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Digestive system cancer tumors are one of the major causes of cancer-related fatalities;

the vast majority of them are colorectal or gastric malignancies. Epidemiological evidence

confirmed that allium-containing food, such as garlic, reduces the risk of developing

malignancies. Among all compounds in garlic, allicin has been most researched, as it

contains sulfur and produces many second degradation compounds, such as sulfur

dioxide, diallyl sulfide (DAS), diallyl trisulfide (DATS), and diallyl disulfide (DADS) in

the presence of enzymatic reactions in gastric juice. These substances have shown

anti-inflammatory, antidiabetic, antihypertensive, antifungal, antiviral, antibacterial, and

anticancer efficacy, including gastrointestinal (GI) cancers, leukemia, and skin cancers.

Herein, we summarize the therapeutic potential of allicin in the treatment of GI cancers.

Keywords: allicin, gastrointenstinal cancer, therapy, chemical structure, natural compounds

INTRODUCTION

Cancer is a widespread disease, leading to the death of 7.9 million patients annually, accounting
for 13% of all deaths globally (1, 2). It has been estimated that cancer mortality rates will continue
to rise to ∼12 million in 2030 (3). In 1970, developed countries faced higher numbers of reported
cancers (around 85%), compared with developing countries (only 15%) (4). Nonetheless, around
70% of cancer cases have arisen in developing countries (5). The risk of developing chronic
medical conditions has increased, and this trend will be 5-fold greater by 2030 (6). Among all
chronic illnesses, cancer has been considered as the second main cause of death, even ahead of
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cardiovascular diseases (7). The second most prevalent reason
for cancer death has been reported to be gastrointestinal (GI)
cancer (8). In GImalignancies, the involvement of related organs,
including colon, intestine, and esophagus, have been reported
(9). It is noteworthy, several genetic variations in oncogenes,
tumor suppressors, and mismatch repair genes may result in GI
carcinogenesis (10). One significant reason for the pathogenesis
of GI cancer is the imbalance between apoptosis and cellular
proliferation (11). Several external and internal parameters,
including genetic factors, life style (such as alcohol consumption
and obesity), and infection (such as Helicobacter pylori) have a
role in GI cancer pathogenesis (12).

The main health problems caused by gastrointestinal cancers
impose significant burdens on healthcare systems (13). GI
prognosis varies in affected people depending on the progression
of illness at the time of diagnosis. It is worth mentioning that
early diagnosis of GI cancer is important for the improvement
of outcomes of the patients. The present treatments include
surgery, radiation, and chemotherapy, with several components,
including cisplatin, mitomycin, and docetaxel injection (14).

The organic sulfur-containing organosulfur compounds
(OSCs) have been shown to possess antioxidant, anti-
inflammatory, and anticancerous features (15, 16). Studies
in animals have shown that OSCs have the ability to decrease
colon cancer risk by inducing mitotic arrest and apoptosis (17–
19). These compounds are abundant in asparagus, garlic, onion,
and cruciferous vegetables. Recently, given the high content
of flavonoids and OSCs, such as allicin in garlic, scientists
have focused on the efficacy of these compounds in cancer
therapy (20).

Garlic is a plant commonly consumed as a dietary additive
across the world (21). Garlic has a notable and useful impact
due to OSCs like allicin (22). Allicin or diallyl thiosulfinate
are types of OSCs (1% of dye weight of garlic) (23) that are
generally present in garlic, Allium sativum L., with numerous
bioactivities. Allicin can be produced from tissue damage of the
non-proteinogenic amino acid S-allylcysteine sulfoxide (alliin),
which is catalyzed by alliinase enzyme (24). It should be noted
that allicin has antioxidant activity (25) and inhibits the growth
of both bacteria and fungi (26, 27).

ALLICIN CHEMICAL STRUCTURE AND
BIOLOGICAL ACTIONS IN CANCER

Pioneering studies (28) have proposed that two compounds
provide the flavor of garlic distillates, namely diallyl trisulfide
(DATS) and diallyl disulfide (DADS). Cavallito and Bailey (29)
introduced allicin as the most bioactive compound in garlic
(29, 30). Figure 1 shows the allicin structure. Chopping or cutting
the garlic cloves results in allinase activation (29–32). In the
cloves, ∼70% of all thiosulfinates after mechanical cutting and
crushing is represented by allicin (33–35).

The non-proteinogenic amino acid called alliin (S-allyl-l-
cysteine sulfoxide) is the precursor of allicin (36). Alliinase is
an enzyme that hydrolyses alliin and other S-alkyl-l-cysteine
sulfoxides. Alliin hydrolysis results in dehydroalanine and allyl

FIGURE 1 | The chemical structure of (A) allicin and (B) alliin.

sulfenic acid production. One allicin molecule is generated
secondary to the spontaneous condensation of two allyl sulfenic
acid (24, 37). Alliin is present in ramsons (Allium ursinum) and
garlic (Allium sativum) (38). Interestingly, onion (Allium cepa)
cannot produce alliin, but synthesize its isomer isoalliin [trans-
(+)-S-(1-propenyl)-l-cysteine sulfoxide] (39). The biological
route of alliin synthesis has yet to be clarified. Two feasible
biosynthetic pathways have relied on radioactive labeling studies
(Figure 2) (39). Following the chemical synthesis of allicin, in
vitro protocols have been published for its enzymatic production
(40, 41). The substrate alliin is extracted from garlic gloves or
synthesized from cysteine by allyl bromide alkylation followed by
hydrogen peroxide oxidation (42). In general, allicin purification
is incomplete, as related compounds such as ajoene, polysulfane,
and vinyldithiine are present due to high reactivity and reduced
thermal stability of allicin (43). Pure allicin is stable in dilute
aqueous solutions at −70◦C preparations for several years (no
loss for 2 years) (44).

In 2004, Miron et al. (41) described a simple method for
the preparation of 3(H)-labeled allicin. Alliin is the key sulfur
composition in either raw or powdered garlic. Cloves of garlic
have about 8 g/kg of alliin. Furthermore, the dehydration
reaction, absent loss of ingredients, results in producing 20–25
mg/g of alliin in the powdered garlic. The powdered garlic
possesses maximally 10 g/kg of alliin, representing reduced alliin
content following the dehydration process. Crushed fresh garlic
contains around 37 mg/g of allicin (41). Diallyl thiosulfinate
(allicin), as the main constituent of solvent extracted garlic,
is dehydrated, resulting in the formation of two isomeric
disulfides via the transformed rearrangement. After a day, diallyl
monosulfide, DADS, DATS, and sulfur dioxide are produced
as the main results of this reaction (45). Allyl and methyl
sulfides are the main components of commercial garlic oils.
The allicin is degraded and converted rapidly into vinyldithiins,
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FIGURE 2 | Allicin biosynthesis: Two biosynthetic routes result in S-allylcysteine. The observation of 14C-labeled S-allylcysteine following feeding plants with

14C-labeled serine and applying several alkyl mercaptans led Granroth to posit that serine is one potential substrate for S-allylcysteine biosynthesis. Another pathway

resulted from GSH to S-allylcysteine. The allyl-group source has yet to be determined. S-allylcysteine, after oxidization, is converted to alliin as an “inactive” precursor

of allicin. Enzymatic hydrolysis of alliin produces allyl sulfenic acid, which can be condensed spontaneously to allicin. This figure adapted from Borlinghaus et al. (24).
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ajoenes, and DADS. This process has been influenced by various
conditions, including temperature, pH, and concentration (46).
Allicin can form DADS (a lipid-soluble oligosulfide) in the
presence of heated aqueous media (47). The distinctive smell of
garlic cloves, which can affect a person’s breath, is due to an allyl
mercaptan compound. The complexation of allicin with cysteine
(Cys) in the blood results in allyl mercaptan generation (48).
The key pathways of medicinal (non-enteral and non-topical)
function of DADS or allicin are allyl mercaptan, or a subsequent
metabolite (48). The allicin content has been measured by the
high-performance liquid chromatography (HPLC) method in 24
botanical characteristics of the garlic ecotypes in Iran (49). The
content of allicin ranges from 0.16 to 13.0 mg/g. The correlation
between the content of allicin and ecological condition has
been denied.

In 1992, Lawson and Hughes (50) examined the impact of
several factors, including post-acidification neutralization, pH
value, temperature, and the time on the thiosulfinate released
from garlic cloves and powder. In the pH values of 4.5–5.0 (the
optimum value), all dipropenyl thiosulfinates like allicin were
formed. No thiosulfinate was present at pH < 3.6. Another study
by Yu and Wu (51) focused on the pH effects on the flavor

compositions formed from allicin. Their study revealed that the
maximum levels of 2-vinyl-1,3-dithiin and 3-vinyl-1,2-dithiin
(isomeric cyclic ingredients) are obtained at pH 6.5, whereas
DAS, methyl allyl disulfide, DADS, and DATS were formed
maximally at pH 9.0.

Allinase acts on alliin to form allicin. Allicin can be rapidly
metabolized into S-allylmercaptocysteine, diallyl sulfide (DAS),
S-allylcysteine, DADS, DATS, vinyl dithiines, and ajoene (52–56).
The enhanced allicin formation was accompanied by elevation
in pH (4.0–6.0) of the macerating medium (57). Furthermore, a
rise in pH level (4.0–6.0) contributed to upward rate of allicin
decomposition (57). Eating or biting raw garlic leads to feeling
the sensation of burning and pain on the tongue or lips.

As a reactive sulfur species (RSS) with oxidizing
characteristics, allicin can oxidize thiols in cells, e.g., Cys
residues and glutathione (GSH) (58). A greater pool of oxidized
GSH will result in a higher potential of cellular redox. The
protein thiol oxidation may lead to alterations in protein
structure, for instance, by the formation of a disulfide bond (for
details, see Figure 3). Redox-stimulated structural alterations in
proteins may result in gain- or loss-of-function. These effects
are established for the plant protein NPR1, a critical protein in

FIGURE 3 | Summary of allicin and cellular thiols: redox chemistry of allicin shows that (1) it can react with cellular thiols such as Cys-containing proteins and GSH. Its

reaction with proteins results in formation of S-allyl-mercapto-proteins (2) and allyl sulfenic acid (3). S-allyl-mercapto-proteins can react with other proteins via disulfide

bond-stabilized complexes (4) or generate intramolecular disulfide bonds (5). Both reactions result in the elimination of allyl mercaptan (6). Protein disulfide bonds are

reducible by cellular GSH, resulting in S-glutathionyl-mercapto-proteins (7). To omit the glutathionyl residues from the proteins, another GSH is required. Additionally,

allicin reacts with GSH. This interaction results in S-allyl-mercapto- GSH (8) and allyl sulfenic acid (3). S-allyl-mercapto-GSH can undergo a thiol/disulfide exchange

reaction with an additional GSH to form allyl mercaptan and glutathione disulfide (GSSG) (6). Allyl sulfenic acid (3), formed upon direct reactions of thiols and allicin,

can react with proteins to form S-allyl-mercapto-proteins (2), with GSH to form S-allyl-mercapto-GSH (8), with allyl mercaptan (6) to DADS (9), or with additional allyl

sulfenic acid (3) to produce allicin de novo. This figure adapted from Borlinghaus et al. (24).
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pathogen-induced immunity. These properties are also observed
in yeast (Saccharomyces cerevisiae) for YAP1 as a redox-sensitive
transcription factor organizing the response of oxidative stress
(59, 60). YAP1 is analogous to the redox modulated mammalian
Nrf2/Keap1/ARE system (61).

Allicin and DADS stimulate the sensory neurons that are
sensitive to allyl isothiocyanate and activate capsaicin-sensitive
perivascular sensory nerve ends, which can cause vasodilation
(62). Miron et al. (41) revealed that TRPA1 (62) and TRPV1
[both are the temperature-activated ion channels belonging to
the family transient receptor potential (TRP)] were activated
by raw but not baked garlic. These thermo-TRPs have been
shown in pain-sensing neurons with a role in innervating the
mouth. It was reported that TRP1 and TRPV1 activation was
due to unstable component of allicin, a reason of pungency
of garlic. During storage the amount of allicin in organic
solvents can be affected by temperature. Its loss has been
reported very low at temperatures of −16 and 6◦C when
comparing with storing at room condition (43). When stored
in ethyl acetate at room temperature, its amount reduced to
10% within 3 days. Nevertheless, it took nearly 13 days in
methanol. Consequently, the allicin is more stable in methanol
than ethyl acetate. In a study by Iberl et al. (63), it has been
shown that allicin had stability in solvents due to hydrogen
bonding. Likewise, in 1992 Lawson and Gardner (64) focused on
several characteristics of garlic productions, including stability,
bioavailability, and composition (two non-sulfur and 14 sulfur
ingredients). Under simulated GI and in vivo conditions, the
availability of allyl thiosulfinates (mainly allicin) has been
examined. At a temperature of −80◦C, the stability of allyl
thiosulfinates of blended fresh garlic was minimally for 2 years.
The enteric-coated garlic tablets can release the dissolution
of thiosulfinates more than 95%. It is worth mentioning that
the allyl thiosulfinate bioavailability in these tablets and breath
was equal to the crushed fresh garlic. At ambient temperature,
the stability of S-allylcystein lasted 12 months. In order to
measure the stability, thiosulfinates of blended garlic with
no chosen condiment and at the temperature of 4◦C, were
evaluated. During 12 days, the amount of thiosulfinates did
not significantly decrease. Moreover, drying the garlic at 60◦C
could not affect the alliin although after drying, only a 4%
yield loss was reported for allicin, dimethyl thiosulfinates,
and allyl methyl thiosulfinates. Nevertheless, around 75%
yield loss for each 1-propenyl thiosulfinates demonstrated that
the drying step resulted in destroying a large amount of
isoalliin (50).

The function of the immune system and cancer are closely
related. In a primary implantation study (1960), Dipaolo
et al. incubated the mouse-tumor explants in allicin prior
to implantation in healthy mice. In order to compare the
control with allicin-treated explants, the tumor growth has
been investigated in both groups. The mice with allicin-
incubated tumor explants did not reveal further explant
growth (65). In molecular studies, the allicin impact has
been evaluated on the malignant cancer cells. Clearly the
anticancer effect of allicin was owing to the apoptosis
induction (66). This is a reason for the death of cell,

in both manners of caspase-dependent (67) or caspase-
independent (68). In addition to caspase activity, apoptosis-
inducing factor (AIF) is another leading factor, conducting
the DNA-laddering apoptosis, which triggers cell death caused
by allicin.

In a study by Bat-Chen et al. (23), it has been shown that
nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) has
a function in allicin-induced apoptosis. In 2008, Loboda et al.
suggested the “Janus face” of Nrf2 (69), it means that the Nrf2
has both antiapoptotic and proapoptotic role. As an antiapoptotic
factor which is mostly reported, it can regulate the Bcl-2 family
(antiapoptotic proteins) expression like Bcl-xL and Bcl-2 (70, 71).
Furthermore, in the immune cells, allicin affects the extracellular
signal-regulated kinase 1/2 (ERK1/2). Thus, these kinases can
play a substantial role in allicin-induced apoptosis (26, 66).

Although this section briefly explains the allicin effects on
the cancerous cells, multiple allicin-targeted key factors are also
summarized. The instability of allicin is one problem, which
prevents its chemical applications. In the circulatory system,
the accessible thiols can react with allicin and decompose
to other compounds. Therefore, this is unlikely to use it as
the pharmaceutical factor at the moment. Nevertheless, the
possible applications of garlic in the nutriceutical field, having
health benefits have been frequently reported in numerous
medical areas, especially for the prevention of cancer and
therapeutic approach. The way to address the problem with
stability is to couple the alliinase to a delivery system and
also to supply the stable substrate of alliin, which can generate
allicin at certain epitope positions under in situ conditions.
Accordingly, antibody-mediated cancer cell/alliinase coupling
has been considered a promising approach to prevent various
cancers (72). Figure 4 shows some biological actions of allicin.

Protein kinase activated by adenosine monophosphate
(AMP) is a conserved energy sensor with a critical function
in modulating lipid and protein metabolism (73). AMP-
activated protein kinase (AMPK)-p38-peroxisome proliferator-
activated receptor gamma coactivator (PGC)-1α axis regulates
energy homeostasis and sustains the survival of cancer
cells in glucose-limiting scenarios. As a molecular switch,
AMPK increases glycolysis by phosphofructokinase (PFK2)
activation and promotes mitochondrial metabolism of non-
glucose carbon sources by maintaining the level of cellular
ATP. Chaube et al. (74) showed that AMPK could facilitate
oxidative metabolism by promoting mitochondrial biogenesis
and idative phosphorylation (OXPHOS) capacity by controlling
the expression of PGC-1α via p38 mitogen-activated protein
kinase (MAPK) activation (74, 75). It has been shown that
aged garlic extract (AGE) stimulates the AMPK activation in
adipose tissues, liver, and gastrocnemius muscles in a type-
2 diabetes model (76). In addition, AGE has been shown to
mediate AMPK phosphorylation in the liver in an atherosclerosis
mouse model (77). To date, these studies have shown that AGE
increased AMPK activity in several animals and tissue models,
though the mechanisms of AGE-mediated AMPK activation
have yet to be deciphered. It has been well-established that
AMPK-mediated phosphorylation can activate tuberous sclerosis
complex 2 (TSC2), which downregulates the mechanistic target
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FIGURE 4 | Various biological action of allicin.

of rapamycin (mTOR) (78). Chu et al. (79) reported that allicin
reduced the PI3K/mTOR signaling pathway, cytoplasmic p53,
and the Bcl-2 level and elevated Beclin-1 signaling pathways
AMPK/TSC2 expression in Hep G2 cells.

ALLICIN AS POTENTIAL THERAPEUTIC
OPTION IN DIGESTIVE SYSTEM CANCERS

Allicin as Potential Therapeutic Option in
Colon Cancer
Experiments in human colon carcinoma cell lines demonstrated
that chemopreventive activities of allicin are associated with
maintenance of mitochondrial membrane, regulation of
intracellular redox, and cell proliferation (15). In addition,
allicin leads to G2/M arrest, mitochondrial membrane
potential disruption, and intracellular GSH modulation
(80). A transient reduction in intracellular GSH content has been
shown in response to allicin (53). While the mechanism and
function of OSCs have not been completely identified, evidence
corroborates that several targets including c-Jun N-terminal
kinase (JNK)/MAPK, p38, and ERK1/2 expression along with
Phase 2 detoxifying enzyme gene are involved (81). A leucine
zipper transcription factor referred to as Nrf2 is a regulator
of Phase 2 detoxifying enzymes and antioxidant proteins (82).
Nrf2 is involved in several cytoprotective aspects including
anticarcinogenicity, anti-inflammation, and neuroprotection.
Nrf2 normally is cytoplasmic agent. In order to activate the Nrf2,
an interaction should occur between Nrf2 and Kelch-like ECH
associating protein 1 (Keap1) as actin-binding protein, and then

it is degraded rapidly via ubiquitin–proteasome pathway. Nrf2,
in turn, dissociates from Keap1 when the Nrf2–Keap1 complex is
targeted by electrophilic insults or reactive oxygen species (ROS)
signals. Consequently, the stabilized Nrf2 undergoes nuclear
translocation to trans-activate the target genes (83). The target
genes of Nrf2 include GSH-generating enzymes, antioxidant
proteins, and Phase 2 detoxifying enzymes. Accordingly, the
chemopreventive activities associated with allicin can affect the
Nrf2 (23).

In order to isolate active allicin, Bat-Chen et al. (23)
introduced a simple and novel approach. They found allicin is
a compound with stable, amenable features, which was soluble
in water (23). Moreover, they evaluated how allicin affected the
division and proliferation of colon cancer cell lines (Caco-2,
HT-29, LS174T, and HCT-116) and investigated the essential
pathways. It has been reported that the allicin treatment leads
to HCT-116 apoptosis as revealed by higher level of hypodiploid
DNA, enhanced levels of bax as well as upward trend of
mitochondria-to-cytosol release of cytochrome c, and Bcl-2
decline. Moreover, allicin can induce Nrf2 translocation to HCT-
116 cell nucleus. When Nrf2 was knocked down via siRNAs,
it considerably had effect on the allicin potential to inhibit the
HCT-116 proliferation. In colon cancer cells, Nrf2 is suggested to
be a key mediator that contributes to allicin-induced apoptotic
death (23).

A specific characteristic of allicin is rapid metabolization in
the blood samples of humans under in vitro conditions (43) and
of rats under in vivo conditions (84). Notably, it is debatable
whether distant targets from the GI system (such as endometrial
or mammary tissues) can be directly affected by allicin. However,
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the high allicin potential in influencing various metabolic routes
with regard to its rapid metabolism (85), suggest that the wide
range of beneficial health impacts can be attributed to the
allicin metabolites and not allicin itself. Indeed, several such
metabolites act as anticancer agents. Some studies addressed
these chemical compositions, such as S-allylmercaptocysteine
(54), DAS, DADS, and DATS (55, 86), ajoene (52, 87), and S-
allylcysteine (56), which are different according to the agent
and the experimental model. Recent studies (88) have shown
that the human liver has the ability to produce allicin from
DADS through liver microsomes. Hence, although allicin is
rapidly removed from the bloodstream, its metabolites are
capable of reforming it through the interconversion process
and, consequently, act intracellularly. The exact mechanisms,
whereby allicin has an influence on different cellular systems, are
unclear. Allicin also has a role in scavenging hydroxyl radicals
(89, 90) and inhibiting the production of superoxide through
the granulocytes activated by phorbol ester in human beings
(91). Furthermore, allicin can affect numerous cellular proteins
by reacting with thiol-containing compounds (85, 89, 92). For
instance, in adenocarcinoma cell line, it has been proposed
that the allicin selectively blocks the conversion of the GSH-
dependent prostaglandin H2 to the prostaglandin E2 isomerase.
In contrast, the results of another study propose that an intense
increase in fructose 1,6-bisphosphatase activity of chicken liver
has been observed in the presence of allicin (93). Because crude
garlic extracts contain numerous active substances, including
OSCs with varying stability and biological activity, detailed
mechanistic studies of the effects produced by individual
chemically defined garlic components on tumor cell proliferation
are of great importance. There have been some reports over
allicin compounds, which affect various signaling pathways and
cellular metabolic including: protein phosphorylation, mitogenic
machinery, calcium transport, and hormone metabolism, and
responsiveness (94). Herein, a question regarding the allicin
remains unanswered, whether it is crucial for efficient impacts
of garlic extract generally, or for anticancer activities particularly
(43, 95). Additionally, since a stable and purified allicin
preparation is available (96), comparing the preparation activity
with crude garlic aqueous extract is possible.

In vitromodel study determined whether the antiproliferative
effect reported for garlic is due to pure allicin (53). Allicin had
an inhibitory role in the proliferation of endometrial (Ishikawa),
colon (HT-29) and human mammary (MCF-7) cancer cells
[half maximal inhibitory concentration (IC50) = 10–25µM].
In three experiments on primary human fibroblast line, two
tests exhibited the same reaction to allicin (IC50 = 16–40µM),
although the result of third line almost was not affected by this
ingredient. Furthermore, the similar potency, which has been
observed in mere allicin and garlic powder extracted water with
equivalent concentrations of allicin, proposing that, allicin has
an antiproliferative role in the extract. The cell accumulation in
the G2/M and G0/G1 cell cycle phases (MCF-7 cells) leads to
growth inhibition, and not via a marked elevation in cell death.
The allicin is a contributing factor to transient reduction in the
level of GSH, according to cell type, the kinetics and magnitude
of which were significantly different. It is worth noting that there

was a significant correlation (r = 0.75) between the extent of
reduction in GSH levels and allicin-induced growth inhibition.
All of the above-mentioned data suggest that the allicin is a major
antiproliferative factor in the water-soluble garlic formulations,
probably due to transiently intracellular GSH depletion due to
allicin activity (53).

Signal transducer and activator of transcription-3
(STAT-3) regulates various processes, including cytokine
signaling pathways, cell proliferation, and apoptosis through
phosphorylation by multiple ligands (97). The activation of
STAT-3 is an initiator to transcript the target genes, such as Bcl-
xL, Mcl-1, p21, and Bcl-2, acting in cell proliferation and survival
(98). In human cancer cells, the activation of STAT-3 contributes
to persistent STAT-3 target gene activation, which can stimulate
some pathways like angiogenesis, apoptosis prevention, and
cell growth, thereby driving tumorigenesis. Furthermore, it has
been suggested as a key factor explaining the fate of intestinal
epithelial cells during colitis and colitis-associated colorectal
cancer (CAC) (98). The inhibition of STAT-3 signaling leads to
induction of apoptosis in CAC cells via the mitochondria and
particularly Bcl-2 modulation (99).

In a colorectal cancer mouse model, Li et al. (100)
examined the allicin effect on azoxymethane/dextran sodium
sulfate (AOM/DSS) and investigated the underlying possible
mechanism. They reported that the allicin could have in vivo
inhibitory effect on the tumorigenesis of colon by the AOM/DSS
in mice. Moreover, a study revealed that allicin leads to apoptosis
induction and suppressing the HCT-116 cell proliferation and
survival under in vitro conditions. In addition, several studies on
the molecular mechanism have focused on the STAT3 signaling
suppression. Therefore, these data support the role of allicin as
a potential favorable supplement for human colorectal cancer
(CRC) (100).

In another study, allicin effects were tested on mouse
fibroblast (3T3), human umbilical vein endothelial cell
(HUVEC), human lung epithelium carcinoma (A549), human
colon carcinoma (HT29), and human breast cancer (MCF7) cells
(101). They performed the standard methyl thiazol tetrazolium
(MTT) test to analyze the allicin toxic effects on the cell viability
and 3H-thymidine incorporation in the cell proliferation.
To measure the reactive species and GSH pool, they used
monobromobimane and 2′,7′-dichlorofluoresceine-diacetate,
respectively. In order to estimate apoptosis, the YO-PRO-1
iodide staining method was performed. Allicin lessened the cell
viability and proliferation dose-dependently. In the bimane test,
cells treated with allicin showed a reduction in fluorescence,
which was probably evidence of GSH oxidation. Different allicin
sensitivity was seen for the tested cell lines in terms of the GSH
oxidation, cell viability, and proliferation. Among the studied
cells, the MCF-7 and 3T3 cell lines revealed a higher rate of
apoptosis in comparison with other cell lines. Based on the data,
sensitivity and responses to allicin can be different in various
mammalian cell lines (101).

There is evidence that allicin inhibits cancer progression
via some mechanisms (102), including cell cycle arrest (80,
103), induction of apoptosis (66, 67, 103–106), the histone
acetylation induction (107), and the angiogenesis suppression
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(108). Accordingly, apoptosis induction mediated via allicin has
been also displayed on some human colonic cancerous cells (HT-
29 and Caco-2 cell lines) (23, 67, 68). Also, it was confirmed that
incubation of HT-29 cells together with garlic extract enriched by
thiosulfinate within 24 h could provoke the apoptosis induction
in the cells. Moreover, allicin can be considered as a promiscuous
agent because of having other significant pharmacological
affects, including antimicrobial and cardiovascular efficacies
(109). However, promiscuity as versatility might be a benefit
for cancerous chemotherapeutic factors due to the complex
tumor pathogenesis, including defects in various signaling
pathways and checkpoints. Moreover, allicin affects different
signal transduction pathways, which suggests that combining
this lyophilized garlic extract with mechanistically individual
chemotherapeutic drugs could have beneficial effects. In
fact, combinatorial therapy with natural compounds could
pave the promising way in cancer therapies (110–112).
Additionally, this garlic extract due to its pharmacological
safety has been offered to be applied lonely for cancer
prevention and in addition with chemotherapy agents for cancer
treatment (113).

Perez-Ortiz et al. (104) provided evidence for co-adjuvant
regimes in treating colorectal tumors by introducing
consumption of Allium sativum extract enriched by thiosulfinate
combined with chemotherapy drugs [5-fluorouracil (5-FU)
or oxaliplatin] on CRC cell viability (Caco-2 and HT-29).
Furthermore, they presented a decline in economic points and
monotherapy dosage, which can be achieved by this novel
combined therapy. The thiosulfinate-enriched garlic extract
increased the cytotoxic effects of oxaliplatin and 5-FU (500µM)
on HT-29 and Caco-2 cells more effectively compared to
standard oxaliplatin and 5-FU drugs (114). Table 1 shows the
therapeutic effects of allicin on GI cancers.

Allicin as Potential Therapeutic Option in
Hepatocellular Carcinoma
For several decades, allicin has been applied clinically because
of its different roles, such as antimicrobial, anti-inflammatory,
cardiovascular protective, and immunity boosting effects
(128–130). Earlier studies have found that allicin not only
inhibits the growth of cancerous cell but also induces cell
apoptosis in different tumors amongst are gastric carcinoma,
glioblastoma, breast cancer, and hepatocellular carcinoma
(HCC) (131, 132). Notably, allicin increases the sensitivity of
CRC cells to chemotherapeutic agents (CPT-11) in vitro (116).
However, the impact of allicin on chemosensitivity efficacy in
vivo and probable molecular mechanism for the HCC treatment
is still unknown.

The main challenges, which limit chemotherapeutic efficacy
in HCC, are hepatic dysfunction and drug resistance (125).
It has been shown that allicin has been an ideal choice to
increase the effects of chemotherapy agents in HCC because
of its hepatoprotective and anticancer impacts. Confirmatory
results by Zou et al. (125) highlighted that allicin improved
cytotoxic effects of 5-FU in HCC cells as a promising
chemotherapy regimen. In vivo experiment in nude mice showed

that the combination of allicin (every 2 days for 21 days;
5 mg/kg/day) and 5-FU (5 consecutive days; 20 mg/kg/day)
dramatically inhibited the HCC proliferation and revealed
highly apoptotic impacts in HCC xenograft tumor model in
comparison to 5-FU alone. Furthermore, allicin and 5-FU
combination therapy enhanced the ROS level in the cell, activated
caspase-3 and poly(ADP-ribose) polymerase (PARP), lessened
the mitochondrial membrane potential (19m), and decreased
Bcl-2 expression in HCC cells in comparison to treated cells
with DMSO, allicin, and 5-FU alone. In addition, antioxidant N-
acetylcysteine (NAC) as ROS inhibitor could block enhancement
of active PARP and caspase-3 and reduced the HCC cell
hypersensitivity to the 5-FU created by allicin. In conclusion, for
the first time, this research depicted that allicin had a synergistic
effect with 5-FU in the HCC cell sensitization to the induced cell
death via the mitochondrial pathway mediated by the ROS (125).

P53 is a tumor suppressor protein and takes part in multiple
biological processes, such as carcinogenesis, mutation, exogenous
or endogenous injury, and several cell signaling transduction,
which regulate cell death and viability (133). Some reports
have indicated that the p53 protein level controls the various
death process, such as apoptosis (133), autophagy (134), and
necrosis (135). Chu et al. (126) understood that the allicin
significantly activated caspase-dependent and -independent
apoptotic pathways in human hepatoma Hep 3B cells (p53
knocked down cells) by ROS upregulation. In the earlier study,
Chu et al. similarly confirmed that allicin activated cell death
via autophagy mechanism mediated by p53 in human hepatoma
Hep G2 [p53(wild type)] cells. Collectively, these findings
not only proposed allicin-stimulated cell death in HCC cells
via different mechanism (autophagy or apoptosis), but also
promised a new supplementary gene-based treatment approach
to overcome the apoptosis resistance in tumor cells (126).
As mentioned before, allicin induces cell death due to the
autophagolysosome establishment in Hep G2 cell line, which was
evidenced by enhancement of monodansylcadaverine expression
(autofluorescent drug accumulating in autophagolysosome).
Also, mitochondria destruction could be happened in a
time-dependent manner by LC3-II colocalization (autophagy
biomarker) and MitoTrackerRed fluorescent dye (mitochondria
tracker, Waltham, MA, USA). Allicin enhanced the expression
of Bad, Beclin 1 (BECN1), TSC complex subunit 2 (TSC2),
phosphorylated-AMPK, and Atg7. In contrast, it reduced
the amounts of cytoplasmic p53, phosphatidylinositol 3-
kinase/mTOR (target of rapamycin in mammals), and Bcl-
xL and p-Bcl-2 in the Hep G2 cells. In detail p53-mediated
autophagy via allicin in liver malignant cells was through
TSC2 and phosphorylated-AMPK signaling pathway activation,
mTOR inhibition and suppression of cytoplasmic p53 apoptotic
pathways. Furthermore, allicin could not regulate the levels
of caspases (3, 8, 9) in Hep G2 cells and stimulated caspase-
dependent apoptosis. Allicin-induced cell death in HepG2
cells was facilitated by mitochondrial pathway of death
through a decrease of 1Ψm and mitochondrial depolarization.
Additionally, the 3-methyladenine 3-MA, inhibitor of autophagy
pretreatment could prevent the dotty-cluster of LC3-II–FITC and
block autophagy vesicles and mitochondria colocalization. Also,
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TABLE 1 | Therapeutic effects of allicin on GI cancers.

Type of allicin Type of

cancer

Dose (s) Effects Model Cell line References

Allicin Colon 3 and 6µg/ml Down-regulated the mRNA expression

level of VEGF, uPAR, and HPA

In vitro LoVo (115)

Allicin Colon 4 and 8 mg/L Showed Antiproliferation properties and

enhanced the cytotoxicity of CPT-11

In vitro LoVo (116)

Allicin Colon 1–50µg/ml for 24, 48, and

72 h

Through modulating Nrf2, Induced

apoptosis and increased the expression of

Bcl-2 and release of cytochrome c

In vitro LS174T, HT-29,

Caco-2, and

HCT-116

(23)

Allicin Colon 10–25µM Inhibited tumor cell growth In vitro HT-29 (53)

Allicin Colorectal Mice model: 48 mg/kg to

achieve 5 g/day; HCT-116

cells: 25µM for 24 h

Prevents tumorigenesis via inhibiting the

STAT3 signaling pathway activation

In vivo and in

vitro

HCT-116 (100)

Garlic juice and

synthetic allicin

Colon Up to 1.2mM Decreased cell proliferation and viability In vitro HT29 (101)

Allicin Colon 2.5, 5, 10, 25, 50, 75, 100,

and 200µg/ml

Promoted the effects of 5-FU and

oxaliplatin against cancer cells

In vitro Caco-2 and HT-29 (114)

Garlic extract

supplemented with

garlic powder

Colon 30, 100, 300, and

100µg/ml

Showed a dose-dependent manner of

tumor cell growth inhibition

In vitro Caco-2 (91)

Allicin Pancreatic 10 mg/kg Increased CD4+T, CD8+T, NK cell, and

serum IFN-γ

In vivo – (117)

In situ generated allicin Pancreatic Alliin (20–200µM) Increased caspase-3 and p21 expression,

DNA fragmentation, and cell cycle arrest

In vitro MIA PaCa-2 (103)

Allicin and MT100 Pancreatic 20, 50, and 200µM Cancer cells showed lower

chemoresistance to allicin and MT100

In vitro AsPC-1, BxPC-3,

Capan-1, Panc-1,

and KPC

(118)

Allicin Gastric 15–120µg/ml for 72 h Promoted release of cytochrome c,

expression of 3, −8, and −9 and

activation Bax and fas

In vitro SGC-7901 (106)

Allicin Gastric 0.1, 0.05, and 0.016 mg/ml stimulated apoptosis and suppressed

telomerase activity

In vitro SGC-7901 (119)

Allicin Gastric 3, 6, and 12 mg/L Inhibited cell proliferation and induced

apoptosis

In vitro SGC-7901 (120)

Allicin Gastric 3, 6, 9, and 12µg/ml Induced cell cycle arrest and up-regulated

p21WAF1 and p16INK4 genes

In vitro MGC-803 and

SGC-7901

(121)

Allicin Gastric 0.1, 1, and 10µg/ml Via modulating cleaved caspase-3 and

p38, enhanced apoptosis

In vitro BGC-823,

MGC-803, and

SGC-7901

(122)

Allicin Gastric NA Increased Bax and Fas expression and

decreased Bcl-2 expression level

Human (123)

Ajoene analogs Esophageal 10µM for 16 h Inhibited cell proliferation, induced cell

cycle arrest, and caspase-3 activation

In vitro WHCO1 (124)

Allicin Hepatocellular 5 mg/kg/day, every 2 days

for 3 weeks in vivo; 0, 1, 2,

4, 8, 10, 16, 20, 32, 40, and

64µg/mL for SK-Hep-1; 0,

1.25, 2.5, 5, 10, 20, 40, 80,

and 160µ µg/mL for

BEL-7402

Promoted caspase-3 and PARP, and

down-regulated Bcl-2

In vivo and in

vitro

SK-Hep-1 and

BEL-7402

(125)

Allicin Hepatocellular 0, 15, 20, 25, 35, 40, and

50µM

Decreased MMP and Bcl-2, and increased

Bax, AIF, Endo G, caspase-3,−8, and−9

In vitro Hep 3Band Hep

G2

(126)

Allicin (synthesized) Hepatocellular 35µM for 0.5, 1, 3, 6, and

12 h

Induced p53-mediated autophagy,

decreased p53, the PI3K/mTOR signaling,

and Bcl-2. Increased the expression of

AMPK/TSC2 and Beclin-1

In vitro Hep G2 (79)

Hepatic-targeted

polybutylcyanoacrylate

nanoparticles of diallyl

trisulfide

Hepatocellular NA Decreased PCNA and Bcl-2 proteins In vivo and in

vitro

HepG2 (127)
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3-MA suppressed the allicin-stimulated upregulation of Beclin-1,
TSC2, Atg7, and GRP78; however; it induced caspase-3 levels.
Therefore, garlic-derived allicin controls autophagy via induction
of several potential strategies, which makes it a considerable
potential chemopreventive factor for liver cancer therapy (79).

The garlic-isolated allicin and other OSCs contain allylthio
group in their structure. Allylthio class is recognized as a
pharmacophore with different biological activities (136). Based
on the study, different K-compounds (derivatives of 3-alkoxy-
6-allylthiopyridazine) were produced, and their bioactivities
were examined in the animals. According to the results,
different derivatives not only possessed proper hepatoprotective
activities on aflatoxin B1-treated rats and carbon tetrachloride-
treated mice, but also exerted chemopreventive actions in rat
hepatocarcinoma cells. The other novel pyridazine derivatives
(sulfur-substituted compounds) in which the 3- alkoxy-6-
allylthiopyridazine was replaced by sulfur (S) and the oxygen site
was at the 3-position, were tested in vitro. Among them, Thio-K6,
presented higher presented higher chemopreventive activity than
K6 in hepatocarcinoma cells (SK-Hep-1) (136). Taken together,
an important issue in the biological activities of garlic-derived
OSCs might be related to the number of sulfurs.

Allicin as Potential Therapeutic Option in
Gastric Cancer
Allicin decreased the viability of SGC-7901 cells (human
gastric adenocarcinoma cell line) dose-dependently and time-
dependently, which was evidenced with the help of the MTT
assay. Furthermore, allicin decreased the cell viability through
apoptosis induction in cancerous cells, confirmed by Rh123 and
propidium iodide staining, transmission electron microscopy,
alternations in the mitochondrial membrane potential, and the
Annexin V/FITC assay. Following allicin treatment in tumor
cells, cytochrome c discharged from mitochondria and co-
expression of bax and fas upregulated caspase-3, -8, and -9 levels.
These molecular events were evaluated by theWestern blot assay,
immunocytochemistry, and quantitative reverse transcription
PCR (Q-RT-PCR). Allicin treatment co-activated extrinsic and
intrinsic apoptotic routes (respectively, Fas/FasL-mediated and
mitochondrial pathways) in SGC-7901 tumor cells. Allicin
should be further evaluated as a great potential agent in cancer
management (preventive or therapeutic factor) in the control of
gastric malignancies and other types of tumors (106).

Allicin can result in G2/M cell cycle arrest followed by cell
apoptosis induction. The cause of allicin-induced apoptosis is
associated with reduced telomerase activity dose- and time-
dependently. By degradation of telomerase activity, telomere
becomes shortened and mitotic process is arrested, all of
which results in apoptosis (137). The Bcl-2 (antiapoptotic
agent) affected the modulation of telomerase activity. The
Bcl-2 overexpression causes a substantial increase in the
telomerase activity level. Nevertheless, down-expression of Bcl-
2 decreases telomerase activity (138–140). Molecularly, the
mechanism by which allicin reduced Bcl-2 expression was
via secondary messengers system, especially cyclic AMP and
PKC followed by Fas and Bax upregulation, and concurrently
Bcl-2 downregulation (141). Nonetheless, the modulation of
telomerase activity is a complicated process (119).

Sun et al. (119) treated gastric malignant SGC-7901 cells
with allicin to investigate the impact of this compound on
both apoptosis and telomerase activity compared to AZT (3′-
Azido-3′-deoxythymidine). The MTT assay showed that allicin
at different concentrations (0.1, 0.05, and 0.016 mg/ml) could
significantly inhibit SGC-7901 cells after 48 h compared to the
control. However, microscopic images did not show any atypical
morphologic alternations in the cells after allicin treatment at
0.016 mg/ml concentration for 24 h. Flow cytometry (FCM) data
revealed that the allicin could induce the cell apoptosis non-
linearly and dose-dependently and enhanced the cell population
in the G2)/M phase more effectively than the control group.
TRAP-PCR-ELISA method displayed that allicin could shorten
and prevent telomerase activity dose-dependently and time-
dependently in gastric cancer cell line (SGC-7901) much better
than AZT (119).

Accordingly, Tao et al. (120) evaluated the allicin
inhibitory effect on SGC-7901 cells and its related pathway.
The findings indicated that the cell growth in the control
group was logarithmically normal; however, the growth of
cell inhibited in the experimental group was treated with
allicin in a concentration-dependent trend. Furthermore,
differences in apoptotic degree were considerably different
following the allicin treatment with different increased
concentrations on SGC7901 cells. FCM outcomes exhibited
that different allicin concentrations at 24 and 48 h changed and
regulated the SGC7901cell cycle. In detail, the proportion of
G0/G1 phase cells reduced to some extent, the population
of G2/M phase cells apparently enhanced, whereas the
number of S phase cells altered little. Based on the
findings, the anticancer effect of allicin is higher than other
chemotherapeutic agents with relatively less toxicity and side
effects (120).

Previous studies on other tumor cells indicate that allicin may
meaningfully activate apoptosis in mouse melanoma, prostate
cancer (LNCaP), and human gastric adenocarcinoma (SGC-790l)
cell lines (53, 79). Additionally, the immune system may be
induced by the allicin to discharge more active factors, enhancing
antitumor effects of allicin and preventing tumor growth (53, 68).
Unlike common chemotherapy drugs, allicin does not have toxic
impacts on the body and may release multiple cytokines and
increase immune resistance (142, 143).

Zhang et al. (122) explored the allicin inhibitory role on
the MGC-803, human gastric carcinoma cell, and the related
probable mechanisms. To do so, allicin effects on the cells
were evaluated through measuring apoptosis by the Hoechst
staining, cell viability by the MTT assay, and the expression
of apoptosis-related proteins and also apoptosis mechanisms by
Western blot technique. The findings demonstrated a significant
increase in the apoptosis rate of MGC-803 via allicin time-
dependently and dose-dependently. Furthermore, the rate of
apoptosis and cleaved caspase 3 expression increased in allicin-
treated MGC-803, and also allicin upregulated p38 protein levels.
These results are in a favor of preventative role of allicin on
MGC-803 cells mediated by suppression of the cell growth
and apoptosis induction (122). Figure 5 shows the apoptosis
and its related mechanism, mediated by allicin in gastric
cancer cell.
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FIGURE 5 | The apoptosis and its related mechanism mediated by allicin in gastric cancer cell.

Allicin can reduce the expression of TGF-2 and its receptor
after entering directly into gastric cancer cell followed by
not only downexpression of cyclinD1, cyclinE, and cyclin-
dependent kinase (CDK), but also causing DNA damage and
generating ROS to produce p21 and phospho-p53 (Ser15).
Then p21 suppressed the CDK-4/6/cyclinD complex, P21-PCNA,
P21-CDK2, and subsequently reduced cdk1/cyclinB1 complex
for G2/M phase cell cycle arrest. Allicin increases the levels of Bax
(proapoptotic protein), Bcl-2 (antiapoptotic protein), and JNK
through reduction in outer mitochondrial membrane potential
(MMP. In addition to apoptosis induction, Bax/Bcl-2 can arrest
cell cycle by enhancement of phosphor-p53. JNK enhances
JNK-Jun followed by the inhibition of tumor proliferation.
Concurrently, allicin induces p38 mitogen that could induce the
protein kinase (MAPK) and then increase the expression of Fas
binding to Fas ligand (Fas L) and finally activate death pathway
through activation of cyt C and caspase-8. Also, the allicin makes
caspase-dependent apoptosis through elevating PARP, caspase-
3 and caspase-9, which are mediated by enhanced discharging
of mitochondria cyt C to the cytosol. The great mitochondrial
outer membrane permeability triggers protein kinase A (PKA)
and subsequently AIFs associating with its endonucleases G
(Endo G) co-activator by directly entering the nucleus of the
DNA fragment in a pathway of caspase-independent cell death.
Also, allicin induces apoptosis via increasing the amounts of free
Ca2+, ER stress.

Allicin as Potential Therapeutic Option in
Other Digestive System Cancers
The in vitro cytotoxic impacts of allicin have been specified dose-
dependently in different mammalian cells (103). According to
this, in situ-produced allicin activated apoptosis in MIA PaCa-
2 (pancreatic cancer) cell line via acetylation of Lysine 14 residue
at the core histone H3, which its expression has been associated
with apoptosis, cell cycle arrest, or differentiation in cancer
cells (144).

Chhabria et al. (103) developed a novel method for cancer
therapy using targeted delivery of alliinase, which is used to
generate in situ allicin, and its anticancer effectiveness was
specified using the integrated discrete multiple organ co-culture
(IdMOC) approach. Based on the data, alliinase established a
chemical bond with a monoclonal antibody (mAb), targeting
CA19-expressing cells (specific pancreatic cancer marker). Upon
addition of alliin, the conjugate CA19-9 mAb–alliinase attached
to the targeted MIA PaCa-2 cells followed by allicin production
is exposed to the alliinase in the cancerous cells, mediating the
apoptosis efficiently in MIA PaCa-2 cell line. The allicin induced
DNA fragmentation, expression of caspase-3, expression of
p21WAF1/CIP1, a CDK inhibitor, cell cycle arrest, GSH depletion,
ROS production, and run different epigenetic modifications,
which led to the apoptosis induction. By this novel therapeutic
strategy in which the combination of targeted agents (alliin as
well as alliinase-conjugated antibody) produce allicin, we were
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able to suppress cancer cell growth and reverse gene silencing as
an effective pancreatic cancer therapy (103).

The main constituent of allicin is diallyl trisulfide, which
has different medicinal activities, such as antibacterial, antiviral,
and antifungal impacts. Since allicin increases the natural killer
(NK) cell activity and IL-2 generation as well as promoting
T cell proliferation and activity, it can be considered as
an immunomodulator (145, 146). It was shown that allicin
through its immunomodulatory activity modulated the patterns
of cytokine in favor of Th1-type response and improved the
efficient cellular response (147). IL-2 is a short glycoprotein
generated primarily by CD4+T cell and mediates various
biological processes, such as raising the activity of killer cells
(NK cells and CD8+T) and stimulating the immune cell for
releasing the cytokines (148, 149). Similar to IL-2 structure,
rIL-2 (recombinant IL-2) generated by genetic technology can
raise T-cell propagation and differentiation, increase the NK
cell activity, activate the production of cytotoxic T lymphocyte
(CTL), stimulate the generation of tumor-infiltrating lymphocyte
(TIL) and lymphokine-activated killer (LAK) cell, activate B-
cell proliferation, differentiation, and antibody secretion, and
induce the interferon (IFN)-c and other cytokines production
(150). At present, rIL-2 is applied as an adjunctive treatment for
carcinomas-caused hydrothorax and ascites. Although a short
course and low dose of rIL-2 treatment can have considerable
clinical benefits, a high dose IL-2 can result in toxicity. Hence,
a combination therapy with antiviral agent and rIL-2 could be
an approach to treating pancreatic malignancy. Moreover, both
rIL-2 and allicin can improve cell-mediated immune responses,
which has a significant effect on tumor immunity (117).

Wang et al. (117) examined the effectiveness of combination
therapy using allicin and rIL-2 on malignancy of pancreas and
its probable immunological mechanism (117). In this study,
xenograft pancreatic cancer models in C57/BL6 nude mice
classified into four groups were as follows: control (saline),
rIL-2-treated, allicin-treated, and rIL-2+allicin combination
therapy groups. Subsequent to treatment for 4 weeks, the
substantial xenograft growth inhibition and the meaningful
prolonged survival time were reported in the combination
therapy group. The fluorescence-activated cell sorting (FACS)
and terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL) tests confirmed a significant increase in the
apoptotic cell population in the combination therapy group.
Moreover, ELISA depicted that the amounts of NK cell, CD4+T,
and CD8+T as well as serum IFN-γ level rose considerably in the
combination therapy group. The allicin and rIL-2 combination
therapy could suppress the tumor growth and extend the
survival time probably via NK cell, CD4+T, and CD8+T
activation (117).

It was reported that ajoene and related garlic-derived OSCs
(DADS and DATS) could arrest the cell cycle at G2/M
phase (151, 152). Also, apoptosis has been mediated via the
cascade of caspase dependent to mitochondrial fashion with the
contribution of cytochrome c release, mitochondrial membrane
permeabilization (MMP), Bcl-2 (as a antiapoptotic protein)
cleavage and caspase-3 activation (52, 152–158). Notably, it has
been suggested that (159–161) the antiproliferative property of
garlic-derived OSCs might be markedly affected by disulfide

bond chemical reactivity, which might thiolate Cys residues in
proteins. Accordingly, it has been found that the diallyl trisulfide
modifies b-tubulin oxidatively to produce mixed disulfides at
Cys residues (Cys-354b and Cys-12b) in a cell-free model (81).
In another cell-free environment, the ajoene acted as a covalent
suppressor as well as GSH reductase substrate viamaking mixed
disulfide at Cys58 on the active site of the enzyme (162).

Kaschula et al. (124) applied a concise four-step synthesis
(163) to access end allyl groups substituted-ajoene analogs.
Antiproliferation activity of such derivatives library was tested
on WHCO1 esophageal cancerous cells, and it was found
that the end groups substituted with p-methoxybenzyl (PMB;
IC50 = 2.1µM) is active 12-fold greater than Z-ajoene (159).
According to the structure-activity studies, such as the sulfoxide
and vinyl disulfide modification, the ajoene pharmacophore is
disulfide preventing the growth of WHCO1 cells and stimulating
the arrest of G(2)/M cell cycle and apoptotic pathway by
caspase-3 stimulation. Moreover, the vinyl group increases
the antiproliferative activity a further 8-fold compared to the
sulfoxide group (124).

LIMITATIONS OF ALLICIN

Although allicin is short-lived and poorly stable, it can easily cross
cell membranes due to its hydrophobic nature. Allicin reacts
with free thiol groups rapidly in cellular compartments (164).
Alinase converts alliin to allicin at pH 7.0. It can be inactivated by
heating or at a pH below 3.5 (165). Therefore, an enteric-coated
formulation has been applied to hamper stomach disintegration
of many commercial garlic supplements and protect against
allinase enzymes (166). A microparticulate formulation, in
which alliinase and alliin are individually encapsulated inside
microspheres, has been developed for pulmonary administration
(167). In a study to examine the allicin bioavailability in
23 types of garlic products in healthy subjects (seven males
and six females) 32-h postconsumption, findings demonstrated
allicin bioavailability at 36–104% for enteric tablets, 26–109%
for garlic powder capsules, 80–111% for non-enteric tablets,
30% for roasted, 16% for boiled, 66% for acid-minced, and
19% for pickled garlic foods (166). Conjugating the alliinase
to a monoclonal antibody has been applied as a technique
to increase the chemical instability of allicin for a certain
marker of pancreatic cancer. These conjugates strongly mediate
apoptosis in MIA PaCa-2 cells (103). In addition, encapsulation
by liposomes increased the stability of allicin by protecting
it against harsh conditions. This technique also reduces the
distinct unfavorable aroma (168). Allicin loaded locust bean gum
nanoparticle (LBGAN). This system demonstrated protection
and stability and improved the allicin pharmacological activity.
Furthermore, locust bean gum (LBG) as a natural additive has
been shown to be efficient during colon cancer (169). Various
stabilized allicin derivatives were synthesized and examined for
their activity on multidrug-resistant (MCF-7/Dx) and drug-
sensitive (MCF-7) human breast cancer cells. Some of these
derivatives were more beneficial than free allicin on starting
apoptosis (170).
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CLINICAL STUDIES

Despite the significant in vivo antitumor effects of allicin on
several cancer types, the follow up was not confirmed by
the same number of human studies (171). We found only
one trial that was recorded on clinicaltrials.gov addressing the
efficacy of allicin in cancer (follicular lymphoma NCT00455416),
with no published data as of yet. A double-blind, randomized
controlled trial comprised of patients with colorectal adenomas
has shown that a high dose of AGE led to lower risk of
new colorectal adenomas (172). In another randomized multi-
interventional trial involving 7.3 years of follow-up, after daily
administration of 4mg steam-distilled garlic oil plus 800mg
garlic extract, precancerous gastric lesion prevalence of gastric
cancer occurrence was not affected (173, 174). There are
inconsistent clinical trial data from various garlic forms because
of the different bioavailability of raw garlic ingredients and the
certain garlic supplement formulations (175). In 20 months,
AGE the odorous, harsh, and irritating garlic components
converted into safe and stable sulfur compounds (176). AGE
was demonstrated to reduce the proliferation and prevalence
of colorectal cancer (177). Prescribing aged garlic in patients
with advanced GI cancer increased NK cell activity but did not
change the quality of life (QoL) (178). Furthermore, selenium
microdoses or large doses of allitridum were displayed to
hamper gastric cancer, particularly in men (179). Even though
there is some correlation between higher intake of garlic and
onions and lower risk of certain cancer types was approved by
epidemiological evidence, the data are restricted and sometimes
conflicting. The major epidemiological studies show protective
effects of onions and/or garlic against GI cancers. These reports
have relied on meta-analyses and systematic reviews (180). The
findings of epidemiological studies on colorectal cancer are
inconsistent. Some meta-analyses exhibit no decline in the risk of
colorectal cancer with higher allium consumption (181). Other
case–control studies (2,020 controls and 1,037 cases) found that
both garlic and onions were protective against large intestine
cancers (182).

CONCLUSION

In the last decade, the progression of novel intensive and/or
tailored therapies by incorporating targeted therapies and
cytotoxic drugs (panitumumab, cetuximab, bevacizumab,
regorafenib, and aflibercept for mCRC; ramucirumab and
trastuzumab for mGC; and sorafenib for HCC) and accretion of
medical treatments with more and more efficient surgical and
locoregional approaches meaningfully improved the prognosis
of metastatic GI cancer patients (4). Nevertheless, GI cancers
are still a prominent reason for cancer death globally (4).
Consequently, finding novel therapeutic strategies is vital for
the treatment of those patients with cancers. Currently, the
combination chemotherapy by the administration of manifold
chemotherapeutic agents with diverse biochemical/molecular
targets has achieved numerous beneficial effects and ameliorated
adverse effects and has been largely applied to different kinds
of cancer. There has also been great interest in finding less
toxic natural-based substitutes. It was suggested that the plant
extracts and herbal-isolated compounds (e.g., curcumin, allicin,
resveratrol, and matairesinol) in combination with anticancer
drugs have potentially reversed cancer therapy resistance and
exerted chemoprotective activities. However, the risks and
adverse effects of plant products should be cautiously considered,
such as herb–drug interactions. Over the past years, allicin
has been broadly used clinically due to the antimicrobial,
anti-inflammatory, immunity functions, and cardiovascular
protection properties. The anticancer activity of allicin in
GI malignancies has emerged via inhibiting cell growth and
apoptosis-induced cell death.
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