
b

ALLIAN 'CE: An Architecture for Fault Tolerant, Cooperative
Control of Heterogeneous Mobile Robots*

Lynne E. Parker
penter for Engineering Systems Advanced Research

Oak Ridge National Laboratory
P.O. Box 2008

1 Oak Ridge, TN 37831-6364

I

"The submitted manuscript has been

authored by a contractor of the US.
Government under contract D E
AC05-840R21400. Accordingly, the U.S.
Government retains a nonexclusive,

royalty-free license to publish or reproduce

the published form of this contribution, or

allow others to do so, for U.S. Government

purposes."

.

To be published 'in the Proceedings of the IROS '94 (IEEE/RSJ/GI International
Conference on Intelligent Robots and Systems), Munich, Germany, September 12-16, 1994

ASTE
* Research provided in part by the University Research Initiative under the Office of

Naval Research contract N00014-86-K-0685, in part by the Advanced Research Projects
Agency under the Office of Naval Research contract N00014-85-K-0124, and in part by the
Mazda Coportation. Additional support has been provided by the Office of Engineering
Research Program, Office of Basic Energy Sciences of the U.S. Department of Energy,
under contract No. DEAC05-840R 21400 with Martin Marietta Energy Systems, Inc.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are

produced from the best available original
document.

I

ALLIANCE: An Architecture for Fault Tolerant, Cooperative Control
of Heterogeneous Mobile Robots

Lynne E. Parker
Center for Engineering Systems Advanced Research

Oak Ridge National Laboratory
P. 0. Box 2008

Oak Ridge, T N 37831-6364 USA
internet: epk@ornl.gov or ParkerLE@ornl.gov

Abstract
This research addresses the problem of achieving fault

tolerant cooperation within small- to medium-sized teams of
heterogeneous mobile robots. We describe a novel behavior-
based, fully distributed architecture, called ALLIANCE,
that utilizes adaptive action selection to achieve fault toler-
ant cooperative control in robot missions involving loosely
coupled, largely independent tasks. The robots in this ar-
chitecture possess a variety of high-level functions that they
can perform during a mission, and must at all times se-

lect an appropriate action based on the requirements of the
mission, the activities of other robots, the current environ-
mental conditions, and their own internal states. Since
such cooperative teams often work in dynamic and un-
predictable environments, the software architecture allows
the team members to respond robustly and reliably to un-
expected environmental changes and modifications in the
robot team that may occur due to mechanical failure, the
learning of new skills, or the addition or removal of robots
from the team by human intervention. After presenting AL-
LIANCE, we describe in detail our experimental results of
an implementation of this architecture on a team of phys-
ical mobile robots performing a cooperative box pushing
demonstration. These experiments illustrate the ability of
ALLIANCE to achieve adaptive, fault-tolerant cooperative
control amidst dynamic changes in the capabilities of the
robot team.

1 Introduction
Achieving cooperative robotics is desirable for a number

of reasons. First, many robotic applications are inherently
distributed in space, time, or functionality, thus requiring a
distributed solution. Second, it is quite possible that many
applications could be solved much more quickly if the mis-
sion could be divided across a number of robots operating
in parallel. Third, by duplicating capabilities across robot
team members, one has the potential of increasing the ro-
bustness and reliability of the automated solution through
redundancy. Finally, it may actually be much cheaper and
more practical in many applications to build a number of
less capable robots that can work together at a mission,
rather than trying to build one robot which can perform
the entire mission with adequate reliability.

Achieving cooperative robotics, however, is quite chal-
lenging. Many issues must be addressed in order to develop
a working cooperative team, such as action selection, coher-
ence, conflict resolution, and communication. Furthermore,

these cooperative teams often work in dynamic and unpre-
dictable environments, requiring the robot team members
to respond robustly, reliably, and adaptively to unexpected
environmental changes, failures in the inter-robot commu-
nication system, and modifications in the robot team that
may occur due to mechanical failure, the learning of new
skills, or the addition or removal of robots from the team
by human intervention.

Previous research in heterogeneous mobile robot coop
eration includes: [8], which proposes a three-layered con-
trol architecture that includes a planner level, a control
level, and a functional level; [5], which describes an ar-
chitecture that includes a task planner, a task allocator,
a motion planner, and an execution monitor; [I], which de-
scribes an architecture called ACTRESS that utilizes a ne-
gotiation framework to allow robots to recruit help when
needed; and [6], which uses a hierarchical division of au-
thority to address the problem of cooperative fire-fighting.
However, these approaches deal primarily with the task se-

lection problem and largely ignore the difficult issues for
physical robot teams, such as robot failure, communication
noise, and dynamic environments. In contrast, our research
emphasizes the need for fault tolerant and adaptive cooper-
ative control as a prinapal characteristic of the cooperative
control architecture.

This paper describes an architecture that we have built
for heterogeneous mobile robot control that emphasizes
fault tolerant, adaptive cooperation. This architecture,
called ALLIANCE, is designed for small- to medium-sized
teams of robots performing missions composed of loosely
coupled subtasks that are largely independent of each other.
By ”largely” independent, we mean that tasks can have
fixed ordering dependencies, but they cannot be of the type
of “brother clobbers brother” [12], where the execution of
one task undoes the effects of another task. Even with this
restriction, however, this research covers a very large range
of missions for which cooperative robots are useful. In [ll],
we report on a wide variety of applications that have been
implemented on both physical and simulated robot teams
that fall into this domain of loosely coupled, largely inde-
pendent subtasks; we present one of these implementations
in this paper.

Section 2 describes our cooperative architecture, first
giving an overview for how we achieve fault tolerant, a d a p
tive control, and then providing details on the operation of
our primary control mechanism - the motivational behav-

.

mailto:epk@ornl.gov
mailto:ParkerLE@ornl.gov

ior. We then describe, in section 3, the implementation of
ALLIANCE on a physical robot team performing a coop
erative box pushing mission. In section 4, we offer some
concluding remarks.

2 The ALLIANCE Architecture
ALLIANCE is a fully distributed architecture for fault

tolerant, heterogeneous robot cooperation that utilizes
adaptive action selection to achieve cooperative control.
Under this architecture, the robots possess a variety of high-
level task-achieving functions that they can perform during
a mission, and must a t all times select an appropriate ac-
tion based on the requirements of the mission, the activities
of other robots, the current environmental conditions, and
their own internal states. In ALLIANCE, individual robots
are designed using a behavior-based approach [2]. Under the
behavior-based construction, a number of task-achieving be-
haviors are active simultaneously, each receiving sensory in-
put and controlling some aspect of the actuator output. The
lower-level behaviors, or competences, correspond to prim-
itive survival behaviors such as obstacle avoidance, while
the higher-level behaviors correspond to higher goals such
as map building and exploring. The output of the lower-
level behaviors can be suppressed or inhibited by the upper
layers when the upper layers deem it necessary. This a p
proach has been used successfully in a number of robotic
applications, several of which are described in [4].

Extensions to this approach are necessary, however,
when a robot must select among a number of competing ac-
tions - actions which cannot be pursued in parallel. Unlike
typical behavior-based approaches, ALLIANCE delineates
several 'behavior sets" that are either active as a group
or hibernating. Figure 1 shows the general architecture of
ALLIANCE and illustrates three such behavior sets. The
j t h behavior set, ai j , of a robot ri corresponds to those
levels of competence required to perform some high-level
task-achieving function, such as finding a toxic waste spill,
moving a toxic waste spill, or reporting the progress of the
robot team to a human monitor. When a robot activates
a behavior set, we say that it has selected the task corre-
sponding to that behavior set. Since different robots may
have different ways of performing the same task, and will
therefore activate different behavior sets to perform that
task, we define the function hi(ai j) , for-all robots, r i , on
the team, to refer to the task that robot ri is working on
when it activates its j - th behavior set.

Because of the alternative goals that may be pursued by
the robots, the robots must have some means of selecting
the appropriate behavior set to activate. Thus, controlling
the activation of each of these behavior sets is a motiua-
tional behavior. Due to conflicting goals, only one behavior
set per robot should be active at any point in time. This re-
striction is implemented via cross-inhibition of motivational
behaviors, represented by the arcs at the top of figure 1, in
which the activation of one behavior set suppresses the acti-
vation of all other behavior sets. However, other lower-level
competences such as collision avoidance may be continually
active regardless of the high-level goal the robot is currently
pursuing. Examples of this type of continually active com-
petence are shown in figure 1 as layer 0, layer 1, and layer
2.

2.1 Motivational Behaviors: Overview
The primary mechanism for achieving adaptive action

selection in this architecture is the motiuational behavior.

The ALLIANCE Architecture

Figure 1: The ALLIANCE architecture. The symbols in
this figure that connect the output of each motivational be-
havior with the output of its Corresponding behavior set
(vertical lines with short horizontal bars) indicate that a
motivational behavior either allows all or none of the out-
puts of its behavior set to pass through to the robot's actu-
ators.

At all times during the mission, each motivational behavior
receives input from a number of sources, including sensory
feedback, inter-robot communication, inhibitory feedback
from other active behaviors, and internal motivations called
robot impatience and robot acquiescence. The output of a

motivational behavior is the activation level of its corre-
sponding behavior set, represented as a non-negative num-
ber. When this activation level exceeds a given threshold,
the corresponding behavior set becomes active.

Intuitively, a motivational behavior works as follows.
Robot ri's motivation to activate any given behavior set
aij is initialized to 0. Then, over time, robot t i ' s motiva-
tion rnij(t) to activate behavior set aij increases at a fast
rate as long as the task corresponding to that behavior set
(i.e. hi(ai j)) is not being accomplished, as determined from
sensory feedback. However, we want the robots to be re-
sponsive to the actions of other robots, adapting their task
selection to the activities of team members. Thus, if a robot
ri is aware that another robot rk is working on task hi(aij),

then ri should be satisfied for some period of time that the
task is going to be accomplished even without its own par-
ticipation, and thus go on to some other applicable action.
Its motivation to activate behavior set aij still increases, but
a t a slower rate. This characteristic prevents robots from
replicating each other's actions and thus wasting needless
energy. Of course, detecting and interpreting the actions
of other robots (often called action recognition) is not a
trivial problem, and often requires perceptual abilities that
are not yet possible with current sensing technology. As
it stands today, the sensory capabilities of even the lower
animals far exceed present robotic capabilities. Thus, to en-
hance the robots'. perceptual abfities, ALLIANCE utilizes
a simple form of broadcast communication to allow robots
to inform other team members of their current activities,
rather than relying totally on sensory capabilities. At some
pre-specified rate, each robot ri broadcasts a statement of

its current action, which other robots may listen to or ig-
nore as they wish. No two-way conversations are employed
in this architecture.

Each robot is designed to be somewhat impatient, how-
ever, in that a robot r; is only willing for a certain period of
time to allow the communicated messages of another robot
to affect its own motivation to activate a given behavior
set. Continued sensory feedback indicating that a task is
not getting accomplished thus overrides the statements of
another robot that it is performing that task. This char-
acteristic allows robots to adapt to failures of other robots,
causing them to ignore the activities of a robot that is not
successfully completing its task.

A complementary characteristic in these robots is that of
acquiescence. Just as the impatience characteristic reflects
the fact that other robots may fail, the acquiescence char-
acteristic indicates the recognition that a robot itself may
fail. This feature operates as follows. As a robot ri per-
forms a task, its willingness to give up that task increases
over time as long as the sensory feedback indicates the task
is not being accomplished. As soon as some other robot rk
indicates it has begun that same task and r; feels it (Le.
r;) has attempted the task for an adequate period of time,
the unsuccessful robot ri gives up its task in an attempt to
find an action at which it is more productive. Additionally,
even if another robot Tk has not taken over the task, robot
r; may give up its task anyway if it is not completed in an
acceptable period of time. This allows r; the possibility of
working on another task that may prove to be more pro-
ductive rather than becoming stuck performing the unpro-
ductive task forever. With this acquiescence characteristic,
therefore, a robot is able to adapt its actions to its own
failures.

The behavior-based design of the motivational behaviors
also allows the robots to adapt to unexpected environmen-
tal changes which alter the sensory feedback. The need for
additional tasks can suddenly occur, requiring the robots
to perform additional work, or existing environmental con-
ditions can disappear and thus relieve the robots of certain
tasks. In either case, the motivations fluidly adapt to these
situations, causing robots to respond appropriately to the
current environmental circumstances.

2.2 Motivational Behaviors: Formal
Model

Having presented the basic philosophy -behind the AL-
LIANCE architecture, we now look in detail at how this
philosophy is incorporated into the motivational behavior
mechanism by presenting a formal model of the motivational
behavior. As we discuss these details, we introduce a num-
ber of parameters that are incorporated into ALLIANCE.
An extension to the ALLIANCE architecture, called L-
ALLIANCE (for Learning ALLIANCE), allows these pa-
rameters to be updated automatically through the use of
knowledge learned about team member capabilities. This
dynamic parameter update mechanism relieves the human
of the tedium of parameter adjustments and allows the het-
erogeneous robot team members to select their tasks quite
efficiently. Refer to [ll] for details on the L-ALLIANCE
mechanism. We also note that all of our implementations
of this model have used the features of the Behavior Lan-
guage [3], for both physical robot teams and simulated robot
teams.

In the following subsections, we first discuss the thresh-
old of activation of a behavior set, and then describe the five

primary inputs to the motivational behavior. We conclude
this section by showing how these inputs are combined to
determine the current level of motivation of a given behavior
set in a given robot.

2.2.1 Threshold of activation

The threshold of activation is given by one parameter, 8.
This parameter determines the level of motivation beyond
which a given behavior set wil l become active. Although
different thresholds of activation could be used for different
behavior sets and for different robots, in ALLIANCE we
assume that one threshold is sufficient since the rates of
impatience and acquiescence can vary across behavior sets
and across robots.

2.2.2 Sensory feedback
The sensory feedback provides the motivational behav-

ior with the information necessary to determine whether its
corresponding behavior set needs to be activated at a given
point during the current mission. Although this sensory
feedback usually comes from physical robot sensors, in re-
alistic robot applications it is not always possible to have a
robot sense the applicability of tasks through the world -
that is, through its sensors. Often, tasks are information-
gathering types of activities whose need is indicated by the
values of programmed state variables. These state variables,
therefore, act as a type of virtual sensor which serves some
of the same purposes as a physical sensor.

We define a simple function to capture the notion of
sensory feedback as follows:

sensoryfeedbackij(t) =

1

0 otherwise

if the sensory feedback in robot r; at time t
indicates that behavior set a;j is applicable

2.2.3 Inter-robot communication
The inter-robot broadcast communication mechanism

utilized in ALLIANCE serves a key role in allowing robots
to determine the current actions of their teammates. As
we noted previously, the broadcast messages in ALLIANCE
substitute for passive action recognition, which is quite diffi-
cult to achieve. Two parameters control the broadcast com-
munication among robots: p ; and r;. The first parameter,
pi , gives the rate at which robot r; broadcasts its current
activity. The second parameter, r;, provides an additional
level offault tolerance by giving the period of time robot ri
allows to pass without receiving a communication message
from a specific teammate before deciding that that team-
mate has ceased to function. While monitoring the commu-
nication messages, each motivational behavior of the robot
must also note when a team member is pursuing a task
Corresponding to that motivational behavior's behavior set.
To refer to this type of monitoring in our formal model, we
define the function comm-received as follows:

comrn-receiued(i, k , j, t l , t 2) =

{ 0 otherwise

2.2.4 Suppression from active behavior sets

When a motivational behavior activates its behavior set,
it simultaneously begins inhibiting other motivational be-
haviors from activating their respective behavior sets. At

1 if robot r; has received message from
robot fk related to behavior set a;j in the
time span (f 1 , t 2) , where 21 < t 2

this point, a robot has effectively %elected an action". The
first motivational behavior then continues to monitor the
sensory feedback, the communication from other robots,
and the levels of impatience and acquiescence to determine
the continued need for the activated behavior set. At some
point in time, either the robot completes its current task,
thus causing the sensory feedback to no longer indicate the
need for that action, or the robot acquiesces its task. In ei-
ther case, the need for the activated behavior set eventually
goes away, causing the corresponding motivational behavior
to inactivate this behavior set. This, in turn, allows another
motivational behavior within that robot the opportunity to
activate its behavior set.

We refer to the suppression from action behavior sets
with the following function:

actiuity-Juppressionij(t) =

0

1 otherwise

if another behavior set aik is active, k # j ,
on robot ri at time t

This function says that behavior set aij is being s u p
pressed a t time t on robot ri if some other behavior set aik
is currently active on robot T i at time t.

2.2.5 Robot impatience
Three parameters are used to implement the robot impa-

tience feature of ALLIANCE: di j (k , t), C-slowij(k, t), and
6-fasti j(t) . The first parameter, d i j (k , t) , gives the time
during which robot ri is willing to allow robot rk's commu-
nication message to affect the motivation of behavior set aij .
Note that robot ri is allowed to have different parameters
for each robot on its team, and that the parameters can
change during the mission (indicated by the dependence on
1). This allows t i to be influenced more by some robots than
others, if necessary, and for this influence to be updated as
robot capabilities change.

The next two parameters, Bslowi j (k , t) and 6-fasti .(t),
give the rates of impatience of robot ri concerning behav-
ior set aij either while robot r k is performing task hi(ai j)
or in the absence of other robots performing this task, re-
spectively. We assume that the fast impatience parameter
corresponds to a higher rate of impatience than the slow
impatience parameter for a given behavior set in a given
robot. The reasoning for this assumption shodd be clear
- a robot ri should allow another robot f k the opportunity
to accomplish its task before becoming impatient with r k ;

however, there is no reason for ri to remain idle if a task
remains undone and no other robot is attempting that task.

The question that now arises is: what slow rate of im-
patience does a motivational behavior controlling behavior
set aij use when more than one other robot is performing
task hi(aij)? The method used in ALLIANCE is to increase
the motivation at a rate that allows the slowest robot still
under its allowable time d i j (k , t) to continue its attempt.

The specification of the current impatience rate for a
behavior set aij is given by the following function:

impatienceij(t) =

mink(6-slowij(k,t)) if (comm-receiced(i, k, j ,
t - Ti, t) = I)
and
(comm-receiued(i, k, j , 0,

t - di i (k , t)) = 0)
6-fasti (t) otherme

This function says that the impatience rate will be the
minimum slow rate, GJlowij(k,t) , if robot t i has received
communication indicating that robot r k is performing task
hi(ai j) in the last Ti time units, but not for longer than
+ i j (k , t) time units. Otherwise, the impatience rate is set

The final detail to be addressed is to cause a robot's
motivation to activate behavior set aij to go to 0 the first
time it hears about another robot performing task hi(ai j) .
This is accomplished through the following:

to 6-fasti j(t) .

impatience-tesetij(t) =

0 if 3k.((comm-receiued(i, k, j , t - 6t, t) = 1) and
(cornm-receiued(i, k, j , 0, t - 6t) = 0)) , where
6t = time since last communication check

1 otherwise

This reset function causes the motivation to be reset to
0 if robot t i has just received its first message from robot
t k indicating that f k is performing task hi(ai j) . This func-
tion allows the motivation to be reset no more than once
for every robot team member that attempts that task. Al-
lowing the motivation to be reset repeatedly would allow a
persistent, yet failing robot to jeopardize the completion of
the mission.

2.2.6 Robot acquiescence

Two parameters are used to implement the robot acqui-
escence characteristic of ALLIANCE $ i j (t) and A i j (t) . The
first parameter, $ i j (t) , gives the time that robot ri wants to
maintain behavior set aij activation before yielding to an-
other robot. The second parameter, Aij(t) , gives the time
robot ri wants to maintain behavior set aij activation before
giving up to possibly try another behavior set.

The following acquiescence function indicates when a
robot has decided to acquiesce its task:

acquiescenceij(t) =

0 if ((behavior set uij of robot ri has been active
for more than $ i j (t) time units at time t) and
(3z.comm-receiued(i, z, j , t - ri , t) = 1))

(behavior set aij of robot ri has been active
for more than A i j (t) time units a t time t)

or

1 otherwise

This function says that a robot ri wil l not acquiesce be-
havior set aij until one of the following conditions is met:

0 ri has worked on task hi(aij) for a length of time $ i j (t)

0 ri has worked on task hi(aij) for a length of time A i j (t)

We now combine all of the inputs described above into

and some other robot has taken over task hi(ai j)

2.2.7 Motivation calculation

the calculation of the levels of motivation as follows:

rnij(0) =

rnij(t) =

0

[rnij(t - 1) + impatienceij(t)]

x a ctiuit y supp ressio n;j (t)

x sensoryfeedbackij (t)

x acquiescencei (t)

x impotiencexse t i j (t)

Initially, the motivation to perform behavior set aij in robot
ri is set to 0. This motivation then increases at some pos-
itive rate impatienceij(t) unless one of four situations oc-

curs: (1) another behavior set in ri activates, (2) the sen-
sory feedback indicates that the behavior set is no longer
needed, (3) the robot has decided to acquiesce the task, or
(4) some other robot has just taken over task hi(aij) for
the first time. In any of these four situations, the motiva-
tion returns to 0. Otherwise, the motivation grows until it
crosses the threshold 0, at which time the behavior set is
activated, and the robot can be said to have selected an ac-
tion. Whenever some behavior set a i j is active in robot ri,
r; broadcasts its current activity to other robots at a rate
of pi.

3 Robot Box Pushing Experiments
The ALLIANCE architecture has been successfully im-

plemented in a variety of proof of concept applications on
both physical and simulated mobile robots. The applica-
tions implemented on physical robots include a hazardous
waste cleanup mission, reported in [I13 and [IO], and a co-
operative box pushing mission, which is described below.
Over 50 logged physical robot runs of the hazardous waste
cleanup mission and over 30 physical robot runs of the box
pushing mission were completed to elucidate the important
issues in heterogeneous robot cooperation. Many runs of
each of these physical robot applications are available on
videotape. The applications using simulated mobile robots
include a janitorial service mission and a bounding over-
watch mission (reminiscent of military surveillance), which
involved dozens of runs each. Details of these implementa-
tions are reported in [ll] and [9].

The cooperative box pushing mission offers a simple and
straight-forward illustration of a key characteristic of the
ALLIANCE architecture: fault tolerant and adaptive con-
trol due to dynamic changes in the robot team. This box
pushing mission requires a long box to be pushed across a
room; the box is sufficiently heavy and long that one robot
cannot push in the middle of the box to move it across the
room. Thus, the box must be pushed at both ends in or-
der to accomplish this mission. To synchronize the pushing
at the two ends, the mission is defined in terms of two re-
curring tasks - (1) push a little on the left end, and (2)
push a little on the right end - neither. of which can be
activated (except for the first time) unless the opposite side
has just been pushed. We use this mission to demonstrate
how the ALLIANCE architecture endows robot team mem-
bers with fault tolerant action selection due to the failure
of robot team members, and with adaptive action selection
due to the heterogeneity of the robot team. Note that our
emphasis in these experiments is on issues of fault toler-
ant cooperation rather than the design of the ultimate box
pusher. Thus, we are not concerned at present with issues
such as robots pushing the box into a corner, obstacles in-
terfering with the robots, how robots detect box alignment,
and so forth.

In the next subsection, we describe the robots used in
these experiments and the design of the robot control soft-
ware. We then present and discuss the results of this proof
of concept implementation.

3.1 Physical Robot Team
The box pushing application was implemented using

three mobile robots of two types - two R-2 robots and one

Genghis-11. All of these robots were designed and manufac-
tured at IS Robotics, Inc., of Cambridge, Massachusetts.
The first type of robot, the R-2, has two drive wheels ar-
ranged as a differential pair, and a two-degree-of-freedom
gripper for grasping objects. Its sensor suite includes eight
infrared sensors and seven bump sensors evenly distributed
around the front, sides, and back of the robot. In addition, a
break-beam infrared sensor between the gripper and a bump
sensor lining the inside of the fingers facilitate the grasping
of small objects. The second type of robot, Genghis-11, is
a legged robot with six two-degree-of-freedom legs. Its sen-
sor suite includes two whiskers, force detectors on each leg,
a passive array of infrared heat sensors, three tactile sen-
sors along the robot belly, four near-infrared sensors, and
an inclinometer for measuring the pitch of the robot.

A radio communication system [7] is used in our physical
robot implementations to allow the robots to communicate
their current actions to each other. This system consists of
a radio modem attached to each robot, plus a base station
that is responsible for preventing message interference by
time-slicing the radio channel among robots. The design of
the radio system limits the frequency of messages between
robots to only one message every three seconds. All of the
results described below, therefore, involve communication
between robots at no more than about 4 Hertz.

3.2 Robot Software Design
Since the capabilities of the R-2 and Genghis-I1 robots

M e r , the software design of the box pushing mission for
these robots varies somewhat. We therefore describe the
ALLIANCE box pushing software of these robots sepa-
rately.

3.2.1 R-2 Control
Figure 2 shows the ALLIANCE implementation of the

box pushing mission for the R-2 robots. As shown in this
figure, the R-2 is controlled by two behavior sets - one
for pushing a little on the left end of the box (called push-
left), and one for pushing a little on the right end of the
box (called push-right). As specified by the ALLIANCE
architecture, the activation of each of these behavior sets is
controlled by a motivational behavior. Let us now examine
the design of the push-left motivational behavior and the
push-left behavior set of a robot T i in more detail; the push-
right design is symmetric to that of push-left.

Thesensory feedback required before tlie push-left moti-
vational behavior within Ti can activate its behavior set is
an indication that the right end of the box has just been
pushed. This requirement is indicated in figure 2 by the
pushed-at-right arrow entering the push-leftmotivational be-
havior. The right end of the box can be pushed either by
some robot other than ri, or it can be pushed by r; itself. If
ri is the robot doing the pushing, then the pushed-at-right
feedback comes from an internal message from ri’s push-
right motivational behavior. However, if some robot other
than ri is pushing, then Ti must detect when that other
robot has completed its push. Since this detection is im-
possible for the R-2s with their current sensory suites, the
robots we provided with this capability by having the team
members broadcast a message after each push that indicates
the completion of their current push. The pushing is initi-
ated at the beginning of the mission by programming the
control code so that each robot “thinks” that the opposite
end of the box has just been pushed.

When the sensory feedback is satisfied, the push-leftmo-
tivational behavior grows impatient at either a rate &fastR

R d Box Pushing Control

pushedal-rlghl push&at-/eH
m u n M Internal) (m o r Internal)

w
wheels

Figure 2: The ALLIANCE design of the R-2 software for
the box pushing mission.

(the R subscript stands for any R-2 robot) if no other robot
is performing the push-lefttask, or at a rate C-slow~(robot-

id) when robot robot-id is performing the push-left task.’
When the push-left motivation grows above threshold, the
push-left behavior set is activated. The push-left behavior
set involves first acquiring the left end of the box and then
pushing a little on that end. If the robot is already at the
left end of the box, then no acquiring has to take place.
Otherwise, the R-2 assumes it is at the right end of the
box, and moves to the left end of the box by using the in-
frared sensors on its right side to follow the box to the end,
and then backing up and turning into the box. As we shall
see below, this ability to acquire the opposite end of the box
during the mission is important in achieving fault tolerant
cooperative control. At the beginning of the mission, we
would ideally like the R-2 to be able to locate one end of
the box on its own. However, since this is beyond the scope
of these proof of concept experiments, an implicit assump
tion is made in the R-2 control that at the beginning of the
mission, the R-2 is facing into a known end of the box.

As the R-2 pushes, it uses the infrared sensors at the ends
of its gripper fingers to remain in contact with the box. The
current push is considered to be complete when the R-2 has
pushed for a prescribed period of time. After the push-
left task is completed, the motivation to perform that task
temporarily returns to 0. However, the motivation begins
growing again as soon as the sensory feedback indicates the
task is needed.
3.2.2 Genghis-I1 Control

Genghis-I1 and the R-2s are different in two primary
ways. First, Genghis-I1 cannot acquire the opposite end of
the box, due to a lack of sensory capabilities, and second,
Genghis-I1 cannot push the box as quickly as an R-2, due
to less powerful effectors. The first difference means that
Genghis-I1 can only push at its current location. Thus, im-
plicit in the control of Genghis-I1 is the assumption that it

1To simplify the notation, we omit the j subscript of the fast
and slow impatience rates (see section 2.2.5) since the fast rates
of impatience are the Same for all behavior sets in all R-2s, and
the slow rates of impatienceare the same functions of robot-id for
dl R-2s. We also omit the dependenceupon t of these impatience
rates, since we do not deal here with updating these parameters
during the mission.

Genghls-ll Box Pushlng Control

Figure 3: The ALLIANCE design of the Genghis-I1 soft-
ware for the box pushing mission.

is located at a known end of the box at the beginning of the
mission. The second difference with the R-2s implies that if
an R-2 pushes with the same duration, speed, and frequency
when teamed with Genghis-I1 as it does when teamed with
another R-2, the robot team will have problems accomplish-
ing its mission due to severe box misalignment.

Figure 3 shows the organization of Genghis-11’s box
pushing software. As this figure shows, Genghis-I1 is con-
trolled by two behavior sets, each of which is under the con-
trol of a motivational behavior. Genghis-11’s pushing at its
current location is controlled by the push behavior set. The
only sensory feedback which satisfies the push motivational
behavior is that which indicates that some other robot is
pushing the opposite end of the box. This requirement is
shown in figure 3 as the pushed-at-left/rightarrow going into
the push motivational behavior. Once the sensory feedback
is satisfied, Genghis-I1 becomes impatient to perform the
push behavior a t a rate &fastGp (the G subscript refers to
Genghis-II; the P subscript refers to the push behavior set).
Once the motivation crosses the threshold of activation, the
push behavior set is activated, causing Genghis-I1 to push
the box by walking into it while using its whiskers to main-
tain contact with the box. Once Genghis-I1 has pushed a
given length of time, the motivation to perform push re-
turns to o, growing again whenever the sensory feedback is
satisfied.

The sensory feedback required for the go-home behavior
set to be activated is the opposite of that required for the
push behavior set - namely, that no other robot is pushing
at the opposite end of the box. When the sensory feedback
for go-home is satisfied, the motivation to activate go-home
grows at the rate 6-f a d G R (the H subscript refers to the go-
home behavior set), with the behavior set being activated as
soon as the motivation crosses the threshold. The go-home
behavior set causes Genghis-I1 to walk away from the box.

3.3 Experiments and Results
To demonstrate the fault tolerant, adaptive nature of the

ALLIANCE architecture due to changes in the robot team
capabilities, we undertook two basic experiments using the
box pushing mission. Both of these experiments began with
two R-2s pushing the box - one at each end of the box -
as illustrated in figure 4. We note that the fast rates of

Figure 4: The beginning of the box pushing mission. Two
R-2s are pushing the box across the room.

impatience were set such that the delay between individual
pushes by each robot is quite small - from imperceptible
to about 2 to 3 seconds, depending upon when the 4 Hz
communication messages actually get transmitted.

After the two R-2s push the box for a while we dynami-
cally altered the capabilities of the robot team in two ways.
In the first experiment, we altered the team by seizing one
of the R-2 robots during the mission and turning it off, mim-
icking a robot failure; we then later added it back into the
team. In the second experiment, we again seized one of the
R-2 robots, but this time we replaced it with Genghis-11,
thus making the team much more heterogeneous; we then
later seized the remaining R-2 robot, leaving Genghis-I1 as
the sole team member. The following subsections describe
the results of these two experiments.

3.3.1 Experiment 1: Robot “failure”

As we have emphasized, a primary goal of our architec-
ture is to allow robots to recover from failures of robot team
members. Thus, by seizing an R-2 and turning it off, we test
the ability of the remaining R-2 to respond to that ufailure”
and adapt its action selection accordingly. In this experi-
ment, what we observe after the seizure is that after a brief
pause of about 5 to 8 seconds (which is dependent upon the
setting of the 6s low~(R-2) parameter), the remaining R-2
begins acquiring the opposite end of the box, as shown in
figure 5, and then pushes at its new end of the box. This
R-2 continues its back and forth pushing, executing both
tasks of pushing the left end of the box and pushing the
right end of the box as long as it fails to “hear” through the
broadcast communication mechanism that another robot is
performing the push at the opposite end of the box. When
we add back in the second R-2, however, the still-working
robot adapts its actions again, now just pushing one side of
the box, since it is satisfied that the other end of the box is
also getting pushed. Thus, the robot team demonstrates its
ability to recover from the failure of a robot team member.

3.3.2 Experiment 2: Increased heterogeneity

Another goal of our architecture is to allow heterogeneous
robot teams to work together efficiently. Robots can be
heterogeneous in two obvious ways. First, robots may differ
in which tasks they are able to accomplish, and second,
robots may differ in how well they perform the same task.
In this experiment, we deal primarily with the second type
of heterogeneity, in which Genghis-I1 and the R-2 use quite
different mechanisms for pushing the box. By substituting

Figure 5: Fault tolerant action selection. In the first exper-
iment, we seize one of the R-2 robots and turn it off. This
causes the remaining R-2 robot to have to perform both
tasks of the box pushing mission: pushing at the right end
of the box, and pushing at the left end of the box. Here,
the R-2 is acquiring the right end of the box.

Figure 6: Adaptivity due to heterogeneity. In the second
experiment, we again seize one of the R-2 robots, but this
time we replace it with Genghis-11. Since Genghis-I1 can-
not push as powerfully as an R-2, the remaining R-2 robot
adapts its actions by pushing less frequently.

robots during the middle of a mission, we test the ability
of the remaining team member to respond to the dynamic
change in the heterogeneity of the team.

What we observe in this experiment is that the remain-
ing R-2 begins pushing much less frequently as soon as it
Uhears” that Genghis-11, rather than an R-2, is the robot
pushing the opposite end of the box. Thus, the robots re-
main more or less aligned during their pushing. Figure 6
illustrates the R-2 and Genghis-I1 pushing together.

The reduced rate of pushing in the R-2 when Genghis-
I1 is added is caused by the following. First of all, the R-
2’s 6-slow~(R-2) and CAowR(Genghis-11) parameters differ
quite a bit since Genghis-I1 is much slower at pushing the
box than the R-2. Note that as described in [ll], these pa-
rameter differences can be easily learned by these robots us-
ing the features of the L-ALLIANCE architecture which al-
low the robots to monitor and learn from the performance of
robot team members. However, since we have not explained
this mechanism in this paper, let us just assume that these
impatience rates were assigned by the human designer so

that 6-dowR(Genghis-II) is less than 6-slow~(R-2). With
this in mind, let us now assume that the R-2 is pushing on
the left of the box, and that Genghis-I1 is swapped into the
team on the right end of the box. Since Genghis-I1 takes
longer to complete its pushing than the old R-2 did, the
sensory feedback of the remaining R-2's push-left motiva-
tional behavior is not satisfied as frequently, and thus R-2's
push-left behavior set cannot be activated as frequently. In
the meantime, the push-right motivational behavior of the
remaining R-2 is becoming more impatient to activate the
push-right behavior set since it is not "hearing" that any
other robot is accomplishing its task. However, since the
push-right motivation is now growing at a reduced rate of
impatience, 6-~~our~(Genghis-I1), the motivation to activate
the push-right behavior set does not cross the threshold of
activation before Genghis-I1 announces its completion of the
task. This in turn prevents the remaining R-2 from taking
over the push of the right side of the box as long as Genghis-
I1 continues to push. In this manner, the R-2 demonstrates
its ability to adapt to a dynamic change in team hetero-
geneity.

We complete this experiment by removing the remaining
R-2 from the team. This causes Genghis-I1 to activate its
go-home behavior, since it cannot complete the box pushing
task on its own. Thus, Genghis-I1 also demonstrates its
adaptive action selection due to the actions and failures of
robot team members.

4 Conclusions
In this paper, we have described ALLIANCE - a novel,

fault tolerant cooperative control architecture for small- to
medium-sized heterogeneous mobile robot teams applied
to missions involving loosely-coupled, largely independent
tasks. This architecture is fully distributed at both the indi-
vidual robot level and at the team level. At the robot level, a
number of interacting motivational behaviors control the ac-
tivation of the appropriate sets of behaviors which allow the
robot to execute any given task. At the team level, control
is distributed equally to each robot team member, allowing
each robot to select its own tasks independently and without
any centralized control. These two levels of distribution al-
low the ALLIANCE architecture to scale easily to missions
involving larger numbers of tasks. The architecture utilizes
no form of negotiation or two-way conversations; instead, it
uses a simple form of broadcast communication that allows
robots to be aware of the actions of their teammates. The
control mechanism of ALLIANCE is designed to facilitate
fault tolerant cooperation; thus, it allows robots to recover
from failures in individual robots or in the communication
system, or to adapt their action selection due to changes in
the robot team membership or the changes of a dynamic en-
vironment. We have demonstrated these abilities through
the implementation of ALLIANCE on both physical and
simulated robot teams. In this paper, we reported the re-
sults of a physical robot team performing a box pushing
demonstration.

Not reported in this paper are a number of additional
studies we have undertaken on many issues of multi-robot
cooperation, including the effect of the lack of awareness of
robot team member actions and numerous efficiency con-
siderations. Refer to [I11 for more details on these studies,
plus descriptions of additional, more complex, implementa-
tions of the ALLIANCE architecture in both physical and
simulated mobile robot teams.

Acknowledgements
This research was performed while the author was a grad-

uate student at the MIT Artificial Intelligence Laboratory.
Support for this research was provided in part by the Uni-
versity Research Initiative under Office of Naval Research
contract N00014-86-K-0685, in part by the Advanced Re-
search Projects Agency under Office of Naval Research con-
tract N00014-85-K-0124, and in part by the Mazda Corpo-
ration. Additional support has been provided by the Office
of Engineering Research Program, Basic Energy Sciences,
of the US. Department of Energy, under contract No. D E
AC05-840R21400 with Martin Marietta Energy Systems,
Inc.

References
[l] H. Asama, K. Ozaki, A. Matsumoto, Y. Ishida, and

I. Endo. Development of task assignment system using
communication for multiple autonomous robots. Jour-
nal of Robotics and Mechatronics, 4(2):122-127, 1992.

[2] Rodney A. Brooks. A robust layered control system
for a mobile robot. IEEE Journal of Robotics and Au-
tomation, RA-2(1):14-23, March 1986.

[3] Rodney A. Brooks. The behavior language: User's
guide. Memo 1227, MIT A.I. Lab, Cambridge, MA,
April 1990.

[4] Rodney A. Brooks. Elephants don't play chess.
Robotics and Autonomous Systems, 6:3-15, 1990.

[5] Philippe Caloud, Wonyun Choi, Jean-Claude
Latombe, Claude Le Pape, and Mark Yim. Indoor au-
tomation with many mobile robots. In Proceedings of
the IEEE International Workshop on Intelligent Robots
and Systems, pages 67-72, Tsuchiura, Japan, 1990.

[6] Paul Cohen, Michael Greenberg, David Hart, and
Adele Howe. Real-time problem solving in the Phoenix
environment. COINS Technical Report 90-28, Univer-
sity of Massachusetts at Amherst, 1990.

[7] IS Robotics, Inc., Somerville, Massachusetts. ISR Ra-
dio Communication and Positioning System, October
1993.

[8] Fabrice R. Noreils. Toward a robot architecture inte-
grating cooperation between mobile robots: Applica-
tion to indoor environment. The International Journal
of Robotics Research, 12(1):79-98, February 1993.

[9] Lynne E. Parker. Adaptive action selection for coop-
erative agent teams. In Jean-Arcady Meyer, Herbert
Roitblat, and Stewart Wilson, editors, Proceedings of
the Second International Conference on Simulation of
Adaptive Behavior, pages 442-450. MIT Press, 1992.

[lo] Lynne E. Parker. An experiment in mobile robotic co-
operation. In Proceedings of the ASCE Specialty Con-
ference on Robotics for Challenging Environments, Al-
buquerque, NM, February 1994.

[ll] Lynne E. Parker. Heterogeneous Multi-Robot Cooper-
ation. PhD thesis, Massachusetts Institute of Tech-
nology, Artificial Intelligence Laboratory, Cambridge,
MA, February 1994.' MIT-AI-TR 1465 (1994).

[12] Gerald J. Sussman. A Computer Model of Skill Acqui-

sition. PhD thesis, Massachusetts Institute of Technol-
ogy, 1973.

