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METHOD Open Access

ALLMAPS: robust scaffold ordering based on
multiple maps
Haibao Tang1,2,3*, Xingtan Zhang4, Chenyong Miao1, Jisen Zhang1, Ray Ming1, James C Schnable3,5,

Patrick S Schnable3,6, Eric Lyons2 and Jianguo Lu7

Abstract

The ordering and orientation of genomic scaffolds to reconstruct chromosomes is an essential step during de novo

genome assembly. Because this process utilizes various mapping techniques that each provides an independent

line of evidence, a combination of multiple maps can improve the accuracy of the resulting chromosomal

assemblies. We present ALLMAPS, a method capable of computing a scaffold ordering that maximizes colinearity

across a collection of maps. ALLMAPS is robust against common mapping errors, and generates sequences that are

maximally concordant with the input maps. ALLMAPS is a useful tool in building high-quality genome assemblies.

ALLMAPS is available at: https://github.com/tanghaibao/jcvi/wiki/ALLMAPS.

Background
A hierarchical approach is typically adopted for the as-

sembly of large eukaryotic genomes - starting with iden-

tifying overlapping reads to build contigs, then adding

paired reads to build scaffolds, and finally ordering and

orientating scaffolds together to assemble chromosomes

using various sources of long distance information [1,2].

During this hierarchical process, larger and larger se-

quence chunks are assembled and finally ‘anchored’ onto

chromosomal-sized pieces. The reconstructed chromo-

somal sequences are often referred to as ‘pseudo-mole-

cules’ or ‘pseudo-chromosomes’ [3,4]. The prefix ‘pseudo’

implies that the assemblies may still contain uncertainties,

and only represent a single specific hypothesis that needs

to be evaluated in view of all available evidence [5].

One of the major steps in producing high quality gen-

ome assemblies is to use a variety of mapping informa-

tion, including genetic maps, physical maps, cytological

maps, optical maps, or synteny with related taxa to recon-

struct the most likely chromosomal assemblies [4,6-10].

Many specialized tools have been developed over the years

to assist with the various steps of the hierarchical genome

assembly pipeline, including contigging [11], scaffolding

[1,2], optical map alignment [9,12], and synteny-guided

assembly [4,13]. In comparison, tools for anchoring of

scaffolds based on more than one genetic map remain

under-developed. Our method ALLMAPS, fills this algo-

rithmic gap by optimizing agreement among multiple

maps to order and orient scaffolds. While initially de-

signed to use genetic maps to guide the chromosomal an-

choring process and produce a close-to-optimal scaffold

configuration, ALLMAPS can utilize a variety of tech-

niques for generating physical and comparative maps of

chromosomes.

A key feature of ALLMAPS is its built-in ability to

handle multiple maps in a unified framework. Organisms

that have been subjected to a moderate amount of re-

search often have several genetic maps available, likely

constructed by different labs at different points in time.

These genetic maps are often derived from different map-

ping populations using genetically diverse parental lines,

making consensus mapping across multiple maps difficult

or sometimes infeasible [14]. Maps constructed from F1

population derived from two heterozygous individuals ty-

pically produce two genetic maps, one for each gender,

based on a backcross model [15,16]. Maps constructed

using different software, such as R/QTL [17], MSTMAP

[18], and JOINMAP [19], often differ in their final order-

ing of genetic markers. Recent Genotyping-by-Sequencing

(GBS) technology has been used to generate high-density

genetic maps through the use of multiplexing and high
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throughput sequencing [20]. There is a pressing need to

incorporate all available mapping information during the

construction of chromosomal assemblies for organisms of

interest, irrespective of differences due to the population,

employed markers, or mapping software.

There are several benefits of using multiple genetic

maps for scaffold anchoring. Genetic maps can vary in

terms of recombination frequency, segregation distor-

tion, presence-absence variation (PAVs), and chromosome

regions with few mapped polymorphic sites. If such differ-

ences among maps are complementary, it may be possible

to anchor scaffolds on one map that cannot be anchored

on another. In addition, combining evidence from mul-

tiple maps to create a ‘meta-order’ can address potential

weaknesses intrinsic in any single map. The assimilation

of different maps means that many legacy maps (even

those created by different labs) can be utilized to support

the final scaffold order of a common reference genome

assembly. In summary, multiple independent maps can

provide more accurate scaffold orientation and ordering

information, allowing a greater portion of the scaffolds

to be anchored than would be possible with any single

map alone.

The use of a single map to guide scaffold ordering is

a computationally trivial problem. The scaffolds could

simply be sorted based on the average map locations of

the markers on each scaffold and there would be little

ambiguity in the reconstructed order. In contrast, the

goal of ALLMAPS is to combine information from

multiple genetic maps to compute a common scaffold

order. This is a more difficult challenge. Multiple maps

may suggest incompatible scaffold orders and orienta-

tions, or ‘conflicts’. Computationally, each map implies

a ‘partial’ scaffold ordering, which can be modeled as a

directed acyclic graph (DAG), with edges representing

the relative order between scaffolds. In the absence of

conflict, the order of physical scaffolds can be solved by

merging multiple DAGs followed by a topological sort.

When conflicts exist between various maps, the result-

ing merged graph will contain conflicts, which must be

resolved before direct sorting.

To build a consensus order, clear and objective rules

for conflict resolution are necessary. Conflict resolution

among input maps is conceptually similar to the prob-

lem of building consensus maps [14], but with important

differences. In the case of building a consensus genetic

map, a common set of markers must be present across

most of the genetic maps in consideration. In general,

we cannot expect to build a consensus map first and

then use the consensus map to guide the scaffold an-

choring. Even in the case when a consensus map is pos-

sible, too much information may be lost during the

process of building consensus map, which itself is a diffi-

cult problem to solve [14]. Further, in some applications

especially in the case of maps generated via GBS [20],

pairs of maps may share few or no markers but each

genetic map can contain markers that are shared with

the physical scaffolds.

Many studies making use of multiple maps employ ad

hoc rules to resolve conflicts in the scaffold ordering

among maps [15]. While some of these rules may be ef-

fective in a particular study, they are inherently subject-

ive and can become difficult to extrapolate to different

genome datasets and replicate in future studies. In other

cases, scaffold ordering may require arbitrary human de-

cisions in regions of conflicting evidence [3,21]. As an

increasing number of genome projects have access to

multiple mapping data resources [3,8,10,21,22], a me-

thod that could accurately combine several lines of evi-

dence to build high quality chromosomal assemblies has

become essential.

Here, we implement a novel method, ALLMAPS, to

address the current lack of computational tools for per-

forming objective scaffold ordering based on colinearity

of multiple maps. Colinearity, defined as the arrange-

ment of one sequence in the same linear order as an-

other sequence, is one of the most important criteria in

evaluating map concordance [3,8,16] and evolutionary

relatedness [4,23].

We highlight several salient features of ALLMAPS.

First, we have formulated a clear, computable objective

which is to maximize the sum of colinearity to multiple

input maps, leading to better reproducibility in the an-

choring process. Second, we allow variable weights in in-

put maps, leading to better control in conflict resolution

between different maps. Finally, we show that ALLMAPS

can naturally be extended to incorporate other mapping

evidence, including optical map and cross-species syn-

teny, requiring minimal effort of data transformation.

ALLMAPS is an elegant tool that promises to expedite

genome assembly and facilitate the integration of vari-

ous mapping evidence during the final stage of genome

assembly.

Results and discussion
Computational complexity of the problem

The problem of ordering and orientation of genomic

scaffolds is well known to be NP-hard [2,24]. A genomic

map provides information that implies the relative place-

ment of scaffolds. When either the genomic maps or the

scaffold assemblies contain errors, or there are conflicts

between the multiple input maps, the problem of finding

the optimal scaffold ordering and orientations that satisfy

the most constraints becomes intractable [2,24]. Studies

on scaffolding based on read pairs largely rely on heuris-

tics [1,2,24]. In the ALLMAPS implementation, we chose

to use Genetic Algorithm (GA) instead of some other

heuristics such as local search, hill climbing, and greedy
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strategy to avoid getting stuck in local optima [25,26].

Other related problems such as consensus mapping has

adopted similar evolutionary strategy [14].

Simulation

To assess the accuracy of ALLMAPS, we simulated a set

of scaffolds with random orientations along the whole

genome of Medicago truncatula, as the ‘truth’ to be

evaluated against. The published Medicago genome has

eight chromosomes, with 366 Mb in total length. Each

of the eight chromosomes represents a typical complex

eukaryotic chromosome. In order to have a length pro-

file similar to real data, the scaffold length distribution

of these simulated scaffolds was modeled from a pre-

liminary assembly used in Mt4.0 (20,591 sequences in

total, largest 346 Kb, scaffold N50 = 46 Kb) [8]. A total of

8,000 genetic markers were generated from the Medicago

genome following a uniform distribution and two-thirds

of the markers were assigned to each genetic map follow-

ing a random distribution along the genome. The marker

density of each genetic map is 13.7 markers per Mb. To

evaluate the accuracy of our program, we used the ratio

between the longest monotonic subsequence (LMS) and

the total number of markers as an indication of colinearity

between the ALLMAPS answer and ‘truth’. This ratio var-

ies between 0 and 1 - an accuracy of 1 means all markers

are in perfect colinearity between the scaffold order and

the input maps.

To show how ALLMAPS responds to errors in the

maps, we implanted a few types of errors into the si-

mulated maps. The error types include inversion and

translocation errors, two common errors in construct-

ing genetic maps. Inversion refers to a chromosome ar-

rangement where a genomic segment is reversed from

end to end compared to the reference. Translocation re-

fers to the type of rearrangement of parts moved to

non-homologous chromosomes. For inversion errors,

the error probability (Pinv) was defined as number of

markers involved in inversion divided by total number

of markers for each chromosome. (Pinv) of 0.5 means

half of the markers on the chromosome were involved

in an inversion error, which is the most extreme error

case. The translocation error probability (Ptrans) was de-

fined as the number of markers involved in translo-

cation within a chromosome (intra-chromosomal) or

between chromosomes (inter-chromosomal) divided by

the total number of markers. For translocation error

analyses in our study, 75% translocated markers are

intra-chromosomal errors and another 25% are inter-

chromosomal errors. For each of these two error ana-

lyses (inversion and translocation errors), ALLMAPS

took two genetic maps as input, only one of which con-

tained errors. Our results revealed that the accuracy of

ALLMAPS was affected by both of the error probability,

with inversion error has a slightly larger impact on

the accuracy than translocation (Figure 1A). Inter-

chromosomal translocation error has a larger impact

than intra-chromosomal translocations on the accur-

acy, since the error affects a much earlier stage (link-

age group clustering) during the ALLMAPS pipeline

(Figure 1B).

Next, we investigated the relationship between the ac-

curacy and the numbers of genetic maps used for scaf-

folding. In this case, we introduced moderate level of

errors (Pinv = 0.2 and Ptrans = 0.2) into one genetic map

(while not introducing errors into the other maps) and

allowed ALLMAPS to take from one to eight genetic

maps as input. As expected, ALLMAPS’s performance

was improved as the number of available genetic maps

increased (Figure 1C). The trend shows that big improve-

ment of accuracy between one and two maps, and be-

tween two and three maps or more. The curve flattens

when there are three input maps, suggesting that it is

beneficial to have at least three maps for error correction.

There is still noticeable improvement using more than

three maps in this simulated study but the accuracy

quickly approaches 1 when more maps are used as input.

For a much stronger test, we introduced noise to all input

maps at 20% errors (Pinv = 0.2 and Ptrans = 0.2) and allowed

ALLMAPS to take from one to eight genetic maps. When

all input maps contained errors, ALLMAPS require more

maps to be able to deduce the correct scaffold ordering,

with accuracy approaching 0.9 only when eight maps were

used (Figure 1D).

Application in construction of yellow catfish

chromosomal assemblies

While simulated data revealed some basic properties of

ALLMAPS, we applied ALLMAPS to a real-world gen-

ome project: yellow catfish (see Data availability). Gen-

omic scaffolds were generated as part of the ongoing

project to sequence the yellow catfish genome. We gen-

erated 100 bp paired end and mate pair reads (SRA ac-

cession: SRP050322) on an Illumina HiSeq 2000, which

were assembled into scaffolds using ALLPATHS-LG

[27]. The yellow catfish project also generated genetic

maps based on the progeny of a bi-parental cross bet-

ween two individual heterozygous yellow catfish. Our

goal was to use ALLMAPS to anchor scaffolds from a

draft genome assembly of yellow catfish into pseudomo-

lecules using these genetic maps. The scaffold assembly

of yellow catfish consists of 9,224 scaffolds (N50 = 1 Mb)

that comprise 718 Mb. The 161 scaffolds with a length

of greater than 1 Mb (‘N50 scaffolds’) are our main focus

in the anchoring process. SNPs derived from tGBS se-

quencing [28] were categorized into two subgroups

basing on their segregation ratios in the population

and parental genotypes. Based on a back-cross model
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[15], two genetic maps were constructed from each of the

subgroups using R/QTL [17], that we called BCMale

and BCFemale. Using the same subgroups of markers,

but running a different mapping software (JOINMAP

[19]), we obtained two additional maps that were called

JMMale and JMFemale. We used all four maps (BCMale,

BCFemale, JMMale, JMFemale) to order and orient scaf-

folds into pseudomolecules. We will show that creating

two sets of maps with different software from the same

data could improve the assembly.

We were able to anchor a total of 581 Mb by using

four genetic maps simultaneously, or approximately 50

Mb more sequences anchored than any single map alone

(Table 1). Overall, ALLMAPS anchored 81% of the bases

onto the 26 chromosomes of yellow catfish. In particular,

all but one of the 162 N50 scaffolds were anchored to

the chromosomes. The orientations of scaffolds with

only a single marker cannot be determined without add-

itional evidence and these are labeled with unknown ori-

entations in the AGP output. All but eight input markers

were placed onto the chromosomes (Table 1). These eight

markers and the associated scaffolds which failed to be

incorporated into the final pseudomolecule assembly

were excluded because of their ambiguous placement

on multiple chromosomes in different genetic maps.

These unplaced scaffolds may be chimeric or the tGBS

markers on these scaffolds may be located in repetitive

regions. The majority of unplaced sequences are small

fragmented scaffolds that contain no markers in any of

the genetic maps. Indeed, the remaining 8,282 scaffolds

that do not have chromosome assignments have aver-

age size of 17 Kb. In addition, they contain an average

of 22% ambiguous bases (N), suggesting that these scaf-

folds might represent repetitive portions of the genome

that are difficult to assemble into large chunks.

Robust integration of multiple maps

While we show that the sequence anchor rate can be

greatly improved with multiple maps compared to using

single map, the integration of multiple maps can also re-

sult in major improvements in assembly accuracy. To il-

lustrate the significance of the use of multiple maps, we

show one representative chromosome (chr1) in the yel-

low catfish genome assembly (Figure 2). The four input

maps are complementary to one another in scaffold an-

choring in two important ways. First, there are drastic

differences in recombination rates between the maps.

The ‘slopes’ in the scatter plots reflect changes in the ra-

tio between the physical (x-axis) to genetic (y-axis) dis-

tance, which is equivalent to the recombination rate.

Figure 1 Evaluation through simulated datasets to test the robustness of ALLMAPS. (A) Inversion errors (Pinv) against accuracy;

(B) translocation errors (Ptrans) against accuracy; (C) number of input maps (where one map contained 20% errors) against accuracy; (D) number

of input maps (where all maps contained 20% errors) against accuracy. For translocation error analyses in this study, 75% translocated markers are

within chromosomes and 25% translocated markers are between chromosomes.
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This drastic difference in recombination rate is evi-

dent as sudden change of slopes in the female maps

(BCFemale, JMFemale) in the telomeric end of chr1

(Figure 2), which was also previously observed in rain-

bow trout [29]. Low recombination rates can lead to

ambiguous orderings between scaffolds that are located

within the same ‘recombination bin’. By considering the

maps derived from both genders, ALLMAPS created a

map with better resolution than each single map alone

(Figure 2). Second, we were able to fix the errors present

in any one map through a voting procedure (majority

rules). For example, JMFemale-2 contained an erroneous

inversion at the short arm of chr1 that is absent from the

other three maps (Figure 2), which appears to be a prob-

lem with JOINMAP in that particular region of the

chromosome in the JMFemale map. ALLMAPS was able

to correctly order and orient these scaffolds that provide

the most concordance between the maps constructed

from different genders.

When equal weights are given for each of the input

maps, the final order is a majority-rule consensus among

all input maps. However, users can also place a weight on

each map to reflect their preference or confidence based

on independent evaluations of accuracy. A useful usage

Figure 2 Pseudochromosome 1 of yellow catfish genome, reconstructed from four input maps - BCFemale, BCMale, JMFemale, JMMale,

with equal weights of 1. (A) CMAP-style presentation with lines connecting the physical positions on the reconstructed chromosome and the

map positions. (B) Set of four scatter plots, with dots representing the physical position on the chromosome (x-axis) versus the map location

(y-axis). Adjacent scaffolds within the reconstructed chromosome are shown as boxes with alternating shades, marking the boundaries of the

component scaffolds. The ρ-value on each scatter plot measures the Pearson correlation coefficient, with values in the range of -1 to 1 (values

closer to -1 and 1 indicate near-perfect colinearity).

Table 1 Summary statistics for each of the four component maps (BCFemale, BCMale, JMFemale, JMMale, with equal

weights) and final consensus anchoring (‘Anchored’) in the yellow catfish study

BCFemale BCMale JMFemale JMMale Anchored Unplaced

Linkage groups 26 27 26 27 26 n.a.

Markers (unique) 2,507 2,442 2,495 2,434 4,941 8

Markers per Mb 4.8 4.6 4.8 4.6 8.5 0.1

N50 scaffolds 158 160 158 160 161 1

Scaffolds 679 709 673 707 942 8,282

Scaffolds with 1 marker 291 302 286 303 325 0

Scaffolds with 2 markers 109 140 109 138 168 2

Scaffolds with 3 markers 63 65 63 64 92 0

Scaffolds with ≥4 markers 216 202 215 202 357 1

Total bases 524,479,992 534,215,264 523,736,261 533,964,013 580,865,792 138,224,118

(Percent of genome) (72.9%) (74.3%) (72.8%) (74.3%) (80.8%) (19.2%)

Scaffolds with no markers, or ambiguous placements, are separately counted (‘Unplaced’). The marker density for the anchored and unplaced scaffolds represent

the sum of unique markers from all input datasets.
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pattern then emerges: the users can modify weights for

the input maps, examine the summary report and diag-

nostic plots, and then iterate with different sets of weights.

This is a supervised usage of ALLMAPS, as opposed to

the default behavior of treating each map with the same

weight (weight = 1). The map weights affect important as-

pects of the ALLMAPS algorithm, particularly on how the

conflicts are resolved between maps. The weights affect to

which chromosome a scaffold may anchor, as well as the

final order and orientations between linked scaffolds. Nat-

urally, the final scaffold configuration will be biased to-

wards the map with the highest assigned weight.

Extension to other types of genomic maps

After applying ALLMAPS to multiple genetic maps, we

further highlight ALLMAPS’s ability to go beyond gen-

etic maps to use other types of genomic maps. A com-

bination of several independent lines of evidence will

further complement each other in different regions of

the genome. There are specialized methods for handling

different mapping data individually, including tools for

optical map alignment [9,12] and synteny-guided as-

sembly [4,13], but these methods were never combined

within the same framework to exploit multiple maps.

One obstacle is that other genomic maps may require

some data transformation before being imported into

ALLMAPS. We note that a generalized form of genomic

maps is constituted by markers represented as (x, y) -

each marker having a coordinate on the genomic scaffolds

(x) and another coordinate on the map (y), respectively.

As long as the map can be converted into a list of abstract

‘markers’ carrying these two coordinates (in a standard

BED format), they can be easily integrated in a unified

framework (Figure 3). Details of this format and tools

to transform data from optical map alignments and syn-

teny alignments are available with the distribution of

ALLMAPS: [30].

To test the performance of ALLMAPS on utilizing op-

tical mapping data, we used the publicly available budg-

erigar dataset, which was also used in the Assemblathon

Figure 3 Integration of various mapping evidence inside the ALLMAPS framework. (A) Various map types converted to a ‘coordinate-

based’ generic marker type that allows universal treatment. (B) Example from Medicago to demonstrate ALLMAPS input BED format. Markers

derived from genetic map, optical map, and comparative map are highlighted in different colors.
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2 competition [31,32]. The budgerigar v6.3 scaffolds

were aligned to the optical maps, based on which the

mega-scaffolds were constructed and published [31,32].

Among a total of 49 suggested joins, ALLMAPS was

able to recover 44 scaffold links (90%) with correct or-

dering and orientations. The remaining five links were

manually inspected and were found not supported by

optical mapping data (that is, in different optical map

contigs). We suggest that these five discrepancies be-

tween ALLMAPS result and the published assembly

might be due to other linking evidences such as read

pairs that were not accessible by ALLMAPS.

To illustrate the full benefits of using multiple map-

ping technologies, we tested ALLMAPS on data derived

from the genome of Medicago truncatula, where dif-

ferent types of genomic maps are publicly available (see

Data availability). The Medicago genome project has de-

veloped a suite of maps that were incorporated into the

Mt4.0 genome assembly [8]. In particular, an optical

map is available (Genbank nucleotide database acces-

sions MAP_000013 to MAP_000020). Optical mapping

is a technique to build high-resolution restriction endo-

nuclease maps and has been widely used in reconstruc-

ting chromosomal assemblies [8-10]. Here, we treated

matching restriction fragments between the optical map

and in silico restriction fragment from the scaffolds as

‘markers’ with each marker having two coordinates for its

position on a scaffold and on the optical map (Figure 3A).

The second map is a genetic map constructed from a

double-haploid population. For the third map, we use a

comparative map between chickpea and Medicago. Chick-

pea has a high quality genome assembly and can be used

to anchor Medicago scaffolds due to their evolutionary

relatedness [8,33]. Synteny evidence can be utilized by

treating syntenic gene pairs between the two species as

‘markers’, and transforming the data into the appropri-

ate form for ALLMAPS (Figure 3B).

Different weights were assigned to each map in this in-

tegration, reflecting our relative confidence to each of

the map: weight of 3 for the optical map, 2 for the ge-

netic map, and 1 for the chickpea comparative map. In

particular, the comparative synteny evidence should al-

ways be used with extra caution since the disruption of

colinearity can be due to real evolutionary events such

as chromosomal rearrangements, fusions, fissions, and

translocations. Assigning the lowest weight to the com-

parative map ensures that it would never be considered

when in conflict with the other two maps.

Results of ALLMAPS applied to the Medicago scaf-

folds and three input maps are summarized in Table 2.

Overall, ALLMAPS anchored 384 Mb of scaffold se-

quences onto the eight chromosomes, more than the an-

chor rate based on any single map alone, and matched

the anchor rate in the published Mt4.0 assembly that is

a product of intensive manual curation [8]. All N50 scaf-

folds in Medicago assembly were anchored onto the

chromosomes. The unplaced scaffolds show an average

of 1.6 markers per Mb, much lower than the marker

density on the anchored scaffolds (Table 2).

We found that the optical map has poor support in

centromeric regions, probably due to an abundance of

tandem repeats, making the restriction fragment pattern

less unique, which in turn reduces the align-ability of

optical map data in those regions (Figure 4). In contrast,

both the genetic map and the chickpea comparative map

contain a number of supporting markers in those regions.

The genetic map and the chickpea synteny map comple-

ment the optical map, providing the scaffold tiling across

the centromeric region of chr2 (Figure 4). Both optical

map and genetic maps are largely concordant in providing

Table 2 Summary statistics for three component maps and final consensus anchoring (‘Anchored’) in the Medicago study

OpticalMap (w = 3) GeneticMap (w = 2) Chickpea (w = 1) Anchored Unplaced

Linkage groups 8 12 98 8 n.a.

Markers (unique) 25,491 2,125 16,275 43,833 58

Markers per Mb 70.2 5.8 43.2 114.0 1.6

N50 scaffolds 23 23 23 23 0

Scaffolds 123 200 229 284 4,522

Scaffolds with 1 marker 0 68 53 84 2

Scaffolds with 2 markers 0 21 26 26 1

Scaffolds with 3 markers 0 22 10 15 1

Scaffolds with ≥=4 markers 123 89 140 159 8

Total bases 363,160,642 363,369,814 376,760,724 384,460,302 36,076,813

(Percent of genome) (86.4%) (86.4%) (89.6%) (91.4%) (8.6%)

Scaffolds with no markers, or ambiguous placements, are separately counted (‘Unplaced’). The marker density for the anchored and unplaced scaffolds represent

the sum of unique markers from all input datasets.
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high levels of colinearity to the reconstructed chromo-

some assembly, while colinearity to the chickpea com-

parative map (Chickpea-1) is disrupted by an apparent

translocation, likely due to the evolutionary divergence

of genome structures between Medicago and chickpea

(Figure 4). The concordance between the final recon-

structed chromosome and each of the three maps

matches the gradation of assigned weights (optical map >

genetic map > chickpea synteny). The Spearman correl-

ation coefficient is the highest (1.000; completely colin-

ear) for optical map, medium (-0.942) for genetic map,

and lowest (0.554) for chickpea synteny due to the big

translocation.

Different mapping techniques tend to show different

marker density characteristics and therefore likely com-

plement each other in different regions along the chro-

mosomes. Some genome projects that have had access

to a multitude of maps were able to identify major dis-

crepancies after checking two or more lines of evidence

[10,21,33]. Our ALLMAPS framework is applicable to all

coordinate-based maps or maps that can be converted

into coordinate-based through transformation, therefore

substantially reducing the overhead for finding the cor-

rect assembly tools to handle the plethora of mapping

evidence. Using ALLMAPS to consolidate different maps

substantially increases the completeness as well as the

accuracy of the scaffold anchoring, generating very high

quality draft assemblies.

When there is an unfortunate shortage of available

genomic maps, for example, in ‘orphan’ species where

there is little research investment in the past, we can still

create consensus chromosomal assemblies based on com-

parative maps against multiple, closely-related genomes as

a collection of ‘references’ [24]. Each related genome may

be assigned a weight, reflecting their evolutionary distance

to the organism of interest. When only synteny data from

multiple species are used, the assembled sequences by

ALLMAPS might resemble an ‘ancestral’ chromosome ar-

rangement, an idea exploited during the reconstruction of

the Black Death agent Yersinia genome [34]. Most existing

tools for comparative assembly developed to date can

only exploit a single ‘reference’ to assemble against [4,13].

Through the creative use of ALLMAPS, we can greatly ex-

pand the types of evidences that can be applied to a gen-

ome assembly even in situations where mapping evidence

is scarce.

Factors affecting the performance of ALLMAPS

Marker density is a key factor contributing to both ac-

curacy and scaffold anchor rate of ALLMAPS. More

markers would require more computational power to

resolve, but fewer markers could decrease the useful-

ness of the maps in terms of scaffold anchoring. We

carried out resampling studies for the yellow catfish

and Medicago datasets to demonstrate the influence of

marker density on the performance (Figure 5). The yellow

catfish contains a relatively low marker density (Table 1),

and the scaffold anchor rate quickly dropped when only a

fraction of all data was used (Figure 5A). However, the

Medicago data still showed nearly 80% anchor rate even

when 1/64 of the markers were retained (Figure 5B),

due to the large number of markers derived from optical

Figure 4 Pseudochromosome 1 of Medicago truncatula genome, reconstructed from three input maps - optical map with weight of 3,

genetic map with weight of 2 and chickpea synteny with weight of 1, to show the capability of ALLMAPS to integrate heterogeneous

map types using arbitrary weights. (A) CMAP-style presentation with connecting lines as matching markers. (B) Set of three scatter plots, with

each dot representing the physical position on chromosome (x-axis) versus the map location (y-axis). The cM distance along optical map and

chickpea comparative map are scaled by 1 cM = 100,000 bp for illustration purposes. This linear transformation does not affect the computation

of scaffold configuration. Note that the map based on synteny to chickpea, a divergent species from Medicago, shows the highest level

of discordance.
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map and synteny map (Table 2). The running time of

ALLMAPS generally shows linear relationship to the

number of input markers, but could increase substantially

for ultra-dense datasets (Figure 5B).

Recently, dense genetic maps can be generated with

inexpensive genotyping technology such as GBS and

RAD, and most published NGS genomes projects have

already adopted these high-density genetic mapping

protocols [15,16,20]. Optical maps often contain more

markers because markers are derived from restriction

fragments, which are often abundant in a large genome

(for example, six-base cutter cuts every 4 Kb, on aver-

age). The density of markers in a comparative map is

determined by the number of genes in conserved syn-

teny blocks and divergence between the genomes in

comparison [23].

Errors during the genome assembly and map making

protocols could potentially propagate into the ALLMAPS

assembly. The starting quality of the genome assembly

based on read overlaps and read pairing is therefore cru-

cial to the performance of ALLMAPS. A highly frag-

mented assembly could produce sub-optimal or erroneous

results. In various mapping protocols, there are techno-

logical problems like simple genotyping errors that could

lead to bad maps with missing or translocated segments.

ALLMAPS warns about the chimeric scaffolds with map-

pings to multiple linkage groups, but relies on the user to

provide relatively clean maps and scaffold assemblies to

achieve the best results.

Specific genome structural features might cause add-

itional problems during assembly, including chromosomal

inversion, translocation, and segmental duplication. Map

data that do not reflect genomic arrangement in the re-

ference individual would cause incongruities among the

input maps (for example, synteny data from species with

rearrangements, or genetic maps from individuals with

structural changes relative to the mapping parents). The

errors in the input maps could potentially have a com-

mon biological cause. For example, segmental duplication

disrupts genome assemblies reconstructed from short

reads and might similarly affect various types of genomic

maps [35]. If the segments are divergent enough to be

properly assembled, identifying markers and map based

ordering would work as well for the duplicated segments

as for other sequences. However, if the duplicate regions

are collapsed into single scaffolds by the genome assem-

blers, ALLMAPS would not be able to separate these mis-

assembled regions.

Despite various technical and biological complexities

associated with making accurate assemblies and maps,

ALLMAPS is designed to incorporate different types of

map data including genetic, optical, and synteny data

which are expected to have very different unlinked error

profiles. For example, while the repetitive sequences or

copy number variations (CNVs) might affect the optical

map (generating similar restriction fragment patterns)

and to a lesser degree also affect the synteny map, the gen-

etic maps are less likely affected by the errors derived from

repeats or CNVs. Repetitive sequences and CNVs produce

distinctive segregation ratios and would be removed prior

to genetic map construction. Conversely, genetic maps do

not provide coverage for the non-recombinogenic regions

like centromeres and sex chromosomes. This weakness of

genetic maps could otherwise be remedied by incorpo-

rating other types of maps that are not based on genetic

recombination.

Conclusions
We show that ALLMAPS is capable of integrating sev-

eral lines of mapping evidences to guide the assembly

of genomic scaffolds. A key feature of ALLMAPS is its

ability to integrate information from multiple maps on

the basis of a well-defined objective function to maximize

the colinearity score. Each map can be assigned a weight,

allowing flexible tuning based on users’ confidence on

each input map. ALLMAPS identifies the consensus

from several maps, resolves conflicts based on user as-

signed weights and consolidates these results into a highly

Figure 5 Effect of marker density on the performance of ALLMAPS based on resampling of real data. The scaffold anchor rates and

program running times were assessed based on the sub-samples of increasing sizes for (A) yellow catfish and (B) Medicago datasets.
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consistent scaffold ordering given the available mapping

evidence. ALLMAPS can incorporate other types of maps

including physical maps, optical maps and comparative

maps as well, thus offering a one-stop shop for robust in-

tegration of scaffold linkage evidence from a variety of

popular mapping technologies, resulting in higher cover-

age, more accurate, and more replicable chromosome-

level genome assemblies.

Methods
ALLMAPS objective and algorithm overview

The goal of ALLMAPS is to find the order and orien-

tation (or in combination the ‘configuration’) of genome

sequence scaffolds that maximizes the ‘colinearity’ of vari-

ous chromosomal markers. A marker implies both a phys-

ical location on a scaffold and a map location (Figure 6).

In the context of genetic mapping, the map location is in-

dicated by cumulative genetic distance, measured in centi-

Morgans (cM). Later, possible extensions to other types of

maps will be discussed, however the core algorithm re-

mains constant regardless of the type of mapping data be-

ing employed.

The colinearity between the array of physical locations

on the DNA sequence and the array of map locations can

be assessed, given a specific configuration of all scaffolds.

Assuming the physical locations are already sorted, we

can estimate the colinearity via the length of its longest in-

creasing subsequence within the map locations. An in-

creasing subsequence refers to a subsequence in which

the elements are in sorted order, from lowest to highest.

In this context, the length of a subsequence is equal to the

number of markers. Because the polarity of the linkage

group was arbitrarily determined during map construc-

tion, we may look for either the longest increasing subse-

quence (LIS) or longest decreasing subsequence (LDS).

Without loss of generality, we define the ‘longest mono-

tonic subsequence’ (LMS) as the larger of LIS and LDS to

indicate the degree of colinearity, irrespective of the polar-

ity of the map (Figure 6A).

The ‘scaffold anchoring problem’ is therefore to find a

scaffold configuration that maximizes the sum of LMS

to the input maps, each with an assigned weight. The

significance of weights will be discussed in further de-

tail later. We introduce the following set of notations

for a more formal description of the scaffold anchoring

problem:

� S - Set of scaffolds

� G - Set of maps

� wj, where j ϵ G - Weight for the j-th map

Figure 6 Longest monotonic subsequence (LMS) objective function visualized on a scatter plot. Circles on the scatter plot represent

‘markers’ that are indicated by their base positions on the scaffolds and genetic positions on the map. (A) LMS calculated as the larger value of

longest increasing subsequence (LIS) and longest decreasing subsequence (LDS). (B) Example scaffold configuration that is not optimal when

evaluated with LMS function. (C) Optimal scaffold configuration for the same three scaffolds.
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� Mij, where i ϵ S, j ϵ G - Ordered set of markers on

i-th scaffold and j-th map. Each marker carries two

positions - physical position on the scaffold and

genetic position on the map. Within the set of Mij,

markers are ordered according to increasing base

pair positions on the scaffold. With a leading ‘minus’

sign, - Mij indicates the same set of markers ordered

according to decreasing base pair positions on the

scaffold

� LMS (Mij) - Longest monotonic sequence of

genetic positions among the ordered markers in Mij.

We note that this directly measures the

colinearity between the physical positions and the

genetic positions.

We introduce the notation a || b to show a configur-

ation where scaffold a and b are adjacent, and use - a to

indicate scaffold a is anchored in the reverse orientation.

We can calculate the colinearity of markers using LMS

score for any given scaffold configuration. Our goal,

then, is to find the scaffold configuration that yields the

highest LMS score possible. An illustrative example on

how to evaluate the scaffold configuration against a sin-

gle map is given in Figure 6B and C. In the case of more

than one maps, we look for the scaffold configuration

that maximizes colinearity across all maps. As an ex-

ample, given the configuration a || - b || c, we can cal-

culate the L score according to the following objective

function, which is the weighted sum of LMS across mul-

tiple maps:

L ajj− bð jjcÞ ¼
X

j∈G

wj
: LMS Majjj−Mbj

�
�

�jMcjÞ

To compute the optimal scaffold configuration is to

maximize the score of L over all possible configurations,

which is an optimization problem. Since there can be ex-

ponential number of possible scaffold configurations, an

efficient search strategy is required. In ALLMAPS, the

optimization of L is conducted in two phases, detailed

below and illustrated in Figure 7. In Phase 1, we com-

pute an approximate scaffold configuration to speed up

the computation. In Phase 2, we use a genetic algorithm

to refine the scaffold configuration and incrementally

improve on the final score L. The computation of the

initial orientation and ordering is very fast in Phase 1,

which can cut down the running time required for con-

vergence in the more accurate, but slower, Phase 2.

Clustering of homologous linkage groups

Prior to computing the scaffold configuration in the two

phases, we divide the whole problem into several sub-

problems, with each sub-problem representing a single

chromosome that can be solved independently. We first

define the ‘pivot map’ as the map with the largest weight,

or the map that occurs first in the user input in case

of ties between weights. The pivot map determines

the number of chromosomes to appear in the assembly.

Consequently, the pivot map should ideally contain the

same number of linkage groups as the number of chro-

mosomes in the target organism. We assign ‘homologous’

Figure 7 Illustration of the major steps in ALLMAPS algorithm. The ALLMAPS method contains two phases to calculate an initial

configuration of scaffolds followed by iterative refinement.
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linkage groups from all input maps into separate clusters,

with each cluster seeded by a single linkage group from

the pivot map. Each linkage group from a non-pivot map

will be assigned to the cluster with which it shared the

most number of scaffolds. Once the clustering is com-

pleted, each scaffold is assigned to a single best cluster

based on the number of markers. To reduce ambiguity,

chimeric scaffolds that map well to two or more linkage

group clusters should preferably be split prior to the exe-

cution of ALLMAPS. To determine whether a scaffold is

chimeric, ALLMAPS counts the sum of markers mapped

to each linkage group cluster, weighted across all input

maps. ALLMAPS alerts the user to the chimeric cases

with equally good mappings to two or more linkage clus-

ters and skips them during its computation. As a final step

in the preprocessing step, we apply Iglewicz and Hoaglin’s

outlier test to remove markers that appear to have erratic

genetic positions [36]. These markers are most likely due

to genotyping errors or other artifacts when the map was

constructed.

Phase 1: Generate an initial scaffold order and orientation

This step is the first phase in finding an optimal con-

figuration of scaffolds. There are two aspects in this

phase, finding an optimal ordering and finding the opti-

mal orientations of scaffolds. We solve these two prob-

lems separately.

First, to get the orientation for each scaffold, we com-

pute the relative orientation between all pairs of scaf-

folds. We infer the relative orientation o (a, b) between

two scaffolds a and b by calculating the difference of

colinearity scores between ‘same-orientation’ (a || b)

and ‘opposite-orientation’ (a || - b) configurations:

o a;bð Þ ¼
X

j∈G

wj
: LMS ajjbð Þ− LMS ajj− bð Þ½ �

We note that the sign of o (a, b) determines the rela-

tive orientation between scaffold a and b. A positive

score indicates that scaffold a and b are of the same

orientation, a negative score indicates opposite orienta-

tion, and zero score indicates undetermined orientations.

We store the relative scaffold orientations between all

pairs of scaffolds in a square matrix M, with number of

rows equal to the number of scaffolds. We then compute

the eigenvector y corresponding to the largest eigenvalue

of M, also known as the Perron-Frobenius eigenvalue.

The signs of the components in y provide an approxi-

mate solution to flipping the scaffolds to achieve the

highest consistency given all pairwise orientations.

To calculate the ordering among the scaffolds, we used

an objective function that’s different from the final L

score but nonetheless highly correlated. We define the

pairwise distance d (a, b) between two scaffolds a and b

as the distance between the closest markers between the

two scaffolds:

d a; bð Þ ¼
X

j∈G

wj
: min

x∈Maj; y∈Mbj

abs x− yð Þð Þ

With all pairwise scaffold distances calculated, we seek

the ordering that yields the least sum of distances be-

tween adjacent scaffolds. This problem is then analogous

to the famous ‘traveling salesman problem’ (TSP). We

calculate the ordering using CONCORDE, currently con-

sidered to be the best TSP solver so far [37]. CONCORDE

has been applied to solve a variety of bioinformatics prob-

lem including radiation mapping [38] and prediction of

protein functions [39]. CONCORDE runs quickly within

seconds in all real-world scaffold anchoring problems that

we have tested thus far, making it an ideal solver for an ap-

proximate solution in Phase 1.

The initial ordering based on the minimization of the

inter-scaffold distance across multiple maps is often close

to the final solution that maximizes colinearity, suggesting

that these two objectives are largely correlated. However,

TSP can still generate sub-optimal solutions that require

further tuning. For example, the maps may still be very

noisy so that even the markers within a single scaffold

may not be collinear, which are then likely to skew the dis-

tance calculation. However, since our goal in Phase 1 is to

simply cut down the total running time by minimizing the

search space for Phase 2, this does not have to yield the

exact final solution.

Phase 2: Refine order and orientation using a genetic

algorithm

The initial scaffold configuration calculated in Phase 1 is

close to the final solution, but is sometimes sub-optimal

in the L score. In Phase 2, we apply a Genetic Algorithm

(GA) to further refine the order and orientation of the

scaffolds. Indeed, we could skip Phase 1 and directly run

GA to maximize the L score from the start, but formu-

lating the problem as TSP to compute an initial solution

speeds up the GA in Phase 2 so that ALLMAPS can

quickly converge on a final solution.

A standard GA strategy operates on a population of

‘individuals’, where each individual represents one pos-

sible solution - or in our problem, one possible scaffold

configuration. We apply ‘mutation’ and ‘crossover’ oper-

ations to introduce changes to the current pool of indi-

viduals, while each individual is evaluated with respect

to their ‘fitness’ (the L score) after the change. Individ-

uals with high fitness scores are preferentially retained

(elitist selection) in each generation.

At the start of GA, all individuals are instantiated with

the configuration we computed in Phase 1. We then apply

two types of mutations at each generation: ‘inversion’
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which randomly selects two points in each solution and

reverses the order of the scaffolds in between; ‘inser-

tion’ which randomly translocates a scaffold and inserts

it next to another randomly selected scaffold. These

two mutation operators represent both large-scale and

small-scale changes. For crossover operator, we use the

‘Partially Mapped Crossover’ (PMX) function that was

shown to speed up convergence [40]. The overall GA

scheme is configured with mutation and crossover

probability of 0.2 and 0.7, respectively, which were se-

lected to offer a rapid convergence out of a range of

test values. The population size is set at 100, and is

allowed to evolve until there is no change of best solu-

tion in the last 1,000 generations as convergence criteria.

These options can be adjusted at runtime. Generations be-

yond 1,000 can further ensure that the solution converges

to the optimal, but also lead to longer running time. To

further boost performance, we used parallel processing

during the fitness evaluation which is the most time-

consuming step during GA [40].

After the order is changed in one round of GA, we it-

erate through the scaffolds and check if flipping of any

scaffold would increase in the final score. The scaffold is

then flipped if an improvement is possible. The order

and orientation of scaffolds are two intertwined prob-

lems with the results of one affecting the other through-

out the computation. If the orientations are changed,

then the order among the scaffolds needs to be re-

optimized. Similarly, if the order is changed, then the

orientations need to be re-optimized. Therefore, several

rounds of refinement are sometimes necessary before

converging on a final solution. Each round is consisted

of optimization of scaffold order followed by optimi-

zation of the orientations, until no further improve-

ment in score can be made (Figure 7).

Genome release, summary statistics, and visualization

After computing the scaffold configuration, ALLMAPS

proceeds to build the genome assembly. The scaffolds

are concatenated together according to the computed

order and orientations. Pseudomolecule sequences are

constructed with 100Ns (configurable) padded between

the scaffolds to represent inter-scaffold gaps. Three out-

puts - FASTA, AGP, and CHAIN files are the key out-

puts of the chromosomal assemblies. The FASTA file

contains the nucleotides of the pseudomolecules and un-

anchored sequences. The AGP file is a standard file for-

mat to describe assembly of the pseudomolecules from

the scaffolds, specifying both the order and orientations.

The header of the AGP file contains metadata of the oper-

ation, tracking input files and parameters when running

ALLMAPS. The CHAIN file, when used in conjunction

with the UCSC ‘liftOver’ tool, allows easy conversion

from scaffold coordinates to final chromosome-level

coordinates [41]. This can be very useful, for example,

when gene features were initially predicted on the scaf-

folds but need to be transferred onto the chromosomes.

A byproduct of the liftOver procedure is a consensus

map constructed from all input maps. This consensus

map is constructed via a common physical order along the

reconstructed chromosomes and therefore different from

other implementations of consensus mapping [14,42].

A summary report is provided to the user during the

genome build, with important statistics such as the num-

ber of scaffolds anchored, the number of big (N50) scaf-

folds anchored, total number of markers included in the

final assembly and total length of sequences. These

summary statistics can be useful tools to compare the

efficacy of ALLMAPS before and after anchoring. We

offer two popular ways of visualizing alignments bet-

ween the markers and reconstructed chromosomes. The

first visualization is the ‘side-by-side’ (also known as ‘par-

allel coordinates’) alignments between chromosomes and

the linkage groups, with connecting lines showing the lo-

cation of the markers (Figure 2A). This type of plot is

helpful to reveal conflicting markers as crossing lines,

Figure 8 Algorithm for estimation of inter-scaffold gap lengths.

(A) Scatter plot, with dots showing the physical position on the

chromosome versus the genetic position. Vertical lines mark the

boundaries of the component scaffolds. Cubic spline is used to

generate interpolation of genetic distance along the chromosome.

(B) Recombination rates, measured in centiMorgans per Mb

(cM/Mb), are estimated by taking the derivative of the cubic spline.

Circles represent the locations of the inter-scaffolds gaps. (C) An

example of the size estimation of one gap between two

adjacent scaffolds.
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which is also used in CMAP [43]. The second visualiza-

tion is scatter plot, where the coordinates of the dots rep-

resent the physical locations and the map locations of the

markers, for each input map (Figure 2B). The scatter plots

are a good visualization for illustrating the monotonic

trend as well as revealing breaks in colinearity. Through

visual inspection of these plots, it is possible to quickly as-

sess the concordance between the final ordering of scaf-

folds against each of the input maps used in the assembly.

Gap size estimation

All inter-scaffold gaps were configured to be a fixed size

of default 100Ns during the genome release. Some users

may wish to get more refined size estimates of the gaps.

Accurate inference of gap size is dependent on the con-

version between the map distances to the physical dis-

tances. In the case of genetic maps, this conversion ratio

is known as the recombination rate, commonly mea-

sured in centiMorgan per Mb (cM/Mb). The recombin-

ation rates are widely variable between different genetic

backgrounds, between chromosomes in the same gen-

ome, and even between different regions on the same

chromosome [44,45]. ALLMAPS uses a local estimation

method based on the positions of the input markers.

Cubic spline, which was suggested to be the best method

to estimate recombination rate [44], is used to generate

interpolation of genetic distance along the chromosome

(Figure 8A). Recombination rates are estimated by taking

the derivative of the cubic spline (Figure 8B). For each

pair of markers that spans a gap, we converted the gen-

etic distance to the physical distance based on the inter-

polated recombination rate, and then deducted the

overhangs (distance from the markers to the edge of the

scaffold) to infer the gap sizes (Figure 8C). All pairwise

marker combination between two adjacent scaffolds were

used in the gap size estimation. The final gap size is in-

ferred based on the smallest estimate among all marker

pairs between the flanking scaffolds for all input maps.

ALLMAPS offers the gap estimation method as an op-

tional step in the pipeline.

Data availability

Source code for ALLMAPS are available at [30]. ALLMAPS

is available for use through a web-based interface in the

iPlant Discovery Environment [46]. Whole genome shot-

gun raw reads of yellow catfish are deposited under SRA

study: SRP050322 ([47]). Input data used in building the

yellow catfish and Medicago assembly are available on

figshare with the following public DOI:

� Tang, Haibao (2014): ALLMAPS supporting data:

Yellow catfish genome assembly [48].

� Tang, Haibao (2014): ALLMAPS supporting data:

Medicago genome assembly [49].
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