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Abstract Salinization of soil with sodium chloride ions

inhibits plant functions, causing reduction of yield of

crops. Salt tolerant microorganisms have been studied to

enhance crop growth under salinity. This review de-

scribes the performance of endophytic fungi applied to

crops as a supplement to plant genetics or soil manage-

ment to alleviate salt stress in crops. This is achieved via

inducing systemic resistance, increasing the levels of

beneficial metabolites, activating antioxidant systems

to scavenge ROS, and modulating plant growth phyto-

hormones. Colonization by endophytic fungi improves

nutrient uptake and maintains ionic homeostasis by

modulating ion accumulation, thereby restricting the

transport of Na+ to leaves and ensuring a low cytosolic

Na+:K+ ratio in plants. Participating endophytic fungi

enhance transcripts of genes encoding the high Affinity

Potassium Transporter 1 (HKT1) and the inward-

rectifying K+ channels KAT1 and KAT2, which play

key roles in regulating Na+ and K+ homeostasis.

Endophytic-induced interplay of strigolactones play

regulatory roles in salt tolerance by interacting with

phytohormones. Future research requires further atten-

tion on the biochemical, molecular and genetic mecha-

nisms crucial for salt stress resistance requires further

attention for future research. Furthermore, to design

strategies for sustained plant health with endophytic

fungi, a new wave of exploration of plant-endophyte

responses to combinations of stresses is mandatory.
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Soil salinity affects agriculture globally

The beginning of the 21st century has been marked by

global scarcity of water resources, increased environ-

mental pollution and salinization of soil and fresh water.

Two major threats for agricultural sustainability are

increased human population and reduction in arable

land available for crop cultivation (Shahbaz and

Ashraf 2013). Several environmental stresses such as

high winds, extreme temperatures, drought, salinity and

flood have impacted on the production and cultivation

of agricultural crops. Among these, soil salinity is one of

the most significant environmental stresses resulting in

major reductions in cultivatable land area, and decreased

crop productivity and quality. It is estimated that 50% of

all arable land will be impacted by salinity by 2050

(Shrivastava and Kumar 2015) and that globally, soil

salinity results in more than US$12 billion in annual

losses due to reduced crop productivity (Jägermeyr and
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Frieler 2018). Salinity is recognized as the main threat to

environmental resources in several countries, affecting

almost 1 billion ha worldwide, which represents about

7% of the earth’s continental area (Shrivastava and

Kumar 2015). Consequently, it is important to under-

stand the crop responses to this major soil and plant

stress to minimize economic loss and improve food

security.

Soil is defined as being saline when the electrical

conductivity (EC) of the saturation extract (ECe) in the

root zone exceeds 4 dSm− 1 at 25oC and has an ex-

changeable sodium of 15% (w/v). Salinization also in-

cludes excessive accumulation of ions such as calcium

(Ca2+), magnesium (Mg2+), sodium (Na+), sulphates

(SO4
2−), and chlorides (Cl−) in the soil, inhibiting plant

growth and cellular functions. The most abundant ion in

most salt-affected soils is Na+ and hence the exchange

phase is dominated by Na+. A secondary process often

associated with saline soils is alkalinisation, creating a

condition known as sodicity. This results in the degra-

dation of soil physical properties and porosity, leading

to reduced water and air flow and increased soil hard-

ness and crusting.

Apart from affecting soil physical properties, high

soil salinity directly and adversely affects plants- both

native vegetation and introduced crops, severely affect-

ing seed germination, root growth, and the physiological

functions of crops (Oster and Jayawardane 1998). It has

been estimated that worldwide 20% of total cultivated

and 33% of irrigated agricultural land is affected by high

salinity. This is mainly due to the toxicity of the salt ions

directly on the plant cells but also through general

osmotic effects of the soil around the roots of the plant.

High osmotic potentials at the soil-root interface reduce

the ability of the plant to absorb water from the soil

(Machado and Serralheiro 2017).

Native plants have evolved mechanisms to tolerate

low rainfall and high salinity over hundreds of thou-

sands of years (Steffen et al. 2009). However, in the past

200 years, human activities have intensely disrupted the

natural hydrological balance in many regions of the

globe. This has resulted in significant consequences

for the distribution of salt in all landscapes leading to

severe degradation of both natural and agricultural en-

vironments. It is predicted that the total area of land

affected by salinity will increase drastically over the

next few decades if effective solutions are not imple-

mented. These solutions would involve significant

changes to our present systems of management

including research and development of strategies to

improve salt tolerance in crops and improve mecha-

nisms to mitigate its consequences (Rengasamy 2002,

2006).

Effects of salt stress on above-ground

and below-ground organs of plants

Plants have two major systems, the above-ground or-

gans (shoots) and below-ground organs (roots). Each

system has morphological, physiological and anatomi-

cal differences that affect plant performance differently

(Gregory 2007). However, while these two systems

grow and function as a separate site for the uptake of

nutrients and other resources, they are coupled, and their

functions need to form an integrated system. The above-

ground system is highly dependent on the development

of below-ground organs and without a sufficiently de-

veloped root system, the above-ground system cannot

fully mature (de Willigen and van Noordwijk 1987).

Salinity limits vegetative and reproductive develop-

ment by inducing physiological dysfunctions, and this

has profound implications on different harvested organs

such as leaf, stem, root, shoot, fruit or grain. The com-

plex phenomenon of tolerance and response to salt stress

involves dynamic changes in growth, physiology, met-

abolic pathways and gene expressions (Atkinson and

Urwin 2012; Munns and Tester 2008). Strategies used

to mitigate against salt stress include proline accumula-

tion within cells (Matysik et al. 2002), modulation of

hormones and accumulation of glycine betaine and

polyols (Gupta and Huang 2014). They also involve

generation of nitric oxide (NO) and compounds to com-

bat formation of reactive oxygen species (ROS). NO

directly or indirectly triggers expression of several

redox-regulated genes. NO also reacts with lipid radicals

thus preventing lipid oxidation, exerting a protective

effect by scavenging superoxide radicals and formation

of peroxynitrite that can be neutralised by other cellular

processes. NO also helps in the activation of many

antioxidant enzymes including catalase (CAT), ascor-

bate or thiol-dependent peroxidases (APX), glutathione

reductases (GR) and superoxide dismutase (SOD).

The effect of salinity on leaf growth, biomass pro-

duction and grain yield on several crops are well docu-

mented (Hasanuzzaman et al. 2013; Munns et al. 2011;

Munns and Tester 2008; Sun et al. 2014). The extent to

which plants are damaged by salinity depends on several
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factors including species, genotype, plant growth phase,

ionic strength, duration of salinity exposure, composi-

tion of salinizing solution and, most importantly, which

plant organ is exposed (Robin et al. 2016).

Munns (2005) hypothesized that salinity damage in

plants occurs in two temporal phases. The first phase of

growth reduction occurs rapidly after exposure and is

due to an osmotic effect, while the second phase, which

is a slower process, is due to the accumulation of salt

ions, mainly in older leaves. Early symptoms of the

second phase of growth reduction include damage to

old leaves and a reduced photosynthetic capacity

(Munns et al. 2006). At the plant organ level, shoots

have been demonstrated to be more sensitive to salinity

than roots (Munns and Tester 2008). However, roots are

exposed to salinity stress before leaves and can respond

rapidly through changes in elongation (Rahnama et al.

2011) and function (Shelden et al. 2016). The roots are

crucial for a myriad of physiological processes includ-

ing water and nutrient uptake, preventing toxic sub-

stances from reaching photosynthetic tissue, signal ex-

change with shoots, anchoring of plants, and providing

mechanical support to the above-ground organs.

The root-soil interface/ The rhizosphere

Roots and their growing substrate are intrinsically con-

nected, and they mutually influence each other at all

stages of plant life (Gregory 2006). The interface be-

tween roots and the soil is a complex and often ill-

defined zone. Compounds are released from roots into

the surrounding soil matrix resulting in changes to its

chemical and physical properties. The narrow zone of

soil that surrounds and is influenced by plant roots is

known as the rhizosphere. The term rhizosphere was

first defined over a century ago by Hiltner (1904) and

recently, redefined by Pinton et al. (2007) as the most

dynamic interface on earth that includes soil influenced

by the root, along with the root tissues. The rhizosphere

is home to a vast number of microorganisms (Morgan

et al. 2005; Pinton et al. 2007), and consists of three

distinct zones: (a) the endorhizosphere, which includes

part of the cortex and endodermis in which microbes

occupy the apoplastic space; (b) the rhizoplane, which is

the medial zone immediately next to the root consisting

of the root surface and mucilages; and (c) the

ectorhizosphere, which extends from the rhizoplane

out into the bulk soil (Lynch 1990).

The root system architecture is greatly influenced by

soil conditions (Rich andWatt 2013), including nutrient

gradients and concentrations of nitrate and phosphorus

(Ho et al. 2005; Paterson et al. 2006). Roots also affect

the surrounding nutrient composition by the release of

organic compounds that play a vital role in mineralizing

nutrients. The compounds released from the roots into

the surrounding soil are generally part of rhizodeposits

(Jones et al. 2009), which include a range of substances

from sloughed-off root cells and tissues, mucilages,

volatiles, and soluble lysates and exudates from dam-

aged and intact cells (Curl and Truelove 1986; Dakora

and Phillips 2002; Watt 2009). Abiotic factors influence

the root system (Bekkara et al. 1998; Brimecombe et al.

2000; Groleau-Renaud et al. 1998; Watt and Evans

1999) with roots responding by secreting a different

combination of compounds to protect against negative

effects and encourage positive microbial interactions

(Badri and Vivanco 2009). These secreted compounds

usually induce an interactive metabolic cross-talk in-

volving diverse biosynthetic networks and pathways.

Root exudates include both secretions (including

mucilage) that are actively released from the root and

diffusates which are passively released because of os-

motic differences between soil solution and the root

cells (McNear 2013). Inorganic root exudates include

ions, water, ubiquitous H+ and electrons. Although the

concentration of inorganic compounds make up far less

of the root exudate composition compared to organic

compounds but their role is still significant (Khorassani

2008; Uren 2000). Organic compounds can be classified

into high molecular weight compounds, such as com-

plex molecules including polysaccharides secreted by

root cap cells and epidermal cells at the apical zone, and

low molecular weight compounds that include arabi-

nose, fructose, glucose, amino acids, organic acids,

plant hormones and phenolic compounds (Bertin et al.

2003). Due to the richness of inorganic and organic

compounds in rhizodeposits, the rhizosphere is home

to specialised microbes that are able to utilise these

compounds as an energy source.

Several recent and comprehensive reviews have been

written covering the diversity and activity of microor-

ganisms at within roots and in the rhizosphere, as well as

the functions and effects of microorganisms in nutrient

turnover and supply to the plant (Garcia et al. 2016;

Jacoby et al. 2017; Smith and Smith 2011; Udvardi and

Poole 2013). In the following section, the use of micro-

organisms as one of the key approaches used to alleviate
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abiotic stresses, with the focus on using fungi as a major

beneficial microbe will be discussed.

Alleviating salt stress by association with endophytic

fungi

Diverse metabolic and genetic strategies used by plant-

associated microbes can reduce the impact of salt stress

and other abiotic stresses arising from extreme environ-

mental conditions (Gopalakrishnan et al. 2015; Singh

2014). Induced Systemic Tolerance (IST) is the term

used to describe microbe-mediated induction of abiotic

stress responses (Meena et al. 2017). In these beneficial

situations, rhizosphere microorganisms not only per-

ceive and respond to signal molecules secreted by plant

roots, they also release diverse signalling molecules that

influence plants, resulting in increased biotic and abiotic

stress resistance or tolerance, as well as root develop-

ment and plant growth (Zhang et al. 2017a). Microbial

interactions with plants induce several local and system-

ic responses that improve the metabolic capacity of

plants to respond to salt stress (Nguyen et al. 2016).

This microorganisms-based plant biotechnology has

proven to be more efficient in many cases than plant

breeding and genetic modification approaches (Smith

2014).

Beneficial effects due to plant root interactions

with endophytic fungi

In recent years the ability of mycorrhizal fungi to induce

tolerance against salt stress in crops has been documented

(Gangwar and Singh 2018) (Fig. 1). In a mycorrhizal

association, the fungus colonizes the host plant’s root

tissues, either intracellularly as in arbuscular mycorrhizal

fungi (AMF), or forms extracellular exchangemechanisms

outside of the root cells, as in ectomycorrhizal fungi. Thus,

mycorrhiza fungi can be categorised as endo- inside plant

tissue, or ecto- associated with the external rhizosphere or

not penetrating root cells. For the purpose of clarity, this

review will only focus on endomycorrhizal (termed as

endophytic for this review) fungi.

Penetration and colonisation of plant roots appears to

be essential for some endophytic fungal strains that are

reported to promote plant growth and provide protection

against pathogens. For example, some species belong-

ing to the genus Trichoderma can colonize local sites

(Metcalf and Wilson 2001) on roots, mediated by

hydrophobins- (Viterbo et al. 2004) and expansin-like

proteins (Brotman et al. 2008) present in the outermost

cell wall layer that coats the fungal cell surface. Other

rhizosphere-competent Trichoderma spp. colonize en-

tire root surfaces for long periods of time (Harman 2000;

Thrane et al. 1997) or penetrate the epidermis and the

cortex (Yedidia et al. 1999). Once hyphae penetrate

roots, a series of fungal bioactive compounds can be

produced inducing plant biochemical mechanisms

(Harman 2006). The callose-enriched wall appositions

in the root cell limit the growth of the Trichoderma spp.

to a small area (epidermis and cortex), preventing the

entry of Trichoderma spp. into the vascular stele

(Hermosa et al. 2012; Yedidia et al. 1999). Arbuscular

mycorrhiza fungi (AMF) are another group of endo-

phytic fungi. Their hyphae penetrate plant cells, produc-

ing structures that are either balloon-like (vesicles) or

dichotomously branching invaginations (arbuscules) as

a means of nutrient exchange. The fungal hyphae do not

in fact penetrate the protoplast (i.e. the interior of the

cell), but invaginate the cell membrane. Dark septate

endophytic (DSE) fungi are also root endophytes, char-

acterized by intense dark pigmentation and the forma-

tion of septate and melanized hyphae and occasionally

microsclerotia (Knapp et al. 2015; Yuan et al. 2016).

They can be found in plant cortical cells inter- and

intracellularly and are present in several environments

(Li et al. 2019; Santos et al. 2017). In contrast to the vast

information on AMF, information on the role of DSE

fungi in the ecosystem is limited.

Colonization of several crops with endophytic fungi

has been reported to induce systemic resistance to path-

ogens, mitigate stress by increasing the levels of protec-

tive metabolites and osmoprotectants, activate antioxi-

dant systems to prevent damage caused by ROS, de-

creasing salt induced root respiration and modulate the

phytohormone profile tominimize salt effects on growth

of plants (Ghaffari et al. 2016; Jogawat et al. 2013; Li

et al. 2017; Nia et al. 2012; Rewald et al. 2015; Zhang

et al. 2019a). These effects are in coordinated to im-

prove plant growth and resilience to salinity stress.

These ameliorative effects can be evaluated in terms of

improved plant growth exhibited by endophyte colo-

nized (ENC) plants in comparison to non-endophytic

(NENC) colonized plants.

Salinity triggers a decrease in stomatal conductance,

thus decreasing the CO2:O2 ratio and increasing photo-

respiration (Kangasjärvi et al. 2012). This causes an

increase in stomatal resistance to transpiration and an
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increase in the rate of tissue respiration. Under these

conditions, photosynthetic capacity is limited, and the

plant uses its own photo-assimilates, resulting in de-

creased growth. Rewald et al. (2015) showed that in

NENC Ulmus glabra seedlings there was a significant

increase in fine root respiration under salt stress as

compared to their ENC counterparts. This suggested

that colonization by endophytic fungi can prevent a

major increase of root respiration under moderate NaCl

stress, enabling trees to deploy more assimilated C for

growth and, theoretically, improve defence mechanisms

against other stress factors occurring in urban

environments.

Endophytic fungi are effective against several root

diseases (Azcón-Aguilar and Barea 1997; Borowicz

2001) and impart stress tolerance to plants (Duc et al.

2018; Evelin et al. 2019; Yasmeen et al. 2019),but can

also enhance susceptibility to biotrophic leaf pathogens

(Gernns et al. 2001; Waller et al. 2005). These endo-

phytes have been frequently reported to not only protect

against plant pathogens and pests but also impart strong

tolerance against several abiotic stresses in crops

(Gangwar and Singh 2018).

In the past decade, significant progress has been made

to understand several mechanisms of salt tolerance

imparted by endophytic fungi. In the following sections,

Fig. 1 Potential beneficial effects of root colonisation of plants by
endophytic, symbiotic fungi in saline soil conditions, summarised
from the literature. Salinity results in reduced root biomass due to
salt-induced inhibition of cell division and affect the total biomass
yield (1) (left). Plant colonized with endophytic fungi improves
biomass accumulation by modifying root architecture and in-
creased nutrient absorption (1a) (right). Salt accumulation creates
competition for nutrient uptake and transport. This results in
imbalance of the ionic composition of plant, affecting plant’s
physiological traits (2) (left). Endophytic fungi improve expres-
sion of genes and upregulate several cation transporters, resulting
in improved nutrient uptake and maintenance of ionic homeostasis
(2a) (right). Increase of salt in soil lowers soil water potential

resulting in cellular dehydration (3) (left). Endophytic fungi negate
this effect by mediating accumulation of osmolytes consequently
improving plant’s water status (3a) (right). Increasing salinity
causes oxidative stress due to imbalance in reactive oxygen spe-
cies generation and quenching activities of antioxidants (4) (left).
Endophytic fungi improve the antioxidant systems of plants re-
ducing oxidative stress under salt stress (4a) (right). Salt stress
hinders photosynthesis by reducing uptake of magnesium and
decreasing chlorophyll concentration which eventually reduces
carbon dioxide supply to RuBisCo (5) (left). Endophytes have a
positive effect on photosynthesis under salt stress (5a) (right). See
text for relevant references and further details
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current understanding of biochemical and physiological

changes that occur in salt stressed plants inoculated with

endophytic fungi will be covered. This will include ad-

vances made recently toward better understanding of the

mechanisms that contribute to salt stress alleviation in

ENC plants. Finally, gaps in our understanding of the

mechanisms will be identified and research challenges to

be met in future studies will be discussed.

Mechanisms of salt tolerance in ENC plants

Increase in total biomass

Total biomass is usually evaluated as an indicator of the

plant’s ability to tolerate salinity. Several studies have

highlighted that endophytic fungi impart salinity tolerance

in host plants by virtue of higher biomass as compared to

NENC plants. Endophytic fungus colonization has been

demonstrated to increase biomass in Zea mays L. (Rho

et al. 2018), soybean (Hamayun et al. 2017), Vochysia

divergens Pohl (Farias et al. 2019), Solanum lycopersicum

(Azad and Kaminskyj 2016), Brassica juncea (Ahmad

et al. 2015), Oryza sativa L. (Saddique et al. 2018) and,

Triticum aestivum L. (Zhang et al. 2019b).

The total biomass can also be assessed by measuring

plant relative growth rate (plant weight increment per

plant weight unit). This includes measurement of the net

assimilation rate (NAR) (the increase in plant weight per

leaf area unit), the leaf area ratio (LAR) and root relative

growth rate (RGRplant). Balliu et al. (2015) investigated

the effects of commercially available AMF inoculant

(Glomus sp. mixture) on growth and nutrient acquisition

in tomato (Solanum lycopersicum L.) plants grown in

media with different levels of salinity. Salinity stress

immediately and significantly reduced the LAR, NAR

and RGRplant in NENC as compared to ENC plants.

Similarly, Sallaku et al. (2019) showed that AMF alle-

viates the salinity stress in cucumber plants by extending

their root length and root surface area and even more

through enhancing their photosynthetic rate (NAR) as

compared to NENC plants.

Alteration of root architecture

Root branching and root system architecture play a

significant role in determining the composition of exu-

dates (Badri and Vivanco 2009). Changes in the root

system architecture for regulating salt acquisition and

translocation are crucial for enhancing plant resistance

to salt stress (Jung and McCouch 2013). Barley plants

experienced a decline in primary root growth under

saline conditions due to salt-induced inhibition of cell

division and elongation of root epidermal cells, while

simultaneously stimulating lateral root development

(Rahnama et al. 2011). Endophytic fungi can modulate

the plant’s ability to modify root architecture (Salope-

Sondi et al. 2015; Vahabi et al. 2016). Yun et al. (2018)

observed that the length and volume of roots were

greater in ENC than in NENC maize plants under saline

conditions and similar observations have been reported

in Hordeum vulgare (Waller et al. 2005) and Oryza

sativa L. (Kord et al. 2019). Improved root systems

enable the plant to utilize water and minerals from

non-saline areas until exploitation of areas affected by

salt cannot be avoided (Jogawat et al. 2013). Though

few studies have shown the ability of endophytic fungi

to alter root architecture under saline conditions for

beneficial purposes, much remains to be investigated

on endophytic fungi influenced root architecture for

better water and nutrient uptake in saline conditions.

Osmoregulation

Upon exposure to saline environments, plants undergo a

reduction in water absorbing capacity from the soil,

disrupting cell water relations and inhibiting cell expan-

sion. In order to negate these effects, plants employ

osmoregulation as a mechanism to tolerate salt stress

(Munns and Tester 2008). This is achieved by accumu-

lation of osmolytes in the form of proline, glycine beta-

ine, sugars, organic acids, polyamines and amino acids

contributing to osmotic adjustment (Hasegawa et al.

2000). These osmolytes, often termed as compatible

solutes, are organic compounds of lowmolecular weight

that are water soluble and non-toxic at high concentra-

tions (Chen and Murata 2011).

Under salt stress, ENC plants have been shown to

possess higher osmotic potential than NENC plants

(Contreras-Cornejo et al. 2014) due to accumulation of

osmolytes (Ahmad et al. 2015; Song et al. 2015) (Fig.

2). Osmolytes are also involved in quenching reactive

oxygen species (ROS), maintaining membrane integri-

ty, and stabilizing enzymes. Osmolytes are also de-

scribed as osmoprotectants (Azad and Kaminskyj

2016; Li et al. 2017). Endophytic symbiosis can influ-

ence the concentration and profile of polyamines and

organic acids in plants (Chen et al. 2019; Zhao et al.
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2014). Polyamines help retain ion homeostasis in plant

cells by enhancing the uptake of nutrients and water

(Pang et al. 2007). Organic acids may increase the

availability of nitrogen, phosphorus and potassium (N,

P and K) in soil (Samolski et al. 2012). The role of

specific osmolytes in improving salt tolerance is ENC

plants are discussed below.

Proline

Proline is one of the most common osmoprotectants that

accumulates in plants during salt stress, thereby

ameliorating the negative effects of salinity. Proline

has been observed to protect cell walls under osmotic

stress, protect protein integrity and to increase enzymat-

ic activity by acting as a molecular chaperone. Proline

also has a role in scavenging ROS and shows singlet

oxygen quenching ability (Kaur and Asthir 2015). De-

spite these benefits, there are conflicting reports on the

role of endophytic fungi in proline accumulation in salt

stressed plants. Several studies reported increases in

proline contents in ENC plants compared to NENC

plants, while others have reported lower proline contents

in ENC plants (Table 1). Higher proline content in ENC

Fig. 2 Salinity stress induced osmotic stress tolerance mecha-
nisms in plants. Increase in salt in soil lowers the soil water
potential of plant cells. This reduces water uptake by plants and
consequently causes cellular dehydration (1) (left). To combat this
issue, plants accumulate osmolytes, such as proline, sugars and
polyamines in higher concentration. Osmolyte accumulation re-
sults in lowering of cellular water potential and maintains a
favourable gradient for water uptake from soil to roots. Endophytic

fungi alleviate osmotic stress by influencing the expression of
specific genes, P5CS, pyroline-5-carboxylate synthase (1a) (right),
involved in the biosynthesis of the osmolyte proline, activation of
starch degrading enzyme, glucan-water dikinase (1b) (right) and
forming tripartite symbiosis with roots and rhizobia (1c) (right) to
elevate the accumulation of sugars and by increasing the biosyn-
thesis of polyamines such as spermidine and spermine (1D) (right).
See text for relevant references and further details
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plants has been attributed to – (i) favouring a decline in

ionic influx inside cellular masses thus helping plants to

maintain their osmotic balance; (ii) increasing the ex-

pression of the gene encoding Pyrroline-5-carboxylate

synthase (P5CS) enzyme which is involved in proline

biosynthesis; and (iii) increasing activity of the P5CS

enzyme (Rawat et al. 2016). Besides its role as an

osmolyte proline can act as a stress marker. In ENC

tomato plants, proline accumulation was reduced when

the toxic effects of salinity were reduced following

colonization of an endophytic fungus, Piriformospora

indica (Abdelaziz et al. 2019).

Sugars

In salt stressed plants, the accumulation of total soluble

sugars, such as glucose, sucrose, dextrins and maltose,

serves as an osmoprotection as they can stabilize the cell

membrane and protoplast. These sugars also protect

water soluble enzymes from high intracellular concen-

trations of inorganic ions (Liang et al. 2018). The syn-

thesis of soluble sugars from starch and sucrose in plants

is upregulated by the activities of sucrose anabolizing

enzymes such as α- and β-amylase, which convert

starch into dextrins and maltose, respectively (Preiss

2018). Sucrose phosphate synthase and sucrose syn-

thase catalyse the synthesis of sucrose, while β-

fructofuranosidase catalyses the breakdown of sucrose

to glucose and fructose (Peng et al. 2016). In plants

grown under saline conditions, sucrose undergoes de-

composition in order to meet the requirements for glu-

cose (Munns and Tester 2008).

There have been reports that show the role of endo-

phytic fungi in enhancing accumulation of soluble

sugars in salt stressed plants (Qi and Zhao 2013; Uma

Shaanker 2014; Zhang et al. 2019b). These sugars act as

chemoattractant signals to soil rhizobia (el Zahar

Haichar et al. 2014). These chemoattractants can direct

movement to microorganisms in response to chemical

gradients- a behaviour known as chemotaxis. This che-

motactic response of microorganisms to root exudates

play key role in initiating communication between plant

roots and microbes. Yang et al. (2015) reported that the

colonization by Phomopsis liquidambari could stimu-

late sugar secretion from the rhizodeposition of

sloughed off cells and root debris of rice, thereby pro-

viding carbon to the endophytic fungi. Another study of

P. liquidambari on peanut showed increased soluble

sugar contents in leaves. This was due to the ability of

the fungus to form tripartite symbiotic associations with

peanut roots and rhizobia. This tripartite association

significantly enhanced peanut nodulation (Zhang et al.

2017b). Here, sucrose derived from photosynthesis was

transported to bacterial inoculated root nodules and was

hydrolysed by sucrose synthase into UDP-glucose and

fructose. This was due to the allocation of more carbon

by the endophyte toward peanut and rhizobia symbionts

by increased soluble sugar content, leading to more

active nodule carbon metabolism in ENC plants.

Furthermore, Sherameti et al. (2005) also suggested

that one of the major starch-degrading enzymes, glucan-

water dikinase, activated by the fungus in colonized

roots, is responsible for the increase in soluble sugars

in ENC plants. Similar results were obtained by

Ghabooli (2014) with Piriformospora indica increasing

the level of soluble sugars, including glucose, fructose,

and sucrose, in inoculated plants under salt stress

conditions. Recently, Zhang et al. (2019a) demonstrated

that T. harzianum improved salt tolerance of cucumber

seedlings by enhancing accumulation of sugars. This

results in adjustment of the osmotic potential for cellular

water retention and turgor maintenance, thereby mini-

mizing the adverse effects of salt stress by balancing the

solute potential (Bai et al. 2019).

Organic acids

Other important osmolytes in plants are organic acids

such as citric acid and malic acid. They are found in

plant vacuoles and the regulation of their metabolism

plays a crucial role in providing tolerance to salt stress

(Guo et al. 2010). Fungal endophytes have been report-

ed to induce the release of organic compounds by the

roots (Yang et al. 2015; Zhang et al. 2014), thus

influencing the concentrations and profile of organic

acids in plants. One of the major plant nutritional disor-

ders associated with increased salinity in soil is iron (Fe)

deficiency. Endophytes can enhance Fe acquisition by

their host through their ability to secrete organic acids

which chelate and solubilise iron in the soil (Chen et al.

1998; Khan et al. 2006). A study by Zhao et al. (2014)

demonstrated that the release of organic acids from

endophytes, resulted in ferric solubilization to form

organic ferric salts that can be assimilated directly by

plants under saline conditions. It has also been shown

that ENC plants have better nutrient uptake capacity and

distribution within plant tissues due to modulation of the

root architecture and nutrient availability in the soil.
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These benefits are imparted by increases in organic

acids produced by ENC plants (Samolski et al. 2012;

Zhao et al. 2014). Limited research has been done on

understanding the mechanisms underlying the changes

in organic acids in ENC plants, thus this topic calls for

further investigation.

Polyamines

Polyamines (PA) are low molecular weight nitrogenous

aliphatic molecules that participate in physiological pro-

cesses such as activation of antioxidant systems, cell

growth and development, and in cellular osmoregula-

tion in plants under salt stress (Singh et al. 2018). PA

also regulate ion channels, either by direct binding or via

PA-induced signalling molecules (ROS and NO). PAs

also regulate the activity of ion channels indirectly by

membrane depolarization. The hyperpolarization-

activated Ca2+ influx and the NO-induced release of

intracellular Ca2+ result in a higher cytoplasmic Ca2+

concentration, which is a major component in general

stress responses such as stomatal movements (Wani

2018; Williams 1997). They are either present in free,

soluble conjugated (covalently conjugated with small

molecules such as phenolic acids) or insoluble (bound

with macromolecules such as proteins, DNA and RNA)

forms. These compatible solutes accumulate under salt

stress and include putrescine (Put, diamine), spermidine

(Spd, triamine) and spermine (Spm, tetramine)

(Minocha et al. 2014; Todorova et al. 2013).

Differences in PA (Put, Spd, Spm) responses under

salt-stress have been reported in several species (Singh

et al. 2018) and it remains unclear which polyamine

plays the major role in imparting salt tolerance. Chen

et al. (2019) demonstrated that the putrescine content

was significantly reduced in ENC plants compared to

NENC plants in high stress conditions whereas

spermidine and spermine content showed the opposite

pattern. It was suggested that salinity stress tolerance

induced by endophytic fungus Epichloë bromicola cor-

related with enhanced conversion of putrescine to

spermidine and spermine. The fungus also converted

the free forms and soluble conjugated forms of poly-

amines to insoluble bound forms of polyamines.

Modulation of the polyamine pool to help tolerate

salt stress by arbuscular mycorrhizal fungi (AMF) is

well explored (Evelin et al. 2009). However, research

on polyamine metabolism during the interactions be-

tween endophytic fungi and plants under salt stress is

underrepresented and many questions remain unan-

swered. For example, most plant polyamine research

relates to changes in free polyamines, and where poly-

amine conjugates have been measured, substantial

changes have been detected. The precise role of poly-

amines, free or conjugated, in ENC plants remains un-

clear. Further investigations, focusing on understanding

endophyte-facilitated modulation of polyamines, in-

cluding the intracellular localization of free polyamines

and conjugates associatedwith salt tolerance in plants, is

needed. Already some of the key genes involved in the

biosynthetic pathways have been cloned making it pos-

sible to manipulate polyamine metabolism using molec-

ular genetic approaches (Malmberg et al. 1998). Hence,

genetic manipulation of polyamine levels in ENC plants

may allow valuable insights into the role of these com-

pounds especially in studies of plant tolerance to salt

stress.

Nutrient acquisition and ionic homeostasis

High salt (Na+ and Cl−) in the soil disturbs nutrient

availability by imposing competition during uptake,

translocation or distribution within the plant. This may

suppress nutrient associated activities resulting in unde-

sired ratios of Na+:K+, Na+:Ca2+, and Ca2+:Mg2+

(Munns et al. 2011). This in turn results in imbalance

among ionic composition of the plant subsequently

affecting plants physiological traits (Hasegawa et al.

2000; Munns et al. 2006). However, endophytic symbi-

osis has been shown to improve assimilation of nutrients

and assist in maintenance of ionic homeostasis in host

plants grown in saline conditions (Table 2).

Although the effects of AM fungi on plant nutrient

acquisition are commonly discussed based on the dif-

ferences of nutrient concentration in plant tissues, the

relative uptake rate of nutrient elements (RUR) has

recently been suggested as a better tool to distinguish

the differences among treatments over a short period, as

the nutrient concentration could be largely influenced

by the dilution effect of fast growth in young plants.

Balliu et al. (2015) found that RUR values of ENC

tomato plants grown in both non-saline and moderate

saline conditions were higher than in non-inoculated

seedlings. Similarly, another study showed the en-

hancement effect of AMF inoculation on the nutrient

uptake capacity of cucumber seedlings after salt stress

(Sallaku et al. 2019).
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Phosphorus

Phosphorus (P) and nitrogen (N) are two of the most

important and essential elements for plant growth with

crucial roles in cell function and metabolism (Uchida

2000). Increased salt in soil occludes P to plants due to

its precipitation with other cations (de Aguilar et al.

1979), thereby creating soil-induced P deficiency in

plants. This affects the normal growth of the plant and

causes older leaves to die prematurely (Niu et al. 2012).

Increased P acquisition in ENC plants under saline

conditions is attributed to (i) increased availability of

phosphates in soil due to the conversion of insoluble

phosphates into soluble forms through the process of

acidification, chelation and exchange reactions; (ii) abil-

ity of endophytic fungi to absorb P at lower thresholds

owing to the expression of a high affinity Pi transporter,

PiPT, and (iii) ability of endophytic fungi to interact

with diverse rhizobacteria which have inorganic

phosphate-solubilizing capabilities by virtue of produc-

tion of a variety of organic acids and acid phosphatases

(Johri et al. 2015; Meena et al. 2010; Ngwene et al.

2016; Singh et al. 2009; Srividya et al. 2009; Swetha

and Padmavathi 2016). This effective P uptake in ENC

plants aids in transporting absorbed phosphorus to

leaves, prompting plant growth; increasing absorption

of nutrients and biomass accumulation (Wu et al. 2019),

consequently alleviating the adverse effects of salinity.

Nitrogen

Nitrogen plays a crucial role in cell function and metab-

olism (Chokshi et al. 2017). Plants absorb N as nitrate

(NO3
−), ammonium (NH4

+) ions, and also as organic

compounds such as amino acids and peptides (Rentsch

et al. 2007; Tegeder and Rentsch 2010) but absorption is

compromised by salinity due to N immobilisation. Ni-

trate reductase (NR, E.C.1.6.6.1) catalyses reduction of

NO3
− to NO2

− and its activity is nitrate-inducible. The

NR activity is the limiting step in the conversion of

NO3
− to amino acids (Campbell 1999). Nitrate reductase

activity in leaves is largely dependent on nitrate flux

from roots (Ferrario-Méry et al. 1998) and is severely

affected by osmotic stress induced by NaCl (Baki et al.

2000). A number of reports have shown that endophytic

fungal colonization assists in N uptake under stress

conditions (Khan et al. 2011a; Sherameti et al. 2005;

Song et al. 2015). Recruitment of N in endophytic

interactions differs from mycorrhizal interactions in

which the fungus preferentially recruits ammonium

rather than nitrate from the soil (Boukcim and Plassard

2003; Gage 2004). Song et al. (2015) showed that in

ENC plants, N content increased in both the shoots and

roots with increasing salt concentrations. The fungus

was suggested to be involved in the cell’s antioxidant

and ROS-scavenging enzymes where N is an essential

component (Cabot et al. 2014; Khan et al. 2014). An-

other study by Sherameti et al. (2005) showed a signif-

icant increase in growth of ENC plants that was pro-

posed to be associated with a stimulation of the NADH-

dependent NR, the key enzyme of nitrate assimilation in

plants.

Na+:K+ ratio

Increased levels of Na+ in cells impairs important bio-

chemical mechanisms required for plant growth and

survival. Sodium accumulation alters cellular Na+:K+

ratios thereby reducing the availability of K+ that is

required for activity of various enzymes and for the

regulation of osmotic pressure and stomatal closure.

Increased Na+ also competes with K+, disrupting cellu-

lar metabolism in roots and leaf tissues (Abdelaziz et al.

2017). This eventually increases the Na+:K+ ratios in the

cytosol, and subsequently disrupts enzyme activity, pro-

tein synthesis, turgor maintenance, photosynthesis and

stomatal movement (Evelin et al. 2019).

High Na+:K+ ratios in plants indicate higher levels of

stress. Hence, plants must maintain low levels of Na+ to

be able to resist the deleterious effects of salinity. ENC

plants consistently have lower Na+:K+ ratios than

NENC plants under saline conditions. Reza Sabzalian

and Mirlohi (2010) demonstrated that the toxic effect of

Na+ was mitigated in grasses inoculated with endophyt-

ic fungi by increasing K+ concentration and thus main-

taining the Na+:K+ ratio in plants. Similar results were

found by Song et al. (2015) and Alikhani et al. (2013)

where endophytic fungi modulated ion accumulation in

colonized barley plants by decreasing the foliar Na+:K+

ratio. Restricting the transport of Na+ to leaves and

ensuring a low cytosolic Na+:K+ ratio are important

ways plants can increase their tolerance to high salt

levels (Berthomieu et al. 2003; Cuin et al. 2003). In-

crease of K+ concentration is also related to mechanisms

that control turgor pressure (Beckett and Hoddinott

1997). Song et al. (2015) also showed that the lower

Na+:K+ ratios observed in ENC plants decreased the

level of toxic ions and osmotic influence on plants under
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salt stress. Another study on barley plants inoculated

with endophytic fungi showed a decreased Na+:K+ ratio

compared to uninoculated plants, indicating that this

ratio is a reliable indicator of the severity of salt stress,

or for screening plant genotypes for high Na+ tolerance

(Ghabooli 2014) (Table 2).

Plants control Na+ homeostasis through a variety of

membrane proteins, antiporters, nonspecific cation

channels, Na+ and K+ transporters, vacuolar ATPases

and aquaporins, and the plasma membrane (PM)

(Grabov 2007). Recently, Abdelaziz et al. (2017) pos-

tulated a molecular basis of establishing a balanced ion

homeostasis of Na+:K+ ratio in ENC plants. Inoculated

Arabidopsis plants had enhanced transcript levels of the

genes encoding the high Affinity Potassium Transporter

1 (HKT1) and the inward-rectifying K+ channels KAT1

and KAT2, which play key roles in regulating Na+ and

K+ homeostasis. Subsequently, lower Na+:K+ ratios

were confirmed in the Arabidopsis line gl1-

HKT:AtHKT1;1 that expresses an additional

AtHKT1;1 copy driven by the native promoter. This

study demonstrated that endophytic colonization pro-

motes plant growth under saline conditions by modulat-

ing the expression level of the major Na+ and K+ ion

channels, which helps in the establishment of a balanced

ion homeostasis of Na+ and K+ under salt stress condi-

tions (Abdelaziz et al. 2017).

Oxidative stress

Salt stress (osmotic and ionic stress) also interferes with

proper cellular functions of plants due to enhanced

production of ROS, which can lead to oxidative damage

in several cellular components such as lipids, proteins

and DNA (Gupta and Huang 2014). ROS consist of a

group of chemically reactive oxygen molecules such as

hydroxyl radical (OH-), H2O2, O2
− and O2− and are

produced as a result of interrupted pathways in plant

metabolism that cause transfer of high energy electrons

to molecular oxygen (Gill and Tuteja 2010). Broad host

range endophytic fungi can confer effective tolerance to

ROS under abiotic stress conditions such as salinity

(Mastouri et al. 2010; Rodriguez et al. 2008). (Redman

et al. 2011); Singh et al. (2011) reported that exposure to

high salt conditions caused ROS accumulation in toma-

to, rice, panic grass, and dunegrass without endophytic

associations, whereas the ENC plants had decreased

ROS accumulation through various pathways (Fig. 3).

Plants have two ways to counteract the adverse con-

sequences of ROS, mainly enzymatic and non-

enzymatic antioxidative systems. The enzymatic system

includes catalase (CAT), ascorbate peroxidase (APX),

superoxide dismutase (SOD), glutathione reductase

(GR), dehydroascorbate reductases (DHAR) and

monodehydroascorbate reductases (MDHAR). The

non-enzymatic antioxidant system consists of ascorbic

acid (AsA), glutathione (GSH), carotenoids and

osmoprotectants that play roles in quenching toxic by-

products of ROS.

Baltruschat et al. (2008) reported increased activity

of CAT, APX, GR and DHAR in the root tissues of

barley under saline conditions. Increased activity of

DHAR was seen in P. indica colonized barley leading

to detoxification of ROS and an enhanced ratio of

ascorbic acid to neutralize oxygen free radicals (Foryer

and Noctor 2000). Azad and Kaminskyj (2016) used

H2O2 localization as a proxy to assess accumulation of

ROS and showed that ENC plants had lower H2O2

levels in their leaves following NaCl-stress, confirming

the role of endophytes to reduce stress-induced ROS

generation.

Also, Zhang et al. (2016) reported that ENC plants

had higher SOD, peroxidase (POD) and CAT activity

suggesting that the coordination of POD and CAT ac-

tivity along with SOD activity played a central protec-

tive role in the O2
− and H2O2 scavenging process in

ENC plants (Ahmad et al. 2015). Increased activity was

a result of increased expression of the genes encoding

the enzymes (Zhang et al. 2016). Under saline condi-

tions, endophytic colonization also increases the con-

centrations of non-enzymatic antioxidant molecules

such as AsA, GSH and carotenoids in plants as shown

by several studies (Jan et al. 2019; Jogawat et al. 2013;

Prasad et al. 2013; Waller et al. 2005).

Salinity increases the level of lipid peroxidation

(Hernández 2019; Yu et al. 2020) which results in

higher membrane permeability and loss of ions from

the cells (Gupta and Huang 2014). NaCl treatment of

ENC plants resulted in higher rates of lipid peroxidation

in salt-sensitive plants than in salt-tolerant plants sug-

gesting that the rate of lipid peroxidation can be used as

an indicator to measure how effectively ENC plants

cope with salt stress (Baltruschat et al. 2008). Another

study showed that ENC plants contained higher ascor-

bate concentrations in roots compared with NENC

plants, while the ratio of ascorbate to dehydroascorbate

was not significantly altered and CAT, APX, GR,
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DHAR and MDHAR activities were increased. These

changes were consistent with the decrease of leaf lipid

peroxidation observed in these experiments (Waller

et al. 2005). Similar results were shown by Mastouri

et al. (2010) and Zhang et al. (2001) where ENC plants

had significantly reduced accumulation of lipid perox-

ides than cont rol p lan ts under sa l t s t ress .

Malondialdehyde (MDA), a product of lipid peroxida-

tion, is generally regarded as an indicator of free radical

damage to cell membranes caused by oxidative stress.

Zhang et al. (2016) reported that salt stressed ENC

plants had a 15% reduction in MDA compared to salt

stressed NENC plants. Table 3 lists some of the studies

reporting changes in lipid compositions due to endo-

phytic symbiosis in salt stressed plants.

Photosynthesis

Salt stress hinders photosynthesis resulting in an enor-

mous loss in crop productivity (Sudhir and Murthy

Fig. 3 Oxidative stress tolerance mechanisms in salt stressed
plants. Increase in salinity causes oxidative stress in plants due to
redox imbalance between ROS (reactive oxygen species) and
antioxidants. This results in molecular and cellular damage and
membrane peroxidation eventually disturbing the normal function-
ing of the cell. Several antioxidant enzymes are induced to combat
salt stress including catalyse (CAT), ascorbate peroxidase (APX),
superoxide dismutase (SOD), peroxidase (POX), glutathione

reductase (GR), dehydroascorbate reductase (DHAR) and
monodehydroascorbate reductase (MDHAR). Ascorbate (AsA),
glutathione (GSH) and carotenoids are non-enzymatic antioxi-
dants that are produced to counteract the adverse consequences
of salt stress. In endophyte colonized (ENC) plants, the tolerance
mechanism in reinforced by activating an efficient antioxidant
system that abates the oxidative damage caused due to salt stress
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2004). Salt stress has been shown to degrade D1 and D2

proteins of the photosystem II reaction centre. These

proteins play crucial roles in protein phosphorylation

coupled with the flow of electrons (Jansen et al. 1996).

Salt stress also results in decreased photosynthetic pig-

ments by reducing the activity of enzymes that synthe-

size them. Osmotic shock resulting from salt stress leads

to reduced leaf area and decrease in stomatal and meso-

phyll conductance (Chaves et al. 2009). This limits CO2

availability and assimilation which consequently affects

RuBisCO (Seemann and Critchley 1985). Decreasing

CO2 assimilation also increases the risk of the accumu-

lation of electrons in thylakoid membranes and predis-

poses the photosynthetic apparatus to increased energy

dissipation. Thus, to dissipate this energy, photosystem

II loses excess electrons causing injury to photosynthet-

ic tissues and affecting the net photosynthetic rate

(Redondo-Gómez et al. 2010).

Plants can protect the photosystems from light in-

duced inhibition and damage in several ways such as

minimizing harvesting of light and dispersion of excess

energy by non-photochemical quenching (NPQ) (Lima

Neto et al. 2015). An increase in NPQ can limit quantum

yield (Baker 2008) but ENC plants are reported to have

lower NPQ, therefore symbiosis enhances photosynthet-

ic efficiency by proficient conversion of harvested light

into chemical energy and minimizing NPQ (Pehlivan

et al. 2017). Endophytic fungi are also known to rein-

force these mechanisms and reduce the negative effects

of salinity on plant photosynthetic capacity (Jogawat

et al. 2013; Molina-Montenegro et al. 2018). Table 4

lists some of the studies in the last decade on effect of

salinity and endophytes on photosynthesis in plants.

Endophytic symbiosis combats the negative effects of

salt stress on photosynthesis in several ways. ENC

plants have shown improved water status resulting in

larger leaf area and higher stomatal conductance and

eventually better assimilation of carbon dioxide (Zarea

et al. 2012).

Magnesium (Mg) is one of the essential macronutri-

ents for plant growth and is involved in numerous

physiological and biochemical processes such as photo-

synthesis, enzyme activation and synthesis of nucleic

acids ad proteins (Chen et al. 2018). It is the central atom

of the tetrapyrrole ring of chlorophyll a and bmolecules,

which are the major pigments for photosynthetic light

absorption (Wilkinson et al. 1990). Salt reduces uptake

of Mg2+ thus also reducing the concentration of chloro-

phyll in leaves (Sudhir and Murthy 2004). ENC plants

maintain higher chlorophyll concentration by improving

the uptake ofMg2+ (Jogawat et al. 2013; Yin et al. 2014)

and this leads to maintenance of plastid integrity and

enhanced photosynthetic efficiency (Johnson et al.

2014).

Another way in which endophytes induce defence

systems in plants under saline conditions is by upregu-

lating the ascorbate-glutathione (ASH-GSH) cycle; for

example Kumar et al. (2012) described that during salt

stress, the endophytic fungus P. indicamaintains a high

antioxidative environment by defence system priming,

especially the ascorbate–glutathione (ASH–GSH) cycle

leading to maintenance of plastid integrity and therefore

enhanced photosynthetic efficiency in colonised plants

during abiotic stress (Johnson et al. 2014). ENC plants

also confer the benefit of maintaining the integrity of

photosystem II by repairing salt-induced degradation of

D1/D2/Cytb 559 complex by the accumulation of gly-

cine betaine in ENC plants (Rivero et al. 2014). Glycine

betaine is also known to stabilise PSII pigment-protein

complexes and protect the activities of RuBisCO and

rubisco activase enzymes responsible for fixing CO2 in

AM fungi (Talaat and Shawky 2014).

Hormonal regulation

Induction of phytohormones is also one of the strategies

plants use to mitigate abiotic stresses that ultimately

enhance plant growth and productivity in stressful envi-

ronments (Ryu and Cho 2015). Phytohormones, often

regarded as plant growth regulators, are compounds that

are derived from plant biosynthetic pathways acting

either locally or via transport to other sites within the

plant to mediate growth, development and nutrient allo-

cation (Peleg and Blumwald 2011). These include

abscisic acid (ABA), gibberellins (GA), ethylene

(ETHY), cytokinins (CKs), brassinosteroids (BRs) and

auxins, particularly indole acetic acid (IAA). To initiate

suitable plant responses to environmental stimuli, there

is interplay between these hormones to modulate bio-

chemical and physiological processes (Saeed et al.

2017).

It is known that some strains of endophytic fungi can

produce plant hormones, especially gibberellins (GAs),

to help the plant to tolerate or avoid abiotic stress

(Contreras-Cornejo et al. 2009; Khan et al. 2011b; Wal-

ler et al. 2005). Hamayun et al. (2010) reported that

inoculation with the endophytic fungi Phoma herbarum

showed increased plant biomass and elevated
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production of active GAs including GA1, GA3, GA4,

and GA7 in salt-stressed soybean. Similar results were

shown by Waqas et al. (2012), where salt-stressed cu-

cumber plants inoculated with Penicillium sp. had larger

shoot growth and plant biomass that was attributed to

the secretion of bioactive GAs. A study on salt-stressed

cucumber plants inoculated with Trichoderma

asperellum Q1 alleviated the suppression effects of salt

stress by altering the phytohormone levels (IAA, GA

and ABA) and the phosphate solubilization ability (Lei

and Zhang 2015). Three bioactive GAs, i.e. GA4, GA9

and GA12 were more abundant in ENC plants grown

under salt stress compared to NENC plants (Khan et al.

2011c), and this mitigated the adverse effects of salinity

and improved growth.

Endophytic symbiosis under saline conditions has a

positive influence on the endogenous concentration of

auxins (Contreras-Cornejo et al. 2009). Contreras-

Cornejo et al. (2014) evaluated the expression of the

auxin-responsive marker gene DR5:uidA which was

upregulated in ENC plants compared to their counter-

parts under saline conditions speculating that, by pro-

viding auxins, Trichoderma spp. could restore auxin

homeostasis and, consequently growth and develop-

ment could be normalized when grown under salt stress.

Perspectives and future directions

Evolution has led to complex interactions between a

wide diversity of microorganisms and plants; many of

them resulting in the establishment of a symbiotic rela-

tionship between them (Hassani et al. 2018). These

interactions beneficially impact plant survival, biodiver-

sity, fitness and ecosystem function (Bai et al. 2018;

Rosier et al. 2016; Sasse et al. 2018). Growing evidence

indicates that endophytic associations can also be im-

portant for plant fitness, development of the immune

system, tolerance to abiotic stresses, nutrient acquisition

and disease suppression (Hiruma et al. 2016; Khan et al.

2015; Khare et al. 2018; Soliman et al. 2015; Terhonen

et al. 2016; Zuccaro et al. 2014). This review highlights

some of the numerous mechanisms by which endophyt-

ic symbiosis promotes salt tolerance in plants. However,

there are several challenges and issues that future re-

search should address for comprehensive understanding

of these mechanisms. It is well established how osmotic

adjustment in plants under salt stress via enhanced ac-

cumulation of osmolytes is achieved using endophytic

symbiosis. However, the biochemical, molecular and

genetic mechanisms are largely unexplored. Therefore,

there is a need to understand these phenomena by in-

vestigating genes encoding enzymes used for the syn-

thesis of molecules that are crucial for salt stress resis-

tance. Therefore, dedicated research into unravelling the

molecular basis of osmolyte accumulation in ENC

plants will broaden our understanding of the mecha-

nisms involved.

In recent years, new compounds, such as polyamines,

and strigolactones have been implicated in improving

plant tolerance to salt stress (Fahad et al. 2015).

Strigolactones (SL) play regulatory roles to combat

abiotic stress, including salinity, and in order to be fully

effective, they need to modulate and interact with other

phytohormones, especially auxin and ABA. SLs are

also involved in several aspects of plant development;

suppression of secondary branches in shoots, regulation

of leaf senescence, stimulation of internode length and

induction of endophytic symbiosis (de Saint Germain

et al. 2013; Lopez-Raez et al. 2017; Yamada et al.

2014). This group of sesquiterpene lactones is responsi-

ble for hyphal branching and successful colonisation

within roots by producing 5-deoxy-strigol, followed by

the formation of a pre-penetration apparatus (Genre

et al. 2005). Recently, SL secreted by roots of

Arabidopsis thaliana was found to act as a signal mol-

ecule for colonization of endophytic Mucor sp.

(Rozpądek et al. 2018). Studies on auxin and ABA

involvement with endophytes under salt stress has been

explored, but further research is required to investigate

the role of strigolactones secreted by ENC plants in

ameliorating salt stress.

The root is the primary location in plants that senses

salt stress. The PM constitutes the interface between a

cell and its surroundings and plays an important role in

cell wall biosynthesis, ion transport, endocytosis, sens-

ing of environmental stimuli, and cellular signal trans-

duction (Mansour et al. 2015). PM lipids and proteins in

salt tolerant plants are protected from oxidative attack

through enhanced antioxidant systems, a mechanism

that minimizes lipid and protein oxidation while

retaining PM integrity (Mansour 2013). Though lipid

peroxidation has been elucidated in ENC plants under

salt stress, lipid metabolism in the PM in root tissues is

yet to be investigated. Hence future research that eval-

uates how endophytic symbiosis influences these

changes under saline conditions is warranted.

Limited studies are available to understand the role of

endophytic fungi in modifying the photosynthetic
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capacity of plants to alleviate the negative effects of

salinity as described in previous sections. Salt stress

has been shown to degrade proteins of the PSII reaction

centre. These proteins play fundamental roles in phos-

phorylation of proteins (Jansen et al. 1996). Studies in

the past have focused on understanding how AMF

symbiosis acts to maintain the integrity of PSII showing

the upregulation of the genes encoding these proteins

under salt stress (Chen et al. 2017). However, research

on maintenance of these proteins by endophytic fungi

under salt stress is a field to explore.

Metabolomics is increasingly being utilized for gen-

erating deep insights into abiotic stress responses. Sev-

eral studies have focused on exploring and discovering

compounds that stimulate ENC plant growth by allevi-

ating stress using various technologies (Chetia et al.

2019; Kusari and Spiteller 2012; Mazlan et al. 2019;

Tawfike et al. 2018). However, molecular signalling

mechanisms employed by endophytic fungi under saline

conditions are yet to be explored. The high-throughput

mass spectrometric profiling of cellular metabolites of

plant-associated endophytes under the influence of salt

stress could help to reveal the level of interference by the

stressor in overall cellular homeostasis. Thus, future

‘omics-based research is required to generate compre-

hensive information on specific plant-endophytic fungi-

salt stress systems to resolve facts behind precise mech-

anisms of stress tolerance in crop plants.

Although this review covers mechanisms and strate-

gies employed by plants under salt stress, in nature plants

often face multiple biotic and abiotic stresses instead of a

single stress. These combinations of stresses exert more

complex effects on plant fitness which eventually results

in potential differences from the responses elicited under

single stresses. (Bai et al. 2018) demonstrated that tomato

developed integrated responses via genetic components

and cross-talk of signalling pathways under combined

salinity and pathogen stresses. This shows that plants

must have evolved to mitigate a combination of stresses.

Addressing specific questions related to multiple stresses

such as how beneficial microorganisms and pathogens or

combined abiotic stresses interact would facilitate the

design of strategies for sustained plant health under di-

verse environmental stresses.

In conclusion, directing future research on endophyt-

ic symbiosis under salinity in order to understand the

above-mentioned challenges will help improve our

knowledge and understanding of the mechanisms of

endophyte facilitated salinity tolerance in host plants.
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