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Abstra
t|ALLIANCE is a software ar
hite
ture that fa-

ilitates the fault tolerant 
ooperative 
ontrol of teams of
heterogeneous mobile robots performing missions 
omposed
of loosely 
oupled subtasks that may have ordering depen-
den
ies. ALLIANCE allows teams of robots, ea
h of whi
h
possesses a variety of high-level fun
tions that it 
an per-
form during a mission, to individually sele
t appropriate
a
tions throughout the mission based on the requirements
of the mission, the a
tivities of other robots, the 
urrent en-
vironmental 
onditions, and the robot's own internal states.
ALLIANCE is a fully distributed, behavior-based ar
hite
-
ture that in
orporates the use of mathemati
ally-modeled
motivations (su
h as impatien
e and a
quies
en
e) within
ea
h robot to a
hieve adaptive a
tion sele
tion. Sin
e 
oop-
erative roboti
 teams usually work in dynami
 and unpre-
di
table environments, this software ar
hite
ture allows the
robot team members to respond robustly, reliably, 
exibly,
and 
oherently to unexpe
ted environmental 
hanges and
modi�
ations in the robot team that may o

ur due to me-

hani
al failure, the learning of new skills, or the addition
or removal of robots from the team by human intervention.
The feasibility of this ar
hite
ture is demonstrated in an
implementation on a team of mobile robots performing a
laboratory version of hazardous waste 
leanup.
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I. Introdu
tion

A. Motivation

A key driving for
e in the development of mobile roboti

systems is their potential for redu
ing the need for human
presen
e in dangerous appli
ations. Appli
ations su
h as
the 
leanup of toxi
 waste, nu
lear power plant de
om-
missioning, planetary exploration, �re �ghting, sear
h and
res
ue missions, se
urity, surveillan
e, and re
onnaissan
e
tasks have elements of danger in whi
h human 
asualties
are possible, or even likely. In all of these appli
ations, it
is desirable to redu
e the risk to humans through the use
of autonomous robot te
hnology. Other appli
ations, su
h
as manufa
turing or industrial and/or household mainte-
nan
e, are of a highly repetitive nature, 
reating tasks that
humans �nd monotonous or fatiguing. In these 
ases, the
quality of the solution may be in
reased by employing au-
tonomous agents.

One approa
h to 
reating an autonomous roboti
 solu-
tion to a given appli
ation is to try to build a single robot
to address that appli
ation. This robot would be designed
to have all of the 
apabilities ne
essary to 
omplete the

mission on its own, perhaps with some guidan
e from a
human 
ontroller. For smaller-s
ale appli
ations, the single
robot approa
h is often feasible. However, a large number
of the human solutions to these real world appli
ations of
interest employ the use of multiple humans supporting and

omplementing ea
h other. Rather than having one hu-
man performing the task alone, a team of workers is formed
that have a variety of spe
ialized skills. These workers are
available to help ea
h other, and to provide individualized
expertise when needed in the appli
ation. Ea
h human
team member is typi
ally assigned a role (or roles) to ful�ll
during the mission that is based upon that human's skills
and experien
e. The humans will also share some 
ommon

apabilities that allow them to perform some tasks inter-

hangeably, depending upon the workload of the individual
during the mission. Unexpe
ted events may o

ur during
the mission that require a dynami
 reallo
ation of tasks
by the humans to address the new 
ir
umstan
es. Many
examples of human teams of this type 
an be found that
are very su

essful and eÆ
ient in performing their mission.
Real-world appli
ations that are well-suited for team-based
approa
hes in
lude the U.S. Department of Energy appli-

ations of de
ontamination and de
ommissioning of lega
y
manufa
turing fa
ilities and hazardous waste 
leanup; the
U.S. Department of Defense appli
ations of surveillan
e
and re
onnaissan
e and remote warfare; the NASA appli-

ations of spa
e exploration; and 
ommer
ial and private
appli
ations of industrial and household maintenan
e, �re-
�ghting, sear
h and res
ue, and se
urity. Most of these
appli
ations are 
omposed of tasks that are inherently dis-
tributed, either in spa
e, time, or fun
tionality, and thus
require a distributed solution.

Sin
e realisti
 human solutions to these types of appli
a-
tions require multiple humans to work together, it is fea-
sible to examine the use of robot teams for automated so-
lutions to these tasks. There are a number of potential
advantages to using a distributed mobile robot system. It
may be possible to redu
e the total 
ost of the system by

onstru
ting multiple simpler robots rather than a mono-
lithi
 single robot. The 
omplexity of many environments
or missions may a
tually require a mixture of roboti
 
apa-
bilities that is too extensive to design into a single robot.
In the general 
ase, a robot team 
onsists of a variety of
types of robots, ea
h type of whi
h spe
ializes in (possibly
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overlapping) areas of 
apability. Utilizing a team of robots
may make it possible to in
rease the robustness of the sys-
tem by taking advantage of the parallelism and redundan
y
of multiple robots. Additionally, time 
onstraints may re-
quire the use of multiple robots working simultaneously on
di�erent aspe
ts of the mission in order to su

essfully a
-

omplish the obje
tive. Certainly, a distributed solution
is the only viable approa
h for the appli
ation domains
mentioned above that are inherently distributed in time,
spa
e, and/or fun
tionality. Thus, in the most general 
ase,
the robot team would 
onsist of a variety of heterogeneous
types of robots working together to a

omplish the mission
that no individual robot 
ould a

omplish alone.

However, the use of multiple robots is not without its
disadvantages. If not properly 
onstru
ted, multiple-robot
systems may a
tually in
rease the 
omplexity of an auto-
mated solution rather than simplifying it. In multi-robot
approa
hes, one has to deal with many 
hallenging issues
that do not arise in single-robot systems, su
h as a
hiev-
ing 
oheren
e, determining how to de
ompose and allo
ate
the problem among a group of robots, determining how to
enable the robots to intera
t, and so forth. In fa
t, the dif-
�
ulties in designing a 
ooperative team are signi�
ant. In
[5℄, Bond and Gasser des
ribe the basi
 problems the �eld
of Distributed Arti�
ial Intelligen
e must address; those
aspe
ts dire
tly related to situated multi-robot systems in-

lude the following:

� How do we formulate, des
ribe, de
ompose, and allo-

ate problems among a group of intelligent agents?

� How do we enable agents to 
ommuni
ate and intera
t?
� How do we ensure that agents a
t 
oherently in their
a
tions?

� How do we allow agents to re
ognize and re
on
ile 
on-

i
ts?

These are 
hallenging issues whi
h have been extensively
studied, but yet still have many open resear
h issues re-
maining to be addressed. As des
ribed in the following
se
tion, while mu
h resear
h in re
ent years has addressed
the issues of autonomous robots and multi-robot 
oopera-
tion, 
urrent roboti
s te
hnology is still far from a
hieving
many of these real world appli
ations. We believe that one
reason for this te
hnology gap is that previous work has
not adequately addressed the issues of fault toleran
e and
adaptivity. Here, by fault toleran
e, we mean the ability of
the robot team to respond to individual robot failures or
failures in 
ommuni
ation that may o

ur at any time dur-
ing the mission. The fault tolerant response of interest in
this arti
le is the dynami
 re-sele
tion (or re-allo
ation) of
tasks by robot team members due to robot failures or a dy-
nami
ally 
hanging environment. We want the robot team
as a whole to be able to 
omplete its mission to the great-
est extent possible in spite of any single-point failure. By
adaptivity, we mean the ability of the robot team to 
hange
its behavior over time in response to a dynami
 environ-
ment, 
hanges in the team mission, or 
hanges in the team

apabilities or 
omposition, to either improve performan
e
or to prevent unne
essary degradation in performan
e.

The ALLIANCE ar
hite
ture des
ribed in this arti
le of-

fers one solution to multi-robot 
ooperation that not only
addresses the issues inherent in any multi-robot team, but
also allows the roboti
 teams to be fault tolerant, reliable,
and adaptable. Requiring fault toleran
e in a 
ooperative
ar
hite
ture emphasizes the need to build teams that mini-
mize their vulnerability to individual robot outages (either
full or partial outages). Reliability refers to the dependabil-
ity of a system, and whether it fun
tions properly and 
or-
re
tly ea
h time it is utilized. This 
on
ept di�ers slightly
from fault toleran
e in that we want to be assured that a
robot team 
orre
tly a

omplishes its mission even when
individual robot failures do not o

ur. One measure of
the reliability of the ar
hite
ture is its ability to guarantee
that the mission will be solved, within 
ertain operating

onstraints, when applied to any given 
ooperative robot
team. Adaptivity in a 
ooperative team allows that team
to be responsive to 
hanges in individual robot skills and
performan
e, to dynami
 environmental 
hanges, and to

hanges in the robot team 
omposition as robots dynami-

ally join or leave the 
ooperative team.

This arti
le des
ribes the 
ontrol ar
hite
ture, AL-
LIANCE, that we have developed whi
h fa
ilitates fault
tolerant, reliable, and adaptive 
ooperation among small-
to medium-sized teams of heterogeneous mobile robots,
performing (in dynami
 environments) missions 
omposed
of independent tasks that 
an have ordering dependen-

ies. We begin by des
ribing the related work in this area,
followed by a detailed dis
ussion of the features of AL-
LIANCE. We then illustrate the viability of this ar
hite
-
ture by des
ribing the results of implementing ALLIANCE
on a team of robots performing a laboratory version of haz-
ardous waste 
leanup, whi
h requires the robots to �nd the
initial lo
ations of two spills, move the two spills to a goal
destination, and periodi
ally report the team's progress to
a human monitoring the mission. In the appendix, we sup-
ply a proof of ALLIANCE's mission termination for a re-
stri
ted set of 
ooperative roboti
 appli
ations.

II. Related Work

The amount of resear
h in the �eld of 
ooperative mobile
roboti
s has grown substantially in re
ent years. This work

an be broadly 
ategorized into two groups: swarm-type

ooperation and \intentional" 
ooperation. (This paper
addresses the se
ond area of 
ooperation.) The swarm-
type approa
h to multi-robot 
ooperation deals with large
numbers of homogeneous robots. This approa
h is useful
for non-time-
riti
al appli
ations involving numerous rep-
etitions of the same a
tivity over a relatively large area,
su
h a 
leaning a parking lot or 
olle
ting ro
k samples on
Mars. The approa
h to 
ooperative 
ontrol taken in these
systems is derived from the �elds of neurobiology, ethology,
psy
hophysi
s, and so
iology, and is typi
ally 
hara
terized
by teams of large numbers of homogeneous robots, ea
h of
whi
h has fairly limited 
apabilities on its own. However,
when many su
h simple robots are brought together, glob-
ally interesting behavior 
an emerge as a result of the lo
al
intera
tions of the robots. Su
h approa
hes usually rely
on mathemati
al 
onvergen
e results (su
h as the random
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walk theorem [12℄) that indi
ate the desired out
ome over
a suÆ
iently long period of time. A key resear
h issue in
this s
enario is determining the proper design of the lo
al

ontrol laws that will allow the 
olle
tion of robots to solve
a given problem.

A number of resear
hers have studied the issues of swarm
roboti
s. Deneubourg et al. [16℄ des
ribe simulation results
of a distributed sorting algorithm. Theraulaz et al. [36℄ ex-
tra
t 
ooperative 
ontrol strategies, su
h as foraging, from
a study of Polistes wasp 
olonies. Steels [34℄ presents sim-
ulation studies of the use of several dynami
al systems to
a
hieve emergent fun
tionality as applied to the problem
of 
olle
ting ro
k samples on a distant planet. Drogoul
and Ferber [17℄ des
ribe simulation studies of foraging and

hain-making robots. In [25℄ Matari
 des
ribes the results
of implementing group behaviors su
h as dispersion, aggre-
gation, and 
o
king on a group of physi
al robots. Beni and
Wang [4℄ des
ribe methods of generating arbitrary patterns
in 
y
li
 
ellular roboti
s. Kube and Zhang [22℄ present the
results of implementing an emergent 
ontrol strategy on a
group of �ve physi
al robots performing the task of lo
at-
ing and pushing a brightly lit box. Stilwell and Bay [35℄
present a method for 
ontrolling a swarm of robots using
lo
al for
e sensors to solve the problem of the 
olle
tive
transport of a palletized load. Arkin et al. [1℄ present
resear
h 
on
erned with sensing, 
ommuni
ation, and so-

ial organization for tasks su
h as foraging. The CEBOT
work, des
ribed in [19℄ and many related papers, has many
similar goals to other swarm-type multi-roboti
 systems;
however, the CEBOT robots 
an be one of a number of
robot 
lasses, rather than purely homogeneous.

The primary di�eren
e between these approa
hes and
the problem addressed in this arti
le is that the above
approa
hes are designed stri
tly for homogeneous robot
teams, in whi
h ea
h robot has the same 
apabilities and

ontrol algorithm. Additionally, issues of eÆ
ien
y are
largely ignored. However, in heterogeneous robot teams
su
h as those addressed in this arti
le, not all tasks 
an be
performed by all team members, and even if more than
one robot 
an perform a given task, they may perform
that task quite di�erently. Thus the proper mapping of
subtasks to robots is dependent upon the 
apabilities and
performan
e of ea
h robot team member. This additional

onstraint brings many 
ompli
ations to a workable ar
hi-
te
ture for robot 
ooperation, and must be addressed ex-
pli
itly to a
hieve the desirable level of 
ooperation.

The se
ond primary area of resear
h in 
ooperative 
on-
trol deals with a
hieving \intentional" 
ooperation among
a limited number of typi
ally heterogeneous robots per-
forming several distin
t tasks. In this type of 
ooperative
system, the robots often have to deal with some sort of
eÆ
ien
y 
onstraint that requires a more dire
ted type of

ooperation than is found in the swarm approa
h des
ribed
above. Furthermore, this se
ond type of mobile roboti

mission usually requires that several distin
t tasks be per-
formed. These missions thus usually require a smaller num-
ber of possibly heterogeneous mobile robots involved in
more purposeful 
ooperation. Although individual robots

in this approa
h are typi
ally able to perform some useful
task on their own, groups of su
h robots are often able to
a

omplish missions that no individual robot 
an a

om-
plish on its own. Key issues in these systems in
lude ro-
bustly determining whi
h robot should perform whi
h task
so as to maximize the eÆ
ien
y of the team and ensur-
ing the proper 
oordination among team members to allow
them to su

essfully 
omplete their mission.

Two bodies of previous resear
h are parti
ularly appli-

able to this se
ond type of 
ooperation. First, several
resear
hers have dire
tly addressed this 
ooperative robot
problem by developing 
ontrol algorithms and implement-
ing them either on physi
al robots or on simulations of
physi
al robots that make reasonable assumptions about
robot 
apabilities. Examples of this work in
lude Noreils
[26℄, who des
ribes a sense-model-plan-a
t 
ontrol ar
hi-
te
ture whi
h in
ludes three layers of 
ontrol: the planner
level, whi
h manages 
oordinated proto
ols, de
omposes
tasks into smaller subunits, and assigns the subtasks to a
network of robots; the 
ontrol level, whi
h organizes and
exe
utes a robot's tasks; and the fun
tional level, whi
h
provides 
ontrolled rea
tivity. He reports on the implemen-
tation of this ar
hite
ture on two physi
al mobile robots
performing 
onvoying and box pushing. In both of these
examples, one of the robots a
ts as a leader, and the other
a
ts as a follower.

Caloud et al. [9℄ des
ribe another sense-model-plan-a
t
ar
hite
ture whi
h in
ludes a task planner, a task allo
ator,
a motion planner, and an exe
ution monitor. Ea
h robot
obtains goals to a
hieve either based on its own 
urrent
situation, or via a request by another team member. They
use Petri Nets for interpretation of the plan de
omposi-
tion and exe
ution monitoring. In this paper they report
on plans to implement their ar
hite
ture on three physi
al
robots.

In [2℄ and elsewhere, Asama et al. des
ribe their de-

entralized robot system 
alled ACTRESS, addressing the
issues of 
ommuni
ation, task assignment, and path plan-
ning among heterogeneous roboti
 agents. Their approa
h
revolves primarily around a negotiation framework whi
h
allows robots to re
ruit help when needed. They have
demonstrated their ar
hite
ture on mobile robots perform-
ing a box pushing task.

Wang [37℄ addresses a similar issue to that addressed in
this arti
le | namely, dynami
, distributed task allo
ation
when more than one robot 
an perform a given task. He
proposes the use of several distributed mutual ex
lusion
algorithms that use a \sign-board" for inter-robot 
om-
muni
ation. These algorithms are used to solve problems
in
luding distributed leader �nding, the N-way interse
-
tion problem, and robot ordering. However, this earlier
paper does not address issues of dynami
 reallo
ation due
to robot failure and eÆ
ien
y issues due to robot hetero-
geneity.

Cohen et al. [13℄ propose a hierar
hi
al subdivision
of authority to address the problem of 
ooperative �re-
�ghting. They des
ribe their Phoenix system, whi
h in-

ludes a generi
 simulation environment and a real-time,
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adaptive planner. The main 
ontroller in this ar
hite
ture
is 
alled the Fireboss, whi
h maintains a global view of the
environment, forms global plans, and sends instru
tions to
agents to a
tivate their own lo
al planning.

A huge amount of resear
h in optimal task allo
ation and
s
heduling has been a

omplished previously (e.g. [14℄).
However, these approa
hes alone are not dire
tly appli
able
to multi-robot missions, sin
e they do not address multi-
robot performan
e in a dynami
 world involving robot het-
erogeneity, sensing un
ertainty, and the nondeterminism of
robot a
tions.

The se
ond, signi�
antly larger, body of resear
h related
to intentional 
ooperation 
omes from the Distributed Ar-
ti�
ial Intelligen
e (DAI) 
ommunity, whi
h has produ
ed
a great deal of work addressing \intentional" 
ooperation
among generi
 agents. However, these agents are typi
ally
software systems running as intera
ting pro
esses to solve
a 
ommon problem rather than embodied, sensor-based
robots. In most of this work, the issue of task allo
ation
has been the driving in
uen
e that di
tates the design of
the ar
hite
ture for 
ooperation. Typi
ally, the DAI ap-
proa
hes use a distributed, negotiation-based me
hanism
to determine the allo
ation of tasks to agents. See [5℄ for
many of the seminal papers in this �eld.

Our approa
h is distin
t from these earlier DAI ap-
proa
hes in that we embed task-oriented missions in
behavior-based systems and dire
tly address solutions to
fault tolerant, adaptive 
ontrol. Although the need for
fault toleran
e is noted in the earlier ar
hite
tures, they
typi
ally either make no serious e�ort at a
hieving fault
tolerant, adaptive 
ontrol or they assume the presen
e of
unrealisti
 \bla
k boxes" that 
ontinually monitor the envi-
ronment and provide re
overy strategies (usually involving
unspe
i�ed replanning me
hanisms) for handling various
types of unexpe
ted events. Thus, in a
tuality, if one or
more of the robots or the 
ommuni
ation system fails under
these approa
hes, the entire team is subje
t to 
atastrophi

failure. Experien
e with physi
al mobile robots has shown,
however, that robot failure is very 
ommon, not only due
to the 
omplexity of the robots themselves, but also due to
the 
omplexity of the environment in whi
h these robots
must be able to operate. Thus, 
ontrol ar
hite
tures must
expli
itly address the dynami
 nature of the 
ooperative
team and its environment to be truly useful in real-world
appli
ations. Indeed, the approa
h to 
ooperative 
ontrol
developed in this arti
le has been designed spe
i�
ally with
the view toward a
hieving fault toleran
e and adaptivity.

Additionally, the earlier approa
hes break the problem
into a traditional AI sense-model-plan-a
t de
omposition
rather than the fun
tional de
omposition used in behavior-
based approa
hes. The traditional approa
h has likely been
favored be
ause it presents a 
lean subdivision between the
job planning, task de
omposition, and task allo
ation por-
tions of the mission to be a

omplished | a segmenta-
tion that may, at �rst, appear to simplify the 
oopera-
tive team design. However, the problems with applying
these traditional approa
hes to physi
al robot teams are
the same problems that 
urrently plague these approa
hes

when they are applied to individual situated robots. As
argued by Brooks in [8℄ and elsewhere, approa
hes using
a sense-model-plan-a
t framework have been unable to de-
liver real-time performan
e in a dynami
 world be
ause
of their failure to adequately address the situatedness and
embodiment of physi
al robots. Thus, a behavior-based
approa
h to 
ooperation was utilized in ALLIANCE to
in
rease the robustness and adaptivity of the 
ooperative
team.
Refer to [11℄ for a detailed review of mu
h of the existing

work in 
ooperative roboti
s.

III. ALLIANCE

A. Assumptions

In the design of any 
ontrol s
heme, it is important to
make expli
it those assumptions underlying the approa
h.
Thus, before des
ribing the ALLIANCE ar
hite
ture in de-
tail, we �rst dis
uss the assumptions that were made in the
design of this ar
hite
ture. Note that these assumptions are
made within the 
ontext (des
ribed earlier) of solving the
problem of multi-robot 
ooperation for small- to medium-
sized teams of heterogeneous robots performing missions

omposed of independent subtasks that may have ordering
dependen
ies.
Our assumptions are as follows:
1. The robots on the team 
an dete
t the e�e
t of their
own a
tions, with some probability greater than 0.

2. Robot ri 
an dete
t the a
tions of other team mem-
bers for whi
h ri has redundant 
apabilities, with some
probability greater than 0; these a
tions may be de-
te
ted through any available means, in
luding expli
it
broad
ast 
ommuni
ation.

3. Robots on the team do not lie and are not intention-
ally adversarial.

4. The 
ommuni
ations medium is not guaranteed to be
available.

5. The robots do not possess perfe
t sensors and e�e
-
tors.

6. Any of the robot subsystems 
an fail, with some prob-
ability greater than 0.

7. If a robot fails, it 
annot ne
essarily 
ommuni
ate its
failure to its teammates.

8. A 
entralized store of 
omplete world knowledge is
not available.

We make the �rst assumption | a robot's dete
tion of
the e�e
t of its own a
tions | to ensure that robots have
some measure of feedba
k 
ontrol and do not perform their
a
tions purely with open-loop 
ontrol. However, we do not
require that robots be able to measure their own e�e
tive-
ness with 
ertainty, be
ause we realize this rarely happens
on real robots.
The se
ond assumption deals with the problem of a
tion

re
ognition | the ability of a robot to observe and inter-
pret the behavior of another robot. Previous resear
h in

ooperative roboti
s has investigated several possible ways
of providing a
tion re
ognition to robot teams | from im-
pli
it 
ooperation through sensory feedba
k to expli
it 
o-
operation using the ex
hange of 
ommuni
ated messages.
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For example, Huber and Durfee [20℄ have developed a mul-
tiple resolution, hierar
hi
al plan re
ognition system to 
o-
ordinate the motion of two intera
ting mobile robots based
upon belief networks. Other resear
hers have studied the
e�e
t of 
ommuni
ation in providing a
tion knowledge. For
example, Ma
Lennan [24℄ investigates the evolution of 
om-
muni
ation in simulated worlds and 
on
ludes that the

ommuni
ation of lo
al robot information 
an result in sig-
ni�
ant performan
e improvements; Werner and Dyer [38℄
examine the evolution of 
ommuni
ation whi
h fa
ilitates
the breeding and propagation of arti�
ial 
reatures; and
Bal
h and Arkin [3℄ examine the importan
e of 
ommuni-

ation in roboti
 so
ieties performing forage, 
onsume, and
graze tasks, �nding that 
ommuni
ation 
an signi�
antly
improve performan
e for tasks involving little impli
it 
om-
muni
ation through the world, and that 
ommuni
ation of

urrent robot state is almost as e�e
tive as 
ommuni
ation
of robot goals.

In the 
urrent arti
le, we do not require that a robot be
able to determine a teammate's a
tions through passive ob-
servation, whi
h 
an be quite diÆ
ult to a
hieve. Instead,
we enable robots to learn of the a
tions of their teammates
through an expli
it 
ommuni
ation me
hanism, whereby
robots broad
ast information on their 
urrent a
tivities to
the rest of the team.

Third, we assume that the robots are built to work on
a team, and are neither in dire
t 
ompetition with ea
h
other, nor are attempting to subvert the a
tions of their
teammates. Although 
on
i
ts may arise at a low level
due to, for example, a shared workspa
e, we assume that
at a high level the robots share 
ompatible goals. (Note,
however, that some multi-robot team appli
ations may re-
quire the ability to deal with adversarial teams, su
h as
military appli
ations or team 
ompetitions (e.g. robot so
-

er). This is not 
overed in this arti
le.)

We further assume that any subsystem of the team, su
h
as 
ommuni
ations, sensors, and e�e
tors, or individual
robots, are subje
t to failure, thus leading to assumptions
four through seven.

Finally, we assume that robots do not have a

ess to
some 
entralized store of world knowledge, and that no

entralized agent is available that 
an monitor the state
of the entire robot environment and make 
ontrolling de
i-
sions based upon this information.

B. Overview of ALLIANCE

As already dis
ussed, a major design goal in the devel-
opment of ALLIANCE is to address the real-world issues
of fault toleran
e and adaptivity when using teams of fal-
lible robots with noisy sensors and e�e
tors. Our aim is to

reate robot teams that are able to 
ope with failures and
un
ertainty in a
tion sele
tion and a
tion exe
ution, and
with 
hanges in a dynami
 environment. Be
ause of these
design goals, we developed ALLIANCE to be a fully dis-
tributed, behavior-based software ar
hite
ture whi
h gives
all robots the 
apability to determine their own a
tions
based upon their 
urrent situation. No 
entralized 
ontrol
is utilized, so that we 
an investigate the power of a fully

distributed roboti
 system to a

omplish group goals. The
purpose of this approa
h is to maintain a purely distributed

ooperative 
ontrol s
heme whi
h a�ords an in
reased de-
gree of robustness; sin
e individual agents are always fully
autonomous, they have the ability to perform useful a
tions
even amidst the failure of other robots.

ALLIANCE de�nes a me
hanism that allows teams of
robots, ea
h of whi
h possesses a variety of high-level fun
-
tions that it 
an perform during a mission, to individ-
ually sele
t appropriate a
tions throughout the mission
based on the requirements of the mission, the a
tivities of
other robots, the 
urrent environmental 
onditions, and the
robot's own internal states. This me
hanism is based upon
the use of mathemati
ally-modeled motivations within ea
h
robot, su
h as impatien
e and a
quies
en
e, to a
hieve
adaptive a
tion sele
tion. Under the behavior-based frame-
work, the task-a
hieving behaviors of ea
h robot re
eive
sensory input and 
ontrol some aspe
t of the a
tuator out-
put. Lower-level behaviors, or 
ompeten
es, 
orrespond
to primitive survival behaviors su
h as obsta
le avoidan
e,
while the higher-level behaviors 
orrespond to higher goals
su
h as map building and exploring. The output of the
lower-level behaviors 
an be suppressed or inhibited by the
upper layers when ne
essary. Within ea
h layer of 
ompe-
ten
e may be a number of simple modules intera
ting via
inhibition and suppression to produ
e the desired behavior.
This approa
h has been used su

essfully in a number of
roboti
 appli
ations, several of whi
h are des
ribed in [7℄.

Extensions to this approa
h are ne
essary, however,
when a robot must sele
t among a number of 
ompet-
ing a
tions | a
tions whi
h 
annot be pursued in paral-
lel. Unlike typi
al behavior-based approa
hes, ALLIANCE
delineates several behavior sets that are either a
tive as a
group or are hibernating. Figure 1 shows the general ar
hi-
te
ture of ALLIANCE and illustrates three su
h behavior
sets. Ea
h behavior set of a robot 
orresponds to those
levels of 
ompeten
e required to perform some high-level
task-a
hieving fun
tion. Be
ause of the alternative goals
that may be pursued by the robots, the robots must have
some means of sele
ting the appropriate behavior set to
a
tivate. This a
tion sele
tion is 
ontrolled through the
use of motivational behaviors, ea
h of whi
h 
ontrols the
a
tivation of one behavior set. Due to 
on
i
ting goals,
only one behavior set is a
tive at any point in time (im-
plemented via 
ross-inhibition of behavior sets). However,
other lower-level 
ompeten
es su
h as 
ollision avoidan
e
may be 
ontinually a
tive regardless of the high-level goal
the robot is 
urrently pursuing. Examples of this type of

ontinually a
tive 
ompeten
e are shown generi
ally in �g-
ure 1 as layer 0, layer 1, and layer 2.

C. Motivational Behaviors

In ALLIANCE, the ability for robots to respond to un-
expe
ted events, robot failures, and so forth, is provided
through the use of motivations. These motivations are de-
signed to allow robot team members to perform tasks only
as long as they demonstrate their ability to have the de-
sired e�e
t on the world. This di�ers from the 
ommonly



6 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 2, APRIL 1998: 220-240

Layer 0

Layer 1

Layer 2

Motivational
Behavior

Motivational
Behavior

Motivational
Behavior

Behavior
Set 0

Behavior
Set 1

Behavior
Set 2

Sensors

Actuators

Inter-Robot
Communi-

cation

cross-inhibition

The ALLIANCE Architecture

s

sss

s

Fig. 1. The ALLIANCE ar
hite
ture, implemented on ea
h robot
in the 
ooperative team, delineates several behavior sets, ea
h
of whi
h 
orrespond to some high-level task-a
hieving fun
tion.
The primary me
hanism enabling a robot to sele
t a high-level
fun
tion to a
tivate is the motivational behavior. The symbols
that 
onne
t the output of ea
h motivational behavior with the
output of its 
orresponding behavior set (verti
al lines with short
horizontal bars) indi
ate that a motivational behavior either al-
lows all or none of the outputs of its behavior set to pass through
to the robot's a
tuators. The non-bold, single-bordered re
tan-
gles 
orrespond to individual layers of 
ompeten
e that are always
a
tive.

used te
hnique for task allo
ation that begins with break-
ing down the mission (or part of the mission) into subtasks,
and then 
omputing the \optimal" robot-to-task mapping
based upon agent skill levels, with little re
ourse for robot
failures after the allo
ation has o

urred.

The motivations are utilized in ea
h motivational behav-
ior, whi
h is the primary me
hanism for a
hieving adaptive
a
tion sele
tion in this ar
hite
ture. At all times during the
mission, ea
h motivational behavior re
eives input from a
number of sour
es, in
luding sensory feedba
k, inter-robot

ommuni
ation, inhibitory feedba
k from other a
tive be-
haviors, and internal motivations. This input is 
ombined
(in a manner des
ribed below) to generate the output of a
motivational behavior at any point in time. This output
de�nes the a
tivation level of its 
orresponding behavior
set, represented as a non-negative number. When this a
-
tivation level ex
eeds a given threshold, the 
orresponding
behavior set be
omes a
tive.

Two types of internal motivations are modeled in AL-
LIANCE | robot impatien
e and robot a
quies
en
e. The
impatien
e motivation enables a robot to handle situations
when other robots (outside itself) fail in performing a given
task. The a
quies
en
e motivation enables a robot to han-
dle situations in whi
h it, itself, fails to properly perform
its task. Intuitively, a motivational behavior works as fol-
lows. A robot's motivation to a
tivate any given behavior
set is initialized to 0. Then over time, that robot's moti-
vation to perform a given behavior set in
reases at a fast
rate of impatien
e (de�ned expli
itly below) as long as the
task 
orresponding to that behavior set is not being a

om-
plished by any robot team member. The robot, however,

should also be responsive to the a
tions of its teammates,
adapting its task sele
tion to the a
tivities of other robot
team members. Thus, if the ith robot ri is aware that the
kth robot rk is working on a parti
ular task, ri should be
satis�ed for some period of time that that task is going to
be a

omplished even without its own parti
ipation in the
task, and thus go on to some other appli
able a
tion. Robot
ri's motivation to a
tivate its 
orresponding behavior set

ontinues to in
rease, but at a slower rate of impatien
e.
This 
hara
teristi
 prevents robots from repli
ating ea
h
other's a
tions and thus wasting needless energy.

As a simple example, 
onsider a team of two robots un-
loading boxes from a tru
k and pla
ing them on one of two

onveyor belts, depending upon the labeling on the box.
Both of the robots, 
all them A and B, have the ability
to unload boxes from the tru
k to a temporary storage lo-

ation, and the ability to move them from the temporary
storage lo
ation to the appropriate 
onveyor belt. (We as-
sume that, due to the way the loading do
k is designed,
the robots 
annot move boxes immediately from the tru
k
to the 
onveyor belt). At the beginning of the mission, say
robot A ele
ts to unload the boxes from the tru
k. Robot
B is then satis�ed that the boxes will be unloaded, and pro-

eeds to move the boxes from the temporary lo
ation to the

onveyor belt when appli
able. As the mission progresses,
however, let us assume that robot A's box-dete
tion sen-
sor (e.g. a 
amera) be
omes dirty and prevents A from
lo
ating boxes. Sin
e no more boxes are arriving at the
temporary lo
ation, robot B be
omes more and more im-
patient to take over the task of unloading boxes. After a
period of time, B takes over the task of unloading boxes,
even though robot A is still attempting to a

omplish that
task | unaware that its sensor is returning faulty readings.

Before 
ontinuing with this example, we note here that
dete
ting and interpreting the a
tions of other robots is
not a trivial problem, and often requires per
eptual abil-
ities that are not yet possible with 
urrent sensing te
h-
nology. As it stands today, the sensory 
apabilities of
even the lower animals far ex
eed present roboti
 
apa-
bilities. Thus, to enhan
e the robots' per
eptual abilities,
ALLIANCE utilizes a simple form of broad
ast 
ommuni-

ation to allow robots to inform other team members of
their 
urrent a
tivities, rather than relying totally on sens-
ing through the world. Thus, at some pre-spe
i�ed rate,
ea
h robot ri broad
asts a statement of its 
urrent a
tion,
whi
h other robots may listen to or ignore as they wish.
No two-way 
onversations are employed in this ar
hite
-
ture. Ea
h robot is designed to be somewhat impatient in
the e�e
t of 
ommuni
ated messages, however, in that a
robot ri is only willing for a 
ertain period of time to allow
the 
ommuni
ated messages of another robot to a�e
t its
own motivation to a
tivate a given behavior set. Continued
sensory feedba
k indi
ating that a task is not getting a
-

omplished overrides the statements of another robot that
it is performing that task. This 
hara
teristi
 allows robots
to adapt to failures of other robots, 
ausing them to ignore
the a
tivities of a robot that is not su

essfully 
ompleting
its task.
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A 
omplementary 
hara
teristi
 in these robots is that of
a
quies
en
e. Just as the impatien
e 
hara
teristi
 re
e
ts
the fa
t that other robots may fail, the a
quies
en
e 
har-
a
teristi
 indi
ates the re
ognition that a robot itself may
fail. This feature operates as follows. As a robot ri per-
forms a task, its willingness to give up that task in
reases
over time as long as the sensory feedba
k indi
ates the task
is not being a

omplished. As soon as some other robot rk
indi
ates it has begun that same task and ri feels it (i.e
ri) has attempted the task for an adequate period of time,
the unsu

essful robot ri gives up its task in an attempt
to �nd an a
tion at whi
h it is more produ
tive. How-
ever, even if another robot rk has not taken over the task,
robot ri may give up its task anyway if the task is not 
om-
pleted in an a

eptable period of time. This allows ri the
possibility of working on another task that may prove to
be more produ
tive rather than be
oming stu
k perform-
ing the unprodu
tive task forever. With this a
quies
en
e

hara
teristi
, therefore, a robot is able to adapt its a
tions
to its own failures. Continuing our earlier simple example,
this 
hara
teristi
 of a
quies
en
e is demonstrated in robot
A, whi
h gives up trying to unload the tru
k when robot B
takes over that task. Depending upon its self-monitoring

apabilities, robot A will then either attempt to perform
the se
ond task of moving boxes to the 
onveyor belt (prob-
ably unsu

essfully) or give up altogether. Robot B would
then be motivated to move the boxes from the storage site
to the 
onveyor belt after it had 
ompleted unloading the
task. In ALLIANCE, the mission 
ould also be designed in
su
h a way that robot B interleaves a period of unloading
the tru
k with a period of moving boxes to the 
onveyor
belt.

The design of the motivational behaviors in ALLIANCE
also allows the robots to adapt to unexpe
ted environmen-
tal 
hanges whi
h alter the sensory feedba
k. The need for
additional tasks 
an suddenly o

ur, requiring the robots
to perform additional work (e.g. another tru
k of boxes ar-
rives in our simple example), or existing environmental 
on-
ditions 
an disappear and thus relieve the robots of 
ertain
tasks (e.g. the tru
k of boxes drives away). In either 
ase,
the motivations 
uidly adapt to these situations, 
ausing
robots to respond appropriately to the 
urrent environmen-
tal 
ir
umstan
es.

We note that the parameters 
ontrolling motivational
rates of robots under the ALLIANCE ar
hite
ture 
an
adapted over time based upon learning. A learning me
ha-
nism we have developed allows the rates of impatien
e and
a
quies
en
e to be 
ontext and environment sensitive. An
extension to ALLIANCE, 
alled L-ALLIANCE (for Learn-
ing ALLIANCE), provides the me
hanisms for a

omplish-
ing this adaptation. This parameter adaptation 
apability
is des
ribed in se
tion III-E. For more details, refer to [31℄.

C.1 Comparison to Negotiation

We now 
ompare the ALLIANCE task allo
ation me
h-
anism to a 
ommon approa
h used in distributed arti�
ial
intelligen
e (DAI) systems for multi-agent task allo
ation
| a negotiation-based me
hanism. In general, the negotia-

tion s
hemes have no 
entralized agent that has full 
ontrol
over whi
h tasks individual team members should perform.
Instead, many agents know whi
h subtasks are required
for various portions of the mission to be performed, along
with the skills required to a
hieve those subtasks. These
agents then broad
ast a request for bids to perform these
subtasks, to whi
h other agents may respond if they are
available and want to perform these tasks. The broad
ast-
ing agent then sele
ts an agent from those that respond
and awards the task to the winning agent, who then 
om-
men
es to perform that task, re
ruiting yet other agents
to help if required. One example of a popular negotiation
proto
ol that has been used extensively is the 
ontra
t-net
proto
ol [15℄, [33℄; other negotiation s
hemes are des
ribed
in [18℄, [21℄, [32℄, [39℄.

However, although DAI work has demonstrated su

ess
with this approa
h in a number of domains (e.g. dis-
tributed vehi
le monitoring [23℄ and distributed air traÆ


ontrol [10℄), the proposed solutions have not been ade-
quately demonstrated in situated agent (i.e. roboti
) teams,
whi
h have to live in, and rea
t to, dynami
 and un
ertain
environments amidst noisy sensors and e�e
tors, frequent
agent failures, and a limited bandwidth, noisy 
ommuni-

ation me
hanism. The DAI approa
hes typi
ally assume
the presen
e of \bla
k boxes" to provide high-level, nearly-
perfe
t sensing and a
tion 
apabilities. However, these DAI
approa
hes typi
ally ignore or only give brief treatment to
the issues of robot performan
e of those tasks after they
have been allo
ated. Su
h approa
hes usually assume the
robots will eventually a

omplish the task they have been
assigned, or that some external monitor will provide infor-
mation to the robots on dynami
 
hanges in the environ-
ment or robot performan
e. However, to realisti
ally de-
sign a 
ooperative approa
h to roboti
s, we must in
lude
me
hanisms within the software 
ontrol of ea
h robot that
allow the team members to re
over from dynami
 
hanges
in their environment, or failures in the robot team or 
om-
muni
ation me
hanism.

Thus, we developed the ALLIANCE ar
hite
ture to ex-
pli
itly address the issue of fault toleran
e amidst possible
robot and 
ommuni
ation failures. The ALLIANCE ar-

hite
ture provides ea
h robot with suÆ
ient autonomy to
make de
isions on its a
tions at all times during a mission,
taking into 
onsideration the a
tions of other agents and
their e�e
ts upon the world. While some eÆ
ien
y may
be lost as a 
onsequen
e of not negotiating the task subdi-
vision in advan
e, robustness is gained if robot failures or
other dynami
 events o

ur at any time during the mission.
We spe
ulate that a hybrid 
ombination of negotiation and
the ALLIANCE motivational me
hanisms would enable a
system to experien
e the bene�ts of both approa
hes. This
is a topi
 for future resear
h.

D. Dis
ussion of Formal Model of ALLIANCE

Let us now look in detail at how our philosophy regard-
ing a
tion sele
tion is in
orporated into the motivational
behavior me
hanism.

First, let us formally de�ne our problem as follows. Let
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the set R = fr1; r2; :::; rng represent the set of n het-
erogeneous robots 
omposing the 
ooperative team, and
the set T = ftask1; task2; :::; taskmg represent m indepen-
dent subtasks whi
h 
ompose the mission. We use the
term high-level task-a
hieving fun
tion to 
orrespond in-
tuitively to the fun
tions possessed by individual robots
that allow the robots to a
hieve tasks required in the mis-
sion. These fun
tions map very 
losely to the upper lay-
ers of the subsumption-based 
ontrol ar
hite
ture [6℄. In
the ALLIANCE ar
hite
ture, ea
h behavior set supplies
its robot with a high-level task-a
hieving fun
tion. Thus,
in the ALLIANCE ar
hite
ture, the terms high-level task-
a
hieving fun
tion and behavior set are synonymous. We
refer to the high-level task-a
hieving fun
tions, or behav-
ior sets, possessed by robot ri in ALLIANCE as the set
Ai = fai1; ai2; :::g. Sin
e di�erent robots may have di�er-
ent ways of performing the same task, we need a way of
referring to the task a robot is working on when it a
ti-
vates a behavior set. Thus, we de�ne the set of n fun
-
tions fh1(a1k); h2(a2k); :::; hn(ank)g, where hi(aik) returns
the task in T that robot ri is working on when it a
tivates
behavior set aik.

In the dis
ussion below, we �rst dis
uss the threshold
of a
tivation of a behavior set, and then des
ribe the �ve
primary inputs to the motivational behavior. We 
on
lude
this se
tion by showing how these inputs are 
ombined to
determine the 
urrent level of motivation of a given behav-
ior set in a given robot. Throughout this se
tion, a number
of parameters are de�ned that regulate the motivational
levels. A dis
ussion on how the parameter values are ob-
tained and adapted over time is provided in se
tion III-E.

D.1 Threshold of a
tivation

The threshold of a
tivation of a behavior set is given by
one parameter, �. This parameter determines the level of
motivation beyond whi
h a given behavior set will be
ome
a
tive. Although di�erent thresholds of a
tivation 
ould
be used for di�erent behavior sets and for di�erent robots,
in ALLIANCE one threshold is suÆ
ient sin
e the rates of
impatien
e and a
quies
en
e 
an vary a
ross behavior sets
and a
ross robots.

D.2 Sensory feedba
k

The sensory feedba
k provides the motivational behav-
ior with the information ne
essary to determine whether
its 
orresponding behavior set needs to be a
tivated at a
given point during the 
urrent mission. This feedba
k is as-
sumed to be noisy, and 
an originate from either physi
al
robot sensors or virtual robot sensors. We de�ne a simple
fun
tion to 
apture the notion of sensory feedba
k in the
motivational level 
omputation as follows:

sensory feedba
k ij(t) =8<
:

1 if the sensory feedba
k in robot ri at time t
indi
ates that behavior set aij is appli
able

0 otherwise

D.3 Inter-robot 
ommuni
ation

Two parameters are utilized in ALLIANCE to 
ontrol
the broad
ast 
ommuni
ation among robots: �i and �i.
The �rst parameter, �i, gives the rate at whi
h robot ri

broad
asts its 
urrent a
tivity. The se
ond parameter,
�i, provides an additional level of fault toleran
e by giv-
ing the period of time robot ri allows to pass without
re
eiving a 
ommuni
ation message from a spe
i�
 team-
mate before de
iding that that teammate has 
eased to
fun
tion. While monitoring the 
ommuni
ation messages,
ea
h motivational behavior aij of robot ri must also note
when a team member is pursuing task hi(aij). To refer to
this type of monitoring in the formal model, the fun
tion

omm re
eived is de�ned as follows:


omm re
eived (i; k; j; t1; t2) =8>><
>>:

1 if robot ri has re
eived message from robot rk

on
erning task hi(aij) in the time span
(t1; t2), where t1 < t2

0 otherwise

D.4 Suppression from a
tive behavior sets

When a motivational behavior a
tivates its behavior set,
it simultaneously begins inhibiting other motivational be-
haviors within the same robot from a
tivating their respe
-
tive behavior sets. At this point, a robot has e�e
tively
\sele
ted an a
tion". In the formal model, this a
tivity
suppression is modeled by the following simple fun
tion:

a
tivity suppression ij(t) =8<
:

0 if another behavior set aik is a
tive, k 6= j, on
robot ri at time t

1 otherwise

This fun
tion says that behavior set aij is being sup-
pressed at time t on robot ri if some other behavior set aik
is 
urrently a
tive on robot ri at time t.

D.5 Robot impatien
e

Three parameters are used to implement the robot impa-
tien
e feature of ALLIANCE: �ij(k; t), Æ slow ij(k; t), and
Æ fast ij(t). The �rst parameter, �ij(k; t), gives the time
during whi
h robot ri is willing to allow robot rk's 
om-
muni
ation message to a�e
t the motivation of behavior
set aij . Note that robot ri is allowed to have di�erent �

parameters for ea
h robot rk on its team, and that these
parameters 
an 
hange during the mission, as indi
ated by
the dependen
e on t. This allows ri to be in
uen
ed more
by some robots than others, perhaps due to reliability dif-
feren
es a
ross robots.
The next two parameters, Æ slow ij(k; t) and Æ fast ij(t),

give the rates of impatien
e of robot ri 
on
erning behavior
set aij either while robot rk is performing the task 
orre-
sponding to behavior set aij (i.e. hi(aij)) or in the absen
e
of other robots performing the task hi(aij), respe
tively.
We assume that the fast impatien
e parameter 
orresponds
to a higher rate of impatien
e than the slow impatien
e
parameter for a given behavior set in a given robot. The
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reasoning for this assumption should be 
lear | a robot ri
should allow another robot rk the opportunity to a

om-
plish its task before be
oming impatient with rk; however,
there is no reason for ri to remain idle if a task remains
undone and no other robot is attempting that task.
The question that now arises is the following: what slow

rate of impatien
e does a motivational behavior 
ontrolling
behavior set aij use when more than one other robot is per-
forming task hi(aij)? The method used in ALLIANCE is
to in
rease the motivation at a rate that allows the slowest
robot rk still under its allowable time �ij(k; t) to 
ontinue
its attempt.
The spe
i�
ation of when the impatien
e rate for a be-

havior set aij should grow a

ording to the slow impatien
e
rate and when it should grow a

ording to the fast impa-
tien
e rate is given by the following fun
tion:

impatien
e ij(t) =8>>>>>><
>>>>>>:

mink(Æ slow ij(k; t)) if (
omm re
eived(i; k; j;
t� �i; t) = 1)
and
(
omm re
eived (i; k; j; 0;
t� �ij(k; t)) = 0)

Æ fast ij(t) otherwise

Thus, the impatien
e rate will be the minimum slow rate,
Æ slow ij(k; t), if robot ri has re
eived 
ommuni
ation indi-

ating that robot rk is performing the task hi(aij) in the
last �i time units, but not for longer than �ij(k; t) time
units. Otherwise, the impatien
e rate is set to Æ fast ij(t).
The �nal detail to be addressed is to 
ause a robot's

motivation to a
tivate behavior set aij to go to 0 the �rst
time it hears about another robot performing task hi(aij).
This is a

omplished through the following:

impatien
e reset ij(t) =8>><
>>:

0 if 9k:((
omm re
eived (i; k; j; t� Æt; t) = 1) and
(
omm re
eived(i; k; j; 0; t� Æt) = 0)); where
Æt = time sin
e last 
ommuni
ation 
he
k

1 otherwise

This reset fun
tion 
auses the motivation to be reset to
0 if robot ri has just re
eived its �rst message from robot
rk indi
ating that rk is performing task hi(aij). This fun
-
tion allows the motivation to be reset no more than on
e
for every robot team member that attempts task hi(aij).
Allowing the motivation to be reset repeatedly by the same
robot would allow a persistent, yet failing robot to jeopar-
dize the 
ompletion of the mission.

D.6 Robot a
quies
en
e

Two parameters are used to implement the robot a
-
quies
en
e 
hara
teristi
 of ALLIANCE:  ij(t) and �ij(t).
The �rst parameter,  ij(t), gives the time that robot ri
wants to maintain behavior set aij a
tivation before yield-
ing to another robot. The se
ond parameter, �ij(t), gives
the time robot ri wants to maintain behavior set aij a
-
tivation before giving up to possibly try another behavior
set.

The following a
quies
en
e fun
tion indi
ates when a
robot has de
ided to a
quies
e its task:

a
quies
en
e ij(t) =8>>>>>>>><
>>>>>>>>:

0 if ((behavior set aij of robot ri has been a
tive
for more than  ij(t) time units at time t) and
(9x:
omm re
eived(i; x; j; t� �i; t) = 1))
or
(behavior set aij of robot ri has been a
tive
for more than �ij(t) time units at time t)

1 otherwise

This fun
tion says that a robot ri will not a
quies
e be-
havior set aij until one of the following 
onditions is met:

� ri has worked on task hi(aij) for a length of time  ij(t)
and some other robot has taken over task hi(aij)

� ri has worked on task hi(aij) for a length of time �ij(t)

D.7 Motivation 
al
ulation

All of the inputs des
ribed above are 
ombined into the

al
ulation of the levels of motivation as follows:

mij(0) = 0

mij(t) = [mij(t� 1) + impatien
e ij(t)℄

�sensory feedba
k ij(t)

�a
tivity suppression ij(t)

�impatien
e reset ij(t)

�a
quies
en
eij(t) (1)

Initially, the motivation to perform behavior set aij in
robot ri is set to 0. This motivation then in
reases at some
positive rate impatien
e ij(t) unless one of four situations
o

urs: (1) the sensory feedba
k indi
ates that the behav-
ior set is no longer needed, (2) another behavior set in ri
a
tivates, (3) some other robot has just taken over task
hi(aij) for the �rst time, or (4) the robot has de
ided to
a
quies
e the task. In any of these four situations, the
motivation returns to 0. Otherwise, the motivation grows
until it 
rosses the threshold �, at whi
h time the behavior
set is a
tivated and the robot 
an be said to have sele
ted
an a
tion. Whenever some behavior set aij is a
tive in
robot ri, ri broad
asts its 
urrent a
tivity to other robots
at a rate of �i.
A topi
 of future resear
h is to investigate other possible


ombinations of the above input values to 
ompute the mo-
tivational behavior. The 
urrent linear form was sele
ted
for its simpli
ity, and resulted in good performan
e. Ad-
ditional studies are needed to determine the utility of any
spe
i�
 
ombination.

E. Parameter Settings

As with any parameter-based system, the parameter set-
tings in ALLIANCE strongly in
uen
e the global perfor-
man
e of the system. A robot's sele
tion of a
tions under
ALLIANCE is dependent upon the parameter settings of
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the motivational behaviors. In addition, a number of eÆ-

ien
y issues are a�e
ted by the parameter settings, su
h as
the amount of robot idle time, the time of response to the
need for task reallo
ation, the sele
tion between alternative
methods of a

omplishing a task, and so forth. In pra
ti
e,
�nding the proper parameter settings in ALLIANCE has
not proved to be diÆ
ult. This ar
hite
ture has been im-
plemented on a number of di�erent roboti
 appli
ations
[31℄ | one of whi
h is reported later in this arti
le | and
parameter tuning did not prove to be a problem. How-
ever, ideally, the robot team members should be able to
initialize and adapt these values with experien
e to �nd
the proper parameter settings, rather than relying on hu-
man tuning. In the design of a parameter update strategy,
we wanted to ensure that we did not sa
ri�
e the desirable

hara
teristi
s of fault toleran
e and adaptivity that are
present in ALLIANCE while enabling in
reases in robot
team eÆ
ien
y. We have thus developed an extension to
ALLIANCE, 
alled L-ALLIANCE, whi
h provides me
h-
anisms that allow the robots to dynami
ally update their
parameter settings based upon knowledge learned from pre-
vious experien
es. In this se
tion, we outline the approa
h
utilized in L-ALLIANCE for parameter tuning. Refer to
[31℄ for a more 
omplete dis
ussion of L-ALLIANCE.

The general idea for dynami
ally updating the param-
eters is to have ea
h robot \observe", evaluate, and 
ata-
logue the performan
e (measured in task exe
ution time)
of any robot team member whenever it performs a task
of interest to that robot. The performan
e measurements
are then used to update the ALLIANCE parameters in the
manner spe
i�ed below. These updates allow the robots
to adapt their a
tion sele
tions over time in response to

hanges in the robot team 
omposition, the robot team

apabilities, or in the environment.

In this approa
h to parameter updates, we make two as-
sumptions: (1) a robot's average performan
e in exe
uting
a spe
i�
 task over a few re
ent trials is a reasonable indi-

ator of that robot's expe
ted performan
e in the future,
and (2) if robot ri is monitoring environmental 
onditions
C to assess the performan
e of another robot rk, and the

onditions C 
hange, then the 
hanges are attributable to
robot rk.

Figure 2 illustrates the L-ALLIANCE extension to AL-
LIANCE, whi
h in
orporates the use of performan
e mon-
itors for ea
h motivational behavior within ea
h robot.
Formally, robot ri, programmed with the b behavior sets
A = fai1; ai2; :::; aibg, also has b monitors MONi =
fmoni1;moni2; :::;monibg, su
h that monitor monij ob-
serves the performan
e of any robot performing task
hi(aij), keeping tra
k of the time of task 
ompletion (or
other appropriate performan
e quality measure) of that
robot. Monitor monij then uses the me
hanism des
ribed
below to update the 
ontrol parameters of behavior set aij
based upon this learned knowledge.

On
e the robot performan
e data has been obtained, it
must be input to a 
ontrol me
hanism that allows the robot
team to improve its eÆ
ien
y over time while not sa
ri�
ing
the fault tolerant 
hara
teristi
s of the behavior-based AL-

Layer 0

Layer 1

Layer 2

Motivational
Behavior

Motivational
Behavior

Motivational
Behavior

Behavior
Set 0

Behavior
Set 1

Behavior
Set 2

Sensors

Actuators

Inter-Robot
Communi-

cation

cross-inhibition

The L-ALLIANCE Architecture

Monitor Monitor Monitor

s

sss

s

Fig. 2. The L-ALLIANCE ar
hite
ture, whi
h adds in the 
apability
for dynami
 parameter adaptation.

LIANCE ar
hite
ture. Through an extensive series of em-
piri
al studies reported in [31℄, we derived an a
tion sele
-
tion algorithm that spe
i�es how the parameters should be
updated to a
hieve in
reased eÆ
ien
y in the robot team's
a
tion sele
tion.

The algorithm derived in [31℄ spe
i�es that ea
h robot ri
should obey the following algorithm in sele
ting its tasks:

1. Divide the tasks into two 
ategories:
(a) Those tasks whi
h ri expe
ts to be able to
perform better than any other team mem-
ber, and whi
h no other robot is 
urrently
performing.

(b) All other tasks ri 
an perform.
2. Repeat the following until sensory feedba
k
indi
ates that no more tasks are left:
(a) Sele
t tasks from the �rst 
ategory a

ord-
ing to the longest task �rst approa
h, unless
no more tasks remain in the �rst 
ategory.

(b) Sele
t tasks from the se
ond 
ategory a
-

ording to the shortest task �rst approa
h.

If a robot has no learned knowledge about team member

apabilities, all of its tasks fall into the se
ond 
ategory.

Note that although the above algorithm is stated in
terms of a 
entralized 
ontrolling me
hanism, the algorithm
is in fa
t distributed a
ross the behavior sets of ALLIANCE
through the motivational behavior parameter settings.

The key parameters in ALLIANCE that a�e
t the a
tion
sele
tion are:

� Æ fast ij(t): the rate of impatien
e of ri at time
t 
on
erning the behavior set aij when no other
robot is performing task hi(aij)

� Æ slow ij(k; t): the rate of impatien
e of ri at
time t 
on
erning the behavior set aij when
robot rk is performing task hi(aij)

�  ij(t): the time ri will maintain aij 's a
tivity
before a
quies
ing to another robot
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We now des
ribe how these parameters are set and up-
dated during the mission. First, we de�ne the performan
e
metri
 |task 
ompletion time | as:

task time i(k; j; t) =
(average time over last � trials of rk's performan
e of
task hi(aij)) + (one standard deviation of these �
attempts, as measured by ri)

The robot impatien
e parameters of Æ slow ij(k; t) and
Æ fast ij(t) are then updated as follows.

�ij(k; t) = Time during whi
h robot ri is willing to
allow robot rk's 
ommuni
ation message to
a�e
t the motivation of behavior set aij .

= task time i(i; j; t)

Æ slow ij(k; t) = Rate of impatien
e of robot ri

on
erning behavior set aij after
dis
overing robot rk performing
the task 
orresponding to this
behavior set

= �
�ij(k;t)

min delay = minimum allowed delay
max delay = maximum allowed delay
high = max

k;j
task timei(k; j; t)

low = min
k;j

task timei(k; j; t)

s
ale fa
tor = max delay�min delay

high�low

Æ fast ij(t) = Rate of impatien
e of robot ri

on
erning behavior set aij in the
absen
e of other robots performing a
similar behavior set

=

�
z
ase1 if task 
ategoryij(t) = 2
z
ase2 otherwise

where:
z
ase1 = �

min delay+(task timei(i;j ;t)�low)�s
ale fa
tor

z
ase2 = �
max delay�(task timei(i;j ;t)�low)�s
ale fa
tor

The robot a
quies
en
e parameters are updated as fol-
lows:

 ij(t) = Time robot ri wants to maintain behavior set
aij 's a
tivity before yielding to another robot.

= task timei(i; j; t)
These parameter settings 
ause the robot team to e�e
-

tively sele
t their a
tions a

ording to the algorithm given
earlier in this subse
tion. Refer to [31℄ for the derivation
of this algorithm.

IV. Results

The ALLIANCE ar
hite
ture has been su

essfully im-
plemented in a variety of proof-of-
on
ept appli
ations on
both physi
al and simulated mobile robots. The appli
a-
tions implemented on physi
al robots in
lude two versions
of a hazardous waste 
leanup mission and a 
ooperative
box pushing demonstration [28℄. The appli
ations using
simulated mobile robots in
lude a janitorial servi
e mis-
sion [27℄ and a bounding overwat
h mission (reminis
ent

of military surveillan
e) [31℄. All of these missions using
the ALLIANCE ar
hite
ture have been well-tested. Over
60 logged (and many videotaped) physi
al robot runs of
the hazardous waste 
leanup mission and over 30 phys-
i
al robot runs (many of whi
h were videotaped) of the
box pushing demonstration were 
ompleted to elu
idate
the important issues in heterogeneous robot 
ooperation.
The missions implemented on simulated robots en
ompass
dozens of runs ea
h, most of whi
h were logged in the study
of the a
tion sele
tion me
hanism.

The experimental mission we des
ribe here to illustrate
the fault tolerant a
tion sele
tion features of ALLIANCE
is a laboratory version of hazardous waste 
leanup. (Refer
[29℄, [31℄ for a somewhat di�erent version of the hazardous
waste 
leanup mission, whi
h involved the use of only one
spill, rather than the two spills des
ribed below.) We �rst
des
ribe the robots used in these experimental studies, fol-
lowed by a des
ription of the mission the robots were given.
We then des
ribe the behavior set design of the robots for
this mission, followed by the results of the implementation.
The results des
ribed below are available on videotape [30℄.

A. The Robots

Our empiri
al studies were 
ondu
ted on teams of three
R-2 robots pur
hased 
ommer
ially from IS Roboti
s. Ea
h
of these robots is a small, fully autonomous wheeled vehi
le
measuring approximately 25 
entimeters wide, 31 
entime-
ters deep, and 35 
entimeters tall. The R-2 has two drive
wheels arranged as a di�erential pair, two 
aster wheels
in the rear for stability, and a two-degree-of-freedom par-
allel jaw gripper for grasping obje
ts. The robot sensory
suite in
ludes eight infrared proximity sensors for use in

ollision avoidan
e, piezoele
tri
 bump sensors distributed
around the base of the robot for use in 
ollision dete
tion,
and additional bump sensors inside the gripper for use in
measuring gripping for
e.

We note here that although these robots are of the same
type and thus have the potential of maximum redundan
y
in 
apabilities, me
hani
al drift and failure 
an 
ause them
to have quite di�erent a
tual abilities. For example, one
of our robots had full use of its side infrared (IR) sen-
sors whi
h allowed it to perform wall-following, whereas
the side IR sensors of two of the other robots had be
ome
dysfun
tional. The L-ALLIANCE learning and parameter
update system outlined in se
tion III-E gives these robots
the ability to take advantage of these di�eren
es and thus
determine from trial to trial whi
h team member is best
suited for whi
h task.

A radio 
ommuni
ation system allows robot team mem-
bers to 
ommuni
ate with ea
h other. This radio system
is integrated with a positioning system, whi
h 
onsists of
a trans
eiver unit atta
hed to ea
h robot plus two sonar
base stations for use in triangulating the robot positions.
The positioning system is a

urate to about 15 
entimeters
and is useful for providing robots with information on their
own position with respe
t to their environment and with
respe
t to other robot team members.
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B. The Hazardous Waste Cleanup Mission

Illustrated in �gure 3, the laboratory version of the haz-
ardous waste 
leanup mission requires two arti�
ially \haz-
ardous" waste spills in an en
losed room to be 
leaned up
by a team of three robots. This mission requires robot
team members to perform the following distin
t tasks: the
robot team must lo
ate the two waste spills, move the
two spills to a goal lo
ation, while also periodi
ally report-
ing the team progress to humans monitoring the system.
These tasks are referred to in the remainder of this arti-

le as �nd-lo
ations, move-spill(left), move-spill(right), and
report-progress, where left and right refer to the lo
ations
of the two spills relative to the room entran
e.

Desired Final
Spill Location

Initial Spill
Locations

Site from which
to report progress

*E
n
tr

a
n
c
e

Robots

Fig. 3. The experimental mission: hazardous waste 
leanup.

A diÆ
ulty in this mission is that the human monitor
does not know the exa
t lo
ation of the spills in robot 
oor-
dinates, and 
an only give the robot team qualitative infor-
mation on the initial lo
ation of the two spills and the �nal
desired lo
ation to whi
h the robots must move the spills.
Thus, the robots are told qualitatively that one spill is lo-

ated in the right half of the front third of the room, while
the other spill is lo
ated in the left half of the front third
of the room. Furthermore, the robots are also told that
the desired �nal lo
ation of the spill is in the ba
k, 
enter
of the room, relative to the position of the entran
e. This
information is used as des
ribed below to lo
ate the initial
and �nal spill lo
ations. To prevent interferen
e among
robots, ideally only one robot at a time attempts to �nd
the spill, broad
asting the 
omputed lo
ations to the other
team members on
e the task is 
omplete.

Ea
h robot was preprogrammed to have the following be-
havior sets, whi
h 
orrespond to high-level tasks that must
be a
hieved on this mission: �nd-lo
ations-methodi
al, �nd-
lo
ations-wander, move-spill(lo
), and report-progress. A
low-level avoid-obsta
les behavior was a
tive at all times in
these robots ex
ept during portions of the move-spill task,
when it was suppressed to allow the robot to pi
k up the
spill obje
t. The organization of the behavior sets for this
mission is shown in �gure 4.

Two behavior sets are provided whi
h both a

omplish
the task of �nding the initial and �nal spill lo
ations |
�nd-lo
ations-methodi
al and �nd-lo
ations-wander|both
of whi
h depend upon the workspa
e being re
tangular and

Motiv. Beh:
find-locs-

meth.

Motiv. Beh:
move-spill

(loc)

Motiv. Beh:
report-

progress

Behavior Set:
find-locs-

meth.

Behavior Set:
find-locs-
wander

Behavior Set:
move-spill

(loc)

Behavior Set:
report-progress

avoid-obstacles

Left, Right
Motor Velocities

Motiv. Beh:
find-locs-
wander

Front
IRs

Curr.
x,y

pos.

Side
IRs

Inter-
Robot
Comm.

cross-inhibition

Grip, Lift Pos.

S

S

Spill Start
Final Locs.

Radio Report

Hazardous Waste Cleanup:  Behavior Organization

Fig. 4. The ALLIANCE-based 
ontrol of ea
h robot in the hazardous
waste 
leanup mission. Not all sensory inputs to the behavior
sets are shown here. In this �gure, the high-level task a
hieving
fun
tions �nd-lo
ations-methodi
al and �nd-lo
ations-wander are
abbreviated as �nd-lo
s-meth and �nd-lo
s-wander, respe
tively.

on the sides of the room being parallel to the axes of the
global 
oordinate system. Be
ause of these assumptions,
these behavior sets do not serve as generally appli
able
lo
ation-�nders. However, we made no attempt to gener-
alize these algorithms, sin
e the point of this experiment is
to demonstrate the adaptive a
tion sele
tion 
hara
teristi
s
of ALLIANCE. Shown in more detail in �gure 5, the me-
thodi
al version of �nding the spill lo
ation is mu
h more
reliable than the wander version, and involves the robot
�rst noting its starting (or home) x; y position and then
following the walls of the room using its side IRs until it
has returned to its home lo
ation while tra
king the min-
imum and maximum x and y positions it rea
hes. It then
uses these x; y values to 
al
ulate the 
oordinates of the
right and left halves of the front third of the room (for the
two initial spill lo
ations) and the ba
k 
enter of the room
(for the �nal spill lo
ation). These lo
ations are then made
available to the move-spill(lo
) behavior set, whi
h requires
this information to perform its task.

The wander version of �nding the initial and desired �nal
spill lo
ations, shown in �gure 6, avoids the need for side IR
sensors by 
ausing the robot to wander in ea
h of the four
dire
tions (west, north, east, and south) for a �xed time
period. While the robot wanders, it tra
ks the minimum
and maximum x and y positions it dis
overs. Upon the

on
lusion of the wandering phase, the robot 
al
ulates the
desired initial and �nal lo
ations from these minimum and
maximum x; y values.

The move-spill(lo
) behavior set, shown in more detail in
�gure 7, 
an be a
tivated whenever there are spill obje
ts
needing to be pi
ked up at lo
, the lo
ations of the initial
and �nal spill positions are known, and the robot is not
aware of any other robot 
urrently working on the spill at
lo
. It involves having the robot (1) move to the vi
inity
of the initial spill lo
ation, (2) wander in a straight line
through the area of the spill while using its front IR sensors
to s
an for spill obje
ts, (3) \zero in" on a spill obje
t on
e
it is lo
ated to 
enter it in the gripper, (4) grasp and lift
the spill obje
t, (5) move to the vi
inity of the �nal spill
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Fig. 5. The robot 
ontrol organization within the �nd-lo
ations-
methodi
al behavior set.
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Fig. 6. The robot 
ontrol organization within the �nd-lo
ations-
wander behavior set.

lo
ation, and then (6) lower and release the spill obje
t. To
minimize interferen
e among robots in a relatively small
spa
e, ideally only one robot at a time should work on a
given spill.

The report-progress behavior set, shown in �gure 8, 
or-
responds to the high-level task that the robot team is re-
quired to perform approximately every 4 minutes during
the mission. This task involves returning to the room en-
tran
e and informing the human monitoring the system of
the a
tivities of the robot team members and some infor-
mation regarding the su

ess of those a
tivities. Note that
this task only needs to be performed by the team as a whole
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Fig. 7. The robot 
ontrol organization within the move-spill(lo
)
behavior set.
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Fig. 8. The robot 
ontrol organization within the report-progress
behavior set.

every 4 minutes, not by all team members. In a real-life ap-
pli
ation of this sort, the progress report would most likely
be delivered via a radio message to the human. However, in
this experiment no a
tual progress information was main-
tained (although it 
ould easily be a

omplished by logging
the radio-transmitted robot a
tivities), and delivering the
report 
onsisted of playing an audible tune on the robot's
piezoele
tri
 buzzer from the room entran
e rather than
relaying a radio message.

C. Experiments

We report here the experiments we 
ondu
ted to test
the ability of ALLIANCE to a
hieve fault-tolerant 
oop-
erative 
ontrol of our team of mobile robots performing
the hazardous waste 
leanup mission. In all of the follow-
ing experiments, teams of three R-2 robots were utilized in
an environmental setup very similar to that depi
ted in �g-
ure 3; we will refer to these robots individually as GREEN,
BLUE, and GOLD. All the robots began their missions at
the room entran
e, as shown in �gure 9.
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Fig. 9. The robot team at the beginning of the hazardous waste

leanup mission.
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Fig. 10. Typi
al robot a
tions sele
ted during experiment with no
robot failures. This is one instan
e of many runs of this mis-
sion. In this and the following �gures showing tra
es of a
-
tion sele
tions, the meanings of the abbreviations are as fol-
lows: RP stands for report-progress; MS(L) and MS(R) stand for
move-spill(left) and move-spill(right), respe
tively; FLW stands
for �nd-lo
ations-wander; and FLM stands for �nd-lo
ations-
methodi
al.

Figure 10 shows the a
tion sele
tion results of a typi
al
experimental run when no robot failures o

ur; �gure 11
shows the 
orresponding motivation levels during this run.
As re
e
ted in these �gures, at the beginning of the mis-
sion, GREEN has the highest motivation to perform behav-
ior set �nd-lo
ations-methodi
al, 
ausing it to initiate this
a
tion. This 
auses BLUE and GOLD to be satis�ed for a
while that the initial and �nal spill lo
ations are going to
be found; sin
e no other task 
an 
urrently be performed,
they sit idle, waiting for the lo
ations to be found.
However, they do not idle forever waiting on the lo
a-

tions to be found. As they wait, they be
ome more and
more impatient over time, whi
h 
an 
ause one of BLUE
or GOLD to de
ide to �nd the spill and goal lo
ations.

BLUE

Report-Progress

Move-Spill(left)

Move-Spill(right)

Find-locs-wander

Find-locs-methodical

GREEN

GOLD

Time

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

Report-Progress

Move-Spill(left)

Move-Spill(right)

Find-locs-wander

Find-locs-methodical

Report-Progress

Move-Spill(left)

Move-Spill(right)

Find-locs-wander

Find-locs-methodical

Fig. 11. Motivational levels for behavior sets during experiment with
no robot failures. The dashed lines represent the thresholds of
a
tivation of ea
h behavior set.

Indeed, this does happen in a situation as shown in the
photograph in �gure 12, in whi
h we intentionally interfere
with GREEN's ability to �nd the spill and goal lo
ations.
As shown in the a
tion tra
e of �gure 13, (with the 
orre-
sponding motivational tra
e in �gure 14) this leads to one
of the remaining robots | namely, BLUE | to a
tivate its
�nd-lo
ations-wander behavior set. (Note that BLUE does
not a
tivate its �nd-lo
ations-methodi
al behavior set be-

ause its side infrared sensors failed during previous runs,
preventing BLUE from su

essfully a

omplishing that be-
havior set. This behavior set is left in BLUE's repertoire to
allow it to respond to some potential future event that may
restore the working-order of the infrared sensors. Its moti-
vations were altered based upon the L-ALLIANCE me
h-
anism outlined in se
tion III-E.) In this 
ase, GREEN
a
quies
es its attempt to �nd the spill and goal lo
ations
to BLUE, sin
e GREEN realized it was en
ountering diÆ-

ulties of some sort. In either 
ase, the robot �nding the
spill and goal lo
ations reports these lo
ations to the rest
of the team.
At this point, the environmental feedba
k and knowledge

of the spill and goal lo
ations indi
ate to the robot team
that the move-spill(lo
) behavior set is appli
able. As we
see in �gure 10, GREEN sele
ts to move the left spill while
BLUE sele
ts to move the right spill. Sin
e only one robot
at a time should work on a given spill (as des
ribed in se
-
tion IV-B), GOLD sits idle, satis�ed that the left and right
spills are going to be moved. Figure 15 shows a photograph
of the robots at this stage in the mission.
In the meantime, the robots' impatien
e motivations to

report the team's progress are in
reasing. Sin
e GOLD is
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Fig. 12. Here, we interfere with GREEN, whi
h is attempting to
lo
ate the spill and goal lo
ations, thus preventing it from 
om-
pleting this task.
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Fig. 13. Typi
al robot a
tions sele
ted during experiment when the
initial robot a
tion of �nding the spill fails. This is one instan
e
of many runs of this mission.

not performing any other tasks, it is the �rst to a
tivate
its report-progress behavior set. This reporting satis�es
the remainder of the team, so they 
ontinue to move the
two spills. This periodi
 reporting of the progress through-
out the mission by GOLD is re
e
ted in the diagrams in
�gures 10 and 13. In these parti
ular examples, GOLD
has e�e
tively spe
ialized as the progress reporting robot,
whereas GREEN and BLUE have spe
ialized as the move-
spill robots. The mission 
ontinues in this way until both
spills are moved from their starting lo
ation to the goal
destination. Figure 16 shows two of the robots delivering
spill obje
ts to the goal destination.

To illustrate the e�e
t of unexpe
ted events on the a
-
tion sele
tion of the team, we next experimented with dy-
nami
ally altering the 
omposition of the team during the
mission. Figure 17 shows the e�e
t on the mission when
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Fig. 14. Motivational levels for behavior sets during experiment with
spill �nding error. The dashed lines represent the thresholds of
a
tivation of ea
h behavior set.

Fig. 15. Now knowing the lo
ation of the two spills, two R-2 robots
are in the pro
ess of moving their respe
tive spills to the goal
lo
ation.

Fig. 16. Robots delivering spill obje
ts to the goal destination.
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Fig. 17. Typi
al robot a
tions sele
ted during experiment when one
of the robot team members whi
h is moving a spill is removed.
This is one instan
e of many runs of this mission. In this �gure,
the \X" indi
ates the point in time when the 
orresponding robot
was removed from the robot team.

we removed BLUE from the team. Figures 18, 19, and 20
show the 
orresponding motivation, impatien
e, and a
-
quies
en
e levels for the three robots GREEN, BLUE, and
GOLD. The removal of BLUE 
aused GOLD to be
ome
impatient that the right spill was not being moved, whi
h
in turn 
aused GOLD to a
tivate its behavior set to move
the right spill. However, this then e�e
tively removes from
the team the robot that is performing all of the progress
reports, leading the remaining two robots | GREEN and
GOLD | to have to interrupt their spill-moving a
tivities
to o

asionally report the progress. A similar e�e
t 
an be
observed in �gure 21 (with the 
orresponding motivations
shown in �gure 22), when we remove GOLD from the team.

D. Dis
ussion

These experiments illustrate a number of primary 
har-
a
teristi
s we 
onsider important in developing 
ooperative
roboti
 teams. First of all, the 
ooperative team under
ALLIANCE 
ontrol is robust, in that robots are allowed
to 
ontinue their a
tions only as long as they demonstrate
their ability to have the desired e�e
t on the world. This
was illustrated in the experiments by BLUE and GOLD
be
oming gradually more impatient with GREEN's sear
h
for the spill. If GREEN did not lo
ate the spill in a reason-
able length of time then one of the remaining robots would
take over that task, with GREEN a
quies
ing the task.

Se
ondly, the 
ooperative team is able to respond au-
tonomously to many types of unexpe
ted events either in
the environment or in the robot team without the need
for external intervention. As we illustrated, at any time
during the mission, we 
ould disable or remove robot team
members, 
ausing the remaining team members to perform
those tasks that the disabled robot would have performed.
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e, and a
quies
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e levels for be-
havior sets of GREEN during experiment when a team member
that is moving a spill is removed. The dashed lines represent the
thresholds of a
tivation.
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e levels for be-
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thresholds of a
tivation.
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al robot a
tions sele
ted during experiment when
one of the robot team members whi
h is reporting the progress
is removed. In this �gure, the \X" indi
ates the point in time
when the 
orresponding robot was removed from the robot team.
This is one instan
e of many runs of this mission.
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Fig. 22. Motivational levels for behavior sets during experiment
when a team member that is reporting the progress is removed.
The dashed lines represent the thresholds of a
tivation of ea
h
behavior set.

Clearly, we 
ould also have easily in
reased or de
reased the
size of the spill during the mission and the robots would
not be adversely a�e
ted.

Third, the 
ooperative team need have no a priori knowl-
edge of the abilities of the other team members to e�e
-
tively a

omplish the task. As previously noted, the learn-
ing/parameter update system, L-ALLIANCE, allows the
team to improve its eÆ
ien
y on subsequent trials when-
ever familiar robots are present.

Other 
hara
teristi
s of ALLIANCE have also been stud-
ied whi
h show that this ar
hite
ture allows robot teams
to a

omplish their missions even when the 
ommuni
ation
system providing it with the awareness of team member
a
tions breaks down. Although the team's performan
e in
terms of time and energy may deteriorate, at least the team
is still able to a

omplish its mission. Refer to [31℄ for a
deeper dis
ussion of these and related issues.

The primary weakness of ALLIANCE is its restri
tion
to independent subtasks. As it is designed, one has to ex-
pli
itly state ordering dependen
ies in the pre
onditions if
the order of subtask 
ompletion is important. No me
ha-
nism for prote
ting subgoals is provided in ALLIANCE. For
example, 
onsider a janitorial servi
e team of two robots
that 
an both empty the garbage and 
lean the 
oor. How-
ever, let us say that the robots are 
lumsy in emptying the
garbage, and usually drop garbage on the 
oor while they
empty the trash. Then, it is logi
al that the trash should
be emptied before beginning to 
lean the 
oor. Under AL-
LIANCE, this mission 
an be a

omplished in one of three
ways:

1. An expli
it ordering dependen
y 
an be stated in ad-
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van
e between the two subtasks, 
ausing the robots to
automati
ally 
hoose to empty the garbage �rst

2. The robots may fortuitously sele
t to empty the
garbage �rst, be
ause of the parameter settings, or

3. The robots will be ineÆ
ient in their approa
h, 
lean-
ing the 
oor before or during the garbage emptying
task, whi
h leads to the need to 
lean the 
oor again.

Although all of these events lead to the mission being

ompleted, eÆ
ien
y is lost in the third situation, and ad-
ditional expli
it knowledge has to be provided in the �rst
situation. For the appli
ations that have been implemented
in ALLIANCE (e.g. janitorial servi
e, bounding overwat
h,
mo
k hazardous waste 
leanup, 
ooperative box pushing),
this limitation has not been a serious problem. Neverthe-
less, enhan
ing the ALLIANCE a
tion sele
tion me
hanism
to enable more eÆ
ient exe
ution of these spe
ial 
ase situ-
ations without the need for providing additional 
ontrolling
information is a topi
 of future resear
h.

V. Con
lusions

We have presented a fully distributed, behavior based
ar
hite
ture 
alled ALLIANCE, whi
h fa
ilitates fault tol-
erant mobile robot 
ooperation. A number of key 
har-
a
teristi
s of ALLIANCE provide these fault tolerant 
o-
operative features. ALLIANCE enhan
es team robustness
through the use of the motivational behavior me
hanism
whi
h 
onstantly monitors the sensory feedba
k of the tasks
that 
an be performed by an individual robot, adapting the
a
tions sele
ted by that robot to the 
urrent environmen-
tal feedba
k and the a
tions of its teammates. Whether
the environment 
hanges to require the robots to perform
additional tasks or to eliminate the need for 
ertain tasks,
ALLIANCE allows the robots to handle the 
hanges 
u-
idly and 
exibly. This same me
hanism allows robot team
members to respond to their own failures or to failures of
teammates, leading to adaptive a
tion sele
tion to ensure
mission 
ompletion. ALLIANCE further enhan
es team
robustness by making it easy for robot team members to
deal with the presen
e of overlapping 
apabilities on the
team. The ease with whi
h redundant robots 
an be in-

orporated on the team provides the human team designer
the ability to utilize physi
al redundan
y to enhan
e the
team's fault toleran
e. The feasibility of this ar
hite
ture
for a
hieving fault toleran
e has been illustrated through an
example implemented on a physi
al robot team performing
a laboratory version of hazardous waste 
leanup.
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Appendix

A. Proofs of Termination

When evaluating a 
ontrol ar
hite
ture for multi-robot

ooperation, it is important to be able to predi
t the team's

expe
ted performan
e using that ar
hite
ture in a wide va-
riety of situations. One should be justi�ably wary of using
an ar
hite
ture that 
an fail 
atastrophi
ally in some situ-
ations, even though it performs fairly well on average. At
the heart of the problem is the issue of reliability | how de-
pendable the system is, and whether it fun
tions properly
ea
h time it is utilized. To properly analyze a 
ooperative
robot ar
hite
ture we should separate the ar
hite
ture itself
from the robots on whi
h the ar
hite
ture is implemented.
Even though individual robots on a team may be quite
unreliable, a well-designed 
ooperative ar
hite
ture 
ould
a
tually be implemented on that team to allow the robots
to very reliably a

omplish their mission, given a suÆ
ient
degree of overlap in robot 
apabilities. On the other hand,
an ar
hite
ture should not be penalized for a team's fail-
ure to a

omplish its mission even though the ar
hite
ture
has been implemented on extremely reliable robots, if those
robots do not provide the minimally a

eptable mix of 
a-
pabilities. A major diÆ
ulty, of 
ourse, is de�ning rea-
sonable evaluation 
riteria and evaluation assumptions by
whi
h an ar
hite
ture 
an be judged. Certain 
hara
teris-
ti
s of an ar
hite
ture that extend its appli
ation domain
in some dire
tions may a
tually redu
e its e�e
tiveness for
other types of appli
ations. Thus, the ar
hite
ture must
be judged a

ording to its appli
ation ni
he, and how well
it performs in that 
ontext.

ALLIANCE is designed for appli
ations involving a sig-
ni�
ant amount of un
ertainty in the 
apabilities of robot
team members whi
h themselves operate in dynami
, un-
predi
table environments. Within this 
ontext, a key point
of interest is whether the ar
hite
ture allows the team to

omplete its mission at all, even in the presen
e of robot
diÆ
ulties and failure. This se
tion examines this issue by
evaluating the performan
e of ALLIANCE in 
ertain dy-
nami
 environments.

Let us 
onsider realisti
 appli
ations involving teams of
robots that are not always able to su

essfully a

omplish
their individual tasks; we use the term limitedly-reliable
robot to refer to su
h robots. The un
ertainty in the ex-
pe
ted e�e
t of robots' a
tions 
learly makes the 
oop-
erative 
ontrol problem quite 
hallenging. Ideally, AL-
LIANCE's impatien
e and a
quies
en
e fa
tors will allow a
robot team to su

essfully reallo
ate a
tions as robot fail-
ures or dynami
 
hanges in the environment o

ur. With
what 
on�den
e 
an we know that this will happen in gen-
eral? As we shall see below, in many situations ALLIANCE
is guaranteed to allow a limitedly-reliable robot team to
su

essfully a

omplish its mission.

It is interesting to note that with 
ertain restri
tions on
parameter settings, the ALLIANCE ar
hite
ture is guar-
anteed to allow the robot team to 
omplete its mission for
a broad range of appli
ations. We des
ribe these 
ir
um-
stan
es here, along with the proof of mission termination.

We �rst de�ne the notions of goal-relevant 
apabilities
and task 
overage.

De�nition 1: The goal-relevant 
apabilities of robot ri,
GRCi, are given by the set:
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GRCi = faij jhi(aij) 2 Tg

where T is the set of tasks required by the 
urrent mission.
In other words, the 
apabilities of robot ri that are rel-

evant to the 
urrent mission (i.e. goal) are simply those
high-level task-a
hieving fun
tions whi
h lead to some task
in the 
urrent mission being a

omplished.
We use the term task 
overage to give a measure of the

number of 
apabilities on the team that may allow some
team member to a
hieve a given task. However, we 
annot
always predi
t robot failures; thus, at any point during a
mission, a robot may rea
h a state from whi
h it 
annot
a
hieve a task for whi
h it has been designed. This implies
that the expe
ted task 
overage for a given task in a mis-
sion may not always equal the true task 
overage on
e the
mission is underway.
De�nition 2: Task 
overage is given by:

task 
overage(taskk) =

nX
i=1

X
j

�
1 if (hi(aij) = taskk)
0 otherwise

�

The task 
overage measure is useful for 
omposing a
team of robots to perform a mission from an available pool
of heterogeneous robots. At a minimum, we need the team
to be 
omposed so that the task 
overage of all tasks in the
mission equals 1. This minimum requirement ensures that,
for ea
h task required in the mission, a robot is present that
has some likelihood of a

omplishing that task. Without
this minimum requirement, the mission simply 
annot be

ompleted by the available robots. Ideally, however, the
robot team is 
omposed so that the task 
overage for all
tasks is greater than 1. This gives the team a greater degree
of redundan
y and overlap in 
apabilities, thus in
reasing
the reliability and robustness of the team amidst individual
robot failures.
Let us now de�ne the notion of suÆ
ient task 
overage

as follows:
Condition 1: (SuÆ
ient task 
overage):

8(taskk 2 T ):(task 
overage(taskk)) � 1

This 
ondition ensures that, barring robot failures, all
tasks required by the mission should be able to be a

om-
plished by some robot on the team.
Now, we de�ne the notion of an a
tive robot team, sin
e

we 
onsider our robots to be useful only if they 
an be
motivated to perform some a
tion:
De�nition 3: An a
tive robot team is a group of robots,

R, su
h that:

8(ri 2 R):8(aij 2 GRCi):8(rk 2 R):8t:[(Æ slow ij(k; t) >
0)
V
(Æ fast ij(t) > 0)

V
(� is �nite)℄

In other words, an a
tive robot has a monotoni
ally in-

reasing motivation to perform any task of the mission
whi
h that robot has the ability to a

omplish. Addition-
ally, the threshold of a
tivation of all behavior sets of an
a
tive robot is �nite.

Finally, we de�ne a 
ondition that holds in many multi-
roboti
 appli
ations.

Condition 2: (Progress when Working):
Let z be the �nite amount of work remaining to 
omplete
a task w. Then whenever robot ri a
tivates a behavior set

orresponding to task w, either (1) ri remains a
tive for a
suÆ
ient, �nite length of time � su
h that z is redu
ed by
a �nite amount whi
h is at least some 
onstant Æ greater
than 0, or (2) ri experien
es a failure with respe
t to task
w. Additionally, if z ever in
reases, the in
rease is due to
an in
uen
e external to the robot team.

Condition 2 ensures that even if robots do not 
arry a
task through to 
ompletion before a
quies
ing, they still
make some progress toward 
ompleting that task whenever
the 
orresponding behavior set is a
tivated for some time
period at least equal to �. One ex
eption, however, is if a
robot failure has o

urred that prevents robot ri from a
-

omplishing task w, even if ri has been designed to a
hieve
task w.

This 
ondition also implies that if more than one robot
is attempting to perform the same task at the same time,
the robots do not interfere with ea
h others' progress so
badly that no progress towards 
ompletion of the task is
made. The rate of progress may be slowed somewhat, or
even 
onsiderably, but some progress is made nevertheless.

Finally, Condition 2 implies that the amount of work
required to 
omplete the mission never in
reases as a re-
sult of robot a
tions. Thus, even though robots may not
be any help towards 
ompleting the mission, at least they
are not making matters worse. Although this may not al-
ways hold true, in a wide variety of appli
ations this is a
valid assumption. As we shall see, this assumption is ne
-
essary to prove the e�e
tiveness of ALLIANCE in 
ertain
situations. Of 
ourse, this does not pre
lude dynami
 en-
vironmental 
hanges from in
reasing the workload of the
robot team, whi
h ALLIANCE allows the robots to handle
without problem.

What we now show is that whenever 
onditions 1 and
2 hold for a limitedly-reliable, a
tive robot team, then ei-
ther ALLIANCE allows the robot team to a

omplish its
mission, or some robot failure o

urs. Furthermore, if a
robot failure o

urs, then we 
an know that any task that
remains in
omplete at the end of the mission is either a
task that the failed robot was designed to a

omplish, or a
task that is dependent upon the 
apabilities of that robot.

We 
an now show the following:

Theorem 1: Let R be a limitedly-reliable, a
tive robot
team, and M be the mission to be solved by R, su
h that
Conditions 1 and 2 hold. Then either (1) ALLIANCE en-
ables R to a

omplish M , or (2) a robot failure o

urs.
Further, if robot rf fails, then the only tasks of M that
are not 
ompleted are some subset of (a) the set of tasks
rf was designed to a

omplish, unioned with (b) the set of
tasks dependent upon the 
apabilities of rf .

Proof:

First, we show that the 
al
ulation of the motivational
behavior guarantees that ea
h robot eventually a
tivates
a behavior set whose sensory feedba
k indi
ates that the
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orresponding task is in
omplete. From equation 1 in se
-
tion III-D.7, we see that at time t, robot ri's motivation
mij(t) to perform behavior set aij either (1) goes to 0, or
(2) 
hanges from mij(t�1) by the amount impatien
e ij(t).
The motivation goes to 0 in one of four 
ases: (1) if the sen-
sory feedba
k indi
ates that the behavior set is no longer
appli
able, (2) if another behavior set be
omes a
tive, (3)
if some other robot has taken over task hi(aij), or (4) if
the robot has a
quies
ed its task. If the sensory feedba
k
indi
ates that the behavior set is no longer appli
able, we
know either that the task hi(aij) must be su

essfully a
-

omplished, or the robot's sensory system has failed. If an-
other behavior set aik be
omes a
tive in ri, then at some
point task hi(aij) will either be
ome 
omplete, thus allow-
ing ri to a
tivate behavior set aij , or the robot has failed.
If some other robot has taken over task hi(aij), then either
that other robot will eventually a

omplish task hi(aij),
thus eliminating the need to a
tivate task aij , or robot ri
will be
ome impatient with that other robot. Sin
e ri is
a
tive, then we know that impatien
e ij(t) is greater than
or equal to mink(Æ slow ij(k; t)), whi
h is greater than 0.
Therefore, we 
an 
on
lude that an idle, yet a
tive robot
always has a stri
tly in
reasing motivation to perform some
in
omplete task. At some point, the �nite threshold of a
-
tivation, �, will thus be surpassed for some behavior set,

ausing ri to a
tivate the behavior set 
orresponding to
task hi(aij).

We now build upon these observations to prove that ei-
ther the mission be
omes a

omplished, or a robot failure
o

urs.

PART I (Either ALLIANCE su

eeds or a robot fails):
Assume no robot fails. Then after a robot ri has performed
a task w for any period of time greater than �, one of �ve
events 
an o

ur:

1. Robot rj takes over task w, leading robot ri to a
qui-
es
e.

2. Robot ri gives up on itself and a
quies
es w.
3. Robot rj takes over task w, but ri does not a
quies
e.
4. Robot ri 
ontinues w.
5. Robot ri 
ompletes w.

Sin
e Condition 2 holds, we know that the �rst four 
ases
redu
e the amount of work left to 
omplete task w by at
least a positive, 
onstant amount Æ. Sin
e the amount of
work left to a

omplish any task is �nite, the task must
eventually be 
ompleted in �nite time. In the �fth 
ase,
sin
e task w is 
ompleted, the sensory feedba
k of the
robots no longer indi
ates the need to perform task w, and
thus the robots will go on to some other task required by
the mission.

Thus, for every task that remains to be a

omplished,
either (1) a robot able to a

omplish that task eventually
attempts the task enough times so that it be
omes 
om-
plete, or (2) all robots designed to a

omplish that task
have failed.

PART II (In
omplete tasks are dependent upon a failed

robot's 
apabilities):
Let F be the set of robots that fail during a mission, and
AF be the union of (a) the tasks that the robots in F were
designed to a

omplish and (b) those tasks of the mission
that are dependent upon a task that a robot in F was de-
signed to a

omplish.

First, we show that if a task is not in AF , then it will
be su

essfully 
ompleted. Let w be some task required
by the mission that is not in
luded in AF . Sin
e Condi-
tion 1 holds and this robot team is a
tive, there must be
some robot on the team that 
an su

essfully a

omplish
w. Thus, as long as w remains in
omplete, one of these
su

essful robots will eventually a
tivate its behavior set

orresponding to the task w; sin
e 
ondition 2 holds, that
task will eventually be 
ompleted in �nite time. Thus, all
tasks not dependent upon the 
apabilities of a failed robot
are su

essfully 
ompleted in ALLIANCE.

Now, we show that if a task is not 
ompleted, it must be
in AF . Let w be a task that was not su

essfully 
ompleted
at the end of the mission. Assume by way of 
ontradi
tion
that w is not in AF . But we know from Part I that all
tasks w not in AF must be 
ompleted. Therefore, task w

must be in AF .

We 
an thus 
on
lude that if a task is not a

omplished,
then it must be a task for whi
h all robots with that 
a-
pability have failed, or whi
h is dependent upon some task
for whi
h all robots with that 
apability have failed. 2

Note that it is not required here that robot team mem-
bers be aware of the a
tions of their teammates in order
to guarantee that ALLIANCE allows the team to 
omplete
its mission under the above 
onditions. However, aware-
ness does have an e�e
t on the quality of the team's perfor-
man
e, both in terms of the time and the energy required to

omplete the mission. These e�e
ts on team performan
e
are dis
ussed in [31℄.
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