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Abstract. Collaborative Filtering (CF), the prevalent recommendation 
approach, has been successfully used to identify users that can be characterized 
as “similar” according to their logged history of prior transactions. However, 
the applicability of CF is limited due to the sparsity problem, which refers to a 
situation that transactional data are lacking or are insufficient. In an attempt to 
provide high-quality recommendations even when data are sparse, we propose a 
method for alleviating sparsity using trust inferences. Trust inferences are 
transitive associations between users in the context of an underlying social 
network and are valuable sources of additional information that help dealing 
with the sparsity and the cold-start problems. A trust computational model has 
been developed that permits to define the subjective notion of trust by applying 
confidence and uncertainty properties to network associations. We compare our 
method with the classic CF that does not consider any transitive associations. 
Our experimental results indicate that our method of trust inferences 
significantly improves the quality performance of the classic CF method. 

1   Introduction 

Recommendation systems [1] have been a popular topic of research ever since the 
ubiquity of the web made it clear that people of widely varying backgrounds would be 
able to access and query the same underlying data. Both research and e-commerce 
applications have extensively adopted variations of recommendation algorithms in 
order to provide an intelligent mechanism to filter out the excess of information 
available to their users. Collaborative filtering (CF) [2] has almost certainly been the 
finest technique of choice for recommendation algorithms. CF tries to identify users 
that have relevant interests and preferences by calculating similarities among user 
profiles [3]. The idea behind this method is that, it may be of benefit to one’s search 
for information to consult the behavior of other users who share the same or relevant 
interests and whose opinion can be trusted. 

Regardless of its success in many application settings, the CF approach encounters 
two serious limitations, namely sparsity and scalability [4, 26]. In this paper we focus 
on the sparsity problem. The sparsity problem occurs when available data are 
insufficient for identifying similar users (neighbors) and it is a major issue that limits 
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the quality of recommendations and the applicability of CF in general. The main 
objective of our work is to develop an effective approach that provides high-quality 
recommendations even when sufficient data are unavailable.  

The remainder of the paper is organized as follows: Section 2 elaborates on the 
sparsity challenge and explains the weaknesses of already proposed methods for 
dealing with it. Section 3 presents our methodology that is based on trust inferences., 
while Section 4 presents experimental evaluation of our work. 

2   Problem Statement 

The numbers of users and items in major e-commerce recommendation systems is 
very large [5]. Even users that are very active result in rating just a few of the total 
number of items available in a database and respectively, even very popular items 
result in having been rated by only a few of the total number of users available in the 
database. This problem, commonly referred to as the sparsity problem, has been 
identified as one of the main technical limitations of CF and its further development 
and adoption. Because of sparsity, it is possible that the similarity between two users 
cannot be defined, rendering CF useless. Even when the evaluation of similarity is 
possible, it may not be very reliable, because of insufficient information processed. 
The cold-start problem emphasizes the importance of sparsity problem. Cold-start [6] 
refers to the situation in which an item cannot be recommended unless it has been 
rated by a substantial number of users. This problem applies to new and obscure items 
and is particularly detrimental to users with eclectic taste. Likewise, a new user has to 
rate a sufficient number of items before the recommendation algorithm be able to 
provide reliable and accurate recommendations. 

There are several methods that have been proposed to deal with the sparsity 
problem. Most of them succeed in providing better recommendations, but fail to 
introduce a general model for dealing with sparsity. Most popular approaches 
proposed include dimensionality reduction of the user-item matrix, application of 
associative retrieval technique in the bipartite graph of items and users, item-based 
similarity instead of user-based similarity, and content-boosted CF. The 
dimensionality reduction approach addresses the sparsity problem by removing 
unrepresentative or insignificant users or items so as to condense the user-item matrix. 
More advanced techniques to achieve dimensionality reduction have been proposed as 
well. Examples include statistical techniques such as Principle Component Analysis 
(PCA) [7] and information retrieval techniques such as Latent Semantic Indexing 
(LSI) [8, 9, 10]. However, potentially useful information might be lost during this 
reduction process. Transitive associations of the associative retrieval technique [11], 
even if they have been successfully employed to deal with the sparsity problem, fail to 
express the subjective notion of the associations. Item-based [12, 13] in addition to 
Content-boosted CF [13, 14] approaches require additional information regarding 
items as well as a metric to compute meaningful similarities among them [25]. 

Our research work provides an alternative approach to deal with sparsity problem. 
Instead of reducing the dimension of the user-item matrix, in an attempt to make it more 
informative, we propose a method that permits to define transitive properties between 
users in the context of a social network. The consideration of these properties leads to 
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extra information accessible for recommendation purposes. Our approach focuses on 
developing a computational model that permits the exploration of transitive user 
similarities based on trust inferences for addressing the sparsity problem. 

3   Methodology 

3.1   Social Networks in Recommender Systems 

CF has been successfully employed to express the “word-of-mouth” paradigm in a 
computational context [15]. Common interactions that take place in a typical 
recommendation system include ratings, transactions, feedback data etc. For the rest 
of the paper we assume without loss of generality that interactions are based on rating 
activity. Based on these interactions, it is possible to express similarity conditions 
between pairs of users, according to the subset of their co-rated items. We view these 
similarity conditions as associations between users. It is then possible to consider 
these associations as links of a social network. If we define as user-item matrix the 
matrix having as elements the ratings of users to items, then a user’s model [16] is 
represented in this matrix as an n-dimensional vector, where n is the number of items 
in the database. Figure 1 illustrates the process of the network construction, where a 
user’s rating activity is used to define network associations.  

 

Fig. 1. Underlying Social Networks in Recommender Systems 

As theories on social networks find application in completely diverse research 
areas, we need to properly describe their particularities in our context and most 
importantly identify the process of membership and evolution. 

Membership: A user joins the underlying social network by submitting at least one 
rating to an item that has previously been rated by another user. 

Evolution: Users’ ratings to items are enabling the construction of new associations 
between users and thus new links in the underlying network are considered.  

3.2   Trust Through User-to-User Similarity 

We think of the associations between users as an expression of established trust 
between each other, as far as the specific application area is concerned. Since trust is 
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defined in the context of similarity conditions, the more similar the two users are the 
greater their established trust would be considered [17]. In order to compute the 
similarity between users, a variety of similarity measures have been proposed, such as 
Pearson correlation, cosine vector similarity, Spearman correlation, entropy-based 
uncertainty and mean-square difference. However, Breese et al in [18] and Herlocker 
et al. in [19] suggest that Pearson correlation performs better than all the rest. 

If we define the subset of items that users ux and uy  have co-rated as I={ix: x=1, 2, 

…, n}, ,x hu ir  as the rating of user ux to item ih and
xur , 

yur  as the average ratings of 

users ux and uy  respectively, then the established trust between two users is defined as 
the Pearson correlation [20] of their associated rows in the user-item matrix (Eq. 1). 
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3.3   Trust Inferences 

Due to the number of ratings that exist in recommendation systems, underlying social 
networks are very sparse. There are cases in which insufficient or loss of information 
is detrimental for the recommendation algorithms. Consider, for example, the case in 
which associations between users are based on very few data or the case in which 
there aren’t any k users to employ in a k-nearest neighborhood algorithm. A 
motivating example is illustrated in Figure 2(a). Suppose that users S, N have rated 
item I1 and users N, T have rated I2. Classic CF will associate user S with user N and 
user N with user T, but not user S with user T. However, a more sophisticated 
approach that incorporates transitive interactions would recognize the associative 
relationship between user S and user T and infer this indirect association. To deal with 
this problem, we adopt a method of inferring trust between users that are not directly 
associated to each other. Thus, in the example, it is possible to infer trust between the 
source user S and the target user T through the intermediate user N. According to this 
process, trust is propagated in the network and associations between users are built, 
even if they have no co-rated item. 

 
Fig. 2. Trust Inferences 
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Trust Paths 
Propagation of trust [21, 22] implies the existence of trust paths in the network. 
Combination of consecutive direct associations between all intermediate users creates 
a trust path from a source user to a target user. Trust paths can be of variable length, 
depending on the number of associations that one needs to traverse in order to reach 
the target user. If k associations need to be traversed then the path is considered to be 
of length k. Direct associations are of length 1, while when the target user is not 
accessible from the source user, the length of the supposed path is considered infinite. 

While computation of trust in direct associations is based on user-to-user 
similarity, for length-k associations we need to adopt a transitivity rule that facilitates 
the computation of the inferred trust between the source user and the target user. If we 
define as N={Ni: i=1, 2, …,k} the set of all intermediate nodes in a trust path that 
connects user S and user T, then their associated inferred trust is given by Equation 2. 

( )( )( )( )1 1 2 1
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...
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For example, in order to compute to what degree user S trusts user T in the 
example of Figure 2(a), we need to compute the inferred trust 

B
A C A B B CT T T→ → →= ⊕ . 

In Equation 2, we employ the symbol ⊕  to denote that we need to apply a special 
operation in order to compute the inferred trust in the path. If Ix is the set of items that 
user ux has rated, and n(Ix) is the cardinality of the set Ix, then Equation 3 interprets the 
special operation employed. 
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In plain words, in order to compute the inferred trust in a trust path that associates 
a source user S with a target user T through one intermediate node N, we first 
compute the weighted sum of the two direct trust associations of S, N and N, T using 
as weights the number of co-rated items of each direct association, and then apply a 
sign to the weighted sum according to table 1.  

Table 1. Definition of the sign of the inferred trust in a trust path 

 0S NT → ≥  0S NT → <  

0N TT → ≥  + - 

0N TT → <  - ∞  
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The intuition behind this computation is that: 

! If user S trusts user N and user N trusts user T then it is inferred that user S 
trusts user T 

! If user S does not trust user N and user N trusts user T then it is inferred that 
user S does not trust user T 

! If user S trusts user N and user N does not trust user T then it is inferred that 
user S does not trust user T 

! If user S does not trust user N and user N does not trust user T then inference 
is not applicable and the length of the supposed path between user S and user 
T is considered  infinite 

The computed value of the inferred trust is a value that lies between the values of 
the two direct trust associations as indicated in Equation 4 and it is biased towards the 
value of the direct trust association with the most co-rated items. For example, if 

0,7S NT → =  based on 5 co-rated items and 0,35N TT → =  based on 2 co-rated items, 

then 0,6
N

S TT → = . In the same context, if 0,7S NT → =  and 0,35N TT → = − , then 

0,6
N

S TT → = − . 

min{ , } max{ , }
N

S N N T S T S N N TT T T T T→ → → → →≤ ≤  (4) 

3.4   Confidence and Uncertainty Properties of Trust Associations 

Network evolution is based on individual rating behavior, thus it is reasonable to 
consider that available structural information defines multiple personalized webs of 
trust [22]. The personal web of trust or local trust for a user S is given through the set 
of trust paths originating from S and passing through users he or she trusts directly or 
indirectly. Figure 2(c) depicts the notion of personal web of trust. Consequently, a 
user S that interacts with other users in the system develops a subjective belief of the 
network. By subjective belief, we mean that probably what a user in the network 
believes about S is different from what another user in the network believes about 
user S. In order to express this subjective notion of trust we set up a confidence model 
able to respond to the following interrelated questions: 

Q1: How confident user S feels of his or her opinion about user T? 
Q2: What is the uncertainty enclosed in user’s S opinion about user T?  

Confidence Property 
We define as confidence, a property assigned to each direct association of the network 
that expresses the reliability of the association. We make the assumption that 
confidence is directly related to the number of co-rated items between two users. This 
assumption indicates that (a) a user’s opinion becomes more reliable as additional co-
rated items become available and that (b) the reliability of an association between two 
users may be influenced by the change of the number of co-rated items between other 
users in the system. For that reason, the more items two users have co-rated, the 
higher the degree of confidence their association would have. Confidence is applied to 
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each one of a user’s direct associations and it is based exclusively on the user’s rating 
activity. In order to compute the confidence of all direct associations of a user, we 
initially identify the most confident association in an individual’s personal web and 
then express all confidence values of the remaining direct associations in relation to 
the identified most confident association. We denote the user with which the most 
confident association has been created as uMAX_CONF. If Ix is the set of items that user ux 
has rated, and n(Ix) is the cardinality of the set Ix, then the confidence S TC →  of the 

association between the source user S and the target user T is given by equation 5. 
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Figures 3(a) and 3(b) show how confidence values of direct associations derive 
from the number of co-rated items between the source user S and the remaining users 
in the system. The value of the most confident direct association is always equal to 1, 
while all other direct associations are equal to or less than 1 as depicted in  
Figure 3(b). 

 

Fig. 3. Confidence Model to Define Uncertainty and Subjectiveness of Trust 

Uncertainty Property 
The confidence model described earlier can be employed to define uncertainty [23]. 
We define as uncertainty, a property assigned to each direct association of the 
network that expresses the unreliability of the association. Uncertainty, just like 
confidence is directly related to the number of co-rated items between two users. This 
assumption indicates that (a) the uncertainty enclosed to a user’s opinion is greater 
when the number of co-rated items is small and that (b) the uncertainty of an 
association between two users may be influenced by the change of the number of co-
rated items between other users in the system. It becomes obvious that in our model, 
confidence and uncertainty are contradictory and complementary. Consequently, the 
more confident one feels about his or her opinion of a user, the less uncertainty is 
enclosed in his or her opinion of that user and vice versa. Uncertainty S TU →  of the 

association between the source user S and the target user T is given by equation 6. 

1S T S TU C→ →= −  (6) 
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Confidence and Uncertainty in Trust Paths 
Confidence and uncertainty properties may also be assigned to trust paths. We adopt a 
transitivity rule that facilitates the computation of the confidence between a source 
user and a target user through a trust path [21, 22]. If we define the set of intermediate 
nodes in a trust path that associate a source user S with a target user T as N={Ni: i=1, 
2, …,k}, then the confidence of the trust path is given by Equation 7. Accordingly, the 
uncertainty assigned to the trust path is given by equation 8.  

( )( )( )( )1 1 2 1
...1

...
k k k

N Nk
S T S N N N N N N TC C C C C

−
→ →

→ → → → →= ⋅ ⋅ ⋅ ⋅  (7) 
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1
N N N Nk k

S T S TU C
→ → → →
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Subjectiveness 
Since the evolution of personal webs is based on individual rating behavior one would 
expect that confidence and uncertainty are defined from a user’s perspective. Indeed, 
confidence and uncertainty are bidirectional properties. This means that even if two 
users trust each other as much as what a similarity measure indicates, they do not 
necessarily have the same confidence in this association. Consider for example, the 
illustration of Figure 3(c) where there is a direct trust association between user S and 
user T. Since computation of trust is based on user similarities their associated trust 
would be the same for both users. However, user S is as much as 0.57 confident about 
this association, while user T is as much as 0.43 confident about this association. 
Therefore, our approach is in accordance with the widely accepted position that trust 
has a subjective notion [23] and reflects the way in which trust is raised in real world 
social networks. 

3.5   Managing Multiple Trust Paths 

Since trust inferences are based on traversal paths in a network, it is possible to find 
multiple paths that connect two users. Figure 4 depicts an example in which a source 
user S is connected to a target user T through two alternative trust paths PA and PB.  
 

 

Fig. 4. Illustrating Example of Multiple Trust Paths 
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Path PA passes through users N1, N2, while path PB through user N3. The inferred trust 
in each of these trust paths is independent of the other. Thus, our trust model needs to 
define a rule that decides which of these inferred trusts to take into consideration. We 
describe two approaches for inferring trust when there are multiple trust paths 
available; the first approach is based on path composition, while the other is based on 
path selection. For the following approaches we assume that there are p discrete paths 
between user S and user T. 

Path Composition 
The path composition approach tries to combine the values that are inferred by the 
multiple paths to one single trust value. We distinguish between two methods of 
composition; Average Composition and Weighted Average Composition.  

! Average Composition: We compute the average of all the trust values that are 
inferred by each of the alternative paths according to Equation 9. Despite the 
fact that this approach is very cost effective it is considered too naive, 
because it doesn’t take into consideration the confidence of each path. 
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p

S T
i

S T

T
T

p

→
=

→ =
∑
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! Weighted Average Composition: We compute the weighted average of the 
trust inferred by the alternative paths, using for weights the propagated 
confidence of each inferred association between user S and user T, according 
to Equation 7. This approach is more sophisticated since path confidence is 
taken into consideration. The final computed trust would be biased to the 
trust inferred by the most confident path. 
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Path Selection 
The path selection approach tries to identify the most confident path among the paths 
available. We employ two methods of selection, one based on Maximum Path 
Confidence and one based on Minimum Mean Absolute Deviation (MAD). 

! Selection Based on Path Maximum Confidence: Based on the confidence of 
direct association we can compute the confidence of a path in the network 
according to Equation 7. Thus, it is possible to compute the confidence of all 
discrete paths and then to select the one with the highest degree of 
confidence. Then, we can use only this path to compute the inferred trust 
between user S and user T. 

max{ : 1,2,..., }
Pi

S T S TT C i p→ →= =  (11) 

! Selection Based on Minimum Mean Absolute Deviation (MAD): It is possible 
to order the discrete paths that connect user S and user T, according to the 
Mean Absolute Deviation of their direct associations. We consider absolute 



 Alleviating the Sparsity Problem of Collaborative Filtering Using Trust Inferences 233 

 

deviation to be the difference between the confidence values of two 
consecutive associations. Once all MAD values are computed for each of the 
paths available we select the one with the minimum MAD as indicated by 
Equation 12, where N is the cardinality of nodes in the path p. This path 
selection method requires that the path comprises of at least 3 users (i.e. 

3N ≥ ). The assumption of this approach is that a path would be more 
confident when consecutive values of confidence introduce smaller 
instability. 
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4   Experimental Evaluation and Results 

In this section we evaluate our method for alleviating the sparsity problem using trust 
inferences. Our evaluation scenario spans across two dimensions. We first evaluate 
the impact of trust inferences to the sparsity problem and then evaluate the quality of 
the recommendations that are based on the underlying network of direct and inferred 
associations. The experimental data come from our movie recommendation system 
named MRS. The lowest level of sparsity introduced by the system is 0.972 which is a 
typical sparsity level for recommendation systems, while ratings range from 1 to 10. 

4.1   Trust Inference Impact 

Our first objective was to introduce a method that would lead to additional 
information accessible for recommendation purposes. We have run tests to discover 
how much more informative or “dense” is the user-item matrix after applying our 
method of trust inferences. However, since inferences are dependent on user rating 
activity we first provide an allocation of ratings that correspond to each user. This 
helps understanding the peculiarities of our network. Figure 5 illustrates the user  
 

 

Fig. 5. User Rating Activity Fig. 6. Impact of Trust Inference for Different 
Sparsity Levels 

 



234 M. Papagelis, D. Plexousakis, and T. Kutsuras 

 

rating activity in our recommendation system, which seems to follow a power law 
distribution (Zipf distribution) [24]. There are a few users that have submitted many 
ratings, some users with normal number of ratings and many users with a few or even 
no ratings. It is essential to mention that 38% of users have no rating. This means that 
in our system there are some users for which no information is available, and 
therefore recommendations are not possible. However, for the rest users, which are 
members of the underlying social network, our methodology seems to be beneficial. 

For our experiments, we define as k-HOP CF the method that employs neighbor 
users that are k hops away from the active user. We compute the percentage of user 
pairs that are feasible in the network when 1-HOP, 2-HOP and 3-HOP CF algorithms 
are employed and for different sparsity levels. 1-HOP CF represents the classic CF 
algorithm, while 2-HOP CF and 3-HOP CF represent our trust inference based 
transitive method for 2 and 3 hops away respectively.  According to Figure 6, the 
percentage of network associations considered by the Classic CF are fewer than these 
considered by our transitive method. This is consistent with our theory, since Classic 
CF (1-HOP) employs only direct associations, while 2-HOP CF and 3-HOP CF apply 
transitive properties in the network. In addition, it is shown that for sparsity level of 
0.972, the 1-HOP CF considers approximately 24% of the total user pairs, while 2-
HOP and 3-HOP consider approximately 43% of the total user pairs. It is also 
demonstrated that after a while 1-HOP, 2-HOP and 3-HOP CF algorithms reach an 
upper limit. This limit is defined by the percentage of users that are inactive in the 
system, and therefore are not connected to the underlying network. Furthermore, it is 
depicted that 3-HOP CF has similar results to 2-HOP CF, thus for the 
recommendation quality experiments we only consider the 2-HOP CF algorithm, 
which has better time performance. 

4.2   Recommendation Quality 

If a prediction is defined as a value that expresses the predicted likelihood that a user 
will “like” an item, then a recommendation is defined as the list of n items with 
respect to the top-n predictions from the set of items available. Thus we can reduce 
the problem of recommendation quality to the problem of prediction quality for our 
experiments. More accurate prediction algorithms indicate better recommendations. 
Statistical accuracy and decision-support accuracy are the key dimensions on which 
the quality of a prediction algorithm is usually evaluated. 

Statistical Accuracy Metrics 
Statistical accuracy metrics evaluate the accuracy of a prediction algorithm by 
comparing the numerical deviation of the predicted ratings from the respective actual 
user ratings. Some of them frequently used are Mean Absolute Error (MAE), Root 
Mean Squared Error (RMSE) and Correlation between ratings and predictions [19]. 
As statistical accuracy measure, Mean Absolute Error (MAE) is employed. Formally, 
if n is the number of actual ratings in an item set, then MAE is defined as the average 
absolute difference between the n pairs ,h hp r< >  of predicted ratings hp  and the 

actual ratings hr  and is given by equation 13. 
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The lower the MAE, the more accurate the predictions are, allowing for better 
recommendations to be formulated. MAE has been computed for Classic CF and for 
the four variations of our 2-HOP CF method based on trust inferences. The prediction 
algorithms are tested for different levels of sparsity over a pre-selected 300-ratings set 
extracted randomly by the set of actual ratings. Figure 7 illustrates the sensitivity of 
the algorithms in relation to the different levels of sparsity applied. 

 

Fig. 7. MAE of the Classic CF and the variations of our CF method of trust inferences for 
different Sparsity lpevels 

As far as statistical accuracy is concerned 2-HOP CF algorithm outperforms the 1-
HOP Classic CF for all sparsity levels. For typical sparsity levels of recommendation 
systems, such as 0.975 and 0.98, 2-HOP CF performs as much as 10.1% and 13.1% 
better than 1-HOP CF respectively. In cases that data is extremely sparse, for example 
when it is equal to 0.99, 2-HOP CF performs as much as 17% better than 1-HOP CF. 
Considering that most of the alternative methods proposed for dealing with the 
sparsity problem result in recommendation quality degradation, the quality 
performance of our prediction algorithms is very satisfactory. 

Decision-Support Accuracy Metrics 
Decision-support accuracy metrics evaluate how effectively predictions help a user to 
select high-quality items. Some of them frequently used are reversal rate, weighted 
errors, Precision-Recall Curve (PRC) sensitivity and Receiver Operating 
Characteristic (ROC) sensitivity. They are based on the observation that, for many 
users, filtering is a binary process. Consequently, prediction algorithms can be treated 
as a filtering procedure, which distinguishes “good” items from “bad” items. 

As decision support accuracy measure, ROC sensitivity is employed. ROC 
sensitivity is a measure of the diagnostic power of a filtering system. Operationally, it 
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is the area under the receiver operating characteristic (ROC) curve, a curve that plots 
the sensitivity and the 1-specificity of the test. Sensitivity refers to the probability of a 
randomly selected “good” item being accepted by the filter. Specificity is the 
probability of a randomly selected “bad” item being rejected by the filter.  

If PR, AR, QT denote the predicted rating, the actual rating and a quality threshold 
respectively, then the following possible cases are defined by the filter for one item 

• True Positive (TP) when PR QT AR QT≥ ∧ ≥  

• False Positive (FP) when PR QT AR QT≥ ∧ <  

• True Negative (TN) when PR QT AR QT< ∧ <  

• False Negative (FN) when PR QT AR QT< ∧ ≥  

For a set of items sensitivity is defined as the True Positive Fraction (TPF) and the 
1-specificity as the False Positive Fraction (FPF) where 

• tp
sensitivity TPF

tp fn
= =

+
, where tp , fn  is the number of the true positive 

and the false negative occurrences over the set of items respectively. 

• 1
fp

specificity FPF
fp tn

− = =
+

, where tn , fp  is the number of the true 

negative and the false positive occurrences over the set of items respectively. 

ROC curve has been computed for different prediction algorithms and for quality 
thresholds ranging between 1 and 9, while the sparsity level was equal to 0,972. For 
each prediction we considered a neighborhood of 5 users. The area under the curve 
represents how much sensitive the prediction algorithm is, so the more area it covers 
the better for the prediction algorithm. Results are illustrated on Figure 8.  

 

 

Fig. 8. ROC for the Classic CF and the variations of CF method of trust inferences 
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As far as decision-support accuracy is concerned the performance of the CF 
method based on our method of trust inferences is of superior quality than Classic CF 
prediction algorithms, while there is only slight difference between the accuracy 
performance of the four variations of our CF method. To obtain a clear view of the 
overall performance of each algorithm one needs to compute the area under the ROC 
curve. It is clear from Figure 8 that Classic CF performs much worse than every other 
algorithm employed based on our method of trust inferences. 

5   Conclusions 

Sparsity is one of the major aspects that limits the application of the CF method and 
provokes its success in providing quality recommendation algorithms. In this 
research, our main objective was to describe a method that is able to provide high-
quality recommendations even when information available is insufficient.  Our work 
employs theoretical results of research conducted in areas of social networks and trust 
management in order to develop a computational trust model for recommendation 
systems. To deal with the sparsity problem we proposed a method that is based on 
trust inferences. Trust inferences are transitive associations between users that 
participate in the underlying social network. Employment of this model provides 
additional information to CF algorithm and remarkably relaxes the sparsity and the 
cold-start problems. Furthermore, our model considers the subjective notion of trust 
and reflects the way in which it is raised in real world social networks. Subjectiveness 
is defined in terms of confidence and uncertainty properties that are applied to the 
network associations. We have experimentally evaluated our method according to the 
impact that trust inferences have to sparsity and according to recommendation quality. 
Our experimental results indicate that our method succeeds in providing additional 
information to the CF algorithm while it outperforms the quality performance of the 
classic CF method. The methodology described is general and may probably be easily 
adopted to alleviate the sparsity problem in other application areas, especially where 
underlying social networks can be identified. 
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