

τ i (GeV−1) µ2(Mpl) m∗(GeV)

− exp(40)
HI

1.5 9.45× 10−10

2.0 5.29× 10−5

2.5 4.94× 10−3

3.0 7.80× 10−2

3.5 0.503
− exp(45)

HI
1.5 0.661
2.0 8.31× 103

2.5 1.15× 106

3.0 2.26× 107

3.5 1.66× 108

behavior turns out to be stable throughout the Universe evolution, having therefore quasi-
particle constituents, as argued in [11].

In view of this, we here focus on the Universe dynamics and we show how to obtain a
heuristic argument to alleviate the coincidence and fine-tuning problems plaguing the stand-
ard cosmological background model. To do so, since we have assumed continuity between the
inhomogeneous and homogeneous epochs, i.e. the cosmic dynamics is smooth and no discon-
tinuities are expected, we can proceed as schematically listed below.

• We ask that, in addition to continuity between epochs, the Israel–Darmois junction condi-
tions hold [51]. These conditions require that, on the spacelike hypersurface representing
the junction time, the two metric tensors induced by each Universe coincide, as well as the
two extrinsic curvatures (see also [54, § 21.13]).
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Figure 4. Mass of the dark matter candidate in GeV as function of the temperature Tr at
the beginning of radiation phase. The other employed parameters are: Λ4 = 1064 GeV4,
ϵ= 10−14, τi =−exp(40)/HI and µ2 = 2 Mpl.

Figure 5. Same points of figure 3 (black dots) in the range µ2 ∈ [1.5,2.5]Mpl fitted with
a test function found under the form of an exponential: f(µ2) = a exp(bµ2 + c). The fit
has been carried out by the FindFit command in Wolfram Mathematica. The best fit
values are found as: a= 4.969× 10−11, b= 7.907, c=−1.353.

• For each metric, namely for the homogeneous and inhomogeneous spacetime, we evaluate
the corresponding energy and pressure. We call them ρ1;2 and P1;2, where conventionally we
refer to subscripts 1;2 as inhomogeneous and homogeneous metrics, respectively.

• Since the overall energy is conserved by construction, we calculate the pressure jump, i.e. the
difference P(1) −P(2). If the latter would be proportional to the critical density of the Uni-
verse today, or smaller, then the energy transformed into geometric particles leaves the pres-
sure magnitude today of the same order of current observations.

4.1. The role of the bare cosmological constant

The last item, essential for our purposes, occurs because at the end of inflation the energy of
the initial inhomogeneous Universe is much smaller than vacuum energy. The energy lost, and
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transformed into geometric particles, is responsible for ρ(1) magnitude. This fact can naturally
fix the fine-tuning issue today. Indeed, if ρ(2) is equal to the density at the end of inflation,
i.e. without the degrees of freedom of quantum vacuum energy, the fine-tuning issue is not a
well-posed problem, but rather it turns out to be naturally overcome. Accordingly, since ρ(2) =
ρ(1) if we get P(2) −P(1) ⩽ ρcr then the two magnitudes of pressure would be comparable
and so P(2), i.e. the pressure today, will be proportional to the matter density at late-times
alleviating the coincidence problem [55].

Following the nomenclature of section 1, we can schematically sketch the corresponding
net values reached by Λ as:

Λ≃

{
ρvac, Before inflation,

ΛB, After inflation.
(69)

In this picture, ΛB is the magnitude inferred once we evaluate P(1) −P(2). Thus, the bare cos-
mological constant arises since not all the vacuum energy is cancelled. In fact, the pressure
jump, namely P(1) −P(2) is due to the fact that vacuum energy is not completely fine-tuned
to give geometric particles, but rather a (large) fraction of it provides particles. Hence, if we
indicate with Λgeom ⩽ ρvac the amount used for getting particles, we conclude

ΛB = ρvac −Λgeom. (70)

In the above equation, we neglected the fact that, at the end of inflation, there is also a remaining
contribution due to the inflaton potential, since ϕend/µ2 may have small deviations from unity,
as reported in equation (62). However, as already explained, we expect this contribution to be
responsible for ordinary baryonic matter production during reheating and, for this reason, it is
not involved in our argument here.

Equation (70) is then true if inflation ends before cancelling completely the overall vacuum
energy pressure, leaving a residual constant pressure to contribute the spatial part of the energy
momentum tensor after inflation, being proportional to ΛB. In such a picture, ΛB is therefore
reinterpreted as the difference of pressures before and after the transition that is associated to
the particle production. This mechanism fully-agrees with the one presented in [13], but the
here-adopted hilltop potential differs from the one prompted in [7].

It is finally useful to remark that we use the end of inflation, assuming that ϵ→ 1, to compute
the contribution of Λgeom. This furnishes the remaining contribution to the potential that leads
to baryonic particle creation. The corresponding value forΛgeom is therefore not fine-tuned but
determined by when the inflationary time ends.

4.2. The junction conditions

We now consider the transition from the inhomogeneous inflationary scenario to the matter-
dominated reheating previously discussed. We write for the two spacetimes the corresponding
line elements to hold26

g1 = a21(τ1)
[
dτ 21 − δijΓ

2 dxi dxj
]
, (71a)

g2 = a22(τ2)
[
dτ 22 − δijdX

i dXj
]
, (71b)

26 We here report both the spacetimes in conformal time representations. This choice is arbitrary: analogous results
can be found using cosmic time instead of τ 1 and τ 2.
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with Γ≡
√
1− 4Ψ and a priori τ1 ̸= τ2, xi ̸= Xi. Here the perturbed metric g1 is associated

to equation (39) whereas g2 is the current spatially-flat homogeneous and isotropic FRW
spacetime, still valid up to our time by simply fulfilling the cosmological principle. We eval-
uate the Israel–Darmois junction conditions and we assume the following recipe:

• We measure time regardless the cosmological epoch, leading to τ1 = τ2;
• The angular part of both the spacetimes remains unaltered before and after the matching.

The equivalence of the metric tensors (71a) and (71b) induced on τ = 0 (chosen as the
junction time between the two phases) gives that both spatial line elements must coincide,
xi = Xj, up to radial rescaling. This in turn implies a condition that the metric coefficient Γ
containing the potential Ψ must satisfy on the matching hypersurface τ = 0:

Γ =
a2(0)
a1(0)

. (72)

Moreover, equivalence of the two extrinsic curvatures gives the further condition

Γ,τ = H2(0)−H1(0), (73)

where Γ,τ ≡ ∂Γ
∂τ , evaluated at τ = 0 again.

When we discussed about reheating time, we required matching continuity of our functions.
So, in analogy, assuming the Universe not to pass through any transition and/or discontinuity,
we take its size and radius to be continuous. Consequently, from (72) and (73), it is licit to
write down

a2(0) = a1(0) , (74a)

H2(0) = H1(0) . (74b)

From equations (72) and (73), by virtue of the above relations, we get the intriguing fact
thatΨmust be constant on the junction hypersurface, in order to permit the matching between
the two spacetimes to occur.

By construction from Einstein’s equations, one expects the pressure term to be proportional
to the second derivative of Γwith respect to τ , namely Γ,ττ . If the pressure difference between
the first and second stage of our spacetimes is proportional to ρcr, then the coincidence problem
would be alleviated.

Bearing in mind equations (72) and (73) with the recipe of equations (74a) and (74b), we
therefore obtain theG1

1 component of Einstein’s tensor,Gµ
ν ≡ Rµ

ν − 1
2δ

µ
νR, namely the pressure,

as follows

P=− 1
8πG

[
(a ′(τ))2

a(τ)4
− 2

a ′ ′(τ)

a(τ)3
− 2

Γ,ττ

a(τ)2

]
. (75)

Immediately, assuming a matter dominated EdS Universe after inflation, we find

∆ρ= 0 , (76a)

∆P=−3H2
I − 2Γ,ττ , (76b)

where ρ(1;2) ≡ G0,(1;2)
0 and P(1;2) ≡− 1

8πGG
1,(1;2)
1 , i.e. density and pressure respect-

ively whereas the density and pressure shifts are, by definition, ∆ρ≡ ρ(1) − ρ(2) and
∆P≡ P(1) −P(2).
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As a consequence, requiring ∆P∼ ρcr provides

Γ,ττ ≃ ρcr − 3H2
I

2
. (77)

Forcing Γ,ττ to vanish suggests that H2
I ≃ ρcr. Since this value is the today critical density

previously introduced, it is quite likely that H2
I should be close to this value immediately after

inflation. This heuristic proof is supported by the fact that, although we denoted with HI the
inflationary Hubble rate, it is not exactly constant throughout inflation and in particular its
value is much smaller than the one in equation (53) as inflation is ending. Hence, its value,
once the process of geometric particle production ends, is proportional to the current critical
density as a consequence of our cancellation mechanism.

Accordingly, we infer that

• On the surface τ = 0, vacuum energy cancellation is associated to a minimum of the Γ func-
tion, as ρcr > 3H2

I ;
• The total energy density is constant on τ = 0, i.e. ρ(1) = ρ(2), implying energy conservation;
• The pressure shift suggests that the corresponding fluid evolves as a dark fluid [56], mim-

icking the predictions presented in [13].

4.3. Consequences on background cosmology

As a consequence of our recipe, one argues that the standard cosmological model, i.e. the
ΛCDMparadigm, is modified because, at the end of our process, we canmodel the correspond-
ing total fluid as a single fluid of matter whose pressure is not exactly zero, but is constrained to
current value, called beforeΛB. Thus, the fine-tuning issue is no longer a real problem because
quantum fluctuations associated to Λ are removed by virtue of our cancellation mechanism.

The value of ∆P, however, is fixed at τ = 0. It is natural to wonder whether it remains
constant throughout the evolution of the Universe at late times, namely τ →∞ or not. For the
sake of simplicity, we may assume it to be constant without any time evolution for pressure,
albeit we cannot exclude the pressure to vary at late-times. In the case of non-varying pressure,
then the model reduces to the one presented in [13] with the great advantage to physically-
explain how density, cancelled out by the mechanism, transforms to new species of particles.

To evaluate ∆ρ and ∆P we made the ansatz of having a matter dominated EdS Universe,
characterized therefore by P(2) = 0. However, shifting to a radiation dominated EdS Universe
we again would get Γ,ττ ≃ H2

I , implying that, at τ = 0, our model is not particularly influenced
by choosing either matter or radiation. Then, by virtue of the continuity equation one computes
a constant density that resembles the ΛCDM model, exhibiting a very different physical inter-
pretation over the constant that fuels the Universe to speed up today.

This theoretical scheme works if Γ is constant on the hypersurface τ = 0. Since inflation
ends, requiring a perfect homogeneous and isotropic Universe, one argues negligible Ψ at the
end of inflation, sayΨ→ 0 as τ → 0. From equation (28), assuming ρcr − 3H2

I = ερcr, we thus
have

F̈(ϵ,0,HI) =−ε
2
ρcr e

−iq·x , (78)

where ε is a unknown constant that quantifies the deviation between HI and ρcr. Afterwards,
involving equation (27) and assuming the slow roll parameter to vanish after inflation in order
to fulfill F = Ḟ = 0, we get F̈ = 0, implying H2

I = ρcr/3, again addressing the coincidence
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problem27. Clearly, a more suitable choice of F is required to guarantee that F = Ḟ = 0 and
F̈ ̸= 0 in general and this implies to select a more suitable version of the effective potential,
instead of our hilltop quadratic one corrected by a Yukawa-like term involving a coupling with
curvature.

In general, however, addressing this issue is a central problem related to any inflationary
scenarios [6], whereas the here-employed potential only represents a first proposal to work
out our model of dark matter production. The search for a more suitable version of the effect-
ive potential, however, requires to exit from inflation. This may be jeopardized by the coup-
ling with curvature that, albeit it becomes negligibly small, is assumed to be small enough to
guarantee ϵ→ 1 immediately before the jump to ϵ→ 0. Hence, a more suitable choice of the
underlying potential would give new insights toward a graceful exit from inflation and at the
same time the geometric production of dark matter particles. On the other side, we believe the
need of curvature coupling is essential to interpret the corresponding dark matter fluid. In fact,
if no coupling with curvature occurs, then the interpretation of particle production cannot be
geometrical and only baryons can form during reheating as byproduct of the scalar field alone.
We stressed such considerations throughout the text previously and we here underline that the
more particles are produced from geometry the more coupling with R is clearly needful, i.e. to
fix the current dark matter abundance one has to invoke a further coupling.

4.4. Dark matter with pressure?

In view of the aforementioned prescriptions, our corresponding dark energy scenario can be
modeled using a dark fluid [57, 58], effectively compatible with the one presented in [7, 13, 59,
60]. This fluid can be interpreted as a single fluid of matter with pressure, where the pressure
is furnished by the additional bare cosmological constant. Indeed, if zero-point fluctuations
are cancelled, leaving a ΛB ̸= 0, the remaining Universe density would be associated to matter
(and radiation, clearly), but the corresponding pressure would be given by the sum of ΛB and
the pressure of dust and radiation. As the Universe expands, radiation dominates over matter
and ΛB. But, since ΛB magnitude is comparable with matter, once the matter epoch finishes
then ΛB tends to dominate over dark matter and baryons, reproducing de facto the behavior of
current cosmological model. Accordingly, we can quantify the pressure throughout the Uni-
verse evolution as follows:

• During inflation, our choice of the hilltop potential leads to vacuum energy (ρvac) domin-
ation, resulting in a large and negative pressure. This is a common trait to all inflationary
models, and of course implies the violation of the strong energy condition [14]. In this phase,
the corresponding Universe dynamics is then described by a quasi de Sitter solution, whose
deviations from the pure de Sitter are due to the inflaton fluctuations.

• At the end of inflation, a large part of vacuum energy has been transformed into geometric
particles, while the remaining contribution is responsible for ordinary baryonic production.
The pressure associated to geometric particles (−ΛB) has been computed in section 4.2 and
corresponds to the transition from the inhomogeneous quasi-de Sitter phase to a matter-
dominated one, which represents a well-known simplified scheme for reheating. Clearly,
the strong energy condition is here restored.

27 Inflation ends as ϵ→ 1. Thus, we justify the jump to ϵ≃ 0 noticing that the inflaton potential and vacuum energy
disappear after inflation. So, both radiation and matter fields would dominate over any inflaton field. This permits one
to presume that ϵ≃ 0.
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Table 2. Summary of the phases of the Universe evolution and corresponding value of
the pressure in our model.

Phase Pressure

τI < τ < 0 Inflation P∼−ρvac =−Λ4

0< τ < τr Reheating P∼ 0
τr < τ < τm Radiation era P∼ ρrad(τ)/3
τ > τm Matter era P∼ 0
τ →+∞ Bare CC domination P∼−ΛB

• After reheating, we find the usual radiation and then matter eras. In such phases the total
pressure is due to dust, radiation and the ΛB contribution. However, the latter is expected to
be small compared with radiation at early stages, being compatible with the standard Big
Bang model.

• At late times, matter and radiation becomes subdominant with respect to the bare cosmolo-
gical contribution, whose negative pressure is expected to drive the current Universe expan-
sion. This implies a new violation of the strong energy condition, which however overcomes
the coincidence and fine-tuning problems due to the geometric origin of such pressure, as
previously discussed.

In table 2 we summarize the phases described above, specifying the corresponding pressure
due to the dominant fluid in each phase.

Hence, the here-depicted overall paradigm fully-degenerates with the ΛCDMmodel, being
however physically highly-different from it.

5. Limits of our toy model and possible improvements

We below summarize some points that are crucial toward the understanding of how our toy
model works.

• We introduced a given momentum cut-off scale, which in our case is a consequence of lying
on super-Hubble scales. Super-Hubble scales are required in order to properly deal with the
notion of particle. In other words, only after horizon crossing the inflaton fluctuations can
be described classically, so that the number of particles could be in principle measured. The
exact value of the cut-off is in principle arbitrary: in order to have a time-independent value,
we selected k,p< aminHI/1000, where amin ≡ a(τi). This ensures that equation (47) is valid
for all the modes considered in the interval τi < τ < 0, thus allowing to evaluate numerically
the integral (48). However, as already noted, in this way we neglect the contribution due to
modes which cross the horizon after τ i. A larger cut-off would result in a larger number
of particles produced and, therefore, smaller values for the mass m∗. This does not appear
as possible drawback of our paradigm, but rather a consequence of the scale factor and the
inflationary potential invoked into calculations.

• Vacuum energy amount is not known a priori. Again, this limitation is not related to our
paradigm but rather on the scales used to quantify quantum fluctuations. We here selected
Planck scales, since we expect the inflationary Universe to emerge from a quantum gravita-
tional state, with an energy density comparable to Planck density [1, 61]. However, standard
model of particle physics scales [5, 62, 63], namely electroweak and/or quantum chromody-
namics scales, could also be investigated, in principle. In such cases, however, the Hubble
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rate would decrease a lot, and so it appears crucial the kind of energy scale we impose for
Λ in order to get both the number of dark matter particles produced through our mechanism
and the field mode evolution throughout the investigated Universe dynamics, as one sees
from equations (16) and (17).

• In studying geometric production, we neglected the role of back-reaction. As discussed in
section 2.3.5, we expect back-reaction to damp out the initial perturbation as particles are
produced, thus decreasing the particle production rate as τ → 0. This issue may be, at least
partially, healed by increasing the total time interval in which geometric particle produc-
tion may have taken place. However, a rigorous, and clearly numerical, treatment of back-
reaction is required in future works in order to obtain a self-consistent study of gravitational
particle production. A different dynamics for the perturbation potential Ψ would also affect
the exact value of the pressure shift introduced in section 4.2, to justify the current value of
the cosmological constant.

5.1. The role of quantum particle production

Another feature of our model is to assume geometric particles to dominate over any quantum
mechanisms of particle creations, as discussed in section 2. This contribution is usually com-
puted assuming the Universe to expand from an asymptotically flat region (in) to another one
(out), and computing the corresponding Bogoliubov coefficients for ladder operators. Details
of such calculations are described in appendix C.

There, asymptotic flatness is required in order to properly define the notion of particle (and
vacuum), which is not unique in curved spacetime. Including quantum particle production in
our framework would imply:

• The production of particle-antiparticle pairs at zero and first geometric order [12, 16]. So,
as already noted in section 2.4, these particles can annihilate, without having enough time
to significantly contribute to the net dark matter budget of the Universe;

• An additional contribution to the second-order number density, equation (44), depending on
the Bogoliubov coefficients βk and βp, would enter dark matter production. This contribu-
tion is always positive (cfr equation (C8)) and for this reason it would affect dark matter
production increasing the total number density N(2)(0).

Concerning the last item above, we underline that when dealing with de Sitter spacetimes,
the main conceptual problem of equation (9) is that it can describe an asymptotically flat Uni-
verse only in remote past, τ →−∞ but not around τ = 0.

In other words, we do not have an asymptotically flat out region. This issue is discussed in
detail in [36], where the authors show that if de Sitter spacetime is extended also to 0< τ <∞,
asymptotic flatness is recovered at τ →+∞ and no quantum particle production occurs28. Of
course, this approach cannot be employed in realistic models of Universe evolution, since it
would neglect the EdS phases subsequent to inflation.

Alternatively, one could imagine that after the usual transition from inflation to radiation/-
matter domination, the Universe finally reaches an adiabatic regime at late times, where the
notion of particle becomes meaningful again [64, 65]. In [65] the authors show that in this
framework ‘quantum’ particle production from vacuum is non-negligible. This is true in par-
ticular for super-Hubble modes k≪ aendHI, where aend is the scale factor at the end of inflation.

28 Such conclusion remains true even if spacetime passes through a coordinate singularity at τ = 0.
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They also notice that the particle abundance is larger if the inflationary energy scale is of the
order of 1016 GeV, which fully agrees with the here-considered scales.

As discussed above, we thus expect that non-zero Bogoliubov coefficients will increase the
total number density of particles produced at second geometric order. The possible inclusion
of such ‘quantum’ particle production in our framework will be subject of future works, albeit
it is expected, in view of our above considerations, as a fraction of dark matter, rather than the
main constituent.

5.2. Comparing geometric particles with previous dark matter candidates

A key assumption in our model is that dark matter arises as a geometric quasi-particle as a
consequence of the coupling between inflaton field and spacetime curvature, without any fur-
ther quantum couplings. So, our scenario does not involve the concept of weakly interacting
massive particles (WIMPs) as derived from effective extensions of the particle physics standard
model. However, the physical meaning of our geometric particles shows very stable config-
urations directly induced by gravity and, by construction, interacting with other objects only
under the action of gravity/geometry. Better saying, we can figuring out sorts of weakly inter-
acting geometric particles (WIGEPs) that, differently fromWIMPs [66], may have a collective
behavior in making structures to form sharply in the very early Universe, without extending the
standard model of quantum field theory. These particles cannot form at more recent epochs,
by virtue of the cosmological principle, i.e. when no perturbations are involved the WIGEP
mechanism is suppressed. So, summing up, our WIGEP would

• Be stable immediately after the Big Bang, as a priori they do not exhibit charges and thus
they do not interact electromagnetically;

• Have been created in a very large amount as consequence of deleting out vacuum energy
that transforms into geometric particles, due to inhomogeneities;

• Behave as collective particles in order to create enough overdensities capable of having
galaxies as today we observe29 by virtue of the perturbed spacetime involved into computa-
tion.

So, since our particles behave in a very similar way than previous expectations, despite non
being WIMPs, it is possible to confront the kinds of interactions developed in previous liter-
ature, namely cosmologically-stable dark matter particles and standard model (SM) particles.
These models mainly consider spin-0, spin-1/2 and spin-1 dark matter candidates interacting
with SM fields (mostly fermions) through spin-0 or spin-1 mediator fields, usually dubbed
portals30.

Among the plethora of plausible portals, the simplest scenario is represented by the so-
called standard model portals, in which dark matter interacts with the standard model of
particle physics through theHiggs or the Z-boson. These portals have only two free parameters,
i.e. the dark matter and portal mediator masses. For their simplicity, they are highly-predictive,
albeit disfavored in some experimental limits [67]. The scheme which more closely resembles
our approach includes the scalar Higgs boson. So, without assuming any charge conjugation
and parity (CP) symmetry violation and taking into account a scalar field χ that describes dark
matter, the corresponding interacting Lagrangian becomes

29 Heuristically speaking, this is the main reason to deal with quasi-particle behavior of those particles got from
Yukawa interaction between inflaton and curvature.
30 The interested reader can consult the review [66] and references therein.
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Figure 6. Allowed mass ranges for dark matter candidates assuming µ2 ∈ [2,10]. The
other parameters are the same as in figure 3. The blue region is the excluded region
got by the LUX limits for the Higgs portal, having set λHχ = 1/6 in analogy with our
conformal coupling scenario.

LI = ξ0λ
H
χχ

∗χH†H, (79)

where H=
(
0 vh+h√

2

)
is the Higgs boson doublet, not to be confused with the Hubble rate, in

unitary gauge [44], h the excited field, vh the ground state and ξ0 = 1/2 (1) in case dark matter
is (not) its own antiparticle.

Confronting the two expectation limits for WIMPs and WIGEPs would therefore be
extremely instructive to exclude mass ranges dropped out by observations. Hence, to do so
we draw an excluding plot, see figure 6, where we show the mass value m∗ of our geomet-
ric dark matter candidate as function of the hilltop parameter µ2. There, a blue region that
delimits the mass values that have been excluded by recent LUX limits [66, 68] is prompted,
as predicted by the above Higgs portal mechanism. Conventionally, for the sake of simplicity
we have set ξ0 = 1 and λHχ = 1/6 in analogy with our scheme of field-curvature coupling31. In
case of large dark matter masses, we notice excluded regions lying inside

1 GeV≲ m∗,excluded ≲ 400 GeV , (80)

where the superscript indicates the blue zone in figure 6. Consequently, by looking at our
model, equation (80) would exclude hilltop µ2 values approximately inside the range

µexcluded
2 ∈ [4,8] . (81)

We may therefore easily conclude that the WIGEPs may lie either in very large intervals of
masses that are, somehow, similar to those predicted by the so-called WIMPzillas [69] or in
smaller intervals, namely ≲1 GeV, being compatible with recent axion search [70].

It is remarkable to stress an important point as follows. Slow mass WIGEPs that we
predict, or better to say that we cannot exclude, may be less likely since axions and/or in

31 The effective potential of equation (7) is clearly a Yukawa-like, whereas this is not. So, the choice of setting such
constants in this way is only for a first naive confront between the two approaches. Changing the constant values, how-
ever, would not dramatically modify our conclusions. For instance, reducing λHχ would get only narrower symmetric
excluded regions.
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general ultralight fields may arise for other different processes, being dominant over geo-
metric quasiparticles, see e.g. [71–73] where examples of virtual gravitons associated to the
gravity sector can be found. These predictions look extremely similar to our outcomes, since
we adopted a Yukawa-like interaction that couples the gravity and scalar field sectors adopt-
ing a fast interaction, similar to that discussed in the previous references. Toward our model,
since vacuum energy magnitude is huge, it is more likely that massive particles are produced,
instead of light fields that would give a number of particles too large, i.e. far from expecta-
tions. Moreover, the more massive fields are predicted the more weakly interacting particles
are expected, guaranteeing structures to form.We also stress that since dark matter is produced
from the degrees of freedom coming from vacuum energy, but nothing has argued about the
dynamics of the Universe before and after, such vacuum energy is associated to a symmetry
breaking mechanism [2]. In this respect, it has been shown in [13, 24] that the solution of the
cosmological constant problem would imply highly massive particles.

In other words, from the one side we do not exclude ultralight fields to contribute to dark
matter [74]. On the other hand, however, we propose that the dominant contribution is geo-
metrical, but with higher and more probable masses associated to it.

In all the above treatment, particles have been produced assuming the free parameters to lie
in suitable intervals that are compatible with theoretical expectations on vacuum energy and
non-excluded regions provided by experiments. However, departures from these bounds may
lead to different values of mass candidates, albeit the physical expectations about ultralight
and highly-massive fields remain unaltered.

Phrasing it differently, we emphasize that, as characteristics of our proposed quasi-particles
are better understood, it is conceivable that stricter allowable mass limits could be found, leav-
ing the possibility that the mass range here discussed will be modified accordingly.

In addition to our analysis, it would be crucial to stress that the quantum cosmological con-
stant problem is not fully-addressed in our treatment. Indeed, even if we solve the classical
cosmological constant problem, finding a convincing reason to put the minimum of the poten-
tial to zero, contributions from the zero-point fluctuations of all the quantum fields present
in the Universe cannot be ignored. They correspond to ⟨0|Tµν |0⟩, with Tµν the full energy
momentum tensor, providing then a net contribution to the energy density thatmight be equated
to the dark matter constituent. In our results, however, we did not assume the density provided
by such a contribution. Clearly, further developments will focus on this central point.

6. Final outlooks and perspectives

In this work, we proposed a toy model approach based on geometric cancellation of vacuum
energy, facing the classical cosmological constant problem. To do so, we presumed that the
corresponding large energy scales of Λ transformed into geometric particles. In particular,
in the primordial Universe we assumed quantum fluctuations to be carried out by an effect-
ive hilltop potential, nonminimally coupled to scalar curvature R. So, without quantizing
the fields, i.e. without assuming the quantum cosmological constant problem, we assumed
a inhomogeneous quasi-de Sitter background Universe, computing the corresponding particle
production by means of perturbation theory in the external-field approximation. Once quan-
tified the corresponding particle candidate, we interpreted it as dark matter, showing how
the corresponding mass varies with respect to the free parameters of our model. We also
showed that these mass limits are predicted to guarantee the cosmological constant con-
tribution from vacuum energy is approximately canceled out. The remaining effective con-
stant, namely the bare cosmological one, is therefore reviewed as responsible for the current
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acceleration, removing de facto the fine-tuning issue. Our overall mechanism is prompted by
requiring continuity of the Universe and the validity of Israel matching conditions between
the two inhomogeneous and homogeneous universes. This naturally shows how to generate
geometric quasiparticles, that we conventionally called WIGEPs in contrast to WIMPs. We
provided a direct comparison among such particles and current bounds of dark matter masses,
emphasizing excluded ranges and unsuited coupling constants that agree with present experi-
mental windows. The model has been also confronted with previous literature and it has been
argued that it guarantees a robust validity with respect to the paradigm developed in [13], being
compatible with predictions showed in [7]. In this respect, a possible conjecture in which a dark
fluid composed by a single dark matter fluid with pressure drives the Universe today is also
debated.

Future works will refine the intervals of validity of our dark matter candidate, limiting
the amount of mass associated to it. Moreover, we will investigate alternative versions of the
effective inflationary potential that can quit inflation regardless the value of R, i.e. behaving
as small fields after inflation and consequently check whether our predictions are particularly
sensitive to the potential chosen for driving up cosmic inflation.

Finally, we will investigate both the standard model of particle physics and the quantum
cosmological constant problem, verifying whether our here-presented toy model can be used
even in case of field quantization and including the main features related to baryogenesis.
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Appendix A. Geometric particle production for a nonconformally coupled field

In this appendix, we generalize our treatment assuming nonconformal coupling between
inflaton and scalar curvature. To do so, equation (4) gives

□ηχ+

[(
ξ − 1

6

)
R− 2Λ4

µ2
2

]
a2χ= 0, (A1)

where χ is the rescaled field, introduced in equation (5).
Thus, explicitly computing the zeroth order scalar curvature

R= 6ä/a3 = 12H2
I , (A2)
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Figure 7. Number density N(2) in GeV3 as function of the hilltop width µ2, in units of
Mpl. The other parameters are the same as in figure 1, with ξ = 1/C and C= 8;9;10.

function of the exploited scale factor of equation (9), and recalling the ansatz made in
equation (11) for the modes, equation (A1) becomes

f̈k+

[
k2 − 1

(1−HIτ)2

(
2Λ4

µ2
2

− 12H2
I

(
ξ − 1

6

))]
fk = 0. (A3)

This equation admits a solution that resembles equation (16), albeit now the index of first kind
Hankel’s functions is

ν =
9
4
+

2Λ4

µ2
2H

2
I

− 12ξ, (A4)

which clearly reduces to equation (17) for conformal coupling.
Consequently, in figure 7 we display how the number density of geometric particles changes

by assuming three distinct cases for ξ, namely ξ = 1/C with C= 8;9;10.
We notice that the number density of produced particles is larger for smaller coupling con-

stants. Further, it is remarkable to stress that larger densities are obtained for negative coupling.
Hence, in order to obtain realistic values for the mass of the dark matter candidate, it is simply
possible to modify the time ti at which geometric particle production is expected to begin, as
discussed in section 2.4.

Appendix B. Conformal and cosmic time

Conformal time τ (or sometimes η) is related to cosmic time t by

dτ =
dt
a
, (B1)

where a is the scale factor. A generic FRW line element in cosmic time, ds2 = dt2 − a2(t)dx2,
becomes ds2 = a(τ)2

[
dτ 2 − dx2

]
, which is conformal to the Minkowski line element. Given

a generic function of the cosmic time f (t), the corresponding function in conformal time will
be f(τ). For the latter, the following relations hold

f ′(t) =
ḟ(τ)
a(τ)

, (B2)
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f ′ ′(t) =
f̈(τ)
a2(τ)

−H ḟ(τ)
a2(τ)

, (B3)

where in our notation a prime denotes differentiation with respect to cosmic time andH= ȧ/a.
We have, in particular

H=
a ′

a
=

ȧ
a2

=
H
a
, (B4)

a ′ ′ =
ä
a2

− H2

a
, (B5)

H ′ =
Ḣ
a2

− H2

a2
. (B6)

Easily the scale factor evolution in conformal time, in a EdS Universe, can be obtained from
equation (B1) to give

a(t)∼ t2/(3+3w) =⇒ a(τ)∼ τ 2/(1+3w) , (B7)

where w is a constant barotropic factor that provides the kind of EdS Universe, e.g. for matter
w= 0, radiation w= 1

3 , and so forth.

Appendix C. Second order particle production in inhomogeneous spacetime

As discussed in section 5.1, we assumed particle production arising solely from the ‘geometric’
contribution due to spacetime perturbations.

However, in a more general scenario, spacetime expansion can create particles independ-
ently from the presence of inhomogeneities, giving rise to particle-antiparticle production from
vacuum [16, 18, 36].

Moreover, it also implies additional contributions to the second order number density,
prompted in equation (44), which we here discuss.

So, assuming a spacetime with asymptotically flat in and out regions, we can introduce the
Bogoliubov transformations. To do so, we relate these quantities to in and out ladder operators
[2]

âout(k) = α∗
k âin(k)−β∗

k â
†
in(−k), (C1)

âin(k) = αkâout(k)+β∗
k â

†
out(−k), (C2)

with αk, βk Bogoliubov coefficients.
At first order in the inhomogeneities, the asymptotic out state takes the form [29]

|Ψ⟩out ≡ lim
τ→+∞

|Ψ⟩=N
(
|0, in⟩+ 1

2
S(1)kp |kp, in⟩

)
, (C3)

where S(1)kp is a compact form for the probability amplitude given by equation (45), whereas
N = 1+O(h2) is a normalization factor, arising from ⟨Ψ |Ψ⟩= 1.

The number density in the out region up to second order is then

N= (2πa)−3⟨Ψ |
ˆ

d3q âout(q)†âout(q)|Ψ⟩. (C4)
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Besides normalization factors, the second order contribution reads

N(2) =
1
4
(2πa)−3

ˆ
d3k d3p |S(1)kp |

2 ⟨kp|â†out(q)âout(q)|kp⟩

=
1
4
(2πa)−3

ˆ
d3k d3p |S(1)kp |

2
⟨
kp|
(
αqâ

†
in(q)−βqâin(−q)

)
×
(
α∗
q âin(q)−β∗

q â
†
in(−q)

)
|kp
⟩
, (C5)

where in the last step we have exploited the Bogoliubov transformation, equation (C1). The
only non-zero contribution to equation (C5) are

N(2) =
1
4
(2πa)−3

ˆ
d3k d3p |S(1)kp |

2 ⟨kp|
(
|αq|2â†in(q)âin(q)+ |βq|2âin(q)â†in(q)

)
|kp⟩. (C6)

In particular, equation (C6) gives

N(2) =
1
4
(2πa)−3

ˆ
d3k d3p |S(1)kp |

2
(
|αk|2 + |βk|2 + |αp|2 + |βp|2

)
. (C7)

Exploiting now the normalization condition for the Bogoliubov coefficients, namely |αq|2 −
|βq|2 = 1, with q= k,p, we finally infer

N(2) =
1
2
(2πa)−3

ˆ
d3k d3p |S(1)kp |

2
(
|βk|2 + |βp|2 + 1

)
, (C8)

which coincides with the result of [12], up to a normalization factor.
We notice then that second order number density contains a contribution which is independ-

ent from the relation between in and out vacua, i.e. the Bogoliubov coefficients, and becomes
dominant in case of negligible βk, βp.
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