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Abstrat|ALLIANCE is a software arhiteture that fa-
ilitates the fault tolerant ooperative ontrol of teams of
heterogeneous mobile robots performing missions omposed
of loosely oupled subtasks that may have ordering depen-
denies. ALLIANCE allows teams of robots, eah of whih
possesses a variety of high-level funtions that it an per-
form during a mission, to individually selet appropriate
ations throughout the mission based on the requirements
of the mission, the ativities of other robots, the urrent en-
vironmental onditions, and the robot's own internal states.
ALLIANCE is a fully distributed, behavior-based arhite-
ture that inorporates the use of mathematially-modeled
motivations (suh as impatiene and aquiesene) within
eah robot to ahieve adaptive ation seletion. Sine oop-
erative roboti teams usually work in dynami and unpre-
ditable environments, this software arhiteture allows the
robot team members to respond robustly, reliably, exibly,
and oherently to unexpeted environmental hanges and
modi�ations in the robot team that may our due to me-
hanial failure, the learning of new skills, or the addition
or removal of robots from the team by human intervention.
The feasibility of this arhiteture is demonstrated in an
implementation on a team of mobile robots performing a
laboratory version of hazardous waste leanup.

Keywords|Multi-Robot Cooperation, ALLIANCE, Fault
tolerane, Control Arhiteture

I. Introdution

A. Motivation

A key driving fore in the development of mobile roboti
systems is their potential for reduing the need for human
presene in dangerous appliations. Appliations suh as
the leanup of toxi waste, nulear power plant deom-
missioning, planetary exploration, �re �ghting, searh and
resue missions, seurity, surveillane, and reonnaissane
tasks have elements of danger in whih human asualties
are possible, or even likely. In all of these appliations, it
is desirable to redue the risk to humans through the use
of autonomous robot tehnology. Other appliations, suh
as manufaturing or industrial and/or household mainte-
nane, are of a highly repetitive nature, reating tasks that
humans �nd monotonous or fatiguing. In these ases, the
quality of the solution may be inreased by employing au-
tonomous agents.

One approah to reating an autonomous roboti solu-
tion to a given appliation is to try to build a single robot
to address that appliation. This robot would be designed
to have all of the apabilities neessary to omplete the

mission on its own, perhaps with some guidane from a
human ontroller. For smaller-sale appliations, the single
robot approah is often feasible. However, a large number
of the human solutions to these real world appliations of
interest employ the use of multiple humans supporting and
omplementing eah other. Rather than having one hu-
man performing the task alone, a team of workers is formed
that have a variety of speialized skills. These workers are
available to help eah other, and to provide individualized
expertise when needed in the appliation. Eah human
team member is typially assigned a role (or roles) to ful�ll
during the mission that is based upon that human's skills
and experiene. The humans will also share some ommon
apabilities that allow them to perform some tasks inter-
hangeably, depending upon the workload of the individual
during the mission. Unexpeted events may our during
the mission that require a dynami realloation of tasks
by the humans to address the new irumstanes. Many
examples of human teams of this type an be found that
are very suessful and eÆient in performing their mission.
Real-world appliations that are well-suited for team-based
approahes inlude the U.S. Department of Energy appli-
ations of deontamination and deommissioning of legay
manufaturing failities and hazardous waste leanup; the
U.S. Department of Defense appliations of surveillane
and reonnaissane and remote warfare; the NASA appli-
ations of spae exploration; and ommerial and private
appliations of industrial and household maintenane, �re-
�ghting, searh and resue, and seurity. Most of these
appliations are omposed of tasks that are inherently dis-
tributed, either in spae, time, or funtionality, and thus
require a distributed solution.

Sine realisti human solutions to these types of applia-
tions require multiple humans to work together, it is fea-
sible to examine the use of robot teams for automated so-
lutions to these tasks. There are a number of potential
advantages to using a distributed mobile robot system. It
may be possible to redue the total ost of the system by
onstruting multiple simpler robots rather than a mono-
lithi single robot. The omplexity of many environments
or missions may atually require a mixture of roboti apa-
bilities that is too extensive to design into a single robot.
In the general ase, a robot team onsists of a variety of
types of robots, eah type of whih speializes in (possibly
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overlapping) areas of apability. Utilizing a team of robots
may make it possible to inrease the robustness of the sys-
tem by taking advantage of the parallelism and redundany
of multiple robots. Additionally, time onstraints may re-
quire the use of multiple robots working simultaneously on
di�erent aspets of the mission in order to suessfully a-
omplish the objetive. Certainly, a distributed solution
is the only viable approah for the appliation domains
mentioned above that are inherently distributed in time,
spae, and/or funtionality. Thus, in the most general ase,
the robot team would onsist of a variety of heterogeneous
types of robots working together to aomplish the mission
that no individual robot ould aomplish alone.

However, the use of multiple robots is not without its
disadvantages. If not properly onstruted, multiple-robot
systems may atually inrease the omplexity of an auto-
mated solution rather than simplifying it. In multi-robot
approahes, one has to deal with many hallenging issues
that do not arise in single-robot systems, suh as ahiev-
ing oherene, determining how to deompose and alloate
the problem among a group of robots, determining how to
enable the robots to interat, and so forth. In fat, the dif-
�ulties in designing a ooperative team are signi�ant. In
[5℄, Bond and Gasser desribe the basi problems the �eld
of Distributed Arti�ial Intelligene must address; those
aspets diretly related to situated multi-robot systems in-
lude the following:

� How do we formulate, desribe, deompose, and allo-
ate problems among a group of intelligent agents?

� How do we enable agents to ommuniate and interat?
� How do we ensure that agents at oherently in their
ations?

� How do we allow agents to reognize and reonile on-
its?

These are hallenging issues whih have been extensively
studied, but yet still have many open researh issues re-
maining to be addressed. As desribed in the following
setion, while muh researh in reent years has addressed
the issues of autonomous robots and multi-robot oopera-
tion, urrent robotis tehnology is still far from ahieving
many of these real world appliations. We believe that one
reason for this tehnology gap is that previous work has
not adequately addressed the issues of fault tolerane and
adaptivity. Here, by fault tolerane, we mean the ability of
the robot team to respond to individual robot failures or
failures in ommuniation that may our at any time dur-
ing the mission. The fault tolerant response of interest in
this artile is the dynami re-seletion (or re-alloation) of
tasks by robot team members due to robot failures or a dy-
namially hanging environment. We want the robot team
as a whole to be able to omplete its mission to the great-
est extent possible in spite of any single-point failure. By
adaptivity, we mean the ability of the robot team to hange
its behavior over time in response to a dynami environ-
ment, hanges in the team mission, or hanges in the team
apabilities or omposition, to either improve performane
or to prevent unneessary degradation in performane.

The ALLIANCE arhiteture desribed in this artile of-

fers one solution to multi-robot ooperation that not only
addresses the issues inherent in any multi-robot team, but
also allows the roboti teams to be fault tolerant, reliable,
and adaptable. Requiring fault tolerane in a ooperative
arhiteture emphasizes the need to build teams that mini-
mize their vulnerability to individual robot outages (either
full or partial outages). Reliability refers to the dependabil-
ity of a system, and whether it funtions properly and or-
retly eah time it is utilized. This onept di�ers slightly
from fault tolerane in that we want to be assured that a
robot team orretly aomplishes its mission even when
individual robot failures do not our. One measure of
the reliability of the arhiteture is its ability to guarantee
that the mission will be solved, within ertain operating
onstraints, when applied to any given ooperative robot
team. Adaptivity in a ooperative team allows that team
to be responsive to hanges in individual robot skills and
performane, to dynami environmental hanges, and to
hanges in the robot team omposition as robots dynami-
ally join or leave the ooperative team.

This artile desribes the ontrol arhiteture, AL-
LIANCE, that we have developed whih failitates fault
tolerant, reliable, and adaptive ooperation among small-
to medium-sized teams of heterogeneous mobile robots,
performing (in dynami environments) missions omposed
of independent tasks that an have ordering dependen-
ies. We begin by desribing the related work in this area,
followed by a detailed disussion of the features of AL-
LIANCE. We then illustrate the viability of this arhite-
ture by desribing the results of implementing ALLIANCE
on a team of robots performing a laboratory version of haz-
ardous waste leanup, whih requires the robots to �nd the
initial loations of two spills, move the two spills to a goal
destination, and periodially report the team's progress to
a human monitoring the mission. In the appendix, we sup-
ply a proof of ALLIANCE's mission termination for a re-
strited set of ooperative roboti appliations.

II. Related Work

The amount of researh in the �eld of ooperative mobile
robotis has grown substantially in reent years. This work
an be broadly ategorized into two groups: swarm-type
ooperation and \intentional" ooperation. (This paper
addresses the seond area of ooperation.) The swarm-
type approah to multi-robot ooperation deals with large
numbers of homogeneous robots. This approah is useful
for non-time-ritial appliations involving numerous rep-
etitions of the same ativity over a relatively large area,
suh a leaning a parking lot or olleting rok samples on
Mars. The approah to ooperative ontrol taken in these
systems is derived from the �elds of neurobiology, ethology,
psyhophysis, and soiology, and is typially haraterized
by teams of large numbers of homogeneous robots, eah of
whih has fairly limited apabilities on its own. However,
when many suh simple robots are brought together, glob-
ally interesting behavior an emerge as a result of the loal
interations of the robots. Suh approahes usually rely
on mathematial onvergene results (suh as the random
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walk theorem [12℄) that indiate the desired outome over
a suÆiently long period of time. A key researh issue in
this senario is determining the proper design of the loal
ontrol laws that will allow the olletion of robots to solve
a given problem.

A number of researhers have studied the issues of swarm
robotis. Deneubourg et al. [16℄ desribe simulation results
of a distributed sorting algorithm. Theraulaz et al. [36℄ ex-
trat ooperative ontrol strategies, suh as foraging, from
a study of Polistes wasp olonies. Steels [34℄ presents sim-
ulation studies of the use of several dynamial systems to
ahieve emergent funtionality as applied to the problem
of olleting rok samples on a distant planet. Drogoul
and Ferber [17℄ desribe simulation studies of foraging and
hain-making robots. In [25℄ Matari desribes the results
of implementing group behaviors suh as dispersion, aggre-
gation, and oking on a group of physial robots. Beni and
Wang [4℄ desribe methods of generating arbitrary patterns
in yli ellular robotis. Kube and Zhang [22℄ present the
results of implementing an emergent ontrol strategy on a
group of �ve physial robots performing the task of loat-
ing and pushing a brightly lit box. Stilwell and Bay [35℄
present a method for ontrolling a swarm of robots using
loal fore sensors to solve the problem of the olletive
transport of a palletized load. Arkin et al. [1℄ present
researh onerned with sensing, ommuniation, and so-
ial organization for tasks suh as foraging. The CEBOT
work, desribed in [19℄ and many related papers, has many
similar goals to other swarm-type multi-roboti systems;
however, the CEBOT robots an be one of a number of
robot lasses, rather than purely homogeneous.

The primary di�erene between these approahes and
the problem addressed in this artile is that the above
approahes are designed stritly for homogeneous robot
teams, in whih eah robot has the same apabilities and
ontrol algorithm. Additionally, issues of eÆieny are
largely ignored. However, in heterogeneous robot teams
suh as those addressed in this artile, not all tasks an be
performed by all team members, and even if more than
one robot an perform a given task, they may perform
that task quite di�erently. Thus the proper mapping of
subtasks to robots is dependent upon the apabilities and
performane of eah robot team member. This additional
onstraint brings many ompliations to a workable arhi-
teture for robot ooperation, and must be addressed ex-
pliitly to ahieve the desirable level of ooperation.

The seond primary area of researh in ooperative on-
trol deals with ahieving \intentional" ooperation among
a limited number of typially heterogeneous robots per-
forming several distint tasks. In this type of ooperative
system, the robots often have to deal with some sort of
eÆieny onstraint that requires a more direted type of
ooperation than is found in the swarm approah desribed
above. Furthermore, this seond type of mobile roboti
mission usually requires that several distint tasks be per-
formed. These missions thus usually require a smaller num-
ber of possibly heterogeneous mobile robots involved in
more purposeful ooperation. Although individual robots

in this approah are typially able to perform some useful
task on their own, groups of suh robots are often able to
aomplish missions that no individual robot an aom-
plish on its own. Key issues in these systems inlude ro-
bustly determining whih robot should perform whih task
so as to maximize the eÆieny of the team and ensur-
ing the proper oordination among team members to allow
them to suessfully omplete their mission.

Two bodies of previous researh are partiularly appli-
able to this seond type of ooperation. First, several
researhers have diretly addressed this ooperative robot
problem by developing ontrol algorithms and implement-
ing them either on physial robots or on simulations of
physial robots that make reasonable assumptions about
robot apabilities. Examples of this work inlude Noreils
[26℄, who desribes a sense-model-plan-at ontrol arhi-
teture whih inludes three layers of ontrol: the planner
level, whih manages oordinated protools, deomposes
tasks into smaller subunits, and assigns the subtasks to a
network of robots; the ontrol level, whih organizes and
exeutes a robot's tasks; and the funtional level, whih
provides ontrolled reativity. He reports on the implemen-
tation of this arhiteture on two physial mobile robots
performing onvoying and box pushing. In both of these
examples, one of the robots ats as a leader, and the other
ats as a follower.

Caloud et al. [9℄ desribe another sense-model-plan-at
arhiteture whih inludes a task planner, a task alloator,
a motion planner, and an exeution monitor. Eah robot
obtains goals to ahieve either based on its own urrent
situation, or via a request by another team member. They
use Petri Nets for interpretation of the plan deomposi-
tion and exeution monitoring. In this paper they report
on plans to implement their arhiteture on three physial
robots.

In [2℄ and elsewhere, Asama et al. desribe their de-
entralized robot system alled ACTRESS, addressing the
issues of ommuniation, task assignment, and path plan-
ning among heterogeneous roboti agents. Their approah
revolves primarily around a negotiation framework whih
allows robots to reruit help when needed. They have
demonstrated their arhiteture on mobile robots perform-
ing a box pushing task.

Wang [37℄ addresses a similar issue to that addressed in
this artile | namely, dynami, distributed task alloation
when more than one robot an perform a given task. He
proposes the use of several distributed mutual exlusion
algorithms that use a \sign-board" for inter-robot om-
muniation. These algorithms are used to solve problems
inluding distributed leader �nding, the N-way interse-
tion problem, and robot ordering. However, this earlier
paper does not address issues of dynami realloation due
to robot failure and eÆieny issues due to robot hetero-
geneity.

Cohen et al. [13℄ propose a hierarhial subdivision
of authority to address the problem of ooperative �re-
�ghting. They desribe their Phoenix system, whih in-
ludes a generi simulation environment and a real-time,
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adaptive planner. The main ontroller in this arhiteture
is alled the Fireboss, whih maintains a global view of the
environment, forms global plans, and sends instrutions to
agents to ativate their own loal planning.

A huge amount of researh in optimal task alloation and
sheduling has been aomplished previously (e.g. [14℄).
However, these approahes alone are not diretly appliable
to multi-robot missions, sine they do not address multi-
robot performane in a dynami world involving robot het-
erogeneity, sensing unertainty, and the nondeterminism of
robot ations.

The seond, signi�antly larger, body of researh related
to intentional ooperation omes from the Distributed Ar-
ti�ial Intelligene (DAI) ommunity, whih has produed
a great deal of work addressing \intentional" ooperation
among generi agents. However, these agents are typially
software systems running as interating proesses to solve
a ommon problem rather than embodied, sensor-based
robots. In most of this work, the issue of task alloation
has been the driving inuene that ditates the design of
the arhiteture for ooperation. Typially, the DAI ap-
proahes use a distributed, negotiation-based mehanism
to determine the alloation of tasks to agents. See [5℄ for
many of the seminal papers in this �eld.

Our approah is distint from these earlier DAI ap-
proahes in that we embed task-oriented missions in
behavior-based systems and diretly address solutions to
fault tolerant, adaptive ontrol. Although the need for
fault tolerane is noted in the earlier arhitetures, they
typially either make no serious e�ort at ahieving fault
tolerant, adaptive ontrol or they assume the presene of
unrealisti \blak boxes" that ontinually monitor the envi-
ronment and provide reovery strategies (usually involving
unspei�ed replanning mehanisms) for handling various
types of unexpeted events. Thus, in atuality, if one or
more of the robots or the ommuniation system fails under
these approahes, the entire team is subjet to atastrophi
failure. Experiene with physial mobile robots has shown,
however, that robot failure is very ommon, not only due
to the omplexity of the robots themselves, but also due to
the omplexity of the environment in whih these robots
must be able to operate. Thus, ontrol arhitetures must
expliitly address the dynami nature of the ooperative
team and its environment to be truly useful in real-world
appliations. Indeed, the approah to ooperative ontrol
developed in this artile has been designed spei�ally with
the view toward ahieving fault tolerane and adaptivity.

Additionally, the earlier approahes break the problem
into a traditional AI sense-model-plan-at deomposition
rather than the funtional deomposition used in behavior-
based approahes. The traditional approah has likely been
favored beause it presents a lean subdivision between the
job planning, task deomposition, and task alloation por-
tions of the mission to be aomplished | a segmenta-
tion that may, at �rst, appear to simplify the oopera-
tive team design. However, the problems with applying
these traditional approahes to physial robot teams are
the same problems that urrently plague these approahes

when they are applied to individual situated robots. As
argued by Brooks in [8℄ and elsewhere, approahes using
a sense-model-plan-at framework have been unable to de-
liver real-time performane in a dynami world beause
of their failure to adequately address the situatedness and
embodiment of physial robots. Thus, a behavior-based
approah to ooperation was utilized in ALLIANCE to
inrease the robustness and adaptivity of the ooperative
team.
Refer to [11℄ for a detailed review of muh of the existing

work in ooperative robotis.

III. ALLIANCE

A. Assumptions

In the design of any ontrol sheme, it is important to
make expliit those assumptions underlying the approah.
Thus, before desribing the ALLIANCE arhiteture in de-
tail, we �rst disuss the assumptions that were made in the
design of this arhiteture. Note that these assumptions are
made within the ontext (desribed earlier) of solving the
problem of multi-robot ooperation for small- to medium-
sized teams of heterogeneous robots performing missions
omposed of independent subtasks that may have ordering
dependenies.
Our assumptions are as follows:
1. The robots on the team an detet the e�et of their
own ations, with some probability greater than 0.

2. Robot ri an detet the ations of other team mem-
bers for whih ri has redundant apabilities, with some
probability greater than 0; these ations may be de-
teted through any available means, inluding expliit
broadast ommuniation.

3. Robots on the team do not lie and are not intention-
ally adversarial.

4. The ommuniations medium is not guaranteed to be
available.

5. The robots do not possess perfet sensors and e�e-
tors.

6. Any of the robot subsystems an fail, with some prob-
ability greater than 0.

7. If a robot fails, it annot neessarily ommuniate its
failure to its teammates.

8. A entralized store of omplete world knowledge is
not available.

We make the �rst assumption | a robot's detetion of
the e�et of its own ations | to ensure that robots have
some measure of feedbak ontrol and do not perform their
ations purely with open-loop ontrol. However, we do not
require that robots be able to measure their own e�etive-
ness with ertainty, beause we realize this rarely happens
on real robots.
The seond assumption deals with the problem of ation

reognition | the ability of a robot to observe and inter-
pret the behavior of another robot. Previous researh in
ooperative robotis has investigated several possible ways
of providing ation reognition to robot teams | from im-
pliit ooperation through sensory feedbak to expliit o-
operation using the exhange of ommuniated messages.
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For example, Huber and Durfee [20℄ have developed a mul-
tiple resolution, hierarhial plan reognition system to o-
ordinate the motion of two interating mobile robots based
upon belief networks. Other researhers have studied the
e�et of ommuniation in providing ation knowledge. For
example, MaLennan [24℄ investigates the evolution of om-
muniation in simulated worlds and onludes that the
ommuniation of loal robot information an result in sig-
ni�ant performane improvements; Werner and Dyer [38℄
examine the evolution of ommuniation whih failitates
the breeding and propagation of arti�ial reatures; and
Balh and Arkin [3℄ examine the importane of ommuni-
ation in roboti soieties performing forage, onsume, and
graze tasks, �nding that ommuniation an signi�antly
improve performane for tasks involving little impliit om-
muniation through the world, and that ommuniation of
urrent robot state is almost as e�etive as ommuniation
of robot goals.

In the urrent artile, we do not require that a robot be
able to determine a teammate's ations through passive ob-
servation, whih an be quite diÆult to ahieve. Instead,
we enable robots to learn of the ations of their teammates
through an expliit ommuniation mehanism, whereby
robots broadast information on their urrent ativities to
the rest of the team.

Third, we assume that the robots are built to work on
a team, and are neither in diret ompetition with eah
other, nor are attempting to subvert the ations of their
teammates. Although onits may arise at a low level
due to, for example, a shared workspae, we assume that
at a high level the robots share ompatible goals. (Note,
however, that some multi-robot team appliations may re-
quire the ability to deal with adversarial teams, suh as
military appliations or team ompetitions (e.g. robot so-
er). This is not overed in this artile.)

We further assume that any subsystem of the team, suh
as ommuniations, sensors, and e�etors, or individual
robots, are subjet to failure, thus leading to assumptions
four through seven.

Finally, we assume that robots do not have aess to
some entralized store of world knowledge, and that no
entralized agent is available that an monitor the state
of the entire robot environment and make ontrolling dei-
sions based upon this information.

B. Overview of ALLIANCE

As already disussed, a major design goal in the devel-
opment of ALLIANCE is to address the real-world issues
of fault tolerane and adaptivity when using teams of fal-
lible robots with noisy sensors and e�etors. Our aim is to
reate robot teams that are able to ope with failures and
unertainty in ation seletion and ation exeution, and
with hanges in a dynami environment. Beause of these
design goals, we developed ALLIANCE to be a fully dis-
tributed, behavior-based software arhiteture whih gives
all robots the apability to determine their own ations
based upon their urrent situation. No entralized ontrol
is utilized, so that we an investigate the power of a fully

distributed roboti system to aomplish group goals. The
purpose of this approah is to maintain a purely distributed
ooperative ontrol sheme whih a�ords an inreased de-
gree of robustness; sine individual agents are always fully
autonomous, they have the ability to perform useful ations
even amidst the failure of other robots.

ALLIANCE de�nes a mehanism that allows teams of
robots, eah of whih possesses a variety of high-level fun-
tions that it an perform during a mission, to individ-
ually selet appropriate ations throughout the mission
based on the requirements of the mission, the ativities of
other robots, the urrent environmental onditions, and the
robot's own internal states. This mehanism is based upon
the use of mathematially-modeled motivations within eah
robot, suh as impatiene and aquiesene, to ahieve
adaptive ation seletion. Under the behavior-based frame-
work, the task-ahieving behaviors of eah robot reeive
sensory input and ontrol some aspet of the atuator out-
put. Lower-level behaviors, or ompetenes, orrespond
to primitive survival behaviors suh as obstale avoidane,
while the higher-level behaviors orrespond to higher goals
suh as map building and exploring. The output of the
lower-level behaviors an be suppressed or inhibited by the
upper layers when neessary. Within eah layer of ompe-
tene may be a number of simple modules interating via
inhibition and suppression to produe the desired behavior.
This approah has been used suessfully in a number of
roboti appliations, several of whih are desribed in [7℄.

Extensions to this approah are neessary, however,
when a robot must selet among a number of ompet-
ing ations | ations whih annot be pursued in paral-
lel. Unlike typial behavior-based approahes, ALLIANCE
delineates several behavior sets that are either ative as a
group or are hibernating. Figure 1 shows the general arhi-
teture of ALLIANCE and illustrates three suh behavior
sets. Eah behavior set of a robot orresponds to those
levels of ompetene required to perform some high-level
task-ahieving funtion. Beause of the alternative goals
that may be pursued by the robots, the robots must have
some means of seleting the appropriate behavior set to
ativate. This ation seletion is ontrolled through the
use of motivational behaviors, eah of whih ontrols the
ativation of one behavior set. Due to oniting goals,
only one behavior set is ative at any point in time (im-
plemented via ross-inhibition of behavior sets). However,
other lower-level ompetenes suh as ollision avoidane
may be ontinually ative regardless of the high-level goal
the robot is urrently pursuing. Examples of this type of
ontinually ative ompetene are shown generially in �g-
ure 1 as layer 0, layer 1, and layer 2.

C. Motivational Behaviors

In ALLIANCE, the ability for robots to respond to un-
expeted events, robot failures, and so forth, is provided
through the use of motivations. These motivations are de-
signed to allow robot team members to perform tasks only
as long as they demonstrate their ability to have the de-
sired e�et on the world. This di�ers from the ommonly
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Fig. 1. The ALLIANCE arhiteture, implemented on eah robot
in the ooperative team, delineates several behavior sets, eah
of whih orrespond to some high-level task-ahieving funtion.
The primary mehanism enabling a robot to selet a high-level
funtion to ativate is the motivational behavior. The symbols
that onnet the output of eah motivational behavior with the
output of its orresponding behavior set (vertial lines with short
horizontal bars) indiate that a motivational behavior either al-
lows all or none of the outputs of its behavior set to pass through
to the robot's atuators. The non-bold, single-bordered retan-
gles orrespond to individual layers of ompetene that are always
ative.

used tehnique for task alloation that begins with break-
ing down the mission (or part of the mission) into subtasks,
and then omputing the \optimal" robot-to-task mapping
based upon agent skill levels, with little reourse for robot
failures after the alloation has ourred.

The motivations are utilized in eah motivational behav-
ior, whih is the primary mehanism for ahieving adaptive
ation seletion in this arhiteture. At all times during the
mission, eah motivational behavior reeives input from a
number of soures, inluding sensory feedbak, inter-robot
ommuniation, inhibitory feedbak from other ative be-
haviors, and internal motivations. This input is ombined
(in a manner desribed below) to generate the output of a
motivational behavior at any point in time. This output
de�nes the ativation level of its orresponding behavior
set, represented as a non-negative number. When this a-
tivation level exeeds a given threshold, the orresponding
behavior set beomes ative.

Two types of internal motivations are modeled in AL-
LIANCE | robot impatiene and robot aquiesene. The
impatiene motivation enables a robot to handle situations
when other robots (outside itself) fail in performing a given
task. The aquiesene motivation enables a robot to han-
dle situations in whih it, itself, fails to properly perform
its task. Intuitively, a motivational behavior works as fol-
lows. A robot's motivation to ativate any given behavior
set is initialized to 0. Then over time, that robot's moti-
vation to perform a given behavior set inreases at a fast
rate of impatiene (de�ned expliitly below) as long as the
task orresponding to that behavior set is not being aom-
plished by any robot team member. The robot, however,

should also be responsive to the ations of its teammates,
adapting its task seletion to the ativities of other robot
team members. Thus, if the ith robot ri is aware that the
kth robot rk is working on a partiular task, ri should be
satis�ed for some period of time that that task is going to
be aomplished even without its own partiipation in the
task, and thus go on to some other appliable ation. Robot
ri's motivation to ativate its orresponding behavior set
ontinues to inrease, but at a slower rate of impatiene.
This harateristi prevents robots from repliating eah
other's ations and thus wasting needless energy.

As a simple example, onsider a team of two robots un-
loading boxes from a truk and plaing them on one of two
onveyor belts, depending upon the labeling on the box.
Both of the robots, all them A and B, have the ability
to unload boxes from the truk to a temporary storage lo-
ation, and the ability to move them from the temporary
storage loation to the appropriate onveyor belt. (We as-
sume that, due to the way the loading dok is designed,
the robots annot move boxes immediately from the truk
to the onveyor belt). At the beginning of the mission, say
robot A elets to unload the boxes from the truk. Robot
B is then satis�ed that the boxes will be unloaded, and pro-
eeds to move the boxes from the temporary loation to the
onveyor belt when appliable. As the mission progresses,
however, let us assume that robot A's box-detetion sen-
sor (e.g. a amera) beomes dirty and prevents A from
loating boxes. Sine no more boxes are arriving at the
temporary loation, robot B beomes more and more im-
patient to take over the task of unloading boxes. After a
period of time, B takes over the task of unloading boxes,
even though robot A is still attempting to aomplish that
task | unaware that its sensor is returning faulty readings.

Before ontinuing with this example, we note here that
deteting and interpreting the ations of other robots is
not a trivial problem, and often requires pereptual abil-
ities that are not yet possible with urrent sensing teh-
nology. As it stands today, the sensory apabilities of
even the lower animals far exeed present roboti apa-
bilities. Thus, to enhane the robots' pereptual abilities,
ALLIANCE utilizes a simple form of broadast ommuni-
ation to allow robots to inform other team members of
their urrent ativities, rather than relying totally on sens-
ing through the world. Thus, at some pre-spei�ed rate,
eah robot ri broadasts a statement of its urrent ation,
whih other robots may listen to or ignore as they wish.
No two-way onversations are employed in this arhite-
ture. Eah robot is designed to be somewhat impatient in
the e�et of ommuniated messages, however, in that a
robot ri is only willing for a ertain period of time to allow
the ommuniated messages of another robot to a�et its
own motivation to ativate a given behavior set. Continued
sensory feedbak indiating that a task is not getting a-
omplished overrides the statements of another robot that
it is performing that task. This harateristi allows robots
to adapt to failures of other robots, ausing them to ignore
the ativities of a robot that is not suessfully ompleting
its task.
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A omplementary harateristi in these robots is that of
aquiesene. Just as the impatiene harateristi reets
the fat that other robots may fail, the aquiesene har-
ateristi indiates the reognition that a robot itself may
fail. This feature operates as follows. As a robot ri per-
forms a task, its willingness to give up that task inreases
over time as long as the sensory feedbak indiates the task
is not being aomplished. As soon as some other robot rk
indiates it has begun that same task and ri feels it (i.e
ri) has attempted the task for an adequate period of time,
the unsuessful robot ri gives up its task in an attempt
to �nd an ation at whih it is more produtive. How-
ever, even if another robot rk has not taken over the task,
robot ri may give up its task anyway if the task is not om-
pleted in an aeptable period of time. This allows ri the
possibility of working on another task that may prove to
be more produtive rather than beoming stuk perform-
ing the unprodutive task forever. With this aquiesene
harateristi, therefore, a robot is able to adapt its ations
to its own failures. Continuing our earlier simple example,
this harateristi of aquiesene is demonstrated in robot
A, whih gives up trying to unload the truk when robot B
takes over that task. Depending upon its self-monitoring
apabilities, robot A will then either attempt to perform
the seond task of moving boxes to the onveyor belt (prob-
ably unsuessfully) or give up altogether. Robot B would
then be motivated to move the boxes from the storage site
to the onveyor belt after it had ompleted unloading the
task. In ALLIANCE, the mission ould also be designed in
suh a way that robot B interleaves a period of unloading
the truk with a period of moving boxes to the onveyor
belt.

The design of the motivational behaviors in ALLIANCE
also allows the robots to adapt to unexpeted environmen-
tal hanges whih alter the sensory feedbak. The need for
additional tasks an suddenly our, requiring the robots
to perform additional work (e.g. another truk of boxes ar-
rives in our simple example), or existing environmental on-
ditions an disappear and thus relieve the robots of ertain
tasks (e.g. the truk of boxes drives away). In either ase,
the motivations uidly adapt to these situations, ausing
robots to respond appropriately to the urrent environmen-
tal irumstanes.

We note that the parameters ontrolling motivational
rates of robots under the ALLIANCE arhiteture an
adapted over time based upon learning. A learning meha-
nism we have developed allows the rates of impatiene and
aquiesene to be ontext and environment sensitive. An
extension to ALLIANCE, alled L-ALLIANCE (for Learn-
ing ALLIANCE), provides the mehanisms for aomplish-
ing this adaptation. This parameter adaptation apability
is desribed in setion III-E. For more details, refer to [31℄.

C.1 Comparison to Negotiation

We now ompare the ALLIANCE task alloation meh-
anism to a ommon approah used in distributed arti�ial
intelligene (DAI) systems for multi-agent task alloation
| a negotiation-based mehanism. In general, the negotia-

tion shemes have no entralized agent that has full ontrol
over whih tasks individual team members should perform.
Instead, many agents know whih subtasks are required
for various portions of the mission to be performed, along
with the skills required to ahieve those subtasks. These
agents then broadast a request for bids to perform these
subtasks, to whih other agents may respond if they are
available and want to perform these tasks. The broadast-
ing agent then selets an agent from those that respond
and awards the task to the winning agent, who then om-
menes to perform that task, reruiting yet other agents
to help if required. One example of a popular negotiation
protool that has been used extensively is the ontrat-net
protool [15℄, [33℄; other negotiation shemes are desribed
in [18℄, [21℄, [32℄, [39℄.

However, although DAI work has demonstrated suess
with this approah in a number of domains (e.g. dis-
tributed vehile monitoring [23℄ and distributed air traÆ
ontrol [10℄), the proposed solutions have not been ade-
quately demonstrated in situated agent (i.e. roboti) teams,
whih have to live in, and reat to, dynami and unertain
environments amidst noisy sensors and e�etors, frequent
agent failures, and a limited bandwidth, noisy ommuni-
ation mehanism. The DAI approahes typially assume
the presene of \blak boxes" to provide high-level, nearly-
perfet sensing and ation apabilities. However, these DAI
approahes typially ignore or only give brief treatment to
the issues of robot performane of those tasks after they
have been alloated. Suh approahes usually assume the
robots will eventually aomplish the task they have been
assigned, or that some external monitor will provide infor-
mation to the robots on dynami hanges in the environ-
ment or robot performane. However, to realistially de-
sign a ooperative approah to robotis, we must inlude
mehanisms within the software ontrol of eah robot that
allow the team members to reover from dynami hanges
in their environment, or failures in the robot team or om-
muniation mehanism.

Thus, we developed the ALLIANCE arhiteture to ex-
pliitly address the issue of fault tolerane amidst possible
robot and ommuniation failures. The ALLIANCE ar-
hiteture provides eah robot with suÆient autonomy to
make deisions on its ations at all times during a mission,
taking into onsideration the ations of other agents and
their e�ets upon the world. While some eÆieny may
be lost as a onsequene of not negotiating the task subdi-
vision in advane, robustness is gained if robot failures or
other dynami events our at any time during the mission.
We speulate that a hybrid ombination of negotiation and
the ALLIANCE motivational mehanisms would enable a
system to experiene the bene�ts of both approahes. This
is a topi for future researh.

D. Disussion of Formal Model of ALLIANCE

Let us now look in detail at how our philosophy regard-
ing ation seletion is inorporated into the motivational
behavior mehanism.

First, let us formally de�ne our problem as follows. Let
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the set R = fr1; r2; :::; rng represent the set of n het-
erogeneous robots omposing the ooperative team, and
the set T = ftask1; task2; :::; taskmg represent m indepen-
dent subtasks whih ompose the mission. We use the
term high-level task-ahieving funtion to orrespond in-
tuitively to the funtions possessed by individual robots
that allow the robots to ahieve tasks required in the mis-
sion. These funtions map very losely to the upper lay-
ers of the subsumption-based ontrol arhiteture [6℄. In
the ALLIANCE arhiteture, eah behavior set supplies
its robot with a high-level task-ahieving funtion. Thus,
in the ALLIANCE arhiteture, the terms high-level task-
ahieving funtion and behavior set are synonymous. We
refer to the high-level task-ahieving funtions, or behav-
ior sets, possessed by robot ri in ALLIANCE as the set
Ai = fai1; ai2; :::g. Sine di�erent robots may have di�er-
ent ways of performing the same task, we need a way of
referring to the task a robot is working on when it ati-
vates a behavior set. Thus, we de�ne the set of n fun-
tions fh1(a1k); h2(a2k); :::; hn(ank)g, where hi(aik) returns
the task in T that robot ri is working on when it ativates
behavior set aik.

In the disussion below, we �rst disuss the threshold
of ativation of a behavior set, and then desribe the �ve
primary inputs to the motivational behavior. We onlude
this setion by showing how these inputs are ombined to
determine the urrent level of motivation of a given behav-
ior set in a given robot. Throughout this setion, a number
of parameters are de�ned that regulate the motivational
levels. A disussion on how the parameter values are ob-
tained and adapted over time is provided in setion III-E.

D.1 Threshold of ativation

The threshold of ativation of a behavior set is given by
one parameter, �. This parameter determines the level of
motivation beyond whih a given behavior set will beome
ative. Although di�erent thresholds of ativation ould
be used for di�erent behavior sets and for di�erent robots,
in ALLIANCE one threshold is suÆient sine the rates of
impatiene and aquiesene an vary aross behavior sets
and aross robots.

D.2 Sensory feedbak

The sensory feedbak provides the motivational behav-
ior with the information neessary to determine whether
its orresponding behavior set needs to be ativated at a
given point during the urrent mission. This feedbak is as-
sumed to be noisy, and an originate from either physial
robot sensors or virtual robot sensors. We de�ne a simple
funtion to apture the notion of sensory feedbak in the
motivational level omputation as follows:

sensory feedbak ij(t) =8<
:

1 if the sensory feedbak in robot ri at time t
indiates that behavior set aij is appliable

0 otherwise

D.3 Inter-robot ommuniation

Two parameters are utilized in ALLIANCE to ontrol
the broadast ommuniation among robots: �i and �i.
The �rst parameter, �i, gives the rate at whih robot ri

broadasts its urrent ativity. The seond parameter,
�i, provides an additional level of fault tolerane by giv-
ing the period of time robot ri allows to pass without
reeiving a ommuniation message from a spei� team-
mate before deiding that that teammate has eased to
funtion. While monitoring the ommuniation messages,
eah motivational behavior aij of robot ri must also note
when a team member is pursuing task hi(aij). To refer to
this type of monitoring in the formal model, the funtion
omm reeived is de�ned as follows:

omm reeived (i; k; j; t1; t2) =8>><
>>:

1 if robot ri has reeived message from robot rk
onerning task hi(aij) in the time span
(t1; t2), where t1 < t2

0 otherwise

D.4 Suppression from ative behavior sets

When a motivational behavior ativates its behavior set,
it simultaneously begins inhibiting other motivational be-
haviors within the same robot from ativating their respe-
tive behavior sets. At this point, a robot has e�etively
\seleted an ation". In the formal model, this ativity
suppression is modeled by the following simple funtion:

ativity suppression ij(t) =8<
:

0 if another behavior set aik is ative, k 6= j, on
robot ri at time t

1 otherwise

This funtion says that behavior set aij is being sup-
pressed at time t on robot ri if some other behavior set aik
is urrently ative on robot ri at time t.

D.5 Robot impatiene

Three parameters are used to implement the robot impa-
tiene feature of ALLIANCE: �ij(k; t), Æ slow ij(k; t), and
Æ fast ij(t). The �rst parameter, �ij(k; t), gives the time
during whih robot ri is willing to allow robot rk's om-
muniation message to a�et the motivation of behavior
set aij . Note that robot ri is allowed to have di�erent �

parameters for eah robot rk on its team, and that these
parameters an hange during the mission, as indiated by
the dependene on t. This allows ri to be inuened more
by some robots than others, perhaps due to reliability dif-
ferenes aross robots.
The next two parameters, Æ slow ij(k; t) and Æ fast ij(t),

give the rates of impatiene of robot ri onerning behavior
set aij either while robot rk is performing the task orre-
sponding to behavior set aij (i.e. hi(aij)) or in the absene
of other robots performing the task hi(aij), respetively.
We assume that the fast impatiene parameter orresponds
to a higher rate of impatiene than the slow impatiene
parameter for a given behavior set in a given robot. The
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reasoning for this assumption should be lear | a robot ri
should allow another robot rk the opportunity to aom-
plish its task before beoming impatient with rk; however,
there is no reason for ri to remain idle if a task remains
undone and no other robot is attempting that task.
The question that now arises is the following: what slow

rate of impatiene does a motivational behavior ontrolling
behavior set aij use when more than one other robot is per-
forming task hi(aij)? The method used in ALLIANCE is
to inrease the motivation at a rate that allows the slowest
robot rk still under its allowable time �ij(k; t) to ontinue
its attempt.
The spei�ation of when the impatiene rate for a be-

havior set aij should grow aording to the slow impatiene
rate and when it should grow aording to the fast impa-
tiene rate is given by the following funtion:

impatiene ij(t) =8>>>>>><
>>>>>>:

mink(Æ slow ij(k; t)) if (omm reeived(i; k; j;
t� �i; t) = 1)
and
(omm reeived (i; k; j; 0;
t� �ij(k; t)) = 0)

Æ fast ij(t) otherwise

Thus, the impatiene rate will be the minimum slow rate,
Æ slow ij(k; t), if robot ri has reeived ommuniation indi-
ating that robot rk is performing the task hi(aij) in the
last �i time units, but not for longer than �ij(k; t) time
units. Otherwise, the impatiene rate is set to Æ fast ij(t).
The �nal detail to be addressed is to ause a robot's

motivation to ativate behavior set aij to go to 0 the �rst
time it hears about another robot performing task hi(aij).
This is aomplished through the following:

impatiene reset ij(t) =8>><
>>:

0 if 9k:((omm reeived (i; k; j; t� Æt; t) = 1) and
(omm reeived(i; k; j; 0; t� Æt) = 0)); where
Æt = time sine last ommuniation hek

1 otherwise

This reset funtion auses the motivation to be reset to
0 if robot ri has just reeived its �rst message from robot
rk indiating that rk is performing task hi(aij). This fun-
tion allows the motivation to be reset no more than one
for every robot team member that attempts task hi(aij).
Allowing the motivation to be reset repeatedly by the same
robot would allow a persistent, yet failing robot to jeopar-
dize the ompletion of the mission.

D.6 Robot aquiesene

Two parameters are used to implement the robot a-
quiesene harateristi of ALLIANCE:  ij(t) and �ij(t).
The �rst parameter,  ij(t), gives the time that robot ri
wants to maintain behavior set aij ativation before yield-
ing to another robot. The seond parameter, �ij(t), gives
the time robot ri wants to maintain behavior set aij a-
tivation before giving up to possibly try another behavior
set.

The following aquiesene funtion indiates when a
robot has deided to aquiese its task:

aquiesene ij(t) =8>>>>>>>><
>>>>>>>>:

0 if ((behavior set aij of robot ri has been ative
for more than  ij(t) time units at time t) and
(9x:omm reeived(i; x; j; t� �i; t) = 1))
or
(behavior set aij of robot ri has been ative
for more than �ij(t) time units at time t)

1 otherwise

This funtion says that a robot ri will not aquiese be-
havior set aij until one of the following onditions is met:

� ri has worked on task hi(aij) for a length of time  ij(t)
and some other robot has taken over task hi(aij)

� ri has worked on task hi(aij) for a length of time �ij(t)

D.7 Motivation alulation

All of the inputs desribed above are ombined into the
alulation of the levels of motivation as follows:

mij(0) = 0

mij(t) = [mij(t� 1) + impatiene ij(t)℄

�sensory feedbak ij(t)

�ativity suppression ij(t)

�impatiene reset ij(t)

�aquieseneij(t) (1)

Initially, the motivation to perform behavior set aij in
robot ri is set to 0. This motivation then inreases at some
positive rate impatiene ij(t) unless one of four situations
ours: (1) the sensory feedbak indiates that the behav-
ior set is no longer needed, (2) another behavior set in ri
ativates, (3) some other robot has just taken over task
hi(aij) for the �rst time, or (4) the robot has deided to
aquiese the task. In any of these four situations, the
motivation returns to 0. Otherwise, the motivation grows
until it rosses the threshold �, at whih time the behavior
set is ativated and the robot an be said to have seleted
an ation. Whenever some behavior set aij is ative in
robot ri, ri broadasts its urrent ativity to other robots
at a rate of �i.
A topi of future researh is to investigate other possible

ombinations of the above input values to ompute the mo-
tivational behavior. The urrent linear form was seleted
for its simpliity, and resulted in good performane. Ad-
ditional studies are needed to determine the utility of any
spei� ombination.

E. Parameter Settings

As with any parameter-based system, the parameter set-
tings in ALLIANCE strongly inuene the global perfor-
mane of the system. A robot's seletion of ations under
ALLIANCE is dependent upon the parameter settings of
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the motivational behaviors. In addition, a number of eÆ-
ieny issues are a�eted by the parameter settings, suh as
the amount of robot idle time, the time of response to the
need for task realloation, the seletion between alternative
methods of aomplishing a task, and so forth. In pratie,
�nding the proper parameter settings in ALLIANCE has
not proved to be diÆult. This arhiteture has been im-
plemented on a number of di�erent roboti appliations
[31℄ | one of whih is reported later in this artile | and
parameter tuning did not prove to be a problem. How-
ever, ideally, the robot team members should be able to
initialize and adapt these values with experiene to �nd
the proper parameter settings, rather than relying on hu-
man tuning. In the design of a parameter update strategy,
we wanted to ensure that we did not sari�e the desirable
harateristis of fault tolerane and adaptivity that are
present in ALLIANCE while enabling inreases in robot
team eÆieny. We have thus developed an extension to
ALLIANCE, alled L-ALLIANCE, whih provides meh-
anisms that allow the robots to dynamially update their
parameter settings based upon knowledge learned from pre-
vious experienes. In this setion, we outline the approah
utilized in L-ALLIANCE for parameter tuning. Refer to
[31℄ for a more omplete disussion of L-ALLIANCE.

The general idea for dynamially updating the param-
eters is to have eah robot \observe", evaluate, and ata-
logue the performane (measured in task exeution time)
of any robot team member whenever it performs a task
of interest to that robot. The performane measurements
are then used to update the ALLIANCE parameters in the
manner spei�ed below. These updates allow the robots
to adapt their ation seletions over time in response to
hanges in the robot team omposition, the robot team
apabilities, or in the environment.

In this approah to parameter updates, we make two as-
sumptions: (1) a robot's average performane in exeuting
a spei� task over a few reent trials is a reasonable indi-
ator of that robot's expeted performane in the future,
and (2) if robot ri is monitoring environmental onditions
C to assess the performane of another robot rk, and the
onditions C hange, then the hanges are attributable to
robot rk.

Figure 2 illustrates the L-ALLIANCE extension to AL-
LIANCE, whih inorporates the use of performane mon-
itors for eah motivational behavior within eah robot.
Formally, robot ri, programmed with the b behavior sets
A = fai1; ai2; :::; aibg, also has b monitors MONi =
fmoni1;moni2; :::;monibg, suh that monitor monij ob-
serves the performane of any robot performing task
hi(aij), keeping trak of the time of task ompletion (or
other appropriate performane quality measure) of that
robot. Monitor monij then uses the mehanism desribed
below to update the ontrol parameters of behavior set aij
based upon this learned knowledge.

One the robot performane data has been obtained, it
must be input to a ontrol mehanism that allows the robot
team to improve its eÆieny over time while not sari�ing
the fault tolerant harateristis of the behavior-based AL-
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Fig. 2. The L-ALLIANCE arhiteture, whih adds in the apability
for dynami parameter adaptation.

LIANCE arhiteture. Through an extensive series of em-
pirial studies reported in [31℄, we derived an ation sele-
tion algorithm that spei�es how the parameters should be
updated to ahieve inreased eÆieny in the robot team's
ation seletion.

The algorithm derived in [31℄ spei�es that eah robot ri
should obey the following algorithm in seleting its tasks:

1. Divide the tasks into two ategories:
(a) Those tasks whih ri expets to be able to
perform better than any other team mem-
ber, and whih no other robot is urrently
performing.

(b) All other tasks ri an perform.
2. Repeat the following until sensory feedbak
indiates that no more tasks are left:
(a) Selet tasks from the �rst ategory aord-
ing to the longest task �rst approah, unless
no more tasks remain in the �rst ategory.

(b) Selet tasks from the seond ategory a-
ording to the shortest task �rst approah.

If a robot has no learned knowledge about team member
apabilities, all of its tasks fall into the seond ategory.

Note that although the above algorithm is stated in
terms of a entralized ontrolling mehanism, the algorithm
is in fat distributed aross the behavior sets of ALLIANCE
through the motivational behavior parameter settings.

The key parameters in ALLIANCE that a�et the ation
seletion are:

� Æ fast ij(t): the rate of impatiene of ri at time
t onerning the behavior set aij when no other
robot is performing task hi(aij)

� Æ slow ij(k; t): the rate of impatiene of ri at
time t onerning the behavior set aij when
robot rk is performing task hi(aij)

�  ij(t): the time ri will maintain aij 's ativity
before aquiesing to another robot
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We now desribe how these parameters are set and up-
dated during the mission. First, we de�ne the performane
metri |task ompletion time | as:

task time i(k; j; t) =
(average time over last � trials of rk's performane of
task hi(aij)) + (one standard deviation of these �
attempts, as measured by ri)

The robot impatiene parameters of Æ slow ij(k; t) and
Æ fast ij(t) are then updated as follows.

�ij(k; t) = Time during whih robot ri is willing to
allow robot rk's ommuniation message to
a�et the motivation of behavior set aij .

= task time i(i; j; t)

Æ slow ij(k; t) = Rate of impatiene of robot ri
onerning behavior set aij after
disovering robot rk performing
the task orresponding to this
behavior set

= �
�ij(k;t)

min delay = minimum allowed delay
max delay = maximum allowed delay
high = max

k;j
task timei(k; j; t)

low = min
k;j

task timei(k; j; t)

sale fator = max delay�min delay

high�low

Æ fast ij(t) = Rate of impatiene of robot ri
onerning behavior set aij in the
absene of other robots performing a
similar behavior set

=

�
zase1 if task ategoryij(t) = 2
zase2 otherwise

where:
zase1 = �

min delay+(task timei(i;j ;t)�low)�sale fator

zase2 = �
max delay�(task timei(i;j ;t)�low)�sale fator

The robot aquiesene parameters are updated as fol-
lows:

 ij(t) = Time robot ri wants to maintain behavior set
aij 's ativity before yielding to another robot.

= task timei(i; j; t)
These parameter settings ause the robot team to e�e-

tively selet their ations aording to the algorithm given
earlier in this subsetion. Refer to [31℄ for the derivation
of this algorithm.

IV. Results

The ALLIANCE arhiteture has been suessfully im-
plemented in a variety of proof-of-onept appliations on
both physial and simulated mobile robots. The applia-
tions implemented on physial robots inlude two versions
of a hazardous waste leanup mission and a ooperative
box pushing demonstration [28℄. The appliations using
simulated mobile robots inlude a janitorial servie mis-
sion [27℄ and a bounding overwath mission (reminisent

of military surveillane) [31℄. All of these missions using
the ALLIANCE arhiteture have been well-tested. Over
60 logged (and many videotaped) physial robot runs of
the hazardous waste leanup mission and over 30 phys-
ial robot runs (many of whih were videotaped) of the
box pushing demonstration were ompleted to eluidate
the important issues in heterogeneous robot ooperation.
The missions implemented on simulated robots enompass
dozens of runs eah, most of whih were logged in the study
of the ation seletion mehanism.

The experimental mission we desribe here to illustrate
the fault tolerant ation seletion features of ALLIANCE
is a laboratory version of hazardous waste leanup. (Refer
[29℄, [31℄ for a somewhat di�erent version of the hazardous
waste leanup mission, whih involved the use of only one
spill, rather than the two spills desribed below.) We �rst
desribe the robots used in these experimental studies, fol-
lowed by a desription of the mission the robots were given.
We then desribe the behavior set design of the robots for
this mission, followed by the results of the implementation.
The results desribed below are available on videotape [30℄.

A. The Robots

Our empirial studies were onduted on teams of three
R-2 robots purhased ommerially from IS Robotis. Eah
of these robots is a small, fully autonomous wheeled vehile
measuring approximately 25 entimeters wide, 31 entime-
ters deep, and 35 entimeters tall. The R-2 has two drive
wheels arranged as a di�erential pair, two aster wheels
in the rear for stability, and a two-degree-of-freedom par-
allel jaw gripper for grasping objets. The robot sensory
suite inludes eight infrared proximity sensors for use in
ollision avoidane, piezoeletri bump sensors distributed
around the base of the robot for use in ollision detetion,
and additional bump sensors inside the gripper for use in
measuring gripping fore.

We note here that although these robots are of the same
type and thus have the potential of maximum redundany
in apabilities, mehanial drift and failure an ause them
to have quite di�erent atual abilities. For example, one
of our robots had full use of its side infrared (IR) sen-
sors whih allowed it to perform wall-following, whereas
the side IR sensors of two of the other robots had beome
dysfuntional. The L-ALLIANCE learning and parameter
update system outlined in setion III-E gives these robots
the ability to take advantage of these di�erenes and thus
determine from trial to trial whih team member is best
suited for whih task.

A radio ommuniation system allows robot team mem-
bers to ommuniate with eah other. This radio system
is integrated with a positioning system, whih onsists of
a transeiver unit attahed to eah robot plus two sonar
base stations for use in triangulating the robot positions.
The positioning system is aurate to about 15 entimeters
and is useful for providing robots with information on their
own position with respet to their environment and with
respet to other robot team members.
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B. The Hazardous Waste Cleanup Mission

Illustrated in �gure 3, the laboratory version of the haz-
ardous waste leanup mission requires two arti�ially \haz-
ardous" waste spills in an enlosed room to be leaned up
by a team of three robots. This mission requires robot
team members to perform the following distint tasks: the
robot team must loate the two waste spills, move the
two spills to a goal loation, while also periodially report-
ing the team progress to humans monitoring the system.
These tasks are referred to in the remainder of this arti-
le as �nd-loations, move-spill(left), move-spill(right), and
report-progress, where left and right refer to the loations
of the two spills relative to the room entrane.

Desired Final
Spill Location

Initial Spill
Locations

Site from which
to report progress

*E
n
tr

a
n
c
e

Robots

Fig. 3. The experimental mission: hazardous waste leanup.

A diÆulty in this mission is that the human monitor
does not know the exat loation of the spills in robot oor-
dinates, and an only give the robot team qualitative infor-
mation on the initial loation of the two spills and the �nal
desired loation to whih the robots must move the spills.
Thus, the robots are told qualitatively that one spill is lo-
ated in the right half of the front third of the room, while
the other spill is loated in the left half of the front third
of the room. Furthermore, the robots are also told that
the desired �nal loation of the spill is in the bak, enter
of the room, relative to the position of the entrane. This
information is used as desribed below to loate the initial
and �nal spill loations. To prevent interferene among
robots, ideally only one robot at a time attempts to �nd
the spill, broadasting the omputed loations to the other
team members one the task is omplete.

Eah robot was preprogrammed to have the following be-
havior sets, whih orrespond to high-level tasks that must
be ahieved on this mission: �nd-loations-methodial, �nd-
loations-wander, move-spill(lo), and report-progress. A
low-level avoid-obstales behavior was ative at all times in
these robots exept during portions of the move-spill task,
when it was suppressed to allow the robot to pik up the
spill objet. The organization of the behavior sets for this
mission is shown in �gure 4.

Two behavior sets are provided whih both aomplish
the task of �nding the initial and �nal spill loations |
�nd-loations-methodial and �nd-loations-wander|both
of whih depend upon the workspae being retangular and

Motiv. Beh:
find-locs-

meth.

Motiv. Beh:
move-spill

(loc)

Motiv. Beh:
report-

progress

Behavior Set:
find-locs-

meth.

Behavior Set:
find-locs-
wander

Behavior Set:
move-spill

(loc)

Behavior Set:
report-progress

avoid-obstacles

Left, Right
Motor Velocities

Motiv. Beh:
find-locs-
wander

Front
IRs

Curr.
x,y

pos.

Side
IRs

Inter-
Robot
Comm.

cross-inhibition

Grip, Lift Pos.

S

S

Spill Start
Final Locs.

Radio Report

Hazardous Waste Cleanup:  Behavior Organization

Fig. 4. The ALLIANCE-based ontrol of eah robot in the hazardous
waste leanup mission. Not all sensory inputs to the behavior
sets are shown here. In this �gure, the high-level task ahieving
funtions �nd-loations-methodial and �nd-loations-wander are
abbreviated as �nd-los-meth and �nd-los-wander, respetively.

on the sides of the room being parallel to the axes of the
global oordinate system. Beause of these assumptions,
these behavior sets do not serve as generally appliable
loation-�nders. However, we made no attempt to gener-
alize these algorithms, sine the point of this experiment is
to demonstrate the adaptive ation seletion harateristis
of ALLIANCE. Shown in more detail in �gure 5, the me-
thodial version of �nding the spill loation is muh more
reliable than the wander version, and involves the robot
�rst noting its starting (or home) x; y position and then
following the walls of the room using its side IRs until it
has returned to its home loation while traking the min-
imum and maximum x and y positions it reahes. It then
uses these x; y values to alulate the oordinates of the
right and left halves of the front third of the room (for the
two initial spill loations) and the bak enter of the room
(for the �nal spill loation). These loations are then made
available to the move-spill(lo) behavior set, whih requires
this information to perform its task.

The wander version of �nding the initial and desired �nal
spill loations, shown in �gure 6, avoids the need for side IR
sensors by ausing the robot to wander in eah of the four
diretions (west, north, east, and south) for a �xed time
period. While the robot wanders, it traks the minimum
and maximum x and y positions it disovers. Upon the
onlusion of the wandering phase, the robot alulates the
desired initial and �nal loations from these minimum and
maximum x; y values.

The move-spill(lo) behavior set, shown in more detail in
�gure 7, an be ativated whenever there are spill objets
needing to be piked up at lo, the loations of the initial
and �nal spill positions are known, and the robot is not
aware of any other robot urrently working on the spill at
lo. It involves having the robot (1) move to the viinity
of the initial spill loation, (2) wander in a straight line
through the area of the spill while using its front IR sensors
to san for spill objets, (3) \zero in" on a spill objet one
it is loated to enter it in the gripper, (4) grasp and lift
the spill objet, (5) move to the viinity of the �nal spill
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Fig. 5. The robot ontrol organization within the �nd-loations-
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Fig. 6. The robot ontrol organization within the �nd-loations-
wander behavior set.

loation, and then (6) lower and release the spill objet. To
minimize interferene among robots in a relatively small
spae, ideally only one robot at a time should work on a
given spill.

The report-progress behavior set, shown in �gure 8, or-
responds to the high-level task that the robot team is re-
quired to perform approximately every 4 minutes during
the mission. This task involves returning to the room en-
trane and informing the human monitoring the system of
the ativities of the robot team members and some infor-
mation regarding the suess of those ativities. Note that
this task only needs to be performed by the team as a whole
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Fig. 7. The robot ontrol organization within the move-spill(lo)
behavior set.
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Fig. 8. The robot ontrol organization within the report-progress
behavior set.

every 4 minutes, not by all team members. In a real-life ap-
pliation of this sort, the progress report would most likely
be delivered via a radio message to the human. However, in
this experiment no atual progress information was main-
tained (although it ould easily be aomplished by logging
the radio-transmitted robot ativities), and delivering the
report onsisted of playing an audible tune on the robot's
piezoeletri buzzer from the room entrane rather than
relaying a radio message.

C. Experiments

We report here the experiments we onduted to test
the ability of ALLIANCE to ahieve fault-tolerant oop-
erative ontrol of our team of mobile robots performing
the hazardous waste leanup mission. In all of the follow-
ing experiments, teams of three R-2 robots were utilized in
an environmental setup very similar to that depited in �g-
ure 3; we will refer to these robots individually as GREEN,
BLUE, and GOLD. All the robots began their missions at
the room entrane, as shown in �gure 9.
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Fig. 9. The robot team at the beginning of the hazardous waste
leanup mission.
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Fig. 10. Typial robot ations seleted during experiment with no
robot failures. This is one instane of many runs of this mis-
sion. In this and the following �gures showing traes of a-
tion seletions, the meanings of the abbreviations are as fol-
lows: RP stands for report-progress; MS(L) and MS(R) stand for
move-spill(left) and move-spill(right), respetively; FLW stands
for �nd-loations-wander; and FLM stands for �nd-loations-
methodial.

Figure 10 shows the ation seletion results of a typial
experimental run when no robot failures our; �gure 11
shows the orresponding motivation levels during this run.
As reeted in these �gures, at the beginning of the mis-
sion, GREEN has the highest motivation to perform behav-
ior set �nd-loations-methodial, ausing it to initiate this
ation. This auses BLUE and GOLD to be satis�ed for a
while that the initial and �nal spill loations are going to
be found; sine no other task an urrently be performed,
they sit idle, waiting for the loations to be found.
However, they do not idle forever waiting on the loa-

tions to be found. As they wait, they beome more and
more impatient over time, whih an ause one of BLUE
or GOLD to deide to �nd the spill and goal loations.
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Fig. 11. Motivational levels for behavior sets during experiment with
no robot failures. The dashed lines represent the thresholds of
ativation of eah behavior set.

Indeed, this does happen in a situation as shown in the
photograph in �gure 12, in whih we intentionally interfere
with GREEN's ability to �nd the spill and goal loations.
As shown in the ation trae of �gure 13, (with the orre-
sponding motivational trae in �gure 14) this leads to one
of the remaining robots | namely, BLUE | to ativate its
�nd-loations-wander behavior set. (Note that BLUE does
not ativate its �nd-loations-methodial behavior set be-
ause its side infrared sensors failed during previous runs,
preventing BLUE from suessfully aomplishing that be-
havior set. This behavior set is left in BLUE's repertoire to
allow it to respond to some potential future event that may
restore the working-order of the infrared sensors. Its moti-
vations were altered based upon the L-ALLIANCE meh-
anism outlined in setion III-E.) In this ase, GREEN
aquieses its attempt to �nd the spill and goal loations
to BLUE, sine GREEN realized it was enountering diÆ-
ulties of some sort. In either ase, the robot �nding the
spill and goal loations reports these loations to the rest
of the team.
At this point, the environmental feedbak and knowledge

of the spill and goal loations indiate to the robot team
that the move-spill(lo) behavior set is appliable. As we
see in �gure 10, GREEN selets to move the left spill while
BLUE selets to move the right spill. Sine only one robot
at a time should work on a given spill (as desribed in se-
tion IV-B), GOLD sits idle, satis�ed that the left and right
spills are going to be moved. Figure 15 shows a photograph
of the robots at this stage in the mission.
In the meantime, the robots' impatiene motivations to

report the team's progress are inreasing. Sine GOLD is
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Fig. 12. Here, we interfere with GREEN, whih is attempting to
loate the spill and goal loations, thus preventing it from om-
pleting this task.
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Fig. 13. Typial robot ations seleted during experiment when the
initial robot ation of �nding the spill fails. This is one instane
of many runs of this mission.

not performing any other tasks, it is the �rst to ativate
its report-progress behavior set. This reporting satis�es
the remainder of the team, so they ontinue to move the
two spills. This periodi reporting of the progress through-
out the mission by GOLD is reeted in the diagrams in
�gures 10 and 13. In these partiular examples, GOLD
has e�etively speialized as the progress reporting robot,
whereas GREEN and BLUE have speialized as the move-
spill robots. The mission ontinues in this way until both
spills are moved from their starting loation to the goal
destination. Figure 16 shows two of the robots delivering
spill objets to the goal destination.

To illustrate the e�et of unexpeted events on the a-
tion seletion of the team, we next experimented with dy-
namially altering the omposition of the team during the
mission. Figure 17 shows the e�et on the mission when
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Fig. 14. Motivational levels for behavior sets during experiment with
spill �nding error. The dashed lines represent the thresholds of
ativation of eah behavior set.

Fig. 15. Now knowing the loation of the two spills, two R-2 robots
are in the proess of moving their respetive spills to the goal
loation.

Fig. 16. Robots delivering spill objets to the goal destination.
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Fig. 17. Typial robot ations seleted during experiment when one
of the robot team members whih is moving a spill is removed.
This is one instane of many runs of this mission. In this �gure,
the \X" indiates the point in time when the orresponding robot
was removed from the robot team.

we removed BLUE from the team. Figures 18, 19, and 20
show the orresponding motivation, impatiene, and a-
quiesene levels for the three robots GREEN, BLUE, and
GOLD. The removal of BLUE aused GOLD to beome
impatient that the right spill was not being moved, whih
in turn aused GOLD to ativate its behavior set to move
the right spill. However, this then e�etively removes from
the team the robot that is performing all of the progress
reports, leading the remaining two robots | GREEN and
GOLD | to have to interrupt their spill-moving ativities
to oasionally report the progress. A similar e�et an be
observed in �gure 21 (with the orresponding motivations
shown in �gure 22), when we remove GOLD from the team.

D. Disussion

These experiments illustrate a number of primary har-
ateristis we onsider important in developing ooperative
roboti teams. First of all, the ooperative team under
ALLIANCE ontrol is robust, in that robots are allowed
to ontinue their ations only as long as they demonstrate
their ability to have the desired e�et on the world. This
was illustrated in the experiments by BLUE and GOLD
beoming gradually more impatient with GREEN's searh
for the spill. If GREEN did not loate the spill in a reason-
able length of time then one of the remaining robots would
take over that task, with GREEN aquiesing the task.

Seondly, the ooperative team is able to respond au-
tonomously to many types of unexpeted events either in
the environment or in the robot team without the need
for external intervention. As we illustrated, at any time
during the mission, we ould disable or remove robot team
members, ausing the remaining team members to perform
those tasks that the disabled robot would have performed.
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Clearly, we ould also have easily inreased or dereased the
size of the spill during the mission and the robots would
not be adversely a�eted.

Third, the ooperative team need have no a priori knowl-
edge of the abilities of the other team members to e�e-
tively aomplish the task. As previously noted, the learn-
ing/parameter update system, L-ALLIANCE, allows the
team to improve its eÆieny on subsequent trials when-
ever familiar robots are present.

Other harateristis of ALLIANCE have also been stud-
ied whih show that this arhiteture allows robot teams
to aomplish their missions even when the ommuniation
system providing it with the awareness of team member
ations breaks down. Although the team's performane in
terms of time and energy may deteriorate, at least the team
is still able to aomplish its mission. Refer to [31℄ for a
deeper disussion of these and related issues.

The primary weakness of ALLIANCE is its restrition
to independent subtasks. As it is designed, one has to ex-
pliitly state ordering dependenies in the preonditions if
the order of subtask ompletion is important. No meha-
nism for proteting subgoals is provided in ALLIANCE. For
example, onsider a janitorial servie team of two robots
that an both empty the garbage and lean the oor. How-
ever, let us say that the robots are lumsy in emptying the
garbage, and usually drop garbage on the oor while they
empty the trash. Then, it is logial that the trash should
be emptied before beginning to lean the oor. Under AL-
LIANCE, this mission an be aomplished in one of three
ways:

1. An expliit ordering dependeny an be stated in ad-
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vane between the two subtasks, ausing the robots to
automatially hoose to empty the garbage �rst

2. The robots may fortuitously selet to empty the
garbage �rst, beause of the parameter settings, or

3. The robots will be ineÆient in their approah, lean-
ing the oor before or during the garbage emptying
task, whih leads to the need to lean the oor again.

Although all of these events lead to the mission being
ompleted, eÆieny is lost in the third situation, and ad-
ditional expliit knowledge has to be provided in the �rst
situation. For the appliations that have been implemented
in ALLIANCE (e.g. janitorial servie, bounding overwath,
mok hazardous waste leanup, ooperative box pushing),
this limitation has not been a serious problem. Neverthe-
less, enhaning the ALLIANCE ation seletion mehanism
to enable more eÆient exeution of these speial ase situ-
ations without the need for providing additional ontrolling
information is a topi of future researh.

V. Conlusions

We have presented a fully distributed, behavior based
arhiteture alled ALLIANCE, whih failitates fault tol-
erant mobile robot ooperation. A number of key har-
ateristis of ALLIANCE provide these fault tolerant o-
operative features. ALLIANCE enhanes team robustness
through the use of the motivational behavior mehanism
whih onstantly monitors the sensory feedbak of the tasks
that an be performed by an individual robot, adapting the
ations seleted by that robot to the urrent environmen-
tal feedbak and the ations of its teammates. Whether
the environment hanges to require the robots to perform
additional tasks or to eliminate the need for ertain tasks,
ALLIANCE allows the robots to handle the hanges u-
idly and exibly. This same mehanism allows robot team
members to respond to their own failures or to failures of
teammates, leading to adaptive ation seletion to ensure
mission ompletion. ALLIANCE further enhanes team
robustness by making it easy for robot team members to
deal with the presene of overlapping apabilities on the
team. The ease with whih redundant robots an be in-
orporated on the team provides the human team designer
the ability to utilize physial redundany to enhane the
team's fault tolerane. The feasibility of this arhiteture
for ahieving fault tolerane has been illustrated through an
example implemented on a physial robot team performing
a laboratory version of hazardous waste leanup.
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Appendix

A. Proofs of Termination

When evaluating a ontrol arhiteture for multi-robot
ooperation, it is important to be able to predit the team's

expeted performane using that arhiteture in a wide va-
riety of situations. One should be justi�ably wary of using
an arhiteture that an fail atastrophially in some situ-
ations, even though it performs fairly well on average. At
the heart of the problem is the issue of reliability | how de-
pendable the system is, and whether it funtions properly
eah time it is utilized. To properly analyze a ooperative
robot arhiteture we should separate the arhiteture itself
from the robots on whih the arhiteture is implemented.
Even though individual robots on a team may be quite
unreliable, a well-designed ooperative arhiteture ould
atually be implemented on that team to allow the robots
to very reliably aomplish their mission, given a suÆient
degree of overlap in robot apabilities. On the other hand,
an arhiteture should not be penalized for a team's fail-
ure to aomplish its mission even though the arhiteture
has been implemented on extremely reliable robots, if those
robots do not provide the minimally aeptable mix of a-
pabilities. A major diÆulty, of ourse, is de�ning rea-
sonable evaluation riteria and evaluation assumptions by
whih an arhiteture an be judged. Certain harateris-
tis of an arhiteture that extend its appliation domain
in some diretions may atually redue its e�etiveness for
other types of appliations. Thus, the arhiteture must
be judged aording to its appliation nihe, and how well
it performs in that ontext.

ALLIANCE is designed for appliations involving a sig-
ni�ant amount of unertainty in the apabilities of robot
team members whih themselves operate in dynami, un-
preditable environments. Within this ontext, a key point
of interest is whether the arhiteture allows the team to
omplete its mission at all, even in the presene of robot
diÆulties and failure. This setion examines this issue by
evaluating the performane of ALLIANCE in ertain dy-
nami environments.

Let us onsider realisti appliations involving teams of
robots that are not always able to suessfully aomplish
their individual tasks; we use the term limitedly-reliable
robot to refer to suh robots. The unertainty in the ex-
peted e�et of robots' ations learly makes the oop-
erative ontrol problem quite hallenging. Ideally, AL-
LIANCE's impatiene and aquiesene fators will allow a
robot team to suessfully realloate ations as robot fail-
ures or dynami hanges in the environment our. With
what on�dene an we know that this will happen in gen-
eral? As we shall see below, in many situations ALLIANCE
is guaranteed to allow a limitedly-reliable robot team to
suessfully aomplish its mission.

It is interesting to note that with ertain restritions on
parameter settings, the ALLIANCE arhiteture is guar-
anteed to allow the robot team to omplete its mission for
a broad range of appliations. We desribe these irum-
stanes here, along with the proof of mission termination.

We �rst de�ne the notions of goal-relevant apabilities
and task overage.

De�nition 1: The goal-relevant apabilities of robot ri,
GRCi, are given by the set:
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GRCi = faij jhi(aij) 2 Tg

where T is the set of tasks required by the urrent mission.
In other words, the apabilities of robot ri that are rel-

evant to the urrent mission (i.e. goal) are simply those
high-level task-ahieving funtions whih lead to some task
in the urrent mission being aomplished.
We use the term task overage to give a measure of the

number of apabilities on the team that may allow some
team member to ahieve a given task. However, we annot
always predit robot failures; thus, at any point during a
mission, a robot may reah a state from whih it annot
ahieve a task for whih it has been designed. This implies
that the expeted task overage for a given task in a mis-
sion may not always equal the true task overage one the
mission is underway.
De�nition 2: Task overage is given by:

task overage(taskk) =

nX
i=1

X
j

�
1 if (hi(aij) = taskk)
0 otherwise

�

The task overage measure is useful for omposing a
team of robots to perform a mission from an available pool
of heterogeneous robots. At a minimum, we need the team
to be omposed so that the task overage of all tasks in the
mission equals 1. This minimum requirement ensures that,
for eah task required in the mission, a robot is present that
has some likelihood of aomplishing that task. Without
this minimum requirement, the mission simply annot be
ompleted by the available robots. Ideally, however, the
robot team is omposed so that the task overage for all
tasks is greater than 1. This gives the team a greater degree
of redundany and overlap in apabilities, thus inreasing
the reliability and robustness of the team amidst individual
robot failures.
Let us now de�ne the notion of suÆient task overage

as follows:
Condition 1: (SuÆient task overage):

8(taskk 2 T ):(task overage(taskk)) � 1

This ondition ensures that, barring robot failures, all
tasks required by the mission should be able to be aom-
plished by some robot on the team.
Now, we de�ne the notion of an ative robot team, sine

we onsider our robots to be useful only if they an be
motivated to perform some ation:
De�nition 3: An ative robot team is a group of robots,

R, suh that:

8(ri 2 R):8(aij 2 GRCi):8(rk 2 R):8t:[(Æ slow ij(k; t) >
0)
V
(Æ fast ij(t) > 0)

V
(� is �nite)℄

In other words, an ative robot has a monotonially in-
reasing motivation to perform any task of the mission
whih that robot has the ability to aomplish. Addition-
ally, the threshold of ativation of all behavior sets of an
ative robot is �nite.

Finally, we de�ne a ondition that holds in many multi-
roboti appliations.

Condition 2: (Progress when Working):
Let z be the �nite amount of work remaining to omplete
a task w. Then whenever robot ri ativates a behavior set
orresponding to task w, either (1) ri remains ative for a
suÆient, �nite length of time � suh that z is redued by
a �nite amount whih is at least some onstant Æ greater
than 0, or (2) ri experienes a failure with respet to task
w. Additionally, if z ever inreases, the inrease is due to
an inuene external to the robot team.

Condition 2 ensures that even if robots do not arry a
task through to ompletion before aquiesing, they still
make some progress toward ompleting that task whenever
the orresponding behavior set is ativated for some time
period at least equal to �. One exeption, however, is if a
robot failure has ourred that prevents robot ri from a-
omplishing task w, even if ri has been designed to ahieve
task w.

This ondition also implies that if more than one robot
is attempting to perform the same task at the same time,
the robots do not interfere with eah others' progress so
badly that no progress towards ompletion of the task is
made. The rate of progress may be slowed somewhat, or
even onsiderably, but some progress is made nevertheless.

Finally, Condition 2 implies that the amount of work
required to omplete the mission never inreases as a re-
sult of robot ations. Thus, even though robots may not
be any help towards ompleting the mission, at least they
are not making matters worse. Although this may not al-
ways hold true, in a wide variety of appliations this is a
valid assumption. As we shall see, this assumption is ne-
essary to prove the e�etiveness of ALLIANCE in ertain
situations. Of ourse, this does not prelude dynami en-
vironmental hanges from inreasing the workload of the
robot team, whih ALLIANCE allows the robots to handle
without problem.

What we now show is that whenever onditions 1 and
2 hold for a limitedly-reliable, ative robot team, then ei-
ther ALLIANCE allows the robot team to aomplish its
mission, or some robot failure ours. Furthermore, if a
robot failure ours, then we an know that any task that
remains inomplete at the end of the mission is either a
task that the failed robot was designed to aomplish, or a
task that is dependent upon the apabilities of that robot.

We an now show the following:

Theorem 1: Let R be a limitedly-reliable, ative robot
team, and M be the mission to be solved by R, suh that
Conditions 1 and 2 hold. Then either (1) ALLIANCE en-
ables R to aomplish M , or (2) a robot failure ours.
Further, if robot rf fails, then the only tasks of M that
are not ompleted are some subset of (a) the set of tasks
rf was designed to aomplish, unioned with (b) the set of
tasks dependent upon the apabilities of rf .

Proof:

First, we show that the alulation of the motivational
behavior guarantees that eah robot eventually ativates
a behavior set whose sensory feedbak indiates that the
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orresponding task is inomplete. From equation 1 in se-
tion III-D.7, we see that at time t, robot ri's motivation
mij(t) to perform behavior set aij either (1) goes to 0, or
(2) hanges from mij(t�1) by the amount impatiene ij(t).
The motivation goes to 0 in one of four ases: (1) if the sen-
sory feedbak indiates that the behavior set is no longer
appliable, (2) if another behavior set beomes ative, (3)
if some other robot has taken over task hi(aij), or (4) if
the robot has aquiesed its task. If the sensory feedbak
indiates that the behavior set is no longer appliable, we
know either that the task hi(aij) must be suessfully a-
omplished, or the robot's sensory system has failed. If an-
other behavior set aik beomes ative in ri, then at some
point task hi(aij) will either beome omplete, thus allow-
ing ri to ativate behavior set aij , or the robot has failed.
If some other robot has taken over task hi(aij), then either
that other robot will eventually aomplish task hi(aij),
thus eliminating the need to ativate task aij , or robot ri
will beome impatient with that other robot. Sine ri is
ative, then we know that impatiene ij(t) is greater than
or equal to mink(Æ slow ij(k; t)), whih is greater than 0.
Therefore, we an onlude that an idle, yet ative robot
always has a stritly inreasing motivation to perform some
inomplete task. At some point, the �nite threshold of a-
tivation, �, will thus be surpassed for some behavior set,
ausing ri to ativate the behavior set orresponding to
task hi(aij).

We now build upon these observations to prove that ei-
ther the mission beomes aomplished, or a robot failure
ours.

PART I (Either ALLIANCE sueeds or a robot fails):
Assume no robot fails. Then after a robot ri has performed
a task w for any period of time greater than �, one of �ve
events an our:

1. Robot rj takes over task w, leading robot ri to aqui-
ese.

2. Robot ri gives up on itself and aquieses w.
3. Robot rj takes over task w, but ri does not aquiese.
4. Robot ri ontinues w.
5. Robot ri ompletes w.

Sine Condition 2 holds, we know that the �rst four ases
redue the amount of work left to omplete task w by at
least a positive, onstant amount Æ. Sine the amount of
work left to aomplish any task is �nite, the task must
eventually be ompleted in �nite time. In the �fth ase,
sine task w is ompleted, the sensory feedbak of the
robots no longer indiates the need to perform task w, and
thus the robots will go on to some other task required by
the mission.

Thus, for every task that remains to be aomplished,
either (1) a robot able to aomplish that task eventually
attempts the task enough times so that it beomes om-
plete, or (2) all robots designed to aomplish that task
have failed.

PART II (Inomplete tasks are dependent upon a failed

robot's apabilities):
Let F be the set of robots that fail during a mission, and
AF be the union of (a) the tasks that the robots in F were
designed to aomplish and (b) those tasks of the mission
that are dependent upon a task that a robot in F was de-
signed to aomplish.

First, we show that if a task is not in AF , then it will
be suessfully ompleted. Let w be some task required
by the mission that is not inluded in AF . Sine Condi-
tion 1 holds and this robot team is ative, there must be
some robot on the team that an suessfully aomplish
w. Thus, as long as w remains inomplete, one of these
suessful robots will eventually ativate its behavior set
orresponding to the task w; sine ondition 2 holds, that
task will eventually be ompleted in �nite time. Thus, all
tasks not dependent upon the apabilities of a failed robot
are suessfully ompleted in ALLIANCE.

Now, we show that if a task is not ompleted, it must be
in AF . Let w be a task that was not suessfully ompleted
at the end of the mission. Assume by way of ontradition
that w is not in AF . But we know from Part I that all
tasks w not in AF must be ompleted. Therefore, task w

must be in AF .

We an thus onlude that if a task is not aomplished,
then it must be a task for whih all robots with that a-
pability have failed, or whih is dependent upon some task
for whih all robots with that apability have failed. 2

Note that it is not required here that robot team mem-
bers be aware of the ations of their teammates in order
to guarantee that ALLIANCE allows the team to omplete
its mission under the above onditions. However, aware-
ness does have an e�et on the quality of the team's perfor-
mane, both in terms of the time and the energy required to
omplete the mission. These e�ets on team performane
are disussed in [31℄.
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