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Abstract 
This research addresses the problem of achieving fault 

tolerant cooperation within small- to medium-sized teams of 
heterogeneous mobile robots. We describe a novel behavior- 
based, fully distributed architecture, called ALLIANCE, 
that utilizes adaptive action selection to achieve fault toler- 
ant cooperative control in robot missions involving loosely 
coupled, largely independent tasks. The robots in this ar- 
chitecture possess a variety of high-level functions that they 
can perform during a mission, and must at all times se- 

lect an appropriate action based on the requirements of the 
mission, the activities of other robots, the current environ- 
mental conditions, and their own internal states. Since 
such cooperative teams often work in dynamic and un- 
predictable environments, the software architecture allows 
the team members to respond robustly and reliably to un- 
expected environmental changes and modifications in the 
robot team that may occur due to mechanical failure, the 
learning of new skills, or the addition or removal of robots 
from the team by human intervention. After presenting AL- 
LIANCE, we describe in detail our experimental results of 
an implementation of this architecture on a team of phys- 
ical mobile robots performing a cooperative box pushing 
demonstration. These experiments illustrate the ability of 
ALLIANCE to achieve adaptive, fault-tolerant cooperative 
control amidst dynamic changes in the capabilities of the 
robot team. 

1 Introduction 
Achieving cooperative robotics is desirable for a number 

of reasons. First, many robotic applications are inherently 
distributed in space, time, or functionality, thus requiring a 
distributed solution. Second, it is quite possible that many 
applications could be solved much more quickly if the mis- 
sion could be divided across a number of robots operating 
in parallel. Third, by duplicating capabilities across robot 
team members, one has the potential of increasing the ro- 
bustness and reliability of the automated solution through 
redundancy. Finally, it may actually be much cheaper and 
more practical in many applications to build a number of 
less capable robots that can work together at a mission, 
rather than trying to build one robot which can perform 
the entire mission with adequate reliability. 

Achieving cooperative robotics, however, is quite chal- 
lenging. Many issues must be addressed in order to develop 
a working cooperative team, such as action selection, coher- 
ence, conflict resolution, and communication. Furthermore, 

these cooperative teams often work in dynamic and unpre- 
dictable environments, requiring the robot team members 
to respond robustly, reliably, and adaptively to unexpected 
environmental changes, failures in the inter-robot commu- 
nication system, and modifications in the robot team that 
may occur due to mechanical failure, the learning of new 
skills, or the addition or removal of robots from the team 
by human intervention. 

Previous research in heterogeneous mobile robot coop 
eration includes: [8], which proposes a three-layered con- 
trol architecture that includes a planner level, a control 
level, and a functional level; [5], which describes an ar- 
chitecture that includes a task planner, a task allocator, 
a motion planner, and an execution monitor; [I], which de- 
scribes an architecture called ACTRESS that utilizes a ne- 
gotiation framework to  allow robots to recruit help when 
needed; and [6], which uses a hierarchical division of au- 
thority to address the problem of cooperative fire-fighting. 
However, these approaches deal primarily with the task se- 

lection problem and largely ignore the difficult issues for 
physical robot teams, such as robot failure, communication 
noise, and dynamic environments. In contrast, our research 
emphasizes the need for fault tolerant and adaptive cooper- 
ative control as a prinapal characteristic of the cooperative 
control architecture. 

This paper describes an architecture that we have built 
for heterogeneous mobile robot control that emphasizes 
fault tolerant, adaptive cooperation. This architecture, 
called ALLIANCE, is designed for small- to medium-sized 
teams of robots performing missions composed of loosely 
coupled subtasks that are largely independent of each other. 
By ”largely” independent, we mean that tasks can have 
fixed ordering dependencies, but they cannot be of the type 
of “brother clobbers brother” [12], where the execution of 
one task undoes the effects of another task. Even with this 
restriction, however, this research covers a very large range 
of missions for which cooperative robots are useful. In [ll], 
we report on a wide variety of applications that have been 
implemented on both physical and simulated robot teams 
that fall into this domain of loosely coupled, largely inde- 
pendent subtasks; we present one of these implementations 
in this paper. 

Section 2 describes our cooperative architecture, first 
giving an overview for how we achieve fault tolerant, a d a p  
tive control, and then providing details on the operation of 
our primary control mechanism - the motivational behav- 
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ior. We then describe, in section 3, the implementation of 
ALLIANCE on a physical robot team performing a coop 
erative box pushing mission. In section 4, we offer some 
concluding remarks. 

2 The ALLIANCE Architecture 
ALLIANCE is a fully distributed architecture for fault 

tolerant, heterogeneous robot cooperation that utilizes 
adaptive action selection to achieve cooperative control. 
Under this architecture, the robots possess a variety of high- 
level task-achieving functions that they can perform during 
a mission, and must a t  all times select an appropriate ac- 
tion based on the requirements of the mission, the activities 
of other robots, the current environmental conditions, and 
their own internal states. In ALLIANCE, individual robots 
are designed using a behavior-based approach [2]. Under the 
behavior-based construction, a number of task-achieving be- 
haviors are active simultaneously, each receiving sensory in- 
put and controlling some aspect of the actuator output. The 
lower-level behaviors, or competences, correspond to prim- 
itive survival behaviors such as obstacle avoidance, while 
the higher-level behaviors correspond to higher goals such 
as map building and exploring. The output of the lower- 
level behaviors can be suppressed or inhibited by the upper 
layers when the upper layers deem it  necessary. This a p  
proach has been used successfully in a number of robotic 
applications, several of which are described in [4]. 

Extensions to this approach are necessary, however, 
when a robot must select among a number of competing ac- 
tions - actions which cannot be pursued in parallel. Unlike 
typical behavior-based approaches, ALLIANCE delineates 
several 'behavior sets" that are either active as a group 
or hibernating. Figure 1 shows the general architecture of 
ALLIANCE and illustrates three such behavior sets. The 
j t h  behavior set, ai j ,  of a robot ri corresponds to those 
levels of competence required to perform some high-level 
task-achieving function, such as finding a toxic waste spill, 
moving a toxic waste spill, or reporting the progress of the 
robot team to a human monitor. When a robot activates 
a behavior set, we say that it has selected the task corre- 
sponding to that behavior set. Since different robots may 
have different ways of performing the same task, and will 
therefore activate different behavior sets to perform that 
task, we define the function hi(ai j ) ,  for-all robots, r i ,  on 
the team, to refer to the task that robot ri is working on 
when it activates its j - th  behavior set. 

Because of the alternative goals that may be pursued by 
the robots, the robots must have some means of selecting 
the appropriate behavior set to activate. Thus, controlling 
the activation of each of these behavior sets is a motiua- 
tional behavior. Due to conflicting goals, only one behavior 
set per robot should be active at any point in time. This re- 
striction is implemented via cross-inhibition of motivational 
behaviors, represented by the arcs at the top of figure 1, in 
which the activation of one behavior set suppresses the acti- 
vation of all other behavior sets. However, other lower-level 
competences such as collision avoidance may be continually 
active regardless of the high-level goal the robot is currently 
pursuing. Examples of this type of continually active com- 
petence are shown in figure 1 as layer 0, layer 1, and layer 
2. 

2.1 Motivational Behaviors: Overview 
The primary mechanism for achieving adaptive action 

selection in this architecture is the motiuational behavior. 

The ALLIANCE Architecture 

Figure 1: The ALLIANCE architecture. The symbols in 
this figure that connect the output of each motivational be- 
havior with the output of its Corresponding behavior set 
(vertical lines with short horizontal bars) indicate that a 
motivational behavior either allows all or none of the out- 
puts of its behavior set to pass through to the robot's actu- 
ators. 

At all times during the mission, each motivational behavior 
receives input from a number of sources, including sensory 
feedback, inter-robot communication, inhibitory feedback 
from other active behaviors, and internal motivations called 
robot impatience and robot acquiescence. The output of a 

motivational behavior is the activation level of its corre- 
sponding behavior set, represented as a non-negative num- 
ber. When this activation level exceeds a given threshold, 
the corresponding behavior set becomes active. 

Intuitively, a motivational behavior works as follows. 
Robot ri's motivation to activate any given behavior set 
aij is initialized to 0. Then, over time, robot t i ' s  motiva- 
tion rnij(t) to  activate behavior set aij increases at a fast 
rate as long as the task corresponding to that behavior set 
(i.e. hi(ai j ) )  is not being accomplished, as determined from 
sensory feedback. However, we want the robots to be re- 
sponsive to the actions of other robots, adapting their task 
selection to the activities of team members. Thus, if a robot 
ri is aware that another robot rk is working on task hi(aij),  

then ri should be satisfied for some period of time that the 
task is going to  be accomplished even without its own par- 
ticipation, and thus go on to some other applicable action. 
Its motivation to activate behavior set aij still increases, but 
a t  a slower rate. This characteristic prevents robots from 
replicating each other's actions and thus wasting needless 
energy. Of course, detecting and interpreting the actions 
of other robots (often called action recognition) is not a 
trivial problem, and often requires perceptual abilities that 
are not yet possible with current sensing technology. As 
it stands today, the sensory capabilities of even the lower 
animals far exceed present robotic capabilities. Thus, to en- 
hance the robots'. perceptual abfities, ALLIANCE utilizes 
a simple form of broadcast communication to allow robots 
to inform other team members of their current activities, 
rather than relying totally on sensory capabilities. At some 
pre-specified rate, each robot ri broadcasts a statement of 



its current action, which other robots may listen to or ig- 
nore as they wish. No two-way conversations are employed 
in this architecture. 

Each robot is designed to be somewhat impatient, how- 
ever, in that a robot r; is only willing for a certain period of 
time to allow the communicated messages of another robot 
to affect its own motivation to activate a given behavior 
set. Continued sensory feedback indicating that a task is 
not getting accomplished thus overrides the statements of 
another robot that it is performing that task. This char- 
acteristic allows robots to adapt to failures of other robots, 
causing them to ignore the activities of a robot that  is not 
successfully completing its task. 

A complementary characteristic in these robots is that of 
acquiescence. Just as the impatience characteristic reflects 
the fact that other robots may fail, the acquiescence char- 
acteristic indicates the recognition that a robot itself may 
fail. This feature operates as follows. As a robot ri per- 
forms a task, its willingness to give up that task increases 
over time as long as the sensory feedback indicates the task 
is not being accomplished. As soon as some other robot rk 
indicates it has begun that same task and r; feels it (Le. 
r;) has attempted the task for an adequate period of time, 
the unsuccessful robot ri gives up its task in an attempt to 
find an action at which it is more productive. Additionally, 
even if another robot Tk has not taken over the task, robot 
r; may give up its task anyway if it is not completed in an 
acceptable period of time. This allows r; the possibility of 
working on another task that may prove to  be more pro- 
ductive rather than becoming stuck performing the unpro- 
ductive task forever. With this acquiescence characteristic, 
therefore, a robot is able to adapt its actions to its own 
failures. 

The behavior-based design of the motivational behaviors 
also allows the robots to adapt to unexpected environmen- 
tal changes which alter the sensory feedback. The need for 
additional tasks can suddenly occur, requiring the robots 
to perform additional work, or existing environmental con- 
ditions can disappear and thus relieve the robots of certain 
tasks. In either case, the motivations fluidly adapt to these 
situations, causing robots to respond appropriately to  the 
current environmental circumstances. 

2.2 Motivational Behaviors: Formal 
Model 

Having presented the basic philosophy -behind the AL- 
LIANCE architecture, we now look in detail at how this 
philosophy is incorporated into the motivational behavior 
mechanism by presenting a formal model of the motivational 
behavior. As we discuss these details, we introduce a num- 
ber of parameters that are incorporated into ALLIANCE. 
An extension to the ALLIANCE architecture, called L- 
ALLIANCE (for Learning ALLIANCE), allows these pa- 
rameters to be updated automatically through the use of 
knowledge learned about team member capabilities. This 
dynamic parameter update mechanism relieves the human 
of the tedium of parameter adjustments and allows the het- 
erogeneous robot team members to select their tasks quite 
efficiently. Refer to [ll] for details on the L-ALLIANCE 
mechanism. We also note that all of our implementations 
of this model have used the features of the Behavior Lan- 
guage [3], for both physical robot teams and simulated robot 
teams. 

In the following subsections, we first discuss the thresh- 
old of activation of a behavior set, and then describe the five 

primary inputs to the motivational behavior. We conclude 
this section by showing how these inputs are combined to 
determine the current level of motivation of a given behavior 
set in a given robot. 

2.2.1 Threshold of activation 

The threshold of activation is given by one parameter, 8. 
This parameter determines the level of motivation beyond 
which a given behavior set wil l  become active. Although 
different thresholds of activation could be used for different 
behavior sets and for different robots, in ALLIANCE we 
assume that one threshold is sufficient since the rates of 
impatience and acquiescence can vary across behavior sets 
and across robots. 

2.2.2 Sensory feedback 
The sensory feedback provides the motivational behav- 

ior with the information necessary to  determine whether its 
corresponding behavior set needs to be activated at a given 
point during the current mission. Although this sensory 
feedback usually comes from physical robot sensors, in re- 
alistic robot applications it is not always possible to have a 
robot sense the applicability of tasks through the world - 
that is, through its sensors. Often, tasks are information- 
gathering types of activities whose need is indicated by the 
values of programmed state variables. These state variables, 
therefore, act as a type of virtual sensor which serves some 
of the same purposes as a physical sensor. 

We define a simple function to  capture the notion of 
sensory feedback as follows: 

sensoryfeedbackij(t) = 

1 

0 otherwise 

if the sensory feedback in robot r; at time t 
indicates that behavior set a;j is applicable 

2.2.3 Inter-robot communication 
The inter-robot broadcast communication mechanism 

utilized in ALLIANCE serves a key role in allowing robots 
to determine the current actions of their teammates. As 
we noted previously, the broadcast messages in ALLIANCE 
substitute for passive action recognition, which is quite diffi- 
cult to achieve. Two parameters control the broadcast com- 
munication among robots: p ;  and r;. The first parameter, 
pi ,  gives the rate at which robot r; broadcasts its current 
activity. The second parameter, r;, provides an additional 
level offault tolerance by giving the period of time robot ri 
allows to pass without receiving a communication message 
from a specific teammate before deciding that  that team- 
mate has ceased to function. While monitoring the commu- 
nication messages, each motivational behavior of the robot 
must also note when a team member is pursuing a task 
Corresponding to that motivational behavior's behavior set. 
To refer to this type of monitoring in our formal model, we 
define the function comm-received as follows: 

comrn-receiued(i, k ,  j, t l ,  t 2 )  = 

{ 0 otherwise 

2.2.4 Suppression from active behavior sets 

When a motivational behavior activates its behavior set, 
it simultaneously begins inhibiting other motivational be- 
haviors from activating their respective behavior sets. At 

1 if robot r; has received message from 
robot fk related to behavior set a;j in the 
time span ( f 1 , t 2 ) ,  where 21 < t 2  



this point, a robot has effectively %elected an action". The 
first motivational behavior then continues to monitor the 
sensory feedback, the communication from other robots, 
and the levels of impatience and acquiescence to determine 
the continued need for the activated behavior set. At some 
point in time, either the robot completes its current task, 
thus causing the sensory feedback to no longer indicate the 
need for that action, or the robot acquiesces its task. In ei- 
ther case, the need for the activated behavior set eventually 
goes away, causing the corresponding motivational behavior 
to inactivate this behavior set. This, in turn, allows another 
motivational behavior within that robot the opportunity to 
activate its behavior set. 

We refer to the suppression from action behavior sets 
with the following function: 

actiuity-Juppressionij(t) = 

0 

1 otherwise 

if another behavior set aik is active, k # j ,  
on robot ri at time t 

This function says that behavior set aij is being s u p  
pressed a t  time t on robot ri if some other behavior set aik 
is currently active on robot T i  at time t. 

2.2.5 Robot impatience 
Three parameters are used to implement the robot impa- 

tience feature of ALLIANCE: di j (k ,  t), C-slowij(k, t), and 
6-fasti j( t) .  The first parameter, d i j ( k , t ) ,  gives the time 
during which robot ri is willing to allow robot rk's commu- 
nication message to affect the motivation of behavior set aij .  
Note that robot ri is allowed to have different parameters 
for each robot on its team, and that the parameters can 
change during the mission (indicated by the dependence on 
1). This allows t i  to be influenced more by some robots than 
others, if necessary, and for this influence to be updated as 
robot capabilities change. 

The next two parameters, Bslowi j (k , t )  and 6-fasti .(t), 
give the rates of impatience of robot ri concerning behav- 
ior set aij either while robot r k  is performing task hi(ai j )  
or in the absence of other robots performing this task, re- 
spectively. We assume that the fast impatience parameter 
corresponds to a higher rate of impatience than the slow 
impatience parameter for a given behavior set in a given 
robot. The reasoning for this assumption shodd be clear 
- a robot ri should allow another robot f k  the opportunity 
to accomplish its task before becoming impatient with r k ;  

however, there is no reason for ri to remain idle if a task 
remains undone and no other robot is attempting that task. 

The question that now arises is: what slow rate of im- 
patience does a motivational behavior controlling behavior 
set aij use when more than one other robot is performing 
task hi(aij)? The method used in ALLIANCE is to increase 
the motivation at a rate that allows the slowest robot still 
under its allowable time d i j ( k ,  t )  to continue its attempt. 

The specification of the current impatience rate for a 
behavior set aij is given by the following function: 

impatienceij(t)  = 

mink(6-slowij(k,t)) if (comm-receiced(i, k,  j ,  
t - Ti,  t) = I) 
and 
(comm-receiued(i, k,  j ,  0, 

t - di i (k ,  t ) )  = 0) 
6-fasti (t) otherme 

This function says that the impatience rate will be the 
minimum slow rate, GJlowij(k,t) ,  if robot t i  has received 
communication indicating that robot r k  is performing task 
hi(ai j )  in the last Ti time units, but not for longer than 
+ i j ( k , t )  time units. Otherwise, the impatience rate is set 

The final detail to be addressed is to cause a robot's 
motivation to activate behavior set aij to go to 0 the first 
time it hears about another robot performing task hi(ai j ) .  
This is accomplished through the following: 

to 6-fasti j( t) .  

impatience-tesetij(t) = 

0 if 3k.((comm-receiued(i, k, j , t  - 6t, t) = 1) and 
(cornm-receiued(i, k, j ,  0, t - 6t)  = 0) ) ,  where 
6t = time since last communication check 

1 otherwise 

This reset function causes the motivation to be reset to 
0 if robot t i  has just received its first message from robot 
t k  indicating that f k  is performing task hi(ai j ) .  This func- 
tion allows the motivation to be reset no more than once 
for every robot team member that attempts that task. Al- 
lowing the motivation to be reset repeatedly would allow a 
persistent, yet failing robot to jeopardize the completion of 
the mission. 

2.2.6 Robot acquiescence 

Two parameters are used to implement the robot acqui- 
escence characteristic of ALLIANCE $ i j ( t )  and A i j ( t ) .  The 
first parameter, $ i j ( t ) ,  gives the time that robot ri wants to 
maintain behavior set aij activation before yielding to an- 
other robot. The second parameter, Aij(t) ,  gives the time 
robot ri wants to maintain behavior set aij activation before 
giving up to possibly try another behavior set. 

The following acquiescence function indicates when a 
robot has decided to acquiesce its task: 

acquiescenceij(t) = 

0 if ((behavior set uij of robot ri has been active 
for more than $ i j ( t )  time units at time t) and 
(3z.comm-receiued(i, z, j ,  t - ri ,  t )  = 1)) 

(behavior set aij of robot ri has been active 
for more than A i j ( t )  time units a t  time t) 

or 

1 otherwise 

This function says that a robot ri wil l  not acquiesce be- 
havior set aij until one of the following conditions is met: 

0 ri has worked on task hi(aij)  for a length of time $ i j ( t )  

0 ri has worked on task hi(aij) for a length of time A i j ( t )  

We now combine all of the inputs described above into 

and some other robot has taken over task hi(ai j )  

2.2.7 Motivation calculation 

the calculation of the levels of motivation as follows: 

rnij(0) = 

rnij(t)  = 

0 

[rnij(t - 1) + impatienceij(t)] 

x a ctiuit y supp ressio n;j (t)  

x sensoryfeedbackij (t) 

x acquiescencei (t)  

x impotiencexse t i j  (t)  



Initially, the motivation to perform behavior set aij in robot 
ri is set to 0. This motivation then increases at some pos- 
itive rate impatienceij(t) unless one of four situations oc- 

curs: (1) another behavior set in ri activates, (2) the sen- 
sory feedback indicates that the behavior set is no longer 
needed, (3) the robot has decided to acquiesce the task, or 
(4) some other robot has just taken over task hi(aij) for 
the first time. In  any of these four situations, the motiva- 
tion returns to 0. Otherwise, the motivation grows until it 
crosses the threshold 0, at which time the behavior set is 
activated, and the robot can be said to have selected an ac- 
tion. Whenever some behavior set a i j  is active in robot ri, 
r; broadcasts its current activity to other robots at a rate 
of pi. 

3 Robot Box Pushing Experiments 
The ALLIANCE architecture has been successfully im- 

plemented in a variety of proof of concept applications on 
both physical and simulated mobile robots. The applica- 
tions implemented on physical robots include a hazardous 
waste cleanup mission, reported in [I13 and [IO], and a co- 
operative box pushing mission, which is described below. 
Over 50 logged physical robot runs of the hazardous waste 
cleanup mission and over 30 physical robot runs of the box 
pushing mission were completed to elucidate the important 
issues in heterogeneous robot cooperation. Many runs of 
each of these physical robot applications are available on 
videotape. The applications using simulated mobile robots 
include a janitorial service mission and a bounding over- 
watch mission (reminiscent of military surveillance), which 
involved dozens of runs each. Details of these implementa- 
tions are reported in [ll] and [9]. 

The cooperative box pushing mission offers a simple and 
straight-forward illustration of a key characteristic of the 
ALLIANCE architecture: fault tolerant and adaptive con- 
trol due to dynamic changes in the robot team. This box 
pushing mission requires a long box to be pushed across a 
room; the box is sufficiently heavy and long that one robot 
cannot push in the middle of the box to move it across the 
room. Thus, the box must be pushed at both ends in or- 
der to accomplish this mission. To synchronize the pushing 
at the two ends, the mission is defined in terms of two re- 
curring tasks - (1) push a little on the left end, and (2) 
push a little on the right end - neither. of which can be 
activated (except for the first time) unless the opposite side 
has just been pushed. We use this mission to demonstrate 
how the ALLIANCE architecture endows robot team mem- 
bers with fault tolerant action selection due to the failure 
of robot team members, and with adaptive action selection 
due to the heterogeneity of the robot team. Note that our 
emphasis in these experiments is on issues of fault toler- 
ant cooperation rather than the design of the ultimate box 
pusher. Thus, we are not concerned at present with issues 
such as robots pushing the box into a corner, obstacles in- 
terfering with the robots, how robots detect box alignment, 
and so forth. 

In the next subsection, we describe the robots used in 
these experiments and the design of the robot control soft- 
ware. We then present and discuss the results of this proof 
of concept implementation. 

3.1 Physical Robot Team 
The box pushing application was implemented using 

three mobile robots of two types - two R-2 robots and one 

Genghis-11. All of these robots were designed and manufac- 
tured at IS Robotics, Inc., of Cambridge, Massachusetts. 
The first type of robot, the R-2, has two drive wheels ar- 
ranged as a differential pair, and a two-degree-of-freedom 
gripper for grasping objects. Its sensor suite includes eight 
infrared sensors and seven bump sensors evenly distributed 
around the front, sides, and back of the robot. In addition, a 
break-beam infrared sensor between the gripper and a bump 
sensor lining the inside of the fingers facilitate the grasping 
of small objects. The second type of robot, Genghis-11, is 
a legged robot with six two-degree-of-freedom legs. Its sen- 
sor suite includes two whiskers, force detectors on each leg, 
a passive array of infrared heat sensors, three tactile sen- 
sors along the robot belly, four near-infrared sensors, and 
an inclinometer for measuring the pitch of the robot. 

A radio communication system [7] is used in our physical 
robot implementations to allow the robots to communicate 
their current actions to each other. This system consists of 
a radio modem attached to each robot, plus a base station 
that is responsible for preventing message interference by 
time-slicing the radio channel among robots. The design of 
the radio system limits the frequency of messages between 
robots to only one message every three seconds. All of the 
results described below, therefore, involve communication 
between robots at no more than about 4 Hertz. 

3.2 Robot Software Design 
Since the capabilities of the R-2 and Genghis-I1 robots 

M e r ,  the software design of the box pushing mission for 
these robots varies somewhat. We therefore describe the 
ALLIANCE box pushing software of these robots sepa- 
rately. 

3.2.1 R-2 Control 
Figure 2 shows the ALLIANCE implementation of the 

box pushing mission for the R-2 robots. As shown in this 
figure, the R-2 is controlled by two behavior sets - one 
for pushing a little on the left end of the box (called push- 
left), and one for pushing a little on the right end of the 
box (called push-right). As specified by the ALLIANCE 
architecture, the activation of each of these behavior sets is 
controlled by a motivational behavior. Let us now examine 
the design of the push-left motivational behavior and the 
push-left behavior set of a robot T i  in more detail; the push- 
right design is symmetric to that of push-left. 

Thesensory feedback required before tlie push-left moti- 
vational behavior within Ti can activate its behavior set is 
an indication that the right end of the box has just been 
pushed. This requirement is indicated in figure 2 by the 
pushed-at-right arrow entering the push-leftmotivational be- 
havior. The right end of the box can be pushed either by 
some robot other than ri, or it can be pushed by r; itself. If 
ri is the robot doing the pushing, then the pushed-at-right 
feedback comes from an internal message from ri’s push- 
right motivational behavior. However, if some robot other 
than ri is pushing, then Ti must detect when that other 
robot has completed its push. Since this detection is im- 
possible for the R-2s with their current sensory suites, the 
robots we provided with this capability by having the team 
members broadcast a message after each push that indicates 
the completion of their current push. The pushing is initi- 
ated at the beginning of the mission by programming the 
control code so that each robot “thinks” that the opposite 
end of the box has just been pushed. 

When the sensory feedback is satisfied, the push-leftmo- 
tivational behavior grows impatient at either a rate &fastR 
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Figure 2: The ALLIANCE design of the R-2 software for 
the box pushing mission. 

(the R subscript stands for any R-2 robot) if no other robot 
is performing the push-lefttask, or at  a rate C-slow~(robot- 

id) when robot robot-id is performing the push-left task.’ 
When the push-left motivation grows above threshold, the 
push-left behavior set is activated. The push-left behavior 
set involves first acquiring the left end of the box and then 
pushing a little on that end. If the robot is already at  the 
left end of the box, then no acquiring has to take place. 
Otherwise, the R-2 assumes it is at  the right end of the 
box, and moves to the left end of the box by using the in- 
frared sensors on its right side to follow the box to the end, 
and then backing up and turning into the box. As we shall 
see below, this ability to acquire the opposite end of the box 
during the mission is important in achieving fault tolerant 
cooperative control. At the beginning of the mission, we 
would ideally like the R-2 to be able to locate one end of 
the box on its own. However, since this is beyond the scope 
of these proof of concept experiments, an implicit assump 
tion is made in the R-2 control that at the beginning of the 
mission, the R-2 is facing into a known end of the box. 

As the R-2 pushes, it uses the infrared sensors at the ends 
of its gripper fingers to remain in contact with the box. The 
current push is considered to be complete when the R-2 has 
pushed for a prescribed period of time. After the push- 
left task is completed, the motivation to perform that task 
temporarily returns to 0. However, the motivation begins 
growing again as soon as the sensory feedback indicates the 
task is needed. 
3.2.2 Genghis-I1 Control 

Genghis-I1 and the R-2s are different in two primary 
ways. First, Genghis-I1 cannot acquire the opposite end of 
the box, due to a lack of sensory capabilities, and second, 
Genghis-I1 cannot push the box as quickly as an R-2, due 
to less powerful effectors. The first difference means that 
Genghis-I1 can only push at  its current location. Thus, im- 
plicit in the control of Genghis-I1 is the assumption that it 

1To simplify the notation, we omit the j subscript of the fast 
and slow impatience rates (see section 2.2.5) since the fast rates 
of impatience are the Same for all behavior sets in all R-2s, and 
the slow rates of impatienceare the same functions of robot-id for 
dl R-2s. We also omit the dependenceupon t of these impatience 
rates, since we do not deal here with updating these parameters 
during the mission. 

Genghls-ll Box Pushlng Control 

Figure 3: The ALLIANCE design of the Genghis-I1 soft- 
ware for the box pushing mission. 

is located at  a known end of the box at the beginning of the 
mission. The second difference with the R-2s implies that if 
an R-2 pushes with the same duration, speed, and frequency 
when teamed with Genghis-I1 as it does when teamed with 
another R-2, the robot team will have problems accomplish- 
ing its mission due to severe box misalignment. 

Figure 3 shows the organization of Genghis-11’s box 
pushing software. As this figure shows, Genghis-I1 is con- 
trolled by two behavior sets, each of which is under the con- 
trol of a motivational behavior. Genghis-11’s pushing at  its 
current location is controlled by the push behavior set. The 
only sensory feedback which satisfies the push motivational 
behavior is that which indicates that some other robot is 
pushing the opposite end of the box. This requirement is 
shown in figure 3 as the pushed-at-left/rightarrow going into 
the push motivational behavior. Once the sensory feedback 
is satisfied, Genghis-I1 becomes impatient to perform the 
push behavior a t  a rate &fastGp (the G subscript refers to 
Genghis-II; the P subscript refers to the push behavior set). 
Once the motivation crosses the threshold of activation, the 
push behavior set is activated, causing Genghis-I1 to push 
the box by walking into it while using its whiskers to main- 
tain contact with the box. Once Genghis-I1 has pushed a 
given length of time, the motivation to perform push re- 
turns to o, growing again whenever the sensory feedback is 
satisfied. 

The sensory feedback required for the go-home behavior 
set to be activated is the opposite of that required for the 
push behavior set - namely, that no other robot is pushing 
at  the opposite end of the box. When the sensory feedback 
for go-home is satisfied, the motivation to activate go-home 
grows at  the rate 6-f a d G R  (the H subscript refers to the go- 
home behavior set), with the behavior set being activated as 
soon as the motivation crosses the threshold. The go-home 
behavior set causes Genghis-I1 to walk away from the box. 

3.3 Experiments and Results 
To demonstrate the fault tolerant, adaptive nature of the 

ALLIANCE architecture due to changes in the robot team 
capabilities, we undertook two basic experiments using the 
box pushing mission. Both of these experiments began with 
two R-2s pushing the box - one at each end of the box - 
as illustrated in figure 4. We note that the fast rates of 



Figure 4: The beginning of the box pushing mission. Two 
R-2s are pushing the box across the room. 

impatience were set such that the delay between individual 
pushes by each robot is quite small - from imperceptible 
to about 2 to 3 seconds, depending upon when the 4 Hz 
communication messages actually get transmitted. 

After the two R-2s push the box for a while we dynami- 
cally altered the capabilities of the robot team in two ways. 
In the first experiment, we altered the team by seizing one 
of the R-2 robots during the mission and turning it off, mim- 
icking a robot failure; we then later added it back into the 
team. In the second experiment, we again seized one of the 
R-2 robots, but this time we replaced it with Genghis-11, 
thus making the team much more heterogeneous; we then 
later seized the remaining R-2 robot, leaving Genghis-I1 as 
the sole team member. The following subsections describe 
the results of these two experiments. 

3.3.1 Experiment 1: Robot “failure” 

As we have emphasized, a primary goal of our architec- 
ture is to allow robots to recover from failures of robot team 
members. Thus, by seizing an R-2 and turning it off, we test 
the ability of the remaining R-2 to respond to that ufailure” 
and adapt its action selection accordingly. In this experi- 
ment, what we observe after the seizure is that after a brief 
pause of about 5 to 8 seconds (which is dependent upon the 
setting of the 6s low~(R-2)  parameter), the remaining R-2 
begins acquiring the opposite end of the box, as shown in 
figure 5, and then pushes at its new end of the box. This 
R-2 continues its back and forth pushing, executing both 
tasks of pushing the left end of the box and pushing the 
right end of the box as long as it fails to “hear” through the 
broadcast communication mechanism that another robot is 
performing the push at the opposite end of the box. When 
we add back in the second R-2, however, the still-working 
robot adapts its actions again, now just pushing one side of 
the box, since it is satisfied that the other end of the box is 
also getting pushed. Thus, the robot team demonstrates its 
ability to recover from the failure of a robot team member. 

3.3.2 Experiment 2: Increased heterogeneity 

Another goal of our architecture is to allow heterogeneous 
robot teams to work together efficiently. Robots can be 
heterogeneous in two obvious ways. First, robots may differ 
in which tasks they are able to accomplish, and second, 
robots may differ in how well they perform the same task. 
In this experiment, we deal primarily with the second type 
of heterogeneity, in which Genghis-I1 and the R-2 use quite 
different mechanisms for pushing the box. By substituting 

Figure 5: Fault tolerant action selection. In the first exper- 
iment, we seize one of the R-2 robots and turn it off. This 
causes the remaining R-2 robot to have to perform both 
tasks of the box pushing mission: pushing at the right end 
of the box, and pushing at the left end of the box. Here, 
the R-2 is acquiring the right end of the box. 

Figure 6: Adaptivity due to  heterogeneity. In the second 
experiment, we again seize one of the R-2 robots, but this 
time we replace it with Genghis-11. Since Genghis-I1 can- 
not push as powerfully as an R-2, the remaining R-2 robot 
adapts its actions by pushing less frequently. 

robots during the middle of a mission, we test the ability 
of the remaining team member to respond to the dynamic 
change in the heterogeneity of the team. 

What we observe in this experiment is that the remain- 
ing R-2 begins pushing much less frequently as soon as it 
Uhears” that Genghis-11, rather than an R-2, is the robot 
pushing the opposite end of the box. Thus, the robots re- 
main more or less aligned during their pushing. Figure 6 
illustrates the R-2 and Genghis-I1 pushing together. 

The reduced rate of pushing in the R-2 when Genghis- 
I1 is added is caused by the following. First of all, the R- 
2’s 6-slow~(R-2) and CAowR(Genghis-11) parameters differ 
quite a bit since Genghis-I1 is much slower at pushing the 
box than the R-2. Note that as described in [ll], these pa- 
rameter differences can be easily learned by these robots us- 
ing the features of the L-ALLIANCE architecture which al- 
low the robots to monitor and learn from the performance of 
robot team members. However, since we have not explained 
this mechanism in this paper, let us just assume that these 
impatience rates were assigned by the human designer so 



that 6-dowR(Genghis-II) is less than 6-slow~(R-2). With 
this in mind, let us now assume that the R-2 is pushing on 
the left of the box, and that Genghis-I1 is swapped into the 
team on the right end of the box. Since Genghis-I1 takes 
longer to complete its pushing than the old R-2 did, the 
sensory feedback of the remaining R-2's push-left motiva- 
tional behavior is not satisfied as frequently, and thus R-2's 
push-left behavior set cannot be activated as frequently. In 
the meantime, the push-right motivational behavior of the 
remaining R-2 is becoming more impatient to activate the 
push-right behavior set since it is not "hearing" that any 
other robot is accomplishing its task. However, since the 
push-right motivation is now growing at a reduced rate of 
impatience, 6-~~our~(Genghis-I1), the motivation to activate 
the push-right behavior set does not cross the threshold of 
activation before Genghis-I1 announces its completion of the 
task. This in turn prevents the remaining R-2 from taking 
over the push of the right side of the box as long as Genghis- 
I1 continues to push. In this manner, the R-2 demonstrates 
its ability to adapt to a dynamic change in team hetero- 
geneity. 

We complete this experiment by removing the remaining 
R-2 from the team. This causes Genghis-I1 to activate its 
go-home behavior, since it cannot complete the box pushing 
task on its own. Thus, Genghis-I1 also demonstrates its 
adaptive action selection due to the actions and failures of 
robot team members. 

4 Conclusions 
In this paper, we have described ALLIANCE - a novel, 

fault tolerant cooperative control architecture for small- to 
medium-sized heterogeneous mobile robot teams applied 
to missions involving loosely-coupled, largely independent 
tasks. This architecture is fully distributed at both the indi- 
vidual robot level and at the team level. At the robot level, a 
number of interacting motivational behaviors control the ac- 
tivation of the appropriate sets of behaviors which allow the 
robot to execute any given task. At the team level, control 
is distributed equally to each robot team member, allowing 
each robot to select its own tasks independently and without 
any centralized control. These two levels of distribution al- 
low the ALLIANCE architecture to scale easily to missions 
involving larger numbers of tasks. The architecture utilizes 
no form of negotiation or two-way conversations; instead, it 
uses a simple form of broadcast communication that allows 
robots to be aware of the actions of their teammates. The 
control mechanism of ALLIANCE is designed to facilitate 
fault tolerant cooperation; thus, it allows robots to recover 
from failures in individual robots or in the communication 
system, or to adapt their action selection due to  changes in 
the robot team membership or the changes of a dynamic en- 
vironment. We have demonstrated these abilities through 
the implementation of ALLIANCE on both physical and 
simulated robot teams. In this paper, we reported the re- 
sults of a physical robot team performing a box pushing 
demonstration. 

Not reported in this paper are a number of additional 
studies we have undertaken on many issues of multi-robot 
cooperation, including the effect of the lack of awareness of 
robot team member actions and numerous efficiency con- 
siderations. Refer to [I11 for more details on these studies, 
plus descriptions of additional, more complex, implementa- 
tions of the ALLIANCE architecture in both physical and 
simulated mobile robot teams. 
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